Solvent extraction of metals: Role of ionic liquids and microfluidics

•Up-to-date progress of the metal extraction process.•Solvents and technologies were used in conventional and current extraction methods.•Important parameters in the process and how effective each method is.•The advantages of new emerging reactors over the conventional ones. Microfluidic technology...

Full description

Saved in:
Bibliographic Details
Published inSeparation and purification technology Vol. 262; p. 118289
Main Authors Asrami, Mahdieh Razi, Tran, Nam Nghiep, Nigam, Krishna Deo Prasad, Hessel, Volker
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Up-to-date progress of the metal extraction process.•Solvents and technologies were used in conventional and current extraction methods.•Important parameters in the process and how effective each method is.•The advantages of new emerging reactors over the conventional ones. Microfluidic technology has attracted great interest across industry and academia. Its engineering characteristics, through miniaturization, can enhance mass- and heat transfer rates together with allowing operation at high concentrations. Combining this technology with a green designer solvent is one of the most recent advances in separation processes. Ionic liquids have negligible volatility and flammability and have an exceptionally large chemical diversity space, which these days can be better utilised through solvent modelling. Ionic liquids have been demonstrated to increase the efficiency and selectivity of extraction by orders of magnitude. Different types of microfluidic devices have been designed until now, and among those, the segmented flow with alternate regular slugs is the most prominent. Helical coiling can further intensify the internal recirculation by convection, which is the motor of the advanced mass transfer. This is done by liberating Dean forces. A device that leverages such mass transfer intensification in the best possible way is the Coiled flow inverter (CFI) (Saxena Nigam, 1984) [1]. The coil periodicity is just 4 turnings, and then the winding direction is inversed, e.g. changed from clockwise to counter-clockwise, and this is repeated multiple times. The CFI extraction performance is typically much better than for a straight and a non-inverted helical capillary. Separation of metals using liquid–liquid extraction methodology is an important research subject of large economical relevance. The common types of equipment in metal extraction have some disadvantages such as long mixing time and huge plant footprint for the coalescence of the multi-phase, which might take very long due to emulsion formation. In this regard, microfluidic devices and ionic liquids provide an alternative as more compact, more efficient, and faster technology. This review shall help researchers to understand the recent improvement in metal extraction processes, and what the addition of disruptive technology can add to an industrial transformation.
AbstractList •Up-to-date progress of the metal extraction process.•Solvents and technologies were used in conventional and current extraction methods.•Important parameters in the process and how effective each method is.•The advantages of new emerging reactors over the conventional ones. Microfluidic technology has attracted great interest across industry and academia. Its engineering characteristics, through miniaturization, can enhance mass- and heat transfer rates together with allowing operation at high concentrations. Combining this technology with a green designer solvent is one of the most recent advances in separation processes. Ionic liquids have negligible volatility and flammability and have an exceptionally large chemical diversity space, which these days can be better utilised through solvent modelling. Ionic liquids have been demonstrated to increase the efficiency and selectivity of extraction by orders of magnitude. Different types of microfluidic devices have been designed until now, and among those, the segmented flow with alternate regular slugs is the most prominent. Helical coiling can further intensify the internal recirculation by convection, which is the motor of the advanced mass transfer. This is done by liberating Dean forces. A device that leverages such mass transfer intensification in the best possible way is the Coiled flow inverter (CFI) (Saxena Nigam, 1984) [1]. The coil periodicity is just 4 turnings, and then the winding direction is inversed, e.g. changed from clockwise to counter-clockwise, and this is repeated multiple times. The CFI extraction performance is typically much better than for a straight and a non-inverted helical capillary. Separation of metals using liquid–liquid extraction methodology is an important research subject of large economical relevance. The common types of equipment in metal extraction have some disadvantages such as long mixing time and huge plant footprint for the coalescence of the multi-phase, which might take very long due to emulsion formation. In this regard, microfluidic devices and ionic liquids provide an alternative as more compact, more efficient, and faster technology. This review shall help researchers to understand the recent improvement in metal extraction processes, and what the addition of disruptive technology can add to an industrial transformation.
ArticleNumber 118289
Author Tran, Nam Nghiep
Hessel, Volker
Asrami, Mahdieh Razi
Nigam, Krishna Deo Prasad
Author_xml – sequence: 1
  givenname: Mahdieh Razi
  surname: Asrami
  fullname: Asrami, Mahdieh Razi
  organization: School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA 5005, Australia
– sequence: 2
  givenname: Nam Nghiep
  surname: Tran
  fullname: Tran, Nam Nghiep
  email: namnghiep.tran@adelaide.edu.au
  organization: School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA 5005, Australia
– sequence: 3
  givenname: Krishna Deo Prasad
  surname: Nigam
  fullname: Nigam, Krishna Deo Prasad
  organization: Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110001, India
– sequence: 4
  givenname: Volker
  surname: Hessel
  fullname: Hessel, Volker
  email: volker.hessel@adelaide.edu.au
  organization: School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA 5005, Australia
BookMark eNqFkMtKAzEUhoNUsK2-gYu8wNRcpslMF4KUeoGC4GUdMskJpEwnNZkWfXszjCsXujrX7xz-f4YmXegAoWtKFpRQcbNbJDgcjnHBCMstWrGqPkNTWklecFmXk5zzihfLSogLNEtpRwiVeW2KNq-hPUHXY_jsoza9Dx0ODu-h121a4ZfQwlDntje49R9HbxPWncV7b2Jwba69SZfo3OV9uPqJc_R-v3lbPxbb54en9d22MJyIvmhMIxyzWjsGpnJQL43QtmGGkSqPaM2ttLUkDZeSCUbJkoCrhSxlw1lm-ByV4938O6UITh2i3-v4pShRgxVqp0Yr1GCFGq3I2OoXZnyvB61Zs2__g29HGLKwk4eokvHQGbA-gumVDf7vA99L5YAl
CitedBy_id crossref_primary_10_1039_D2GC02214A
crossref_primary_10_1016_j_mineng_2022_107812
crossref_primary_10_1002_adfm_202423566
crossref_primary_10_1016_j_scp_2023_101381
crossref_primary_10_1016_j_cej_2024_150136
crossref_primary_10_1039_D4RA08429B
crossref_primary_10_1016_j_molliq_2024_126025
crossref_primary_10_1016_j_jiec_2024_09_027
crossref_primary_10_1016_j_molliq_2024_126033
crossref_primary_10_1038_s41598_024_54591_y
crossref_primary_10_1039_D3GC02859C
crossref_primary_10_1134_S0036023622800014
crossref_primary_10_1134_S1070363222120143
crossref_primary_10_31857_S2308112023700566
crossref_primary_10_3390_pr11020364
crossref_primary_10_1016_j_seppur_2022_121519
crossref_primary_10_1016_j_jclepro_2023_139405
crossref_primary_10_1080_15422119_2022_2091458
crossref_primary_10_1016_j_cep_2024_109932
crossref_primary_10_1016_j_seppur_2022_120773
crossref_primary_10_1007_s42461_022_00600_5
crossref_primary_10_1021_acs_chemrev_3c00794
crossref_primary_10_3390_molecules29112659
crossref_primary_10_1016_j_cej_2024_157885
crossref_primary_10_3390_chemengineering6010006
crossref_primary_10_3103_S002713142470041X
crossref_primary_10_1039_D1GC03662A
crossref_primary_10_1007_s11814_022_1322_x
crossref_primary_10_1016_j_cep_2022_108911
crossref_primary_10_1016_j_seppur_2022_122958
crossref_primary_10_1039_D4GC01882F
crossref_primary_10_1002_apj_2743
crossref_primary_10_1016_j_cej_2023_142011
crossref_primary_10_1016_j_ecoenv_2023_114792
crossref_primary_10_1016_j_molliq_2023_122205
crossref_primary_10_1134_S0965545X23701080
crossref_primary_10_1016_j_seppur_2021_119335
crossref_primary_10_4155_bio_2021_0067
crossref_primary_10_1016_j_cep_2022_109151
crossref_primary_10_1016_j_jece_2024_113880
crossref_primary_10_1007_s42250_022_00447_9
crossref_primary_10_1134_S003602442213012X
crossref_primary_10_1016_j_jil_2024_100116
crossref_primary_10_1016_j_cofs_2024_101253
crossref_primary_10_1007_s11356_023_26433_3
crossref_primary_10_1016_j_cep_2022_108905
crossref_primary_10_1016_j_molliq_2022_118818
crossref_primary_10_1177_25726641241301982
crossref_primary_10_1177_17475198231156358
crossref_primary_10_1016_j_chemosphere_2021_133102
crossref_primary_10_1007_s40831_023_00697_y
crossref_primary_10_1016_j_cej_2024_148792
crossref_primary_10_1016_j_cep_2021_108671
crossref_primary_10_3389_fchem_2023_1298452
crossref_primary_10_3390_su16198630
crossref_primary_10_1016_j_molliq_2024_124594
crossref_primary_10_1134_S2634827622020040
crossref_primary_10_1016_j_molliq_2022_120080
crossref_primary_10_1016_j_seppur_2023_125985
Cites_doi 10.1016/j.cherd.2015.01.003
10.13005/ojc/290402
10.1021/acs.iecr.8b03408
10.1016/j.cep.2019.107562
10.1016/j.cej.2010.11.002
10.1016/j.cej.2012.08.064
10.1016/j.molliq.2019.111040
10.1039/b008041l
10.1016/j.cep.2016.02.001
10.1016/j.reactfunctpolym.2005.05.002
10.1002/anie.201711068
10.1080/01496395.2017.1284863
10.1016/j.hydromet.2011.09.001
10.1021/ie010022+
10.1016/j.hydromet.2012.07.001
10.1016/j.jbiotec.2015.06.388
10.1021/ie50532a020
10.1002/ceat.201100602
10.1016/S0021-9673(00)00683-X
10.1021/ie900012k
10.1016/j.cej.2016.08.062
10.1016/j.aca.2005.10.086
10.1016/0304-386X(95)00051-H
10.1002/ceat.201200464
10.1016/j.hydromet.2004.02.002
10.1016/j.ces.2016.01.004
10.1016/j.cej.2015.08.099
10.1016/j.procbio.2014.01.016
10.1016/S0304-386X(99)00014-6
10.1002/cjoc.201900453
10.1016/S0304-386X(00)00135-3
10.1039/C6RA09328K
10.1016/S0013-4686(99)00071-7
10.1016/j.hydromet.2012.05.003
10.1080/0144235X.2015.1088217
10.1016/j.seppur.2018.08.016
10.1016/j.seppur.2012.08.026
10.1016/j.fluid.2008.01.021
10.1080/01496395.2019.1577271
10.1039/c2gc35246j
10.1016/j.ces.2018.09.008
10.1002/aic.16606
10.1016/0304-386X(92)90093-F
10.1021/ie00018a026
10.1016/j.seppur.2019.115875
10.1021/acs.iecr.5b04865
10.1016/j.seppur.2012.08.015
10.1016/j.hydromet.2010.04.009
10.1016/j.seppur.2019.116496
10.1016/j.hydromet.2011.12.006
10.1039/C5DT03791C
10.1021/cr200271j
10.1016/j.seppur.2018.11.091
10.1016/j.hydromet.2019.105148
10.1016/j.hydromet.2011.08.004
10.1039/b102790p
10.1016/j.jhazmat.2016.10.054
10.1016/0304-386X(85)90032-5
10.1016/j.cep.2015.12.013
10.1021/ie061490s
10.1016/j.cherd.2012.03.006
10.1081/SEI-120018944
10.1002/jctb.5544
10.1016/j.cep.2020.107921
10.1002/ceat.201200600
10.1016/S0304-386X(02)00011-7
10.1016/j.seppur.2019.115952
10.1063/1.3116092
10.1016/j.seppur.2007.11.005
10.1016/j.cej.2017.09.046
10.1002/jssc.201401315
10.1016/j.seppur.2018.04.075
10.1080/07366290701634610
10.1016/j.cherd.2013.08.033
10.1080/15422119.2016.1240085
10.1016/j.seppur.2004.06.005
10.1016/j.hydromet.2019.105104
10.1080/00958979209407944
10.1016/j.trac.2015.03.024
10.1016/j.ces.2017.01.016
10.1016/j.jre.2018.03.024
10.1080/07366299.2011.595636
10.1021/ac011111z
10.1016/S0378-7753(03)00025-9
10.1039/C7RA04753C
10.1016/j.seppur.2018.09.028
10.1016/j.ces.2018.06.007
10.1016/j.ijhydene.2016.07.040
10.1016/j.jiec.2019.10.023
10.1021/acs.iecr.9b03472
10.1039/C5CC06595J
10.1080/01496395.2014.952747
10.1016/j.mineng.2006.07.001
10.1002/ceat.201900168
10.1016/S0003-2670(00)88873-X
10.1016/j.seppur.2018.07.033
10.1021/ie300649d
10.1007/BF02705944
10.1080/01496395.2012.672532
10.1016/j.talanta.2008.06.016
10.1016/j.jhazmat.2009.11.005
10.1039/B310507P
10.1016/j.seppur.2018.03.022
10.1016/j.hydromet.2012.04.003
10.1016/j.hydromet.2007.07.012
10.1016/j.mineng.2019.106106
10.1039/C9LC90021G
10.1016/0304-386X(95)00117-Y
10.1016/j.seppur.2013.02.021
10.1081/SEI-120016074
10.1016/j.seppur.2018.10.051
10.1080/01932691.2015.1004185
10.1039/C7DT01142C
10.1351/pac200072122275
10.1016/j.molliq.2016.01.016
10.1002/aic.690300303
10.1039/c3gc40198g
10.1080/07366290008934721
10.1080/07366299.2018.1446680
10.1016/j.hydromet.2003.10.008
10.1016/j.cep.2014.10.013
10.1021/ie503502g
10.1021/acs.jpcb.5b02980
10.1016/j.jhazmat.2010.07.004
10.1016/S0304-386X(02)00004-X
10.1016/j.mineng.2003.09.001
10.1016/S0304-386X(01)00146-3
10.1016/j.cej.2018.09.030
10.1080/01496395.2018.1440304
10.1039/b411630p
10.1039/C7QI00753A
10.1016/j.cep.2019.107536
10.1080/07366298408918476
10.1016/j.seppur.2018.09.046
10.1016/j.jece.2018.01.032
10.1016/j.hydromet.2014.01.010
10.1021/ac991147f
10.1134/S004057951605002X
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.seppur.2020.118289
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3794
ExternalDocumentID 10_1016_j_seppur_2020_118289
S1383586620327611
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
R2-
RIG
SEW
SSH
ID FETCH-LOGICAL-c306t-bcb6f2daaf2ec8fe95c6adb2c208cb6193d7d970b3772621050ef96747b32f2e3
IEDL.DBID .~1
ISSN 1383-5866
IngestDate Thu Apr 24 23:05:44 EDT 2025
Tue Jul 01 00:32:38 EDT 2025
Fri Feb 23 02:42:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords MIBK
Coiled flow inverter
P204
[C101][Cl]
[A324H][Cl]
[HBBIm]Br
[OcGBOEt][DHDGA]
[C4min][N88SA]
HEH(EHP)
Metal ion extraction
[Emim][Cl]
[C4Py][N88SA]
Microreactors
Cyphos IL 101 or P66614Cl
LIX 84
[A336][DHDGA]
EHEHPA
TBP
[HOEmim][NTf2]
P88812Cl
[Emim][NTf2]
TOA
4PC
D2EHPA
LIX63
DC18C6
Process intensification
[C4mim][PF6]
[C8mim][PF6]
PC-88A
[diHTMG]Br
Cyphos 102
[Bmim][NTf2]
Ref
[P44414][Cl]
Ionic liquids
AD-100
DEH PA
Microfluidics
[PJMTH][HSO4]
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-bcb6f2daaf2ec8fe95c6adb2c208cb6193d7d970b3772621050ef96747b32f2e3
ParticipantIDs crossref_primary_10_1016_j_seppur_2020_118289
crossref_citationtrail_10_1016_j_seppur_2020_118289
elsevier_sciencedirect_doi_10_1016_j_seppur_2020_118289
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
2021-05-00
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Separation and purification technology
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Saji, Reddy (b0225) 2001; 61
Coll, Fortuny, Kedari, Sastre (b0510) 2012; 125
Basauri, Gomez-Pastora, Fallanza, Bringas, Ortiz (b0605) 2019; 209
Zhu, Zhang, Pranolo, Cheng (b0240) 2012; 127
Tokeshi, Minagawa, Uchiyama, Hibara, Sato, Hisamoto, Kitamori (b0550) 2002; 74
Xu, Zhao, Wang, Yan, Cai, Yang (b0425) 2019; 58
Minagawa, Tokeshi, Kitamori (b0515) 2001; 1
Rzelewska-Piekut, Regel-Rosocka (b0350) 2019; 212
Nishihama, Hirai, Komasawa (b0080) 2001; 40
Onghena, Valgaeren, Vander Hoogerstraete, Binnemans (b0280) 2017; 7
Ciceri, Mason, Harvie, Perera, Stevens (b0580) 2014; 92
Li, Chu, Li, Dong, Shen (b0435) 2019; 189
Jeong, Chen, Yadavali, Xu, Issadore, Lee (b0645) 2019; 19
Bonam, Bhattacharyya, Bhowal, Datta (b0190) 2009; 48
Janssen, Macías-Ruvalcaba, Aguilar-Martínez, Kobrak (b0105) 2015; 34
Liu, Wang, Zheng, Wang, Yan, Yang (b0020) 2017; 46
Yung, Smith, Bowser, Perera, Stevens (b0705) 2012; 90
Kurt, Gürsel, Hessel, Nigam, Kockmann (b0715) 2016; 284
Platzer, Kar, Leyma, Chib, Roller, Jirsa, Krachler, MacFarlane, Kandioller, Keppler (b0395) 2017; 324
Saien, Daliri (b0420) 2012; 51
Jha, Kumar, Jeong, Lee (b0100) 2012; 111
Nguyen, Lee, Chagnes, Kim, Jeong, Cote (b0470) 2016; 6
El-Nadi (b0050) 2017; 46
Tokeshi, Minagawa, Kitamori (b0545) 2000; 894
Zante, Masmoudi, Barillon, Trébouet, Boltoeva (b0355) 2020; 82
Vander Hoogerstraete, Wellens, Verachtert, Binnemans (b0475) 2013; 15
Salgado, Veloso, Pereira, Gontijo, Salum, Mansur (b0030) 2003; 115
Reddy, Sarma (b0220) 1996; 43
Zhou, Boudesocque, Mohamadou, Dupont (b0315) 2015; 50
Choppin, Morgenstern (b0430) 2000; 18
Villemin, Didi (b0075) 2014; 29
Abbasi, Rahbar-Kelishami, Ghasemi (b0070) 2018; 36
Dupont, Depuydt, Binnemans (b0490) 2015; 119
Wang, Wang, Lu, Ru, Yang (b0360) 2019; 293
Löwe, Ehrfeld (b0525) 1999; 44
Liu, Dai, Li, Ma, Cao, Wang, Komarneni, Luo (b0620) 2020; 43
Lo Nostro, Ninham (b0500) 2012; 112
Wang, Yue, Li, Jin, Li (b0230) 2002; 20
Tran, Azra, Iqbal, Lee (b0390) 2020; 238
Banda, Jeon, Lee (b0065) 2012; 121
Hessel, Tran, Orandi, Asrami, Goodsite, Nguyen (b0310) 2020
Papaiconomou, Svecova, Bonnaud, Cathelin, Billard, Chainet (b0415) 2015; 44
Shen, Fang (b0560) 2008; 77
Li, Onghena, Li, Zhang, Binnemans (b0365) 2019; 58
Cieszynska, Wiśniewski (b0445) 2012; 113
Vashisth, Nigam (b0660) 2007; 46
Martınez, Sastre, Alguacil (b0450) 1999; 52
Gilligan, Nikoloski (b0025) 2020; 146
Soni, Sharma, Meena, Roy, Nigam (b0690) 2019; 193
Jafari, Rahimi, Kakavandi (b0640) 2016; 101
Kongolo, Mwema, Banza, Gock (b0055) 2003; 16
Mai, Ahn, Koo (b0405) 2014; 49
Rybka, Regel-Rosocka (b0320) 2012; 47
Eyupoglu, Polat, Kunduracioglu, Turgut (b0285) 2015; 36
Cheng, Boddy, Zhang, Godfrey, Robinson, Pranolo, Zhu, Wang (b0035) 2010; 104
Firmansyah, Kubota, Goto (b0485) 2018; 93
Preston, Cole, Craig, Feather (b0260) 1996; 41
Fan, Fan, Pei, Wu, Wang, Fan (b0505) 2008; 61
Klutz, Magnus, Lobedann, Schwan, Maiser, Niklas, Temming, Schembecker (b0685) 2015; 213
Morais, Ciminelli (b0125) 2004; 73
Brits, Deglon (b0180) 2007; 89
Singh, Srivastava, Nigam (b0675) 2016; 55
Chen, Zhang (b0290) 2019
Yao, Zhao, Chen (b0085) 2018; 189
Zhang, Hessel, Peng (b0595) 2018; 332
Bonnesen, Delmau, Moyer, Lumetta (b0040) 2003; 21
Q. Li, P.J.C.E.S. Angeli, Intensified Eu (III) extraction using ionic liquids in small channels, 143 (2016) 276–286.
Marcinkowski, Pena-Pereira, Kloskowski, Namieśnik (b0270) 2015; 72
Rickelton, Flett, West (b0160) 1984; 2
Yamamoto, Taguchi, Sato, Surugaya (b0585) 2015; 38
Darekar, Sen, Singh, Mukhopadhyay, Shenoy, Ghosh (b0650) 2014; 144
Cui, Jiang, Wang, Dong, Zhang, Cheng (b0345) 2019; 65
Seddon, Stark, Torres (b0265) 2000; 72
Wang, Guo, Lee (b0340) 2019; 210
Juang, Kao (b0195) 2005; 42
Lee, Ahn, Lee (b0140) 2002; 63
Chun, Lee, Cheon, Wilkinson (b0200) 1996; 13
Li, Li, Raiguel, Binnemans (b0175) 2018; 201
Kabay, Solak, Arda, Topal, Yüksel, Trochimczuk, Streat (b0210) 2005; 64
Tsaoulidis (b0720) 2015
Leopold, Coll, Fortuny, Rathore, Sastre (b0235) 2010; 182
Onghena, Opsomer, Binnemans (b0465) 2015; 51
Sasaki, Yoshimitsu, Nishihama, Shimbori, Shiroishi (b0245) 2017; 52
Pinto, Durao, Fiúza, Guimaraes, Madureira (b0185) 2004; 74
Gras, Papaiconomou, Schaeffer, Chainet, Tedjar, Coutinho, Billard (b0460) 2018; 57
Bhowal, Bhattacharyya, Inturu, Datta (b0205) 2012; 99
Zhang, Xie, Li, Yin, Peng, Ju (b0590) 2015; 4
Tokeshi, Minagawa, Kitamori (b0540) 2000; 72
Werning, Higbie, Grace, Speece, Gilbert (b0150) 1954; 46
Banda, Jeon, Lee (b0170) 2012; 98
Chauhan, Jadhao, Pant, Nigam (b0115) 2018; 6
Garciadiego-Ortega, Tsaoulidis, Pineda, Fraga, Angeli (b0625) 2020
Radhika, Kumar, Kantam, Reddy (b0010) 2011; 110
Sole, Hiskey (b0165) 1992; 30
Fouad, Bart (b0655) 2007; 25
Bartsch, Yang, Jeon, Walkowiak, Charewicz (b0155) 1992; 27
Janssen, Macias-Ruvalcaba, Aguilar-Martinez, Kobrak (b0335) 2015; 34
Good, Srivastava, Holland (b0480) 1964; 31
Singh, Kockmann, Nigam (b0680) 2014; 86
Yan, Wang, Xiang, Yang (b0330) 2018; 53
Abdollahi, Karimi-Sabet, Moosavian, Amini (b0615) 2020; 231
Tsaoulidis, Dore, Angeli, Plechkova, Seddon (b0630) 2013; 227
Visser, Swatloski, Reichert, Mayton, Sheff, Wierzbicki, Davis, Rogers (b0295) 2001
Marsousi, Karimi-Sabet, Moosavian, Amini (b0635) 2019; 356
Dehkordi, Hormozi, Jahangiri (b0695) 2016; 41
Alguacil, Escudero (b0370) 2019; 189
Zhao, Liu, Feng, Chen, Li, Tian, Wang, Huang, Li (b0130) 2010; 176
Singh, Montesinos-Castellanos, Nigam (b0700) 2019; 141
Zhang, Hessel, Peng, Wang, Zhang (b0215) 2017; 307
Passos, Luís, Coutinho, Freire (b0455) 2016; 6
Zhang, Huang, Yu, Liu (b0325) 2013; 108
Asrami, Saien (b0495) 2018; 204
Safarzadeh, Bafghi, Moradkhani, Ilkhchi (b0090) 2007; 20
Chauhan, Kaur, Pant, Nigam (b0120) 2020
Tong, Wang, Huang, Yang (b0015) 2015; 54
Xie, Zhang, Yang, Zhang, Ju, Luo (b0600) 2019; 143
Yang, Zhao, Su, Chen (b0575) 2013; 36
Saxena, Nigam (b0005) 1984; 30
Nagai, Miwa, Segawa, Wakida, Chayama (b0565) 2009; 105
Flieger, Tatarczak-Michalewska, Blicharska, Madejska, Flieger, Adamczuk (b0400) 2019; 209
Xu, Zhao, Liang, Zhou, Yang (b0440) 2018; 5
Alguacil, Garcia-Diaz, Escudero (b0375) 2019; 211
Cheng, Barnard, Zhang, Robinson (b0095) 2011; 29
Khodakarami, Alagha (b0385) 2020; 232
Belhadj, Benabdallah, Coll, Fortuny, Hadj Youcef, Sastre (b0380) 2020; 55
Wellens, Thijs, Binnemans (b0305) 2012; 14
Klutz, Kurt, Lobedann, Kockmann (b0665) 2015; 95
Anastas, Wasserscheid, Stark (b0275) 2013
Scheiff, Holbach, Agar (b0730) 2013; 36
Preston (b0135) 1985; 14
Sun, Wang, Yang, Huang, Xu, Ji, Li, Hu (b0045) 2018; 36
Ye, Li, Deng, Luo, Rao, Peng, Zhang, Jiang (b0250) 2019; 209
Tamagawa, Muto (b0535) 2011; 167
Nishihama, Sakaguchi, Hirai, Komasawa (b0060) 2002; 64
Priest, Zhou, Klink, Sedev, Ralston (b0570) 2012; 35
Singh, Nigam (b0670) 2016; 102
Preston, Du Preez (b0255) 2000; 58
Wei, Cho, Kim, Song, Bediako, Yun (b0410) 2016; 216
Dietz, Dzielawa, Laszak, Young, Jensen (b0300) 2003; 5
Belova (b0110) 2017; 51
Li, Angeli (b0520) 2016; 143
Kumemura, Korenaga (b0555) 2006; 558
López-Guajardo, Ortiz-Nadal, Montesinos-Castellanos, Nigam (b0725) 2017; 169
Maruyama, Kaji, Ohkawa, Sotowa, Matsushita, Kubota, Kamiya, Kusakabe, Goto (b0530) 2004; 129
Yun, Prasad, Guha, Sirkar (b0145) 1993; 32
He, Guo, Chen, Li, Yin (b0610) 2020; 38
Gardas, Coutinho (b0710) 2008; 266
Marcinkowski (10.1016/j.seppur.2020.118289_b0270) 2015; 72
Lo Nostro (10.1016/j.seppur.2020.118289_b0500) 2012; 112
Marsousi (10.1016/j.seppur.2020.118289_b0635) 2019; 356
Nishihama (10.1016/j.seppur.2020.118289_b0080) 2001; 40
Platzer (10.1016/j.seppur.2020.118289_b0395) 2017; 324
Fouad (10.1016/j.seppur.2020.118289_b0655) 2007; 25
Li (10.1016/j.seppur.2020.118289_b0175) 2018; 201
Radhika (10.1016/j.seppur.2020.118289_b0010) 2011; 110
Liu (10.1016/j.seppur.2020.118289_b0020) 2017; 46
El-Nadi (10.1016/j.seppur.2020.118289_b0050) 2017; 46
Cheng (10.1016/j.seppur.2020.118289_b0095) 2011; 29
Banda (10.1016/j.seppur.2020.118289_b0170) 2012; 98
Sasaki (10.1016/j.seppur.2020.118289_b0245) 2017; 52
Klutz (10.1016/j.seppur.2020.118289_b0685) 2015; 213
Passos (10.1016/j.seppur.2020.118289_b0455) 2016; 6
Zhang (10.1016/j.seppur.2020.118289_b0215) 2017; 307
Mai (10.1016/j.seppur.2020.118289_b0405) 2014; 49
Ciceri (10.1016/j.seppur.2020.118289_b0580) 2014; 92
Bhowal (10.1016/j.seppur.2020.118289_b0205) 2012; 99
Li (10.1016/j.seppur.2020.118289_b0365) 2019; 58
López-Guajardo (10.1016/j.seppur.2020.118289_b0725) 2017; 169
Klutz (10.1016/j.seppur.2020.118289_b0665) 2015; 95
Tong (10.1016/j.seppur.2020.118289_b0015) 2015; 54
Minagawa (10.1016/j.seppur.2020.118289_b0515) 2001; 1
Cui (10.1016/j.seppur.2020.118289_b0345) 2019; 65
Yun (10.1016/j.seppur.2020.118289_b0145) 1993; 32
Bartsch (10.1016/j.seppur.2020.118289_b0155) 1992; 27
Werning (10.1016/j.seppur.2020.118289_b0150) 1954; 46
Xu (10.1016/j.seppur.2020.118289_b0440) 2018; 5
Dietz (10.1016/j.seppur.2020.118289_b0300) 2003; 5
Nagai (10.1016/j.seppur.2020.118289_b0565) 2009; 105
Scheiff (10.1016/j.seppur.2020.118289_b0730) 2013; 36
Preston (10.1016/j.seppur.2020.118289_b0260) 1996; 41
Villemin (10.1016/j.seppur.2020.118289_b0075) 2014; 29
Martınez (10.1016/j.seppur.2020.118289_b0450) 1999; 52
Chauhan (10.1016/j.seppur.2020.118289_b0115) 2018; 6
Seddon (10.1016/j.seppur.2020.118289_b0265) 2000; 72
Papaiconomou (10.1016/j.seppur.2020.118289_b0415) 2015; 44
Safarzadeh (10.1016/j.seppur.2020.118289_b0090) 2007; 20
Belhadj (10.1016/j.seppur.2020.118289_b0380) 2020; 55
Dehkordi (10.1016/j.seppur.2020.118289_b0695) 2016; 41
Tsaoulidis (10.1016/j.seppur.2020.118289_b0720) 2015
Fan (10.1016/j.seppur.2020.118289_b0505) 2008; 61
Darekar (10.1016/j.seppur.2020.118289_b0650) 2014; 144
Eyupoglu (10.1016/j.seppur.2020.118289_b0285) 2015; 36
Coll (10.1016/j.seppur.2020.118289_b0510) 2012; 125
Tokeshi (10.1016/j.seppur.2020.118289_b0550) 2002; 74
Garciadiego-Ortega (10.1016/j.seppur.2020.118289_b0625) 2020
Bonnesen (10.1016/j.seppur.2020.118289_b0040) 2003; 21
Salgado (10.1016/j.seppur.2020.118289_b0030) 2003; 115
Vashisth (10.1016/j.seppur.2020.118289_b0660) 2007; 46
Lee (10.1016/j.seppur.2020.118289_b0140) 2002; 63
Kumemura (10.1016/j.seppur.2020.118289_b0555) 2006; 558
Cieszynska (10.1016/j.seppur.2020.118289_b0445) 2012; 113
Wei (10.1016/j.seppur.2020.118289_b0410) 2016; 216
Zhu (10.1016/j.seppur.2020.118289_b0240) 2012; 127
Zhou (10.1016/j.seppur.2020.118289_b0315) 2015; 50
Löwe (10.1016/j.seppur.2020.118289_b0525) 1999; 44
Reddy (10.1016/j.seppur.2020.118289_b0220) 1996; 43
Wellens (10.1016/j.seppur.2020.118289_b0305) 2012; 14
Singh (10.1016/j.seppur.2020.118289_b0680) 2014; 86
Preston (10.1016/j.seppur.2020.118289_b0135) 1985; 14
Singh (10.1016/j.seppur.2020.118289_b0675) 2016; 55
Saji (10.1016/j.seppur.2020.118289_b0225) 2001; 61
Saien (10.1016/j.seppur.2020.118289_b0420) 2012; 51
Xu (10.1016/j.seppur.2020.118289_b0425) 2019; 58
Flieger (10.1016/j.seppur.2020.118289_b0400) 2019; 209
Chen (10.1016/j.seppur.2020.118289_b0290) 2019
Singh (10.1016/j.seppur.2020.118289_b0700) 2019; 141
Pinto (10.1016/j.seppur.2020.118289_b0185) 2004; 74
Tokeshi (10.1016/j.seppur.2020.118289_b0540) 2000; 72
Bonam (10.1016/j.seppur.2020.118289_b0190) 2009; 48
Basauri (10.1016/j.seppur.2020.118289_b0605) 2019; 209
Li (10.1016/j.seppur.2020.118289_b0435) 2019; 189
Singh (10.1016/j.seppur.2020.118289_b0670) 2016; 102
Zhang (10.1016/j.seppur.2020.118289_b0325) 2013; 108
Tamagawa (10.1016/j.seppur.2020.118289_b0535) 2011; 167
Zhang (10.1016/j.seppur.2020.118289_b0595) 2018; 332
Yao (10.1016/j.seppur.2020.118289_b0085) 2018; 189
Chun (10.1016/j.seppur.2020.118289_b0200) 1996; 13
Gilligan (10.1016/j.seppur.2020.118289_b0025) 2020; 146
Onghena (10.1016/j.seppur.2020.118289_b0465) 2015; 51
Brits (10.1016/j.seppur.2020.118289_b0180) 2007; 89
Abbasi (10.1016/j.seppur.2020.118289_b0070) 2018; 36
Belova (10.1016/j.seppur.2020.118289_b0110) 2017; 51
Li (10.1016/j.seppur.2020.118289_b0520) 2016; 143
Yung (10.1016/j.seppur.2020.118289_b0705) 2012; 90
Nguyen (10.1016/j.seppur.2020.118289_b0470) 2016; 6
Xie (10.1016/j.seppur.2020.118289_b0600) 2019; 143
Rickelton (10.1016/j.seppur.2020.118289_b0160) 1984; 2
Banda (10.1016/j.seppur.2020.118289_b0065) 2012; 121
Kabay (10.1016/j.seppur.2020.118289_b0210) 2005; 64
Wang (10.1016/j.seppur.2020.118289_b0340) 2019; 210
Good (10.1016/j.seppur.2020.118289_b0480) 1964; 31
Gardas (10.1016/j.seppur.2020.118289_b0710) 2008; 266
Sole (10.1016/j.seppur.2020.118289_b0165) 1992; 30
Visser (10.1016/j.seppur.2020.118289_b0295) 2001
He (10.1016/j.seppur.2020.118289_b0610) 2020; 38
Alguacil (10.1016/j.seppur.2020.118289_b0375) 2019; 211
Morais (10.1016/j.seppur.2020.118289_b0125) 2004; 73
Janssen (10.1016/j.seppur.2020.118289_b0335) 2015; 34
Rybka (10.1016/j.seppur.2020.118289_b0320) 2012; 47
Khodakarami (10.1016/j.seppur.2020.118289_b0385) 2020; 232
Kongolo (10.1016/j.seppur.2020.118289_b0055) 2003; 16
Hessel (10.1016/j.seppur.2020.118289_b0310) 2020
Wang (10.1016/j.seppur.2020.118289_b0360) 2019; 293
Sun (10.1016/j.seppur.2020.118289_b0045) 2018; 36
Jafari (10.1016/j.seppur.2020.118289_b0640) 2016; 101
Zante (10.1016/j.seppur.2020.118289_b0355) 2020; 82
Leopold (10.1016/j.seppur.2020.118289_b0235) 2010; 182
Zhang (10.1016/j.seppur.2020.118289_b0590) 2015; 4
Kurt (10.1016/j.seppur.2020.118289_b0715) 2016; 284
Juang (10.1016/j.seppur.2020.118289_b0195) 2005; 42
Chauhan (10.1016/j.seppur.2020.118289_b0120) 2020
Choppin (10.1016/j.seppur.2020.118289_b0430) 2000; 18
Gras (10.1016/j.seppur.2020.118289_b0460) 2018; 57
Anastas (10.1016/j.seppur.2020.118289_b0275) 2013
Tran (10.1016/j.seppur.2020.118289_b0390) 2020; 238
Yang (10.1016/j.seppur.2020.118289_b0575) 2013; 36
Liu (10.1016/j.seppur.2020.118289_b0620) 2020; 43
Vander Hoogerstraete (10.1016/j.seppur.2020.118289_b0475) 2013; 15
Rzelewska-Piekut (10.1016/j.seppur.2020.118289_b0350) 2019; 212
Asrami (10.1016/j.seppur.2020.118289_b0495) 2018; 204
Tokeshi (10.1016/j.seppur.2020.118289_b0545) 2000; 894
Priest (10.1016/j.seppur.2020.118289_b0570) 2012; 35
Soni (10.1016/j.seppur.2020.118289_b0690) 2019; 193
Yamamoto (10.1016/j.seppur.2020.118289_b0585) 2015; 38
10.1016/j.seppur.2020.118289_b0735
Maruyama (10.1016/j.seppur.2020.118289_b0530) 2004; 129
Preston (10.1016/j.seppur.2020.118289_b0255) 2000; 58
Ye (10.1016/j.seppur.2020.118289_b0250) 2019; 209
Nishihama (10.1016/j.seppur.2020.118289_b0060) 2002; 64
Shen (10.1016/j.seppur.2020.118289_b0560) 2008; 77
Alguacil (10.1016/j.seppur.2020.118289_b0370) 2019; 189
Jeong (10.1016/j.seppur.2020.118289_b0645) 2019; 19
Zhao (10.1016/j.seppur.2020.118289_b0130) 2010; 176
Dupont (10.1016/j.seppur.2020.118289_b0490) 2015; 119
Saxena (10.1016/j.seppur.2020.118289_b0005) 1984; 30
Yan (10.1016/j.seppur.2020.118289_b0330) 2018; 53
Janssen (10.1016/j.seppur.2020.118289_b0105) 2015; 34
Tsaoulidis (10.1016/j.seppur.2020.118289_b0630) 2013; 227
Cheng (10.1016/j.seppur.2020.118289_b0035) 2010; 104
Jha (10.1016/j.seppur.2020.118289_b0100) 2012; 111
Firmansyah (10.1016/j.seppur.2020.118289_b0485) 2018; 93
Abdollahi (10.1016/j.seppur.2020.118289_b0615) 2020; 231
Onghena (10.1016/j.seppur.2020.118289_b0280) 2017; 7
Wang (10.1016/j.seppur.2020.118289_b0230) 2002; 20
References_xml – volume: 42
  start-page: 65
  year: 2005
  end-page: 73
  ident: b0195
  article-title: Extraction separation of Co (II)/Ni (II) from concentrated HCl solutions in rotating disc and hollow-fiber membrane contactors
  publication-title: Sep. Purif. Technol.
– volume: 43
  start-page: 974
  year: 2020
  end-page: 982
  ident: b0620
  article-title: Removal of Cu2+ from Water Using Liquid-Liquid Microchannel Extraction
  publication-title: Chem. Eng. Technol.
– volume: 41
  start-page: 1
  year: 1996
  end-page: 19
  ident: b0260
  article-title: The recovery of rare earth oxides from a phosphoric acid by-product. Part 1: Leaching of rare earth values and recovery of a mixed rare earth oxide by solvent extraction
  publication-title: Hydrometallurgy
– volume: 86
  start-page: 78
  year: 2014
  end-page: 89
  ident: b0680
  article-title: Novel three-dimensional microfluidic device for process intensification
  publication-title: Chem. Eng. Process. Process Intensif.
– volume: 20
  start-page: 211
  year: 2007
  end-page: 220
  ident: b0090
  article-title: A review on hydrometallurgical extraction and recovery of cadmium from various resources
  publication-title: Miner. Eng.
– volume: 293
  start-page: 111040
  year: 2019
  ident: b0360
  article-title: Extraction and stripping of platinum (IV) from acidic chloride media using guanidinium ionic liquid
  publication-title: J. Mol. Liq.
– volume: 189
  start-page: 105104
  year: 2019
  ident: b0370
  article-title: Solvent extraction of indium (III) from HCl solutions by the ionic liquid (A324H+)(Cl−) dissolved in Solvesso 100
  publication-title: Hydrometallurgy
– volume: 189
  start-page: 105148
  year: 2019
  ident: b0435
  article-title: Recovery of palladium from acidic nitrate media with triazole type extractants in ionic liquid
  publication-title: Hydrometallurgy
– volume: 129
  start-page: 1008
  year: 2004
  end-page: 1013
  ident: b0530
  article-title: Intermittent partition walls promote solvent extraction of metal ions in a microfluidic device
  publication-title: Analyst
– volume: 29
  start-page: 719
  year: 2011
  end-page: 754
  ident: b0095
  article-title: Synergistic solvent extraction of nickel and cobalt: A review of recent developments
  publication-title: Solvent Extr. Ion Exch.
– volume: 47
  start-page: 1296
  year: 2012
  end-page: 1302
  ident: b0320
  article-title: Nickel (II) and cobalt (II) extraction from chloride solutions with quaternary phosphonium salts
  publication-title: Sep. Sci. Technol.
– volume: 113
  start-page: 79
  year: 2012
  end-page: 85
  ident: b0445
  article-title: Extractive recovery of palladium (II) from hydrochloric acid solutions with Cyphos® IL 104
  publication-title: Hydrometallurgy
– volume: 54
  start-page: 705
  year: 2015
  end-page: 711
  ident: b0015
  article-title: Extraction and stripping of platinum from hydrochloric acid medium by mixed imidazolium ionic liquids
  publication-title: Ind. Eng. Chem. Res.
– volume: 58
  start-page: 1779
  year: 2019
  end-page: 1786
  ident: b0425
  article-title: Extraction of Pt (IV), Pt (II), and Pd (II) from acidic chloride media using imidazolium-based task-specific polymeric ionic liquid
  publication-title: Ind. Eng. Chem. Res.
– volume: 46
  start-page: 195
  year: 2017
  end-page: 215
  ident: b0050
  article-title: Solvent extraction and its applications on ore processing and recovery of metals: classical approach
  publication-title: Sep. Purif. Rev.
– volume: 18
  start-page: 1029
  year: 2000
  end-page: 1049
  ident: b0430
  article-title: Thermodynamics of solvent extraction
  publication-title: Solvent Extr. Ion Exch.
– volume: 227
  start-page: 151
  year: 2013
  end-page: 157
  ident: b0630
  article-title: Dioxouranium (VI) extraction in microchannels using ionic liquids
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 62717
  year: 2016
  end-page: 62728
  ident: b0470
  article-title: Highly selective separation of individual platinum group metals (Pd, Pt, Rh) from acidic chloride media using phosphonium-based ionic liquid in aromatic diluent
  publication-title: RSC Adv.
– volume: 20
  start-page: 701
  year: 2002
  end-page: 716
  ident: b0230
  article-title: Solvent extraction of scandium (III), yttrium (III), lanthanides (III), anddivalent metal ions with sec-nonylphenoxy acetic acid
  publication-title: Solvent Extr. Ion Exch.
– volume: 14
  start-page: 171
  year: 1985
  end-page: 188
  ident: b0135
  article-title: Solvent extraction of metals by carboxylic acids
  publication-title: Hydrometallurgy
– volume: 212
  start-page: 791
  year: 2019
  end-page: 801
  ident: b0350
  article-title: Separation of Pt (IV), Pd (II), Ru (III) and Rh (III) from model chloride solutions by liquid-liquid extraction with phosphonium ionic liquids
  publication-title: Sep. Purif. Technol.
– volume: 43
  start-page: 299
  year: 1996
  end-page: 306
  ident: b0220
  article-title: Extraction of iron (III) at macro-level concentrations using TBP, MIBK and their mixtures
  publication-title: Hydrometallurgy
– volume: 14
  start-page: 1657
  year: 2012
  end-page: 1665
  ident: b0305
  article-title: An environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids
  publication-title: Green Chem.
– volume: 51
  start-page: 15932
  year: 2015
  end-page: 15935
  ident: b0465
  article-title: Separation of cobalt and nickel using a thermomorphic ionic-liquid-based aqueous biphasic system
  publication-title: J. Chem. Commun.
– volume: 52
  start-page: 63
  year: 1999
  end-page: 70
  ident: b0450
  article-title: Solvent extraction of gold (III) by the chloride salt of the tertiary amine Hostarex A327. Estimation of the interaction coefficient between AuCl4− and H+
  publication-title: Hydrometallurgy
– volume: 238
  start-page: 116496
  year: 2020
  ident: b0390
  article-title: Synthesis of succinimide based ionic liquids and comparison of extraction behavior of Co (II) and Ni (II) with bi-functional ionic liquids synthesized by Aliquat336 and organophosphorus acids
  publication-title: Sep. Purif. Technol.
– volume: 127
  start-page: 1
  year: 2012
  end-page: 7
  ident: b0240
  article-title: Separation and recovery of copper, nickel, cobalt and zinc in chloride solutions by synergistic solvent extraction
  publication-title: Hydrometallurgy
– volume: 216
  start-page: 18
  year: 2016
  end-page: 24
  ident: b0410
  article-title: Selective recovery of Au (III), Pt (IV), and Pd (II) from aqueous solutions by liquid–liquid extraction using ionic liquid Aliquat-336
  publication-title: J. Mol. Liq.
– volume: 46
  start-page: 644
  year: 1954
  end-page: 652
  ident: b0150
  article-title: Separation of tantalum and niobium by liquid-liquid extraction
  publication-title: Ind. Eng. Chem.
– volume: 99
  start-page: 69
  year: 2012
  end-page: 76
  ident: b0205
  article-title: Continuous removal of hexavalent chromium by emulsion liquid membrane in a modified spray column
  publication-title: Sep. Purif. Technol.
– volume: 7
  start-page: 35992
  year: 2017
  end-page: 35999
  ident: b0280
  article-title: Cobalt (II)/nickel (II) separation from sulfate media by solvent extraction with an undiluted quaternary phosphonium ionic liquid
  publication-title: RSC Adv.
– volume: 50
  start-page: 38
  year: 2015
  end-page: 44
  ident: b0315
  article-title: Extraction of metal ions with task specific ionic liquids: influence of a coordinating anion
  publication-title: Sep. Sci. Technol.
– volume: 105
  start-page: 102015
  year: 2009
  ident: b0565
  article-title: Quantification of Ag (I) and kinetic analysis using ion-pair extraction across a liquid/liquid interface in a laminar flow by fluorescence microscopy
  publication-title: J. Appl. Phys.
– volume: 98
  start-page: 481
  year: 2012
  end-page: 487
  ident: b0170
  article-title: Solvent extraction separation of Pr and Nd from chloride solution containing La using Cyanex 272 and its mixture with other extractants
  publication-title: Sep. Purif. Technol.
– volume: 5
  start-page: 682
  year: 2003
  end-page: 685
  ident: b0300
  article-title: Influence of solvent structural variations on the mechanism of facilitated ion transfer into room-temperature ionic liquids
  publication-title: J. Green Chem.
– volume: 141
  start-page: 107536
  year: 2019
  ident: b0700
  article-title: Thermal and hydrodynamic performance of a novel passive mixer ‘wavering coiled flow inverter’
  publication-title: Chem. Eng. Process.-Process Intensif.
– volume: 25
  start-page: 857
  year: 2007
  end-page: 877
  ident: b0655
  article-title: Separation of zinc by a non-dispersion solvent extraction process in a hollow fiber contactor
  publication-title: Solvent Extr. Ion Exch.
– volume: 73
  start-page: 237
  year: 2004
  end-page: 244
  ident: b0125
  article-title: Process development for the recovery of high-grade lanthanum by solvent extraction
  publication-title: Hydrometallurgy
– volume: 231
  start-page: 115875
  year: 2020
  ident: b0615
  article-title: Microfluidic solvent extraction of calcium: Modeling and optimization of the process variables
  publication-title: Sep. Purif. Technol.
– volume: 209
  start-page: 175
  year: 2019
  end-page: 181
  ident: b0250
  article-title: Solvent extraction behavior of metal ions and selective separation Sc3+ in phosphoric acid medium using P204
  publication-title: Sep. Purif. Technol.
– volume: 46
  start-page: 7210
  year: 2017
  end-page: 7218
  ident: b0020
  article-title: Extraction behaviour and mechanism of Pt (IV) and Pd (II) by liquid–liquid extraction with an ionic liquid [HBBIm] Br
  publication-title: Dalton Trans.
– volume: 29
  start-page: 1267
  year: 2014
  end-page: 1284
  ident: b0075
  article-title: Extraction of rare earth and heavy metals, using ionic solvents as extraction medium (A Review)
  publication-title: Orient. J. Chem.
– volume: 30
  start-page: 363
  year: 1984
  end-page: 368
  ident: b0005
  article-title: Coiled configuration for flow inversion and its effect on residence time distribution
  publication-title: AIChE J.
– volume: 32
  start-page: 1186
  year: 1993
  end-page: 1195
  ident: b0145
  article-title: Hollow fiber solvent extraction removal of toxic heavy metals from aqueous waste streams
  publication-title: Ind. Eng. Chem. Res.
– volume: 44
  start-page: 3679
  year: 1999
  end-page: 3689
  ident: b0525
  article-title: State-of-the-art in microreaction technology: concepts, manufacturing and applications
  publication-title: Electrochim. Acta
– volume: 213
  start-page: 120
  year: 2015
  end-page: 130
  ident: b0685
  article-title: Developing the biofacility of the future based on continuous processing and single-use technology
  publication-title: J. Biotechnol.
– volume: 115
  start-page: 367
  year: 2003
  end-page: 373
  ident: b0030
  article-title: Recovery of zinc and manganese from spent alkaline batteries by liquid–liquid extraction with Cyanex 272
  publication-title: J. Power Sources
– volume: 61
  start-page: 324
  year: 2008
  end-page: 331
  ident: b0505
  article-title: Solvent extraction of selected endocrine-disrupting phenols using ionic liquids
  publication-title: Sep. Purif. Technol.
– volume: 125
  start-page: 24
  year: 2012
  end-page: 28
  ident: b0510
  article-title: Studies on the extraction of Co (II) and Ni (II) from aqueous chloride solutions using Primene JMT-Cyanex272 ionic liquid extractant
  publication-title: Hydrometallurgy
– volume: 34
  start-page: 591
  year: 2015
  end-page: 622
  ident: b0105
  article-title: Metal extraction to ionic liquids: the relationship between structure, mechanism and application
  publication-title: Int. Rev. Phys. Chem.
– volume: 58
  start-page: 239
  year: 2000
  end-page: 250
  ident: b0255
  article-title: Separation of nickel and calcium by solvent extraction using mixtures of carboxylic acids and alkylpyridines
  publication-title: Hydrometallurgy
– volume: 1
  start-page: 72
  year: 2001
  end-page: 75
  ident: b0515
  article-title: Integration of a wet analysis system on a glass chip: determination of Co (II) as 2-nitroso-1-naphthol chelates by solvent extraction and thermal lens microscopy
  publication-title: Lab Chip.
– volume: 143
  start-page: 276
  year: 2016
  end-page: 286
  ident: b0520
  article-title: Intensified Eu (III) extraction using ionic liquids in small channels
  publication-title: Chem. Eng. Sci.
– volume: 119
  start-page: 6747
  year: 2015
  end-page: 6757
  ident: b0490
  article-title: Overview of the effect of salts on biphasic ionic liquid/water solvent extraction systems: anion exchange, mutual solubility, and thermomorphic properties
  publication-title: J. Phys. Chem. B
– volume: 38
  start-page: 1807
  year: 2015
  end-page: 1812
  ident: b0585
  article-title: Evaluation of plutonium (IV) extraction rate between nitric acid and tri-n-butylphosphate solution using a glass chip microchannel
  publication-title: J. Sep. Sci.
– volume: 201
  start-page: 318
  year: 2018
  end-page: 326
  ident: b0175
  article-title: Separation of transition metals from rare earths by non-aqueous solvent extraction from ethylene glycol solutions using Aliquat 336
  publication-title: Sep. Purif. Technol.
– volume: 209
  start-page: 984
  year: 2019
  end-page: 989
  ident: b0400
  article-title: Extraction of cobalt (II) using ionic liquid-based bi-phase and three-phase systems without adding any chelating agents with new recycling procedure
  publication-title: J. Sep. Purif. Technol.
– volume: 894
  start-page: 19
  year: 2000
  end-page: 23
  ident: b0545
  article-title: Integration of a microextraction system: Solvent extraction of a Co–2-nitroso-5-dimethylaminophenol complex on a microchip
  publication-title: J. Chromatogr. A
– volume: 89
  start-page: 253
  year: 2007
  end-page: 259
  ident: b0180
  article-title: Palladium stripping rates in PGM refining
  publication-title: Hydrometallurgy
– volume: 36
  start-page: 985
  year: 2013
  end-page: 992
  ident: b0575
  article-title: An experimental study of copper extraction characteristics in a T-junction microchannel
  publication-title: Chem. Eng. Technol.
– volume: 104
  start-page: 45
  year: 2010
  end-page: 52
  ident: b0035
  article-title: Recovery of nickel and cobalt from laterite leach solutions using direct solvent extraction: Part 1—selection of a synergistic SX system
  publication-title: Hydrometallurgy
– volume: 5
  start-page: 922
  year: 2018
  end-page: 931
  ident: b0440
  article-title: A novel N-methylimidazolium-based poly (ionic liquid) to recover trace tetrachloroaurate from aqueous solution based on multiple supramolecular interactions
  publication-title: Inorg. Chem. Front.
– volume: 44
  start-page: 20131
  year: 2015
  end-page: 20138
  ident: b0415
  article-title: Possibilities and limitations in separating Pt (IV) from Pd (II) combining imidazolium and phosphonium ionic liquids
  publication-title: Dalton Trans.
– volume: 111
  start-page: 1
  year: 2012
  end-page: 9
  ident: b0100
  article-title: Review on solvent extraction of cadmium from various solutions
  publication-title: Hydrometallurgy
– volume: 176
  start-page: 119
  year: 2010
  end-page: 124
  ident: b0130
  article-title: Solid phase extraction of uranium (VI) onto benzoylthiourea-anchored activated carbon
  publication-title: J. Hazard. Mater.
– volume: 121
  start-page: 74
  year: 2012
  end-page: 80
  ident: b0065
  article-title: Solvent extraction separation of La from chloride solution containing Pr and Nd with Cyanex 272
  publication-title: Hydrometallurgy
– volume: 46
  start-page: 5043
  year: 2007
  end-page: 5050
  ident: b0660
  article-title: Experimental investigation of pressure drop during two-phase flow in a coiled flow inverter
  publication-title: Ind. Eng. Chem. Res.
– volume: 64
  start-page: 75
  year: 2005
  end-page: 82
  ident: b0210
  article-title: Packed column study of the sorption of hexavalent chromium by novel solvent impregnated resins containing aliquat 336: Effect of chloride and sulfate ions
  publication-title: React. Funct. Polym.
– volume: 57
  start-page: 1563
  year: 2018
  end-page: 1566
  ident: b0460
  article-title: Ionic-liquid-based acidic aqueous biphasic systems for simultaneous leaching and extraction of metallic ions
  publication-title: J. Angew. Chem. Int. Ed.
– volume: 167
  start-page: 700
  year: 2011
  end-page: 704
  ident: b0535
  article-title: Development of cesium ion extraction process using a slug flow microreactor
  publication-title: Chem. Eng. J.
– volume: 16
  start-page: 1371
  year: 2003
  end-page: 1374
  ident: b0055
  article-title: Cobalt and zinc recovery from copper sulphate solution by solvent extraction
  publication-title: Miner. Eng.
– volume: 2
  start-page: 815
  year: 1984
  end-page: 838
  ident: b0160
  article-title: Cobalt-nickel separation by solvent extraction with bis (2, 4, 4 trimethylpentyl) phosphinic acid
  publication-title: Solvent Extr. Ion Exch.
– volume: 31
  start-page: 534
  year: 1964
  end-page: 544
  ident: b0480
  article-title: Liquid-liquid extraction with long-chain quaternary ammonium halides
  publication-title: Anal. Chim. Acta
– volume: 52
  start-page: 1186
  year: 2017
  end-page: 1192
  ident: b0245
  article-title: Solvent extraction of metal ions using a new extractant, biuret (C8)
  publication-title: Sep. Sci. Technol.
– volume: 112
  start-page: 2286
  year: 2012
  end-page: 2322
  ident: b0500
  article-title: Hofmeister phenomena: an update on ion specificity in biology
  publication-title: Chem. Rev.
– volume: 36
  start-page: 175
  year: 2018
  end-page: 190
  ident: b0045
  article-title: Separation and recovery of heavy metals from concentrated smelting wastewater by synergistic solvent extraction using a mixture of 2-hydroxy-5-nonylacetophenone oxime and bis (2, 4, 4-trimethylpentyl)-phosphinic acid
  publication-title: Solvent Extr. Ion Exch.
– volume: 36
  start-page: 1198
  year: 2018
  end-page: 1204
  ident: b0070
  article-title: Development of a microfluidic-chip system based on parallel flow for intensified Gd (III) extraction from nitrate media using cationic extractant
  publication-title: J. Rare Earths
– volume: 193
  start-page: 312
  year: 2019
  end-page: 324
  ident: b0690
  article-title: Compact coiled flow inverter for process intensification
  publication-title: Chem. Eng. Sci.
– volume: 58
  start-page: 15628
  year: 2019
  end-page: 15636
  ident: b0365
  article-title: Enhancing metal separations using hydrophilic ionic liquids and analogues as complexing agents in the more polar phase of liquid-liquid extraction systems
  publication-title: Ind. Eng. Chem. Res.
– volume: 15
  start-page: 919
  year: 2013
  end-page: 927
  ident: b0475
  article-title: Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling
  publication-title: Green Chem.
– volume: 266
  start-page: 195
  year: 2008
  end-page: 201
  ident: b0710
  article-title: A group contribution method for viscosity estimation of ionic liquids
  publication-title: Fluid Phase Equilib.
– volume: 21
  start-page: 141
  year: 2003
  end-page: 170
  ident: b0040
  article-title: Development of effective solvent modifiers for the solvent extraction of cesium from alkaline high-level tank waste
  publication-title: Solvent Extr. Ion Exch.
– year: 2015
  ident: b0720
  article-title: Studies of Intensified Small-scale Processes for Liquid-liquid Separations in Spent nuclear fuel Reprocessing
– volume: 232
  start-page: 115952
  year: 2020
  ident: b0385
  article-title: Separation and recovery of rare earth elements using novel ammonium-based task-specific ionic liquids with bidentate and tridentate O-donor functional groups
  publication-title: Sep. Purif. Technol.
– volume: 558
  start-page: 75
  year: 2006
  end-page: 79
  ident: b0555
  article-title: Quantitative extraction using flowing nano-liter droplet in microfluidic system
  publication-title: Anal. Chim. Acta
– volume: 102
  start-page: 219
  year: 2016
  end-page: 228
  ident: b0670
  article-title: Pilot plant study for effective heat transfer area of coiled flow inverter
  publication-title: Chem. Eng. Process. Process Intensif.
– volume: 65
  start-page: e16606
  year: 2019
  ident: b0345
  article-title: Role of ionic liquids in the efficient transfer of lithium by Cyanex 923 in solvent extraction system
  publication-title: AIChE J.
– volume: 4
  start-page: 3
  year: 2015
  end-page: 10
  ident: b0590
  article-title: Solvent extraction of Nd (III) in a Y type microchannel with 2-ethylhexyl phosphoric acid-2-ethylhexyl ester
  publication-title: Green Process. Synth,
– volume: 211
  start-page: 764
  year: 2019
  end-page: 767
  ident: b0375
  article-title: Extraction of indium(III) from sulphuric acid medium by the ionic liquid (PJMTH+ HSO4−)
  publication-title: Sep. Purif. Technol.
– volume: 36
  start-page: 1704
  year: 2015
  end-page: 1720
  ident: b0285
  article-title: A novel viewpoint of imidazolium salts for selective extraction of cobalt in the presence of nickel from acidic thiocyanate solutions by ionic-liquid-based solvent-extraction technique
  publication-title: J. Dispersion Sci. Technol.
– volume: 144
  start-page: 54
  year: 2014
  end-page: 62
  ident: b0650
  article-title: Liquid–liquid extraction in microchannels with Zinc–D2EHPA system
  publication-title: Hydrometallurgy
– volume: 74
  start-page: 131
  year: 2004
  end-page: 147
  ident: b0185
  article-title: Design optimisation study of solvent extraction: chemical reaction, mass transfer and mixer–settler hydrodynamics
  publication-title: Hydrometallurgy
– volume: 61
  start-page: 81
  year: 2001
  end-page: 87
  ident: b0225
  article-title: Liquid–liquid extraction separation of iron (III) from titania wastes using TBP–MIBK mixed solvent system
  publication-title: Hydrometallurgy
– volume: 53
  start-page: 2064
  year: 2018
  end-page: 2073
  ident: b0330
  article-title: Separation of Pt (IV), Pd (II), Ru (III), and Rh (III) from chloride medium using liquid–liquid extraction with mixed imidazolium-based ionic liquids
  publication-title: Sep. Sci. Technol.
– volume: 49
  start-page: 872
  year: 2014
  end-page: 881
  ident: b0405
  article-title: Methods for recovery of ionic liquids—a review
  publication-title: J. Process Biochem.
– volume: 36
  start-page: 975
  year: 2013
  end-page: 984
  ident: b0730
  article-title: Slug flow of ionic liquids in capillary microcontactors: fluid dynamic intensification for solvent extraction
  publication-title: J. Chem. Eng. Technol.
– volume: 307
  start-page: 1
  year: 2017
  end-page: 8
  ident: b0215
  article-title: Co and Ni extraction and separation in segmented micro-flow using a coiled flow inverter
  publication-title: Chem. Eng. J.
– volume: 51
  start-page: 599
  year: 2017
  end-page: 609
  ident: b0110
  article-title: Development of solvent extraction methods for recovering rare earth metals
  publication-title: Theor. Found. Chem. Eng.
– reference: Q. Li, P.J.C.E.S. Angeli, Intensified Eu (III) extraction using ionic liquids in small channels, 143 (2016) 276–286.
– volume: 63
  start-page: 269
  year: 2002
  end-page: 276
  ident: b0140
  article-title: Solvent extraction separation of indium and gallium from sulphate solutions using D2EHPA
  publication-title: Hydrometallurgy
– volume: 35
  start-page: 1312
  year: 2012
  end-page: 1319
  ident: b0570
  article-title: Microfluidic solvent extraction of metal ions and complexes from leach solutions containing nanoparticles
  publication-title: Chem. Eng. Technol.
– volume: 146
  start-page: 106106
  year: 2020
  ident: b0025
  article-title: The extraction of vanadium from titanomagnetites and other sources
  publication-title: Miner. Eng.
– volume: 72
  start-page: 2275
  year: 2000
  end-page: 2287
  ident: b0265
  article-title: Influence of chloride, water, and organic solvents on the physical properties of ionic liquids
  publication-title: Pure Appl. Chem.
– volume: 41
  start-page: 17084
  year: 2016
  end-page: 17092
  ident: b0695
  article-title: Using conical reactor to improve efficiency of ethanol steam reforming
  publication-title: Int. J. Hydrogen Energy
– volume: 27
  start-page: 75
  year: 1992
  end-page: 85
  ident: b0155
  article-title: Selective transport of alkali metal cations in solvent extraction by proton-ionizable dibenzocrown ethers
  publication-title: J. Coord. Chem.
– volume: 6
  start-page: 1288
  year: 2018
  end-page: 1304
  ident: b0115
  article-title: Novel technologies and conventional processes for recovery of metals from waste electrical and electronic equipment: challenges & opportunities–a review
  publication-title: J. Environ. Chem. Eng.
– volume: 74
  start-page: 1565
  year: 2002
  end-page: 1571
  ident: b0550
  article-title: Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network
  publication-title: Anal. Chem.
– volume: 110
  start-page: 50
  year: 2011
  end-page: 55
  ident: b0010
  article-title: Solvent extraction and separation of rare-earths from phosphoric acid solutions with TOPS 99
  publication-title: Hydrometallurgy
– volume: 77
  start-page: 269
  year: 2008
  end-page: 272
  ident: b0560
  article-title: Improved microfluidic chip-based sequential-injection trapped-droplet array liquid–liquid extraction system for determination of aluminium
  publication-title: Talanta
– volume: 38
  start-page: 471
  year: 2020
  end-page: 477
  ident: b0610
  article-title: Green effectively enhanced extraction to produce yttrium (III) in slug flow microreactor
  publication-title: Chin. J. Chem .
– year: 2013
  ident: b0275
  article-title: Green Solvents: Ionic Liquids
– start-page: 135
  year: 2001
  end-page: 136
  ident: b0295
  article-title: Task-specific ionic liquids for the extraction of metal ions from aqueous solutions
  publication-title: J. Chem. Commun.
– volume: 95
  start-page: 22
  year: 2015
  end-page: 33
  ident: b0665
  article-title: Narrow residence time distribution in tubular reactor concept for Reynolds number range of 10–100
  publication-title: Chem. Eng. Res. Des.
– start-page: 107921
  year: 2020
  ident: b0625
  article-title: Hydrodynamics and mass transfer in segmented flow small channel contactors for uranium extraction
  publication-title: Chem. Eng. Process.-Process Intensif.
– volume: 332
  start-page: 131
  year: 2018
  end-page: 139
  ident: b0595
  article-title: Liquid-liquid extraction for the separation of Co (II) from Ni (II) with Cyanex 272 using a pilot scale Re-entrance flow microreactor
  publication-title: Chem. Eng. J.
– volume: 324
  start-page: 241
  year: 2017
  end-page: 249
  ident: b0395
  article-title: Task-specific thioglycolate ionic liquids for heavy metal extraction: synthesis, extraction efficacies and recycling properties
  publication-title: J. Hazard. Mater.
– volume: 72
  start-page: 1711
  year: 2000
  end-page: 1714
  ident: b0540
  article-title: Integration of a microextraction system on a glass chip: ion-pair solvent extraction of Fe (II) with 4, 7-diphenyl-1, 10-phenanthrolinedisulfonic acid and tri-n-octylmethylammonium chloride
  publication-title: Anal. Chem.
– volume: 72
  start-page: 153
  year: 2015
  end-page: 168
  ident: b0270
  article-title: Opportunities and shortcomings of ionic liquids in single-drop microextraction
  publication-title: TrAC, Trends Anal. Chem.
– volume: 92
  start-page: 571
  year: 2014
  end-page: 580
  ident: b0580
  article-title: Extraction kinetics of Fe (III) by di-(2-ethylhexyl) phosphoric acid using a Y-Y shaped microfluidic device
  publication-title: Chem. Eng. Res. Des.
– volume: 55
  start-page: 513
  year: 2020
  end-page: 522
  ident: b0380
  article-title: Counter-current separation of cobalt (II)–nickel (II) from aqueous sulphate media with a mixture of Primene JMT-Versatic 10 diluted in kerosene
  publication-title: Sep. Sci. Technol.
– volume: 101
  start-page: 33
  year: 2016
  end-page: 40
  ident: b0640
  article-title: Liquid–liquid extraction in twisted micromixers
  publication-title: Chem. Eng. Process. Process Intensif.
– volume: 90
  start-page: 2034
  year: 2012
  end-page: 2040
  ident: b0705
  article-title: The use of an ionic liquid in a Karr reciprocating plate extraction column
  publication-title: Chem. Eng. Res. Des.
– volume: 51
  start-page: 7364
  year: 2012
  end-page: 7372
  ident: b0420
  article-title: Mass Transfer from single drops and the influence of temperature
  publication-title: Ind. Eng. Chem. Res.
– volume: 284
  start-page: 764
  year: 2016
  end-page: 777
  ident: b0715
  article-title: Liquid–liquid extraction system with microstructured coiled flow inverter and other capillary setups for single-stage extraction applications
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 234
  year: 1996
  end-page: 241
  ident: b0200
  article-title: Mass transfer in a countercurrent spray column at supercritical conditions
  publication-title: Korean J. Chem. Eng.
– volume: 93
  start-page: 1714
  year: 2018
  end-page: 1721
  ident: b0485
  article-title: Solvent extraction of Pt (IV), Pd (II), and Rh (III) with the ionic liquid trioctyl (dodecyl) phosphonium chloride
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 204
  start-page: 175
  year: 2018
  end-page: 184
  ident: b0495
  article-title: Salting-out effect on extraction of phenol from aqueous solutions by [Hmim][NTf2] ionic liquid: Experimental investigations and modeling
  publication-title: Sep. Purif. Technol.
– volume: 64
  start-page: 35
  year: 2002
  end-page: 42
  ident: b0060
  article-title: Extraction and separation of rare earth metals using microcapsules containing bis (2-ethylhexyl) phosphinic acid
  publication-title: Hydrometallurgy
– volume: 182
  start-page: 903
  year: 2010
  end-page: 911
  ident: b0235
  article-title: Mathematical modeling of cadmium (II) solvent extraction from neutral and acidic chloride media using Cyanex 923 extractant as a metal carrier
  publication-title: J. Hazard. Mater.
– year: 2020
  ident: b0310
  article-title: Continuous-flow extraction of adjacent metals–a disruptive economic window for in-situ resource utilization of asteroids?
  publication-title: Angew. Chem. Int. Ed.
– volume: 189
  start-page: 340
  year: 2018
  end-page: 359
  ident: b0085
  article-title: Multiphase processes with ionic liquids in microreactors: hydrodynamics, mass transfer and applications
  publication-title: Chem. Eng. Sci.
– volume: 143
  start-page: 107562
  year: 2019
  ident: b0600
  article-title: Separation of Zn (II) from Zn-Ni-Co sulphate solution by di-(2-ethylhexyl) phosphoric acid (D2EHPA) using a slug flow microreactor
  publication-title: Chem. Eng. Process.-Process Intensif.
– volume: 48
  start-page: 7687
  year: 2009
  end-page: 7693
  ident: b0190
  article-title: Liquid− Liquid Extraction in a Rotating-Spray Column: Removal of Cr (VI) by Aliquat 336
  publication-title: Ind. Eng. Chem. Res.
– start-page: 1
  year: 2019
  end-page: 8
  ident: b0290
  article-title: Extraction of heavy metal ions using ionic liquids
  publication-title: Encyclopedia of Ionic Liquids
– volume: 34
  start-page: 591
  year: 2015
  end-page: 622
  ident: b0335
  article-title: Metal extraction to ionic liquids: the relationship between structure, mechanism and application
  publication-title: J. Int. Rev. Phys. Chem.
– volume: 55
  start-page: 3861
  year: 2016
  end-page: 3870
  ident: b0675
  article-title: Novel membrane module for permeate flux augmentation and process intensification
  publication-title: Ind. Eng. Chem. Res.
– volume: 210
  start-page: 292
  year: 2019
  end-page: 303
  ident: b0340
  article-title: Recent advances in metal extraction improvement: Mixture systems consisting of ionic liquid and molecular extractant
  publication-title: J. Sep. Purif. Technol.
– volume: 108
  start-page: 166
  year: 2013
  end-page: 173
  ident: b0325
  article-title: Ionic liquid based three-liquid-phase partitioning and one-step separation of Pt (IV), Pd (II) and Rh (III)
  publication-title: Sep. Purif. Technol.
– volume: 19
  start-page: 665
  year: 2019
  end-page: 673
  ident: b0645
  article-title: Large-scale production of compound bubbles using parallelized microfluidics for efficient extraction of metal ions
  publication-title: Lab Chip
– volume: 82
  start-page: 269
  year: 2020
  end-page: 277
  ident: b0355
  article-title: Separation of lithium, cobalt and nickel from spent lithium-ion batteries using TBP and imidazolium-based ionic liquids
  publication-title: J. Ind. Eng. Chem.
– volume: 40
  start-page: 3085
  year: 2001
  end-page: 3091
  ident: b0080
  article-title: Review of advanced liquid− liquid extraction systems for the separation of metal ions by a combination of conversion of the metal species with chemical reaction
  publication-title: Ind. Eng. Chem. Res.
– volume: 30
  start-page: 345
  year: 1992
  end-page: 365
  ident: b0165
  article-title: Solvent extraction characteristics of thiosubstituted organophosphinic acid extractants
  publication-title: Hydrometallurgy
– volume: 6
  start-page: 1
  year: 2016
  end-page: 7
  ident: b0455
  article-title: Thermoreversible (ionic-liquid-based) aqueous biphasic systems
  publication-title: J. Sci. Rep.
– volume: 209
  start-page: 900
  year: 2019
  end-page: 907
  ident: b0605
  article-title: Predictive model for the design of reactive micro-separations
  publication-title: Sep. Purif. Technol.
– year: 2020
  ident: b0120
  article-title: Sustainable Metal Extraction from Waste Streams
– volume: 356
  start-page: 492
  year: 2019
  end-page: 505
  ident: b0635
  article-title: Liquid-liquid extraction of calcium using ionic liquids in spiral microfluidics
  publication-title: Chem. Eng. J.
– volume: 169
  start-page: 179
  year: 2017
  end-page: 185
  ident: b0725
  article-title: Coiled flow inverter as a novel alternative for the intensification of a liquid-liquid reaction
  publication-title: Chem. Eng. Sci.
– volume: 95
  start-page: 22
  year: 2015
  ident: 10.1016/j.seppur.2020.118289_b0665
  article-title: Narrow residence time distribution in tubular reactor concept for Reynolds number range of 10–100
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2015.01.003
– volume: 29
  start-page: 1267
  year: 2014
  ident: 10.1016/j.seppur.2020.118289_b0075
  article-title: Extraction of rare earth and heavy metals, using ionic solvents as extraction medium (A Review)
  publication-title: Orient. J. Chem.
  doi: 10.13005/ojc/290402
– volume: 58
  start-page: 1779
  year: 2019
  ident: 10.1016/j.seppur.2020.118289_b0425
  article-title: Extraction of Pt (IV), Pt (II), and Pd (II) from acidic chloride media using imidazolium-based task-specific polymeric ionic liquid
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b03408
– volume: 143
  start-page: 107562
  year: 2019
  ident: 10.1016/j.seppur.2020.118289_b0600
  article-title: Separation of Zn (II) from Zn-Ni-Co sulphate solution by di-(2-ethylhexyl) phosphoric acid (D2EHPA) using a slug flow microreactor
  publication-title: Chem. Eng. Process.-Process Intensif.
  doi: 10.1016/j.cep.2019.107562
– volume: 4
  start-page: 3
  year: 2015
  ident: 10.1016/j.seppur.2020.118289_b0590
  article-title: Solvent extraction of Nd (III) in a Y type microchannel with 2-ethylhexyl phosphoric acid-2-ethylhexyl ester
  publication-title: Green Process. Synth,
– volume: 167
  start-page: 700
  year: 2011
  ident: 10.1016/j.seppur.2020.118289_b0535
  article-title: Development of cesium ion extraction process using a slug flow microreactor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.11.002
– volume: 227
  start-page: 151
  year: 2013
  ident: 10.1016/j.seppur.2020.118289_b0630
  article-title: Dioxouranium (VI) extraction in microchannels using ionic liquids
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.08.064
– volume: 293
  start-page: 111040
  year: 2019
  ident: 10.1016/j.seppur.2020.118289_b0360
  article-title: Extraction and stripping of platinum (IV) from acidic chloride media using guanidinium ionic liquid
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.111040
– start-page: 135
  year: 2001
  ident: 10.1016/j.seppur.2020.118289_b0295
  article-title: Task-specific ionic liquids for the extraction of metal ions from aqueous solutions
  publication-title: J. Chem. Commun.
  doi: 10.1039/b008041l
– volume: 102
  start-page: 219
  year: 2016
  ident: 10.1016/j.seppur.2020.118289_b0670
  article-title: Pilot plant study for effective heat transfer area of coiled flow inverter
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2016.02.001
– volume: 64
  start-page: 75
  year: 2005
  ident: 10.1016/j.seppur.2020.118289_b0210
  article-title: Packed column study of the sorption of hexavalent chromium by novel solvent impregnated resins containing aliquat 336: Effect of chloride and sulfate ions
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2005.05.002
– volume: 57
  start-page: 1563
  year: 2018
  ident: 10.1016/j.seppur.2020.118289_b0460
  article-title: Ionic-liquid-based acidic aqueous biphasic systems for simultaneous leaching and extraction of metallic ions
  publication-title: J. Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201711068
– volume: 52
  start-page: 1186
  year: 2017
  ident: 10.1016/j.seppur.2020.118289_b0245
  article-title: Solvent extraction of metal ions using a new extractant, biuret (C8)
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496395.2017.1284863
– volume: 111
  start-page: 1
  year: 2012
  ident: 10.1016/j.seppur.2020.118289_b0100
  article-title: Review on solvent extraction of cadmium from various solutions
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2011.09.001
– volume: 40
  start-page: 3085
  year: 2001
  ident: 10.1016/j.seppur.2020.118289_b0080
  article-title: Review of advanced liquid− liquid extraction systems for the separation of metal ions by a combination of conversion of the metal species with chemical reaction
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie010022+
– volume: 127
  start-page: 1
  year: 2012
  ident: 10.1016/j.seppur.2020.118289_b0240
  article-title: Separation and recovery of copper, nickel, cobalt and zinc in chloride solutions by synergistic solvent extraction
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2012.07.001
– volume: 213
  start-page: 120
  year: 2015
  ident: 10.1016/j.seppur.2020.118289_b0685
  article-title: Developing the biofacility of the future based on continuous processing and single-use technology
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2015.06.388
– volume: 46
  start-page: 644
  year: 1954
  ident: 10.1016/j.seppur.2020.118289_b0150
  article-title: Separation of tantalum and niobium by liquid-liquid extraction
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50532a020
– volume: 35
  start-page: 1312
  year: 2012
  ident: 10.1016/j.seppur.2020.118289_b0570
  article-title: Microfluidic solvent extraction of metal ions and complexes from leach solutions containing nanoparticles
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201100602
– volume: 894
  start-page: 19
  year: 2000
  ident: 10.1016/j.seppur.2020.118289_b0545
  article-title: Integration of a microextraction system: Solvent extraction of a Co–2-nitroso-5-dimethylaminophenol complex on a microchip
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(00)00683-X
– volume: 48
  start-page: 7687
  year: 2009
  ident: 10.1016/j.seppur.2020.118289_b0190
  article-title: Liquid− Liquid Extraction in a Rotating-Spray Column: Removal of Cr (VI) by Aliquat 336
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie900012k
– volume: 307
  start-page: 1
  year: 2017
  ident: 10.1016/j.seppur.2020.118289_b0215
  article-title: Co and Ni extraction and separation in segmented micro-flow using a coiled flow inverter
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.08.062
– volume: 6
  start-page: 1
  year: 2016
  ident: 10.1016/j.seppur.2020.118289_b0455
  article-title: Thermoreversible (ionic-liquid-based) aqueous biphasic systems
  publication-title: J. Sci. Rep.
– volume: 558
  start-page: 75
  year: 2006
  ident: 10.1016/j.seppur.2020.118289_b0555
  article-title: Quantitative extraction using flowing nano-liter droplet in microfluidic system
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2005.10.086
– volume: 41
  start-page: 1
  year: 1996
  ident: 10.1016/j.seppur.2020.118289_b0260
  article-title: The recovery of rare earth oxides from a phosphoric acid by-product. Part 1: Leaching of rare earth values and recovery of a mixed rare earth oxide by solvent extraction
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(95)00051-H
– volume: 36
  start-page: 985
  year: 2013
  ident: 10.1016/j.seppur.2020.118289_b0575
  article-title: An experimental study of copper extraction characteristics in a T-junction microchannel
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201200464
– volume: 74
  start-page: 131
  year: 2004
  ident: 10.1016/j.seppur.2020.118289_b0185
  article-title: Design optimisation study of solvent extraction: chemical reaction, mass transfer and mixer–settler hydrodynamics
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2004.02.002
– volume: 143
  start-page: 276
  year: 2016
  ident: 10.1016/j.seppur.2020.118289_b0520
  article-title: Intensified Eu (III) extraction using ionic liquids in small channels
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2016.01.004
– volume: 284
  start-page: 764
  year: 2016
  ident: 10.1016/j.seppur.2020.118289_b0715
  article-title: Liquid–liquid extraction system with microstructured coiled flow inverter and other capillary setups for single-stage extraction applications
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.08.099
– volume: 49
  start-page: 872
  year: 2014
  ident: 10.1016/j.seppur.2020.118289_b0405
  article-title: Methods for recovery of ionic liquids—a review
  publication-title: J. Process Biochem.
  doi: 10.1016/j.procbio.2014.01.016
– volume: 52
  start-page: 63
  year: 1999
  ident: 10.1016/j.seppur.2020.118289_b0450
  article-title: Solvent extraction of gold (III) by the chloride salt of the tertiary amine Hostarex A327. Estimation of the interaction coefficient between AuCl4− and H+
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(99)00014-6
– volume: 38
  start-page: 471
  year: 2020
  ident: 10.1016/j.seppur.2020.118289_b0610
  article-title: Green effectively enhanced extraction to produce yttrium (III) in slug flow microreactor
  publication-title: Chin. J. Chem .
  doi: 10.1002/cjoc.201900453
– volume: 58
  start-page: 239
  year: 2000
  ident: 10.1016/j.seppur.2020.118289_b0255
  article-title: Separation of nickel and calcium by solvent extraction using mixtures of carboxylic acids and alkylpyridines
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(00)00135-3
– year: 2020
  ident: 10.1016/j.seppur.2020.118289_b0120
– volume: 6
  start-page: 62717
  year: 2016
  ident: 10.1016/j.seppur.2020.118289_b0470
  article-title: Highly selective separation of individual platinum group metals (Pd, Pt, Rh) from acidic chloride media using phosphonium-based ionic liquid in aromatic diluent
  publication-title: RSC Adv.
  doi: 10.1039/C6RA09328K
– volume: 44
  start-page: 3679
  year: 1999
  ident: 10.1016/j.seppur.2020.118289_b0525
  article-title: State-of-the-art in microreaction technology: concepts, manufacturing and applications
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(99)00071-7
– year: 2013
  ident: 10.1016/j.seppur.2020.118289_b0275
– volume: 125
  start-page: 24
  year: 2012
  ident: 10.1016/j.seppur.2020.118289_b0510
  article-title: Studies on the extraction of Co (II) and Ni (II) from aqueous chloride solutions using Primene JMT-Cyanex272 ionic liquid extractant
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2012.05.003
– volume: 34
  start-page: 591
  year: 2015
  ident: 10.1016/j.seppur.2020.118289_b0335
  article-title: Metal extraction to ionic liquids: the relationship between structure, mechanism and application
  publication-title: J. Int. Rev. Phys. Chem.
  doi: 10.1080/0144235X.2015.1088217
– volume: 210
  start-page: 292
  year: 2019
  ident: 10.1016/j.seppur.2020.118289_b0340
  article-title: Recent advances in metal extraction improvement: Mixture systems consisting of ionic liquid and molecular extractant
  publication-title: J. Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.08.016
– volume: 99
  start-page: 69
  year: 2012
  ident: 10.1016/j.seppur.2020.118289_b0205
  article-title: Continuous removal of hexavalent chromium by emulsion liquid membrane in a modified spray column
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2012.08.026
– volume: 266
  start-page: 195
  year: 2008
  ident: 10.1016/j.seppur.2020.118289_b0710
  article-title: A group contribution method for viscosity estimation of ionic liquids
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/j.fluid.2008.01.021
– volume: 55
  start-page: 513
  year: 2020
  ident: 10.1016/j.seppur.2020.118289_b0380
  article-title: Counter-current separation of cobalt (II)–nickel (II) from aqueous sulphate media with a mixture of Primene JMT-Versatic 10 diluted in kerosene
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496395.2019.1577271
– volume: 14
  start-page: 1657
  year: 2012
  ident: 10.1016/j.seppur.2020.118289_b0305
  article-title: An environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids
  publication-title: Green Chem.
  doi: 10.1039/c2gc35246j
– volume: 193
  start-page: 312
  year: 2019
  ident: 10.1016/j.seppur.2020.118289_b0690
  article-title: Compact coiled flow inverter for process intensification
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.09.008
– year: 2015
  ident: 10.1016/j.seppur.2020.118289_b0720
– volume: 65
  start-page: e16606
  year: 2019
  ident: 10.1016/j.seppur.2020.118289_b0345
  article-title: Role of ionic liquids in the efficient transfer of lithium by Cyanex 923 in solvent extraction system
  publication-title: AIChE J.
  doi: 10.1002/aic.16606
– volume: 30
  start-page: 345
  year: 1992
  ident: 10.1016/j.seppur.2020.118289_b0165
  article-title: Solvent extraction characteristics of thiosubstituted organophosphinic acid extractants
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(92)90093-F
– volume: 32
  start-page: 1186
  year: 1993
  ident: 10.1016/j.seppur.2020.118289_b0145
  article-title: Hollow fiber solvent extraction removal of toxic heavy metals from aqueous waste streams
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00018a026
– volume: 231
  start-page: 115875
  year: 2020
  ident: 10.1016/j.seppur.2020.118289_b0615
  article-title: Microfluidic solvent extraction of calcium: Modeling and optimization of the process variables
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.115875
– volume: 55
  start-page: 3861
  year: 2016
  ident: 10.1016/j.seppur.2020.118289_b0675
  article-title: Novel membrane module for permeate flux augmentation and process intensification
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b04865
– volume: 98
  start-page: 481
  year: 2012
  ident: 10.1016/j.seppur.2020.118289_b0170
  article-title: Solvent extraction separation of Pr and Nd from chloride solution containing La using Cyanex 272 and its mixture with other extractants
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2012.08.015
– volume: 104
  start-page: 45
  year: 2010
  ident: 10.1016/j.seppur.2020.118289_b0035
  article-title: Recovery of nickel and cobalt from laterite leach solutions using direct solvent extraction: Part 1—selection of a synergistic SX system
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2010.04.009
– volume: 238
  start-page: 116496
  year: 2020
  ident: 10.1016/j.seppur.2020.118289_b0390
  article-title: Synthesis of succinimide based ionic liquids and comparison of extraction behavior of Co (II) and Ni (II) with bi-functional ionic liquids synthesized by Aliquat336 and organophosphorus acids
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.116496
– volume: 113
  start-page: 79
  year: 2012
  ident: 10.1016/j.seppur.2020.118289_b0445
  article-title: Extractive recovery of palladium (II) from hydrochloric acid solutions with Cyphos® IL 104
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2011.12.006
– volume: 44
  start-page: 20131
  year: 2015
  ident: 10.1016/j.seppur.2020.118289_b0415
  article-title: Possibilities and limitations in separating Pt (IV) from Pd (II) combining imidazolium and phosphonium ionic liquids
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT03791C
– volume: 112
  start-page: 2286
  year: 2012
  ident: 10.1016/j.seppur.2020.118289_b0500
  article-title: Hofmeister phenomena: an update on ion specificity in biology
  publication-title: Chem. Rev.
  doi: 10.1021/cr200271j
– volume: 212
  start-page: 791
  year: 2019
  ident: 10.1016/j.seppur.2020.118289_b0350
  article-title: Separation of Pt (IV), Pd (II), Ru (III) and Rh (III) from model chloride solutions by liquid-liquid extraction with phosphonium ionic liquids
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.11.091
– volume: 189
  start-page: 105148
  year: 2019
  ident: 10.1016/j.seppur.2020.118289_b0435
  article-title: Recovery of palladium from acidic nitrate media with triazole type extractants in ionic liquid
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2019.105148
– volume: 110
  start-page: 50
  year: 2011
  ident: 10.1016/j.seppur.2020.118289_b0010
  article-title: Solvent extraction and separation of rare-earths from phosphoric acid solutions with TOPS 99
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2011.08.004
– volume: 1
  start-page: 72
  year: 2001
  ident: 10.1016/j.seppur.2020.118289_b0515
  article-title: Integration of a wet analysis system on a glass chip: determination of Co (II) as 2-nitroso-1-naphthol chelates by solvent extraction and thermal lens microscopy
  publication-title: Lab Chip.
  doi: 10.1039/b102790p
– volume: 324
  start-page: 241
  year: 2017
  ident: 10.1016/j.seppur.2020.118289_b0395
  article-title: Task-specific thioglycolate ionic liquids for heavy metal extraction: synthesis, extraction efficacies and recycling properties
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.10.054
– volume: 14
  start-page: 171
  year: 1985
  ident: 10.1016/j.seppur.2020.118289_b0135
  article-title: Solvent extraction of metals by carboxylic acids
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(85)90032-5
– volume: 101
  start-page: 33
  year: 2016
  ident: 10.1016/j.seppur.2020.118289_b0640
  article-title: Liquid–liquid extraction in twisted micromixers
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2015.12.013
– volume: 46
  start-page: 5043
  year: 2007
  ident: 10.1016/j.seppur.2020.118289_b0660
  article-title: Experimental investigation of pressure drop during two-phase flow in a coiled flow inverter
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie061490s
– volume: 90
  start-page: 2034
  year: 2012
  ident: 10.1016/j.seppur.2020.118289_b0705
  article-title: The use of an ionic liquid in a Karr reciprocating plate extraction column
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2012.03.006
– volume: 21
  start-page: 141
  year: 2003
  ident: 10.1016/j.seppur.2020.118289_b0040
  article-title: Development of effective solvent modifiers for the solvent extraction of cesium from alkaline high-level tank waste
  publication-title: Solvent Extr. Ion Exch.
  doi: 10.1081/SEI-120018944
– volume: 93
  start-page: 1714
  year: 2018
  ident: 10.1016/j.seppur.2020.118289_b0485
  article-title: Solvent extraction of Pt (IV), Pd (II), and Rh (III) with the ionic liquid trioctyl (dodecyl) phosphonium chloride
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.5544
– start-page: 107921
  year: 2020
  ident: 10.1016/j.seppur.2020.118289_b0625
  article-title: Hydrodynamics and mass transfer in segmented flow small channel contactors for uranium extraction
  publication-title: Chem. Eng. Process.-Process Intensif.
  doi: 10.1016/j.cep.2020.107921
– volume: 36
  start-page: 975
  year: 2013
  ident: 10.1016/j.seppur.2020.118289_b0730
  article-title: Slug flow of ionic liquids in capillary microcontactors: fluid dynamic intensification for solvent extraction
  publication-title: J. Chem. Eng. Technol.
  doi: 10.1002/ceat.201200600
– volume: 64
  start-page: 35
  year: 2002
  ident: 10.1016/j.seppur.2020.118289_b0060
  article-title: Extraction and separation of rare earth metals using microcapsules containing bis (2-ethylhexyl) phosphinic acid
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(02)00011-7
– volume: 232
  start-page: 115952
  year: 2020
  ident: 10.1016/j.seppur.2020.118289_b0385
  article-title: Separation and recovery of rare earth elements using novel ammonium-based task-specific ionic liquids with bidentate and tridentate O-donor functional groups
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.115952
– volume: 105
  start-page: 102015
  year: 2009
  ident: 10.1016/j.seppur.2020.118289_b0565
  article-title: Quantification of Ag (I) and kinetic analysis using ion-pair extraction across a liquid/liquid interface in a laminar flow by fluorescence microscopy
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3116092
– volume: 61
  start-page: 324
  year: 2008
  ident: 10.1016/j.seppur.2020.118289_b0505
  article-title: Solvent extraction of selected endocrine-disrupting phenols using ionic liquids
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2007.11.005
– volume: 332
  start-page: 131
  year: 2018
  ident: 10.1016/j.seppur.2020.118289_b0595
  article-title: Liquid-liquid extraction for the separation of Co (II) from Ni (II) with Cyanex 272 using a pilot scale Re-entrance flow microreactor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.046
– volume: 38
  start-page: 1807
  year: 2015
  ident: 10.1016/j.seppur.2020.118289_b0585
  article-title: Evaluation of plutonium (IV) extraction rate between nitric acid and tri-n-butylphosphate solution using a glass chip microchannel
  publication-title: J. Sep. Sci.
  doi: 10.1002/jssc.201401315
– volume: 204
  start-page: 175
  year: 2018
  ident: 10.1016/j.seppur.2020.118289_b0495
  article-title: Salting-out effect on extraction of phenol from aqueous solutions by [Hmim][NTf2] ionic liquid: Experimental investigations and modeling
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.04.075
– start-page: 1
  year: 2019
  ident: 10.1016/j.seppur.2020.118289_b0290
  article-title: Extraction of heavy metal ions using ionic liquids
– volume: 25
  start-page: 857
  year: 2007
  ident: 10.1016/j.seppur.2020.118289_b0655
  article-title: Separation of zinc by a non-dispersion solvent extraction process in a hollow fiber contactor
  publication-title: Solvent Extr. Ion Exch.
  doi: 10.1080/07366290701634610
– volume: 92
  start-page: 571
  year: 2014
  ident: 10.1016/j.seppur.2020.118289_b0580
  article-title: Extraction kinetics of Fe (III) by di-(2-ethylhexyl) phosphoric acid using a Y-Y shaped microfluidic device
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2013.08.033
– volume: 46
  start-page: 195
  year: 2017
  ident: 10.1016/j.seppur.2020.118289_b0050
  article-title: Solvent extraction and its applications on ore processing and recovery of metals: classical approach
  publication-title: Sep. Purif. Rev.
  doi: 10.1080/15422119.2016.1240085
– volume: 42
  start-page: 65
  year: 2005
  ident: 10.1016/j.seppur.2020.118289_b0195
  article-title: Extraction separation of Co (II)/Ni (II) from concentrated HCl solutions in rotating disc and hollow-fiber membrane contactors
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2004.06.005
– volume: 189
  start-page: 105104
  year: 2019
  ident: 10.1016/j.seppur.2020.118289_b0370
  article-title: Solvent extraction of indium (III) from HCl solutions by the ionic liquid (A324H+)(Cl−) dissolved in Solvesso 100
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2019.105104
– volume: 27
  start-page: 75
  year: 1992
  ident: 10.1016/j.seppur.2020.118289_b0155
  article-title: Selective transport of alkali metal cations in solvent extraction by proton-ionizable dibenzocrown ethers
  publication-title: J. Coord. Chem.
  doi: 10.1080/00958979209407944
– volume: 72
  start-page: 153
  year: 2015
  ident: 10.1016/j.seppur.2020.118289_b0270
  article-title: Opportunities and shortcomings of ionic liquids in single-drop microextraction
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2015.03.024
– volume: 169
  start-page: 179
  year: 2017
  ident: 10.1016/j.seppur.2020.118289_b0725
  article-title: Coiled flow inverter as a novel alternative for the intensification of a liquid-liquid reaction
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2017.01.016
– volume: 36
  start-page: 1198
  year: 2018
  ident: 10.1016/j.seppur.2020.118289_b0070
  article-title: Development of a microfluidic-chip system based on parallel flow for intensified Gd (III) extraction from nitrate media using cationic extractant
  publication-title: J. Rare Earths
  doi: 10.1016/j.jre.2018.03.024
– volume: 29
  start-page: 719
  year: 2011
  ident: 10.1016/j.seppur.2020.118289_b0095
  article-title: Synergistic solvent extraction of nickel and cobalt: A review of recent developments
  publication-title: Solvent Extr. Ion Exch.
  doi: 10.1080/07366299.2011.595636
– volume: 74
  start-page: 1565
  year: 2002
  ident: 10.1016/j.seppur.2020.118289_b0550
  article-title: Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network
  publication-title: Anal. Chem.
  doi: 10.1021/ac011111z
– volume: 115
  start-page: 367
  year: 2003
  ident: 10.1016/j.seppur.2020.118289_b0030
  article-title: Recovery of zinc and manganese from spent alkaline batteries by liquid–liquid extraction with Cyanex 272
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(03)00025-9
– volume: 34
  start-page: 591
  year: 2015
  ident: 10.1016/j.seppur.2020.118289_b0105
  article-title: Metal extraction to ionic liquids: the relationship between structure, mechanism and application
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/0144235X.2015.1088217
– volume: 7
  start-page: 35992
  year: 2017
  ident: 10.1016/j.seppur.2020.118289_b0280
  article-title: Cobalt (II)/nickel (II) separation from sulfate media by solvent extraction with an undiluted quaternary phosphonium ionic liquid
  publication-title: RSC Adv.
  doi: 10.1039/C7RA04753C
– volume: 209
  start-page: 900
  year: 2019
  ident: 10.1016/j.seppur.2020.118289_b0605
  article-title: Predictive model for the design of reactive micro-separations
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.09.028
– volume: 189
  start-page: 340
  year: 2018
  ident: 10.1016/j.seppur.2020.118289_b0085
  article-title: Multiphase processes with ionic liquids in microreactors: hydrodynamics, mass transfer and applications
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.06.007
– volume: 41
  start-page: 17084
  year: 2016
  ident: 10.1016/j.seppur.2020.118289_b0695
  article-title: Using conical reactor to improve efficiency of ethanol steam reforming
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.07.040
– volume: 82
  start-page: 269
  year: 2020
  ident: 10.1016/j.seppur.2020.118289_b0355
  article-title: Separation of lithium, cobalt and nickel from spent lithium-ion batteries using TBP and imidazolium-based ionic liquids
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2019.10.023
– volume: 58
  start-page: 15628
  year: 2019
  ident: 10.1016/j.seppur.2020.118289_b0365
  article-title: Enhancing metal separations using hydrophilic ionic liquids and analogues as complexing agents in the more polar phase of liquid-liquid extraction systems
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b03472
– volume: 51
  start-page: 15932
  year: 2015
  ident: 10.1016/j.seppur.2020.118289_b0465
  article-title: Separation of cobalt and nickel using a thermomorphic ionic-liquid-based aqueous biphasic system
  publication-title: J. Chem. Commun.
  doi: 10.1039/C5CC06595J
– volume: 50
  start-page: 38
  year: 2015
  ident: 10.1016/j.seppur.2020.118289_b0315
  article-title: Extraction of metal ions with task specific ionic liquids: influence of a coordinating anion
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496395.2014.952747
– volume: 20
  start-page: 211
  year: 2007
  ident: 10.1016/j.seppur.2020.118289_b0090
  article-title: A review on hydrometallurgical extraction and recovery of cadmium from various resources
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2006.07.001
– volume: 43
  start-page: 974
  year: 2020
  ident: 10.1016/j.seppur.2020.118289_b0620
  article-title: Removal of Cu2+ from Water Using Liquid-Liquid Microchannel Extraction
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201900168
– ident: 10.1016/j.seppur.2020.118289_b0735
  doi: 10.1016/j.ces.2016.01.004
– volume: 31
  start-page: 534
  year: 1964
  ident: 10.1016/j.seppur.2020.118289_b0480
  article-title: Liquid-liquid extraction with long-chain quaternary ammonium halides
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(00)88873-X
– volume: 209
  start-page: 175
  year: 2019
  ident: 10.1016/j.seppur.2020.118289_b0250
  article-title: Solvent extraction behavior of metal ions and selective separation Sc3+ in phosphoric acid medium using P204
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.07.033
– volume: 51
  start-page: 7364
  year: 2012
  ident: 10.1016/j.seppur.2020.118289_b0420
  article-title: Mass Transfer from single drops and the influence of temperature
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie300649d
– volume: 13
  start-page: 234
  year: 1996
  ident: 10.1016/j.seppur.2020.118289_b0200
  article-title: Mass transfer in a countercurrent spray column at supercritical conditions
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/BF02705944
– year: 2020
  ident: 10.1016/j.seppur.2020.118289_b0310
  article-title: Continuous-flow extraction of adjacent metals–a disruptive economic window for in-situ resource utilization of asteroids?
  publication-title: Angew. Chem. Int. Ed.
– volume: 47
  start-page: 1296
  year: 2012
  ident: 10.1016/j.seppur.2020.118289_b0320
  article-title: Nickel (II) and cobalt (II) extraction from chloride solutions with quaternary phosphonium salts
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496395.2012.672532
– volume: 77
  start-page: 269
  year: 2008
  ident: 10.1016/j.seppur.2020.118289_b0560
  article-title: Improved microfluidic chip-based sequential-injection trapped-droplet array liquid–liquid extraction system for determination of aluminium
  publication-title: Talanta
  doi: 10.1016/j.talanta.2008.06.016
– volume: 176
  start-page: 119
  year: 2010
  ident: 10.1016/j.seppur.2020.118289_b0130
  article-title: Solid phase extraction of uranium (VI) onto benzoylthiourea-anchored activated carbon
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.11.005
– volume: 5
  start-page: 682
  year: 2003
  ident: 10.1016/j.seppur.2020.118289_b0300
  article-title: Influence of solvent structural variations on the mechanism of facilitated ion transfer into room-temperature ionic liquids
  publication-title: J. Green Chem.
  doi: 10.1039/B310507P
– volume: 201
  start-page: 318
  year: 2018
  ident: 10.1016/j.seppur.2020.118289_b0175
  article-title: Separation of transition metals from rare earths by non-aqueous solvent extraction from ethylene glycol solutions using Aliquat 336
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.03.022
– volume: 121
  start-page: 74
  year: 2012
  ident: 10.1016/j.seppur.2020.118289_b0065
  article-title: Solvent extraction separation of La from chloride solution containing Pr and Nd with Cyanex 272
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2012.04.003
– volume: 89
  start-page: 253
  year: 2007
  ident: 10.1016/j.seppur.2020.118289_b0180
  article-title: Palladium stripping rates in PGM refining
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2007.07.012
– volume: 146
  start-page: 106106
  year: 2020
  ident: 10.1016/j.seppur.2020.118289_b0025
  article-title: The extraction of vanadium from titanomagnetites and other sources
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2019.106106
– volume: 19
  start-page: 665
  year: 2019
  ident: 10.1016/j.seppur.2020.118289_b0645
  article-title: Large-scale production of compound bubbles using parallelized microfluidics for efficient extraction of metal ions
  publication-title: Lab Chip
  doi: 10.1039/C9LC90021G
– volume: 43
  start-page: 299
  year: 1996
  ident: 10.1016/j.seppur.2020.118289_b0220
  article-title: Extraction of iron (III) at macro-level concentrations using TBP, MIBK and their mixtures
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(95)00117-Y
– volume: 108
  start-page: 166
  year: 2013
  ident: 10.1016/j.seppur.2020.118289_b0325
  article-title: Ionic liquid based three-liquid-phase partitioning and one-step separation of Pt (IV), Pd (II) and Rh (III)
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2013.02.021
– volume: 20
  start-page: 701
  year: 2002
  ident: 10.1016/j.seppur.2020.118289_b0230
  article-title: Solvent extraction of scandium (III), yttrium (III), lanthanides (III), anddivalent metal ions with sec-nonylphenoxy acetic acid
  publication-title: Solvent Extr. Ion Exch.
  doi: 10.1081/SEI-120016074
– volume: 211
  start-page: 764
  year: 2019
  ident: 10.1016/j.seppur.2020.118289_b0375
  article-title: Extraction of indium(III) from sulphuric acid medium by the ionic liquid (PJMTH+ HSO4−)
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.10.051
– volume: 36
  start-page: 1704
  year: 2015
  ident: 10.1016/j.seppur.2020.118289_b0285
  article-title: A novel viewpoint of imidazolium salts for selective extraction of cobalt in the presence of nickel from acidic thiocyanate solutions by ionic-liquid-based solvent-extraction technique
  publication-title: J. Dispersion Sci. Technol.
  doi: 10.1080/01932691.2015.1004185
– volume: 46
  start-page: 7210
  year: 2017
  ident: 10.1016/j.seppur.2020.118289_b0020
  article-title: Extraction behaviour and mechanism of Pt (IV) and Pd (II) by liquid–liquid extraction with an ionic liquid [HBBIm] Br
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT01142C
– volume: 72
  start-page: 2275
  year: 2000
  ident: 10.1016/j.seppur.2020.118289_b0265
  article-title: Influence of chloride, water, and organic solvents on the physical properties of ionic liquids
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac200072122275
– volume: 216
  start-page: 18
  year: 2016
  ident: 10.1016/j.seppur.2020.118289_b0410
  article-title: Selective recovery of Au (III), Pt (IV), and Pd (II) from aqueous solutions by liquid–liquid extraction using ionic liquid Aliquat-336
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.01.016
– volume: 30
  start-page: 363
  year: 1984
  ident: 10.1016/j.seppur.2020.118289_b0005
  article-title: Coiled configuration for flow inversion and its effect on residence time distribution
  publication-title: AIChE J.
  doi: 10.1002/aic.690300303
– volume: 15
  start-page: 919
  year: 2013
  ident: 10.1016/j.seppur.2020.118289_b0475
  article-title: Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling
  publication-title: Green Chem.
  doi: 10.1039/c3gc40198g
– volume: 18
  start-page: 1029
  year: 2000
  ident: 10.1016/j.seppur.2020.118289_b0430
  article-title: Thermodynamics of solvent extraction
  publication-title: Solvent Extr. Ion Exch.
  doi: 10.1080/07366290008934721
– volume: 36
  start-page: 175
  year: 2018
  ident: 10.1016/j.seppur.2020.118289_b0045
  article-title: Separation and recovery of heavy metals from concentrated smelting wastewater by synergistic solvent extraction using a mixture of 2-hydroxy-5-nonylacetophenone oxime and bis (2, 4, 4-trimethylpentyl)-phosphinic acid
  publication-title: Solvent Extr. Ion Exch.
  doi: 10.1080/07366299.2018.1446680
– volume: 73
  start-page: 237
  year: 2004
  ident: 10.1016/j.seppur.2020.118289_b0125
  article-title: Process development for the recovery of high-grade lanthanum by solvent extraction
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2003.10.008
– volume: 86
  start-page: 78
  year: 2014
  ident: 10.1016/j.seppur.2020.118289_b0680
  article-title: Novel three-dimensional microfluidic device for process intensification
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2014.10.013
– volume: 54
  start-page: 705
  year: 2015
  ident: 10.1016/j.seppur.2020.118289_b0015
  article-title: Extraction and stripping of platinum from hydrochloric acid medium by mixed imidazolium ionic liquids
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie503502g
– volume: 119
  start-page: 6747
  year: 2015
  ident: 10.1016/j.seppur.2020.118289_b0490
  article-title: Overview of the effect of salts on biphasic ionic liquid/water solvent extraction systems: anion exchange, mutual solubility, and thermomorphic properties
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.5b02980
– volume: 182
  start-page: 903
  year: 2010
  ident: 10.1016/j.seppur.2020.118289_b0235
  article-title: Mathematical modeling of cadmium (II) solvent extraction from neutral and acidic chloride media using Cyanex 923 extractant as a metal carrier
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.07.004
– volume: 63
  start-page: 269
  year: 2002
  ident: 10.1016/j.seppur.2020.118289_b0140
  article-title: Solvent extraction separation of indium and gallium from sulphate solutions using D2EHPA
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(02)00004-X
– volume: 16
  start-page: 1371
  year: 2003
  ident: 10.1016/j.seppur.2020.118289_b0055
  article-title: Cobalt and zinc recovery from copper sulphate solution by solvent extraction
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2003.09.001
– volume: 61
  start-page: 81
  year: 2001
  ident: 10.1016/j.seppur.2020.118289_b0225
  article-title: Liquid–liquid extraction separation of iron (III) from titania wastes using TBP–MIBK mixed solvent system
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(01)00146-3
– volume: 356
  start-page: 492
  year: 2019
  ident: 10.1016/j.seppur.2020.118289_b0635
  article-title: Liquid-liquid extraction of calcium using ionic liquids in spiral microfluidics
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.09.030
– volume: 53
  start-page: 2064
  year: 2018
  ident: 10.1016/j.seppur.2020.118289_b0330
  article-title: Separation of Pt (IV), Pd (II), Ru (III), and Rh (III) from chloride medium using liquid–liquid extraction with mixed imidazolium-based ionic liquids
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496395.2018.1440304
– volume: 129
  start-page: 1008
  year: 2004
  ident: 10.1016/j.seppur.2020.118289_b0530
  article-title: Intermittent partition walls promote solvent extraction of metal ions in a microfluidic device
  publication-title: Analyst
  doi: 10.1039/b411630p
– volume: 5
  start-page: 922
  year: 2018
  ident: 10.1016/j.seppur.2020.118289_b0440
  article-title: A novel N-methylimidazolium-based poly (ionic liquid) to recover trace tetrachloroaurate from aqueous solution based on multiple supramolecular interactions
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C7QI00753A
– volume: 141
  start-page: 107536
  year: 2019
  ident: 10.1016/j.seppur.2020.118289_b0700
  article-title: Thermal and hydrodynamic performance of a novel passive mixer ‘wavering coiled flow inverter’
  publication-title: Chem. Eng. Process.-Process Intensif.
  doi: 10.1016/j.cep.2019.107536
– volume: 2
  start-page: 815
  year: 1984
  ident: 10.1016/j.seppur.2020.118289_b0160
  article-title: Cobalt-nickel separation by solvent extraction with bis (2, 4, 4 trimethylpentyl) phosphinic acid
  publication-title: Solvent Extr. Ion Exch.
  doi: 10.1080/07366298408918476
– volume: 209
  start-page: 984
  year: 2019
  ident: 10.1016/j.seppur.2020.118289_b0400
  article-title: Extraction of cobalt (II) using ionic liquid-based bi-phase and three-phase systems without adding any chelating agents with new recycling procedure
  publication-title: J. Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.09.046
– volume: 6
  start-page: 1288
  year: 2018
  ident: 10.1016/j.seppur.2020.118289_b0115
  article-title: Novel technologies and conventional processes for recovery of metals from waste electrical and electronic equipment: challenges & opportunities–a review
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2018.01.032
– volume: 144
  start-page: 54
  year: 2014
  ident: 10.1016/j.seppur.2020.118289_b0650
  article-title: Liquid–liquid extraction in microchannels with Zinc–D2EHPA system
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2014.01.010
– volume: 72
  start-page: 1711
  year: 2000
  ident: 10.1016/j.seppur.2020.118289_b0540
  article-title: Integration of a microextraction system on a glass chip: ion-pair solvent extraction of Fe (II) with 4, 7-diphenyl-1, 10-phenanthrolinedisulfonic acid and tri-n-octylmethylammonium chloride
  publication-title: Anal. Chem.
  doi: 10.1021/ac991147f
– volume: 51
  start-page: 599
  year: 2017
  ident: 10.1016/j.seppur.2020.118289_b0110
  article-title: Development of solvent extraction methods for recovering rare earth metals
  publication-title: Theor. Found. Chem. Eng.
  doi: 10.1134/S004057951605002X
SSID ssj0017182
Score 2.5553722
SecondaryResourceType review_article
Snippet •Up-to-date progress of the metal extraction process.•Solvents and technologies were used in conventional and current extraction methods.•Important parameters...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 118289
SubjectTerms Coiled flow inverter
Ionic liquids
Metal ion extraction
Microfluidics
Microreactors
Process intensification
Title Solvent extraction of metals: Role of ionic liquids and microfluidics
URI https://dx.doi.org/10.1016/j.seppur.2020.118289
Volume 262
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14jc1rN4m3UipVsQdrobewT4ikSWzaq7_d2TxKBVHwuMkMhMnmm5nsNzMI3brwMTNle1YklYYExSMW86VvcT_0JeUyYNzUO79M6WTuPy3IooNGbS2MoVU22F9jeoXWzZVBY81BkSSDmQPJFQkpNTPAIRmvKtj9wOzyu88tzcMB7K1OPEHYMtJt-VzF8SpVUWxMV1DXYIdJPn52Tzsu5-EIHTaxIh7Wj3OMOio7QQc7HQRP0XiWp4axiAFjV3WNAs41XiqIqct7_JqnyqzNT1eB0-Rjk8gSs0zipSHi6RTWiSjP0Pxh_DaaWM1kBEtAiL-2uOBUu5Ix7SoRahURQZnkrnDtEG5BUCYDGQU29yB4ppDVEVvpiELqwD0XdLxz1M3yTF0gHIKTj6TDTF96XxAvcqTwJCE6IoEtA95DXmuQWDRtw830ijRu-WHvcW3G2Jgxrs3YQ9ZWq6jbZvwhH7S2jr-9_hiQ_VfNy39rXqF91xBUKvbiNequVxt1AxHGmverLdRHe8PH58n0C7Y30XY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEBUhObQ9lK40XXXo1cSxLC-9hZDgNsuhSSA3o83g4thulv_vyEtIobTQo2wNmEF6M896M0Lo2YLNzJRJDF-qCAgKoQazpW1w27Olw6XLuK53nkydYGG_Lemygfp1LYyWVVbYX2J6gdbVk07lzU4ex51ZF8gV9RxH3wEOZBwoUEt3p6JN1Oq9joLp_jAB4Lc49IT5hjaoK-gKmddG5flONwa1NHxo_vFzhDqIOsMzdFqli7hXftE5aqj0Ap0cNBG8RINZlmjRIgaYXZdlCjiL8EpBWr15we9ZovRY_3cVOIk_d7HcYJZKvNJavCiBcSw2V2gxHMz7gVFdjmAIyPK3BhfciSzJWGQp4UXKp8JhklvCMj14BXmZdKXvmpxA_uwAsaOminwH2AMnFtiQa9RMs1TdIOxBnPdll-nW9LagxO9KQSSlkU9dU7q8jUjtkFBUncP1BRZJWEvEPsLSjaF2Y1i6sY2MvVVeds74Y75b-zr8tgJCAPdfLW__bfmEjoL5ZByOX6ejO3Rsab1KIWa8R83teqceIOHY8sdqQX0B8-vUJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solvent+extraction+of+metals%3A+Role+of+ionic+liquids+and+microfluidics&rft.jtitle=Separation+and+purification+technology&rft.au=Asrami%2C+Mahdieh+Razi&rft.au=Tran%2C+Nam+Nghiep&rft.au=Nigam%2C+Krishna+Deo+Prasad&rft.au=Hessel%2C+Volker&rft.date=2021-05-01&rft.pub=Elsevier+B.V&rft.issn=1383-5866&rft.eissn=1873-3794&rft.volume=262&rft_id=info:doi/10.1016%2Fj.seppur.2020.118289&rft.externalDocID=S1383586620327611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon