Solvent extraction of metals: Role of ionic liquids and microfluidics
•Up-to-date progress of the metal extraction process.•Solvents and technologies were used in conventional and current extraction methods.•Important parameters in the process and how effective each method is.•The advantages of new emerging reactors over the conventional ones. Microfluidic technology...
Saved in:
Published in | Separation and purification technology Vol. 262; p. 118289 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Up-to-date progress of the metal extraction process.•Solvents and technologies were used in conventional and current extraction methods.•Important parameters in the process and how effective each method is.•The advantages of new emerging reactors over the conventional ones.
Microfluidic technology has attracted great interest across industry and academia. Its engineering characteristics, through miniaturization, can enhance mass- and heat transfer rates together with allowing operation at high concentrations. Combining this technology with a green designer solvent is one of the most recent advances in separation processes. Ionic liquids have negligible volatility and flammability and have an exceptionally large chemical diversity space, which these days can be better utilised through solvent modelling. Ionic liquids have been demonstrated to increase the efficiency and selectivity of extraction by orders of magnitude.
Different types of microfluidic devices have been designed until now, and among those, the segmented flow with alternate regular slugs is the most prominent. Helical coiling can further intensify the internal recirculation by convection, which is the motor of the advanced mass transfer. This is done by liberating Dean forces. A device that leverages such mass transfer intensification in the best possible way is the Coiled flow inverter (CFI) (Saxena Nigam, 1984) [1]. The coil periodicity is just 4 turnings, and then the winding direction is inversed, e.g. changed from clockwise to counter-clockwise, and this is repeated multiple times. The CFI extraction performance is typically much better than for a straight and a non-inverted helical capillary.
Separation of metals using liquid–liquid extraction methodology is an important research subject of large economical relevance. The common types of equipment in metal extraction have some disadvantages such as long mixing time and huge plant footprint for the coalescence of the multi-phase, which might take very long due to emulsion formation. In this regard, microfluidic devices and ionic liquids provide an alternative as more compact, more efficient, and faster technology. This review shall help researchers to understand the recent improvement in metal extraction processes, and what the addition of disruptive technology can add to an industrial transformation. |
---|---|
AbstractList | •Up-to-date progress of the metal extraction process.•Solvents and technologies were used in conventional and current extraction methods.•Important parameters in the process and how effective each method is.•The advantages of new emerging reactors over the conventional ones.
Microfluidic technology has attracted great interest across industry and academia. Its engineering characteristics, through miniaturization, can enhance mass- and heat transfer rates together with allowing operation at high concentrations. Combining this technology with a green designer solvent is one of the most recent advances in separation processes. Ionic liquids have negligible volatility and flammability and have an exceptionally large chemical diversity space, which these days can be better utilised through solvent modelling. Ionic liquids have been demonstrated to increase the efficiency and selectivity of extraction by orders of magnitude.
Different types of microfluidic devices have been designed until now, and among those, the segmented flow with alternate regular slugs is the most prominent. Helical coiling can further intensify the internal recirculation by convection, which is the motor of the advanced mass transfer. This is done by liberating Dean forces. A device that leverages such mass transfer intensification in the best possible way is the Coiled flow inverter (CFI) (Saxena Nigam, 1984) [1]. The coil periodicity is just 4 turnings, and then the winding direction is inversed, e.g. changed from clockwise to counter-clockwise, and this is repeated multiple times. The CFI extraction performance is typically much better than for a straight and a non-inverted helical capillary.
Separation of metals using liquid–liquid extraction methodology is an important research subject of large economical relevance. The common types of equipment in metal extraction have some disadvantages such as long mixing time and huge plant footprint for the coalescence of the multi-phase, which might take very long due to emulsion formation. In this regard, microfluidic devices and ionic liquids provide an alternative as more compact, more efficient, and faster technology. This review shall help researchers to understand the recent improvement in metal extraction processes, and what the addition of disruptive technology can add to an industrial transformation. |
ArticleNumber | 118289 |
Author | Tran, Nam Nghiep Hessel, Volker Asrami, Mahdieh Razi Nigam, Krishna Deo Prasad |
Author_xml | – sequence: 1 givenname: Mahdieh Razi surname: Asrami fullname: Asrami, Mahdieh Razi organization: School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA 5005, Australia – sequence: 2 givenname: Nam Nghiep surname: Tran fullname: Tran, Nam Nghiep email: namnghiep.tran@adelaide.edu.au organization: School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA 5005, Australia – sequence: 3 givenname: Krishna Deo Prasad surname: Nigam fullname: Nigam, Krishna Deo Prasad organization: Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110001, India – sequence: 4 givenname: Volker surname: Hessel fullname: Hessel, Volker email: volker.hessel@adelaide.edu.au organization: School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA 5005, Australia |
BookMark | eNqFkMtKAzEUhoNUsK2-gYu8wNRcpslMF4KUeoGC4GUdMskJpEwnNZkWfXszjCsXujrX7xz-f4YmXegAoWtKFpRQcbNbJDgcjnHBCMstWrGqPkNTWklecFmXk5zzihfLSogLNEtpRwiVeW2KNq-hPUHXY_jsoza9Dx0ODu-h121a4ZfQwlDntje49R9HbxPWncV7b2Jwba69SZfo3OV9uPqJc_R-v3lbPxbb54en9d22MJyIvmhMIxyzWjsGpnJQL43QtmGGkSqPaM2ttLUkDZeSCUbJkoCrhSxlw1lm-ByV4938O6UITh2i3-v4pShRgxVqp0Yr1GCFGq3I2OoXZnyvB61Zs2__g29HGLKwk4eokvHQGbA-gumVDf7vA99L5YAl |
CitedBy_id | crossref_primary_10_1039_D2GC02214A crossref_primary_10_1016_j_mineng_2022_107812 crossref_primary_10_1002_adfm_202423566 crossref_primary_10_1016_j_scp_2023_101381 crossref_primary_10_1016_j_cej_2024_150136 crossref_primary_10_1039_D4RA08429B crossref_primary_10_1016_j_molliq_2024_126025 crossref_primary_10_1016_j_jiec_2024_09_027 crossref_primary_10_1016_j_molliq_2024_126033 crossref_primary_10_1038_s41598_024_54591_y crossref_primary_10_1039_D3GC02859C crossref_primary_10_1134_S0036023622800014 crossref_primary_10_1134_S1070363222120143 crossref_primary_10_31857_S2308112023700566 crossref_primary_10_3390_pr11020364 crossref_primary_10_1016_j_seppur_2022_121519 crossref_primary_10_1016_j_jclepro_2023_139405 crossref_primary_10_1080_15422119_2022_2091458 crossref_primary_10_1016_j_cep_2024_109932 crossref_primary_10_1016_j_seppur_2022_120773 crossref_primary_10_1007_s42461_022_00600_5 crossref_primary_10_1021_acs_chemrev_3c00794 crossref_primary_10_3390_molecules29112659 crossref_primary_10_1016_j_cej_2024_157885 crossref_primary_10_3390_chemengineering6010006 crossref_primary_10_3103_S002713142470041X crossref_primary_10_1039_D1GC03662A crossref_primary_10_1007_s11814_022_1322_x crossref_primary_10_1016_j_cep_2022_108911 crossref_primary_10_1016_j_seppur_2022_122958 crossref_primary_10_1039_D4GC01882F crossref_primary_10_1002_apj_2743 crossref_primary_10_1016_j_cej_2023_142011 crossref_primary_10_1016_j_ecoenv_2023_114792 crossref_primary_10_1016_j_molliq_2023_122205 crossref_primary_10_1134_S0965545X23701080 crossref_primary_10_1016_j_seppur_2021_119335 crossref_primary_10_4155_bio_2021_0067 crossref_primary_10_1016_j_cep_2022_109151 crossref_primary_10_1016_j_jece_2024_113880 crossref_primary_10_1007_s42250_022_00447_9 crossref_primary_10_1134_S003602442213012X crossref_primary_10_1016_j_jil_2024_100116 crossref_primary_10_1016_j_cofs_2024_101253 crossref_primary_10_1007_s11356_023_26433_3 crossref_primary_10_1016_j_cep_2022_108905 crossref_primary_10_1016_j_molliq_2022_118818 crossref_primary_10_1177_25726641241301982 crossref_primary_10_1177_17475198231156358 crossref_primary_10_1016_j_chemosphere_2021_133102 crossref_primary_10_1007_s40831_023_00697_y crossref_primary_10_1016_j_cej_2024_148792 crossref_primary_10_1016_j_cep_2021_108671 crossref_primary_10_3389_fchem_2023_1298452 crossref_primary_10_3390_su16198630 crossref_primary_10_1016_j_molliq_2024_124594 crossref_primary_10_1134_S2634827622020040 crossref_primary_10_1016_j_molliq_2022_120080 crossref_primary_10_1016_j_seppur_2023_125985 |
Cites_doi | 10.1016/j.cherd.2015.01.003 10.13005/ojc/290402 10.1021/acs.iecr.8b03408 10.1016/j.cep.2019.107562 10.1016/j.cej.2010.11.002 10.1016/j.cej.2012.08.064 10.1016/j.molliq.2019.111040 10.1039/b008041l 10.1016/j.cep.2016.02.001 10.1016/j.reactfunctpolym.2005.05.002 10.1002/anie.201711068 10.1080/01496395.2017.1284863 10.1016/j.hydromet.2011.09.001 10.1021/ie010022+ 10.1016/j.hydromet.2012.07.001 10.1016/j.jbiotec.2015.06.388 10.1021/ie50532a020 10.1002/ceat.201100602 10.1016/S0021-9673(00)00683-X 10.1021/ie900012k 10.1016/j.cej.2016.08.062 10.1016/j.aca.2005.10.086 10.1016/0304-386X(95)00051-H 10.1002/ceat.201200464 10.1016/j.hydromet.2004.02.002 10.1016/j.ces.2016.01.004 10.1016/j.cej.2015.08.099 10.1016/j.procbio.2014.01.016 10.1016/S0304-386X(99)00014-6 10.1002/cjoc.201900453 10.1016/S0304-386X(00)00135-3 10.1039/C6RA09328K 10.1016/S0013-4686(99)00071-7 10.1016/j.hydromet.2012.05.003 10.1080/0144235X.2015.1088217 10.1016/j.seppur.2018.08.016 10.1016/j.seppur.2012.08.026 10.1016/j.fluid.2008.01.021 10.1080/01496395.2019.1577271 10.1039/c2gc35246j 10.1016/j.ces.2018.09.008 10.1002/aic.16606 10.1016/0304-386X(92)90093-F 10.1021/ie00018a026 10.1016/j.seppur.2019.115875 10.1021/acs.iecr.5b04865 10.1016/j.seppur.2012.08.015 10.1016/j.hydromet.2010.04.009 10.1016/j.seppur.2019.116496 10.1016/j.hydromet.2011.12.006 10.1039/C5DT03791C 10.1021/cr200271j 10.1016/j.seppur.2018.11.091 10.1016/j.hydromet.2019.105148 10.1016/j.hydromet.2011.08.004 10.1039/b102790p 10.1016/j.jhazmat.2016.10.054 10.1016/0304-386X(85)90032-5 10.1016/j.cep.2015.12.013 10.1021/ie061490s 10.1016/j.cherd.2012.03.006 10.1081/SEI-120018944 10.1002/jctb.5544 10.1016/j.cep.2020.107921 10.1002/ceat.201200600 10.1016/S0304-386X(02)00011-7 10.1016/j.seppur.2019.115952 10.1063/1.3116092 10.1016/j.seppur.2007.11.005 10.1016/j.cej.2017.09.046 10.1002/jssc.201401315 10.1016/j.seppur.2018.04.075 10.1080/07366290701634610 10.1016/j.cherd.2013.08.033 10.1080/15422119.2016.1240085 10.1016/j.seppur.2004.06.005 10.1016/j.hydromet.2019.105104 10.1080/00958979209407944 10.1016/j.trac.2015.03.024 10.1016/j.ces.2017.01.016 10.1016/j.jre.2018.03.024 10.1080/07366299.2011.595636 10.1021/ac011111z 10.1016/S0378-7753(03)00025-9 10.1039/C7RA04753C 10.1016/j.seppur.2018.09.028 10.1016/j.ces.2018.06.007 10.1016/j.ijhydene.2016.07.040 10.1016/j.jiec.2019.10.023 10.1021/acs.iecr.9b03472 10.1039/C5CC06595J 10.1080/01496395.2014.952747 10.1016/j.mineng.2006.07.001 10.1002/ceat.201900168 10.1016/S0003-2670(00)88873-X 10.1016/j.seppur.2018.07.033 10.1021/ie300649d 10.1007/BF02705944 10.1080/01496395.2012.672532 10.1016/j.talanta.2008.06.016 10.1016/j.jhazmat.2009.11.005 10.1039/B310507P 10.1016/j.seppur.2018.03.022 10.1016/j.hydromet.2012.04.003 10.1016/j.hydromet.2007.07.012 10.1016/j.mineng.2019.106106 10.1039/C9LC90021G 10.1016/0304-386X(95)00117-Y 10.1016/j.seppur.2013.02.021 10.1081/SEI-120016074 10.1016/j.seppur.2018.10.051 10.1080/01932691.2015.1004185 10.1039/C7DT01142C 10.1351/pac200072122275 10.1016/j.molliq.2016.01.016 10.1002/aic.690300303 10.1039/c3gc40198g 10.1080/07366290008934721 10.1080/07366299.2018.1446680 10.1016/j.hydromet.2003.10.008 10.1016/j.cep.2014.10.013 10.1021/ie503502g 10.1021/acs.jpcb.5b02980 10.1016/j.jhazmat.2010.07.004 10.1016/S0304-386X(02)00004-X 10.1016/j.mineng.2003.09.001 10.1016/S0304-386X(01)00146-3 10.1016/j.cej.2018.09.030 10.1080/01496395.2018.1440304 10.1039/b411630p 10.1039/C7QI00753A 10.1016/j.cep.2019.107536 10.1080/07366298408918476 10.1016/j.seppur.2018.09.046 10.1016/j.jece.2018.01.032 10.1016/j.hydromet.2014.01.010 10.1021/ac991147f 10.1134/S004057951605002X |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.seppur.2020.118289 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3794 |
ExternalDocumentID | 10_1016_j_seppur_2020_118289 S1383586620327611 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSM SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ R2- RIG SEW SSH |
ID | FETCH-LOGICAL-c306t-bcb6f2daaf2ec8fe95c6adb2c208cb6193d7d970b3772621050ef96747b32f2e3 |
IEDL.DBID | .~1 |
ISSN | 1383-5866 |
IngestDate | Thu Apr 24 23:05:44 EDT 2025 Tue Jul 01 00:32:38 EDT 2025 Fri Feb 23 02:42:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MIBK Coiled flow inverter P204 [C101][Cl] [A324H][Cl] [HBBIm]Br [OcGBOEt][DHDGA] [C4min][N88SA] HEH(EHP) Metal ion extraction [Emim][Cl] [C4Py][N88SA] Microreactors Cyphos IL 101 or P66614Cl LIX 84 [A336][DHDGA] EHEHPA TBP [HOEmim][NTf2] P88812Cl [Emim][NTf2] TOA 4PC D2EHPA LIX63 DC18C6 Process intensification [C4mim][PF6] [C8mim][PF6] PC-88A [diHTMG]Br Cyphos 102 [Bmim][NTf2] Ref [P44414][Cl] Ionic liquids AD-100 DEH PA Microfluidics [PJMTH][HSO4] |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-bcb6f2daaf2ec8fe95c6adb2c208cb6193d7d970b3772621050ef96747b32f2e3 |
ParticipantIDs | crossref_primary_10_1016_j_seppur_2020_118289 crossref_citationtrail_10_1016_j_seppur_2020_118289 elsevier_sciencedirect_doi_10_1016_j_seppur_2020_118289 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 2021-05-00 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Separation and purification technology |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Saji, Reddy (b0225) 2001; 61 Coll, Fortuny, Kedari, Sastre (b0510) 2012; 125 Basauri, Gomez-Pastora, Fallanza, Bringas, Ortiz (b0605) 2019; 209 Zhu, Zhang, Pranolo, Cheng (b0240) 2012; 127 Tokeshi, Minagawa, Uchiyama, Hibara, Sato, Hisamoto, Kitamori (b0550) 2002; 74 Xu, Zhao, Wang, Yan, Cai, Yang (b0425) 2019; 58 Minagawa, Tokeshi, Kitamori (b0515) 2001; 1 Rzelewska-Piekut, Regel-Rosocka (b0350) 2019; 212 Nishihama, Hirai, Komasawa (b0080) 2001; 40 Onghena, Valgaeren, Vander Hoogerstraete, Binnemans (b0280) 2017; 7 Ciceri, Mason, Harvie, Perera, Stevens (b0580) 2014; 92 Li, Chu, Li, Dong, Shen (b0435) 2019; 189 Jeong, Chen, Yadavali, Xu, Issadore, Lee (b0645) 2019; 19 Bonam, Bhattacharyya, Bhowal, Datta (b0190) 2009; 48 Janssen, Macías-Ruvalcaba, Aguilar-Martínez, Kobrak (b0105) 2015; 34 Liu, Wang, Zheng, Wang, Yan, Yang (b0020) 2017; 46 Yung, Smith, Bowser, Perera, Stevens (b0705) 2012; 90 Kurt, Gürsel, Hessel, Nigam, Kockmann (b0715) 2016; 284 Platzer, Kar, Leyma, Chib, Roller, Jirsa, Krachler, MacFarlane, Kandioller, Keppler (b0395) 2017; 324 Saien, Daliri (b0420) 2012; 51 Jha, Kumar, Jeong, Lee (b0100) 2012; 111 Nguyen, Lee, Chagnes, Kim, Jeong, Cote (b0470) 2016; 6 El-Nadi (b0050) 2017; 46 Tokeshi, Minagawa, Kitamori (b0545) 2000; 894 Zante, Masmoudi, Barillon, Trébouet, Boltoeva (b0355) 2020; 82 Vander Hoogerstraete, Wellens, Verachtert, Binnemans (b0475) 2013; 15 Salgado, Veloso, Pereira, Gontijo, Salum, Mansur (b0030) 2003; 115 Reddy, Sarma (b0220) 1996; 43 Zhou, Boudesocque, Mohamadou, Dupont (b0315) 2015; 50 Choppin, Morgenstern (b0430) 2000; 18 Villemin, Didi (b0075) 2014; 29 Abbasi, Rahbar-Kelishami, Ghasemi (b0070) 2018; 36 Dupont, Depuydt, Binnemans (b0490) 2015; 119 Wang, Wang, Lu, Ru, Yang (b0360) 2019; 293 Löwe, Ehrfeld (b0525) 1999; 44 Liu, Dai, Li, Ma, Cao, Wang, Komarneni, Luo (b0620) 2020; 43 Lo Nostro, Ninham (b0500) 2012; 112 Wang, Yue, Li, Jin, Li (b0230) 2002; 20 Tran, Azra, Iqbal, Lee (b0390) 2020; 238 Banda, Jeon, Lee (b0065) 2012; 121 Hessel, Tran, Orandi, Asrami, Goodsite, Nguyen (b0310) 2020 Papaiconomou, Svecova, Bonnaud, Cathelin, Billard, Chainet (b0415) 2015; 44 Shen, Fang (b0560) 2008; 77 Li, Onghena, Li, Zhang, Binnemans (b0365) 2019; 58 Cieszynska, Wiśniewski (b0445) 2012; 113 Vashisth, Nigam (b0660) 2007; 46 Martınez, Sastre, Alguacil (b0450) 1999; 52 Gilligan, Nikoloski (b0025) 2020; 146 Soni, Sharma, Meena, Roy, Nigam (b0690) 2019; 193 Jafari, Rahimi, Kakavandi (b0640) 2016; 101 Kongolo, Mwema, Banza, Gock (b0055) 2003; 16 Mai, Ahn, Koo (b0405) 2014; 49 Rybka, Regel-Rosocka (b0320) 2012; 47 Eyupoglu, Polat, Kunduracioglu, Turgut (b0285) 2015; 36 Cheng, Boddy, Zhang, Godfrey, Robinson, Pranolo, Zhu, Wang (b0035) 2010; 104 Firmansyah, Kubota, Goto (b0485) 2018; 93 Preston, Cole, Craig, Feather (b0260) 1996; 41 Fan, Fan, Pei, Wu, Wang, Fan (b0505) 2008; 61 Klutz, Magnus, Lobedann, Schwan, Maiser, Niklas, Temming, Schembecker (b0685) 2015; 213 Morais, Ciminelli (b0125) 2004; 73 Brits, Deglon (b0180) 2007; 89 Singh, Srivastava, Nigam (b0675) 2016; 55 Chen, Zhang (b0290) 2019 Yao, Zhao, Chen (b0085) 2018; 189 Zhang, Hessel, Peng (b0595) 2018; 332 Bonnesen, Delmau, Moyer, Lumetta (b0040) 2003; 21 Q. Li, P.J.C.E.S. Angeli, Intensified Eu (III) extraction using ionic liquids in small channels, 143 (2016) 276–286. Marcinkowski, Pena-Pereira, Kloskowski, Namieśnik (b0270) 2015; 72 Rickelton, Flett, West (b0160) 1984; 2 Yamamoto, Taguchi, Sato, Surugaya (b0585) 2015; 38 Darekar, Sen, Singh, Mukhopadhyay, Shenoy, Ghosh (b0650) 2014; 144 Cui, Jiang, Wang, Dong, Zhang, Cheng (b0345) 2019; 65 Seddon, Stark, Torres (b0265) 2000; 72 Wang, Guo, Lee (b0340) 2019; 210 Juang, Kao (b0195) 2005; 42 Lee, Ahn, Lee (b0140) 2002; 63 Chun, Lee, Cheon, Wilkinson (b0200) 1996; 13 Li, Li, Raiguel, Binnemans (b0175) 2018; 201 Kabay, Solak, Arda, Topal, Yüksel, Trochimczuk, Streat (b0210) 2005; 64 Tsaoulidis (b0720) 2015 Leopold, Coll, Fortuny, Rathore, Sastre (b0235) 2010; 182 Onghena, Opsomer, Binnemans (b0465) 2015; 51 Sasaki, Yoshimitsu, Nishihama, Shimbori, Shiroishi (b0245) 2017; 52 Pinto, Durao, Fiúza, Guimaraes, Madureira (b0185) 2004; 74 Gras, Papaiconomou, Schaeffer, Chainet, Tedjar, Coutinho, Billard (b0460) 2018; 57 Bhowal, Bhattacharyya, Inturu, Datta (b0205) 2012; 99 Zhang, Xie, Li, Yin, Peng, Ju (b0590) 2015; 4 Tokeshi, Minagawa, Kitamori (b0540) 2000; 72 Werning, Higbie, Grace, Speece, Gilbert (b0150) 1954; 46 Banda, Jeon, Lee (b0170) 2012; 98 Chauhan, Jadhao, Pant, Nigam (b0115) 2018; 6 Garciadiego-Ortega, Tsaoulidis, Pineda, Fraga, Angeli (b0625) 2020 Radhika, Kumar, Kantam, Reddy (b0010) 2011; 110 Sole, Hiskey (b0165) 1992; 30 Fouad, Bart (b0655) 2007; 25 Bartsch, Yang, Jeon, Walkowiak, Charewicz (b0155) 1992; 27 Janssen, Macias-Ruvalcaba, Aguilar-Martinez, Kobrak (b0335) 2015; 34 Good, Srivastava, Holland (b0480) 1964; 31 Singh, Kockmann, Nigam (b0680) 2014; 86 Yan, Wang, Xiang, Yang (b0330) 2018; 53 Abdollahi, Karimi-Sabet, Moosavian, Amini (b0615) 2020; 231 Tsaoulidis, Dore, Angeli, Plechkova, Seddon (b0630) 2013; 227 Visser, Swatloski, Reichert, Mayton, Sheff, Wierzbicki, Davis, Rogers (b0295) 2001 Marsousi, Karimi-Sabet, Moosavian, Amini (b0635) 2019; 356 Dehkordi, Hormozi, Jahangiri (b0695) 2016; 41 Alguacil, Escudero (b0370) 2019; 189 Zhao, Liu, Feng, Chen, Li, Tian, Wang, Huang, Li (b0130) 2010; 176 Singh, Montesinos-Castellanos, Nigam (b0700) 2019; 141 Zhang, Hessel, Peng, Wang, Zhang (b0215) 2017; 307 Passos, Luís, Coutinho, Freire (b0455) 2016; 6 Zhang, Huang, Yu, Liu (b0325) 2013; 108 Asrami, Saien (b0495) 2018; 204 Safarzadeh, Bafghi, Moradkhani, Ilkhchi (b0090) 2007; 20 Chauhan, Kaur, Pant, Nigam (b0120) 2020 Tong, Wang, Huang, Yang (b0015) 2015; 54 Xie, Zhang, Yang, Zhang, Ju, Luo (b0600) 2019; 143 Yang, Zhao, Su, Chen (b0575) 2013; 36 Saxena, Nigam (b0005) 1984; 30 Nagai, Miwa, Segawa, Wakida, Chayama (b0565) 2009; 105 Flieger, Tatarczak-Michalewska, Blicharska, Madejska, Flieger, Adamczuk (b0400) 2019; 209 Xu, Zhao, Liang, Zhou, Yang (b0440) 2018; 5 Alguacil, Garcia-Diaz, Escudero (b0375) 2019; 211 Cheng, Barnard, Zhang, Robinson (b0095) 2011; 29 Khodakarami, Alagha (b0385) 2020; 232 Belhadj, Benabdallah, Coll, Fortuny, Hadj Youcef, Sastre (b0380) 2020; 55 Wellens, Thijs, Binnemans (b0305) 2012; 14 Klutz, Kurt, Lobedann, Kockmann (b0665) 2015; 95 Anastas, Wasserscheid, Stark (b0275) 2013 Scheiff, Holbach, Agar (b0730) 2013; 36 Preston (b0135) 1985; 14 Sun, Wang, Yang, Huang, Xu, Ji, Li, Hu (b0045) 2018; 36 Ye, Li, Deng, Luo, Rao, Peng, Zhang, Jiang (b0250) 2019; 209 Tamagawa, Muto (b0535) 2011; 167 Nishihama, Sakaguchi, Hirai, Komasawa (b0060) 2002; 64 Priest, Zhou, Klink, Sedev, Ralston (b0570) 2012; 35 Singh, Nigam (b0670) 2016; 102 Preston, Du Preez (b0255) 2000; 58 Wei, Cho, Kim, Song, Bediako, Yun (b0410) 2016; 216 Dietz, Dzielawa, Laszak, Young, Jensen (b0300) 2003; 5 Belova (b0110) 2017; 51 Li, Angeli (b0520) 2016; 143 Kumemura, Korenaga (b0555) 2006; 558 López-Guajardo, Ortiz-Nadal, Montesinos-Castellanos, Nigam (b0725) 2017; 169 Maruyama, Kaji, Ohkawa, Sotowa, Matsushita, Kubota, Kamiya, Kusakabe, Goto (b0530) 2004; 129 Yun, Prasad, Guha, Sirkar (b0145) 1993; 32 He, Guo, Chen, Li, Yin (b0610) 2020; 38 Gardas, Coutinho (b0710) 2008; 266 Marcinkowski (10.1016/j.seppur.2020.118289_b0270) 2015; 72 Lo Nostro (10.1016/j.seppur.2020.118289_b0500) 2012; 112 Marsousi (10.1016/j.seppur.2020.118289_b0635) 2019; 356 Nishihama (10.1016/j.seppur.2020.118289_b0080) 2001; 40 Platzer (10.1016/j.seppur.2020.118289_b0395) 2017; 324 Fouad (10.1016/j.seppur.2020.118289_b0655) 2007; 25 Li (10.1016/j.seppur.2020.118289_b0175) 2018; 201 Radhika (10.1016/j.seppur.2020.118289_b0010) 2011; 110 Liu (10.1016/j.seppur.2020.118289_b0020) 2017; 46 El-Nadi (10.1016/j.seppur.2020.118289_b0050) 2017; 46 Cheng (10.1016/j.seppur.2020.118289_b0095) 2011; 29 Banda (10.1016/j.seppur.2020.118289_b0170) 2012; 98 Sasaki (10.1016/j.seppur.2020.118289_b0245) 2017; 52 Klutz (10.1016/j.seppur.2020.118289_b0685) 2015; 213 Passos (10.1016/j.seppur.2020.118289_b0455) 2016; 6 Zhang (10.1016/j.seppur.2020.118289_b0215) 2017; 307 Mai (10.1016/j.seppur.2020.118289_b0405) 2014; 49 Ciceri (10.1016/j.seppur.2020.118289_b0580) 2014; 92 Bhowal (10.1016/j.seppur.2020.118289_b0205) 2012; 99 Li (10.1016/j.seppur.2020.118289_b0365) 2019; 58 López-Guajardo (10.1016/j.seppur.2020.118289_b0725) 2017; 169 Klutz (10.1016/j.seppur.2020.118289_b0665) 2015; 95 Tong (10.1016/j.seppur.2020.118289_b0015) 2015; 54 Minagawa (10.1016/j.seppur.2020.118289_b0515) 2001; 1 Cui (10.1016/j.seppur.2020.118289_b0345) 2019; 65 Yun (10.1016/j.seppur.2020.118289_b0145) 1993; 32 Bartsch (10.1016/j.seppur.2020.118289_b0155) 1992; 27 Werning (10.1016/j.seppur.2020.118289_b0150) 1954; 46 Xu (10.1016/j.seppur.2020.118289_b0440) 2018; 5 Dietz (10.1016/j.seppur.2020.118289_b0300) 2003; 5 Nagai (10.1016/j.seppur.2020.118289_b0565) 2009; 105 Scheiff (10.1016/j.seppur.2020.118289_b0730) 2013; 36 Preston (10.1016/j.seppur.2020.118289_b0260) 1996; 41 Villemin (10.1016/j.seppur.2020.118289_b0075) 2014; 29 Martınez (10.1016/j.seppur.2020.118289_b0450) 1999; 52 Chauhan (10.1016/j.seppur.2020.118289_b0115) 2018; 6 Seddon (10.1016/j.seppur.2020.118289_b0265) 2000; 72 Papaiconomou (10.1016/j.seppur.2020.118289_b0415) 2015; 44 Safarzadeh (10.1016/j.seppur.2020.118289_b0090) 2007; 20 Belhadj (10.1016/j.seppur.2020.118289_b0380) 2020; 55 Dehkordi (10.1016/j.seppur.2020.118289_b0695) 2016; 41 Tsaoulidis (10.1016/j.seppur.2020.118289_b0720) 2015 Fan (10.1016/j.seppur.2020.118289_b0505) 2008; 61 Darekar (10.1016/j.seppur.2020.118289_b0650) 2014; 144 Eyupoglu (10.1016/j.seppur.2020.118289_b0285) 2015; 36 Coll (10.1016/j.seppur.2020.118289_b0510) 2012; 125 Tokeshi (10.1016/j.seppur.2020.118289_b0550) 2002; 74 Garciadiego-Ortega (10.1016/j.seppur.2020.118289_b0625) 2020 Bonnesen (10.1016/j.seppur.2020.118289_b0040) 2003; 21 Salgado (10.1016/j.seppur.2020.118289_b0030) 2003; 115 Vashisth (10.1016/j.seppur.2020.118289_b0660) 2007; 46 Lee (10.1016/j.seppur.2020.118289_b0140) 2002; 63 Kumemura (10.1016/j.seppur.2020.118289_b0555) 2006; 558 Cieszynska (10.1016/j.seppur.2020.118289_b0445) 2012; 113 Wei (10.1016/j.seppur.2020.118289_b0410) 2016; 216 Zhu (10.1016/j.seppur.2020.118289_b0240) 2012; 127 Zhou (10.1016/j.seppur.2020.118289_b0315) 2015; 50 Löwe (10.1016/j.seppur.2020.118289_b0525) 1999; 44 Reddy (10.1016/j.seppur.2020.118289_b0220) 1996; 43 Wellens (10.1016/j.seppur.2020.118289_b0305) 2012; 14 Singh (10.1016/j.seppur.2020.118289_b0680) 2014; 86 Preston (10.1016/j.seppur.2020.118289_b0135) 1985; 14 Singh (10.1016/j.seppur.2020.118289_b0675) 2016; 55 Saji (10.1016/j.seppur.2020.118289_b0225) 2001; 61 Saien (10.1016/j.seppur.2020.118289_b0420) 2012; 51 Xu (10.1016/j.seppur.2020.118289_b0425) 2019; 58 Flieger (10.1016/j.seppur.2020.118289_b0400) 2019; 209 Chen (10.1016/j.seppur.2020.118289_b0290) 2019 Singh (10.1016/j.seppur.2020.118289_b0700) 2019; 141 Pinto (10.1016/j.seppur.2020.118289_b0185) 2004; 74 Tokeshi (10.1016/j.seppur.2020.118289_b0540) 2000; 72 Bonam (10.1016/j.seppur.2020.118289_b0190) 2009; 48 Basauri (10.1016/j.seppur.2020.118289_b0605) 2019; 209 Li (10.1016/j.seppur.2020.118289_b0435) 2019; 189 Singh (10.1016/j.seppur.2020.118289_b0670) 2016; 102 Zhang (10.1016/j.seppur.2020.118289_b0325) 2013; 108 Tamagawa (10.1016/j.seppur.2020.118289_b0535) 2011; 167 Zhang (10.1016/j.seppur.2020.118289_b0595) 2018; 332 Yao (10.1016/j.seppur.2020.118289_b0085) 2018; 189 Chun (10.1016/j.seppur.2020.118289_b0200) 1996; 13 Gilligan (10.1016/j.seppur.2020.118289_b0025) 2020; 146 Onghena (10.1016/j.seppur.2020.118289_b0465) 2015; 51 Brits (10.1016/j.seppur.2020.118289_b0180) 2007; 89 Abbasi (10.1016/j.seppur.2020.118289_b0070) 2018; 36 Belova (10.1016/j.seppur.2020.118289_b0110) 2017; 51 Li (10.1016/j.seppur.2020.118289_b0520) 2016; 143 Yung (10.1016/j.seppur.2020.118289_b0705) 2012; 90 Nguyen (10.1016/j.seppur.2020.118289_b0470) 2016; 6 Xie (10.1016/j.seppur.2020.118289_b0600) 2019; 143 Rickelton (10.1016/j.seppur.2020.118289_b0160) 1984; 2 Banda (10.1016/j.seppur.2020.118289_b0065) 2012; 121 Kabay (10.1016/j.seppur.2020.118289_b0210) 2005; 64 Wang (10.1016/j.seppur.2020.118289_b0340) 2019; 210 Good (10.1016/j.seppur.2020.118289_b0480) 1964; 31 Gardas (10.1016/j.seppur.2020.118289_b0710) 2008; 266 Sole (10.1016/j.seppur.2020.118289_b0165) 1992; 30 Visser (10.1016/j.seppur.2020.118289_b0295) 2001 He (10.1016/j.seppur.2020.118289_b0610) 2020; 38 Alguacil (10.1016/j.seppur.2020.118289_b0375) 2019; 211 Morais (10.1016/j.seppur.2020.118289_b0125) 2004; 73 Janssen (10.1016/j.seppur.2020.118289_b0335) 2015; 34 Rybka (10.1016/j.seppur.2020.118289_b0320) 2012; 47 Khodakarami (10.1016/j.seppur.2020.118289_b0385) 2020; 232 Kongolo (10.1016/j.seppur.2020.118289_b0055) 2003; 16 Hessel (10.1016/j.seppur.2020.118289_b0310) 2020 Wang (10.1016/j.seppur.2020.118289_b0360) 2019; 293 Sun (10.1016/j.seppur.2020.118289_b0045) 2018; 36 Jafari (10.1016/j.seppur.2020.118289_b0640) 2016; 101 Zante (10.1016/j.seppur.2020.118289_b0355) 2020; 82 Leopold (10.1016/j.seppur.2020.118289_b0235) 2010; 182 Zhang (10.1016/j.seppur.2020.118289_b0590) 2015; 4 Kurt (10.1016/j.seppur.2020.118289_b0715) 2016; 284 Juang (10.1016/j.seppur.2020.118289_b0195) 2005; 42 Chauhan (10.1016/j.seppur.2020.118289_b0120) 2020 Choppin (10.1016/j.seppur.2020.118289_b0430) 2000; 18 Gras (10.1016/j.seppur.2020.118289_b0460) 2018; 57 Anastas (10.1016/j.seppur.2020.118289_b0275) 2013 Tran (10.1016/j.seppur.2020.118289_b0390) 2020; 238 Yang (10.1016/j.seppur.2020.118289_b0575) 2013; 36 Liu (10.1016/j.seppur.2020.118289_b0620) 2020; 43 Vander Hoogerstraete (10.1016/j.seppur.2020.118289_b0475) 2013; 15 Rzelewska-Piekut (10.1016/j.seppur.2020.118289_b0350) 2019; 212 Asrami (10.1016/j.seppur.2020.118289_b0495) 2018; 204 Tokeshi (10.1016/j.seppur.2020.118289_b0545) 2000; 894 Priest (10.1016/j.seppur.2020.118289_b0570) 2012; 35 Soni (10.1016/j.seppur.2020.118289_b0690) 2019; 193 Yamamoto (10.1016/j.seppur.2020.118289_b0585) 2015; 38 10.1016/j.seppur.2020.118289_b0735 Maruyama (10.1016/j.seppur.2020.118289_b0530) 2004; 129 Preston (10.1016/j.seppur.2020.118289_b0255) 2000; 58 Ye (10.1016/j.seppur.2020.118289_b0250) 2019; 209 Nishihama (10.1016/j.seppur.2020.118289_b0060) 2002; 64 Shen (10.1016/j.seppur.2020.118289_b0560) 2008; 77 Alguacil (10.1016/j.seppur.2020.118289_b0370) 2019; 189 Jeong (10.1016/j.seppur.2020.118289_b0645) 2019; 19 Zhao (10.1016/j.seppur.2020.118289_b0130) 2010; 176 Dupont (10.1016/j.seppur.2020.118289_b0490) 2015; 119 Saxena (10.1016/j.seppur.2020.118289_b0005) 1984; 30 Yan (10.1016/j.seppur.2020.118289_b0330) 2018; 53 Janssen (10.1016/j.seppur.2020.118289_b0105) 2015; 34 Tsaoulidis (10.1016/j.seppur.2020.118289_b0630) 2013; 227 Cheng (10.1016/j.seppur.2020.118289_b0035) 2010; 104 Jha (10.1016/j.seppur.2020.118289_b0100) 2012; 111 Firmansyah (10.1016/j.seppur.2020.118289_b0485) 2018; 93 Abdollahi (10.1016/j.seppur.2020.118289_b0615) 2020; 231 Onghena (10.1016/j.seppur.2020.118289_b0280) 2017; 7 Wang (10.1016/j.seppur.2020.118289_b0230) 2002; 20 |
References_xml | – volume: 42 start-page: 65 year: 2005 end-page: 73 ident: b0195 article-title: Extraction separation of Co (II)/Ni (II) from concentrated HCl solutions in rotating disc and hollow-fiber membrane contactors publication-title: Sep. Purif. Technol. – volume: 43 start-page: 974 year: 2020 end-page: 982 ident: b0620 article-title: Removal of Cu2+ from Water Using Liquid-Liquid Microchannel Extraction publication-title: Chem. Eng. Technol. – volume: 41 start-page: 1 year: 1996 end-page: 19 ident: b0260 article-title: The recovery of rare earth oxides from a phosphoric acid by-product. Part 1: Leaching of rare earth values and recovery of a mixed rare earth oxide by solvent extraction publication-title: Hydrometallurgy – volume: 86 start-page: 78 year: 2014 end-page: 89 ident: b0680 article-title: Novel three-dimensional microfluidic device for process intensification publication-title: Chem. Eng. Process. Process Intensif. – volume: 20 start-page: 211 year: 2007 end-page: 220 ident: b0090 article-title: A review on hydrometallurgical extraction and recovery of cadmium from various resources publication-title: Miner. Eng. – volume: 293 start-page: 111040 year: 2019 ident: b0360 article-title: Extraction and stripping of platinum (IV) from acidic chloride media using guanidinium ionic liquid publication-title: J. Mol. Liq. – volume: 189 start-page: 105104 year: 2019 ident: b0370 article-title: Solvent extraction of indium (III) from HCl solutions by the ionic liquid (A324H+)(Cl−) dissolved in Solvesso 100 publication-title: Hydrometallurgy – volume: 189 start-page: 105148 year: 2019 ident: b0435 article-title: Recovery of palladium from acidic nitrate media with triazole type extractants in ionic liquid publication-title: Hydrometallurgy – volume: 129 start-page: 1008 year: 2004 end-page: 1013 ident: b0530 article-title: Intermittent partition walls promote solvent extraction of metal ions in a microfluidic device publication-title: Analyst – volume: 29 start-page: 719 year: 2011 end-page: 754 ident: b0095 article-title: Synergistic solvent extraction of nickel and cobalt: A review of recent developments publication-title: Solvent Extr. Ion Exch. – volume: 47 start-page: 1296 year: 2012 end-page: 1302 ident: b0320 article-title: Nickel (II) and cobalt (II) extraction from chloride solutions with quaternary phosphonium salts publication-title: Sep. Sci. Technol. – volume: 113 start-page: 79 year: 2012 end-page: 85 ident: b0445 article-title: Extractive recovery of palladium (II) from hydrochloric acid solutions with Cyphos® IL 104 publication-title: Hydrometallurgy – volume: 54 start-page: 705 year: 2015 end-page: 711 ident: b0015 article-title: Extraction and stripping of platinum from hydrochloric acid medium by mixed imidazolium ionic liquids publication-title: Ind. Eng. Chem. Res. – volume: 58 start-page: 1779 year: 2019 end-page: 1786 ident: b0425 article-title: Extraction of Pt (IV), Pt (II), and Pd (II) from acidic chloride media using imidazolium-based task-specific polymeric ionic liquid publication-title: Ind. Eng. Chem. Res. – volume: 46 start-page: 195 year: 2017 end-page: 215 ident: b0050 article-title: Solvent extraction and its applications on ore processing and recovery of metals: classical approach publication-title: Sep. Purif. Rev. – volume: 18 start-page: 1029 year: 2000 end-page: 1049 ident: b0430 article-title: Thermodynamics of solvent extraction publication-title: Solvent Extr. Ion Exch. – volume: 227 start-page: 151 year: 2013 end-page: 157 ident: b0630 article-title: Dioxouranium (VI) extraction in microchannels using ionic liquids publication-title: Chem. Eng. J. – volume: 6 start-page: 62717 year: 2016 end-page: 62728 ident: b0470 article-title: Highly selective separation of individual platinum group metals (Pd, Pt, Rh) from acidic chloride media using phosphonium-based ionic liquid in aromatic diluent publication-title: RSC Adv. – volume: 20 start-page: 701 year: 2002 end-page: 716 ident: b0230 article-title: Solvent extraction of scandium (III), yttrium (III), lanthanides (III), anddivalent metal ions with sec-nonylphenoxy acetic acid publication-title: Solvent Extr. Ion Exch. – volume: 14 start-page: 171 year: 1985 end-page: 188 ident: b0135 article-title: Solvent extraction of metals by carboxylic acids publication-title: Hydrometallurgy – volume: 212 start-page: 791 year: 2019 end-page: 801 ident: b0350 article-title: Separation of Pt (IV), Pd (II), Ru (III) and Rh (III) from model chloride solutions by liquid-liquid extraction with phosphonium ionic liquids publication-title: Sep. Purif. Technol. – volume: 43 start-page: 299 year: 1996 end-page: 306 ident: b0220 article-title: Extraction of iron (III) at macro-level concentrations using TBP, MIBK and their mixtures publication-title: Hydrometallurgy – volume: 14 start-page: 1657 year: 2012 end-page: 1665 ident: b0305 article-title: An environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids publication-title: Green Chem. – volume: 51 start-page: 15932 year: 2015 end-page: 15935 ident: b0465 article-title: Separation of cobalt and nickel using a thermomorphic ionic-liquid-based aqueous biphasic system publication-title: J. Chem. Commun. – volume: 52 start-page: 63 year: 1999 end-page: 70 ident: b0450 article-title: Solvent extraction of gold (III) by the chloride salt of the tertiary amine Hostarex A327. Estimation of the interaction coefficient between AuCl4− and H+ publication-title: Hydrometallurgy – volume: 238 start-page: 116496 year: 2020 ident: b0390 article-title: Synthesis of succinimide based ionic liquids and comparison of extraction behavior of Co (II) and Ni (II) with bi-functional ionic liquids synthesized by Aliquat336 and organophosphorus acids publication-title: Sep. Purif. Technol. – volume: 127 start-page: 1 year: 2012 end-page: 7 ident: b0240 article-title: Separation and recovery of copper, nickel, cobalt and zinc in chloride solutions by synergistic solvent extraction publication-title: Hydrometallurgy – volume: 216 start-page: 18 year: 2016 end-page: 24 ident: b0410 article-title: Selective recovery of Au (III), Pt (IV), and Pd (II) from aqueous solutions by liquid–liquid extraction using ionic liquid Aliquat-336 publication-title: J. Mol. Liq. – volume: 46 start-page: 644 year: 1954 end-page: 652 ident: b0150 article-title: Separation of tantalum and niobium by liquid-liquid extraction publication-title: Ind. Eng. Chem. – volume: 99 start-page: 69 year: 2012 end-page: 76 ident: b0205 article-title: Continuous removal of hexavalent chromium by emulsion liquid membrane in a modified spray column publication-title: Sep. Purif. Technol. – volume: 7 start-page: 35992 year: 2017 end-page: 35999 ident: b0280 article-title: Cobalt (II)/nickel (II) separation from sulfate media by solvent extraction with an undiluted quaternary phosphonium ionic liquid publication-title: RSC Adv. – volume: 50 start-page: 38 year: 2015 end-page: 44 ident: b0315 article-title: Extraction of metal ions with task specific ionic liquids: influence of a coordinating anion publication-title: Sep. Sci. Technol. – volume: 105 start-page: 102015 year: 2009 ident: b0565 article-title: Quantification of Ag (I) and kinetic analysis using ion-pair extraction across a liquid/liquid interface in a laminar flow by fluorescence microscopy publication-title: J. Appl. Phys. – volume: 98 start-page: 481 year: 2012 end-page: 487 ident: b0170 article-title: Solvent extraction separation of Pr and Nd from chloride solution containing La using Cyanex 272 and its mixture with other extractants publication-title: Sep. Purif. Technol. – volume: 5 start-page: 682 year: 2003 end-page: 685 ident: b0300 article-title: Influence of solvent structural variations on the mechanism of facilitated ion transfer into room-temperature ionic liquids publication-title: J. Green Chem. – volume: 141 start-page: 107536 year: 2019 ident: b0700 article-title: Thermal and hydrodynamic performance of a novel passive mixer ‘wavering coiled flow inverter’ publication-title: Chem. Eng. Process.-Process Intensif. – volume: 25 start-page: 857 year: 2007 end-page: 877 ident: b0655 article-title: Separation of zinc by a non-dispersion solvent extraction process in a hollow fiber contactor publication-title: Solvent Extr. Ion Exch. – volume: 73 start-page: 237 year: 2004 end-page: 244 ident: b0125 article-title: Process development for the recovery of high-grade lanthanum by solvent extraction publication-title: Hydrometallurgy – volume: 231 start-page: 115875 year: 2020 ident: b0615 article-title: Microfluidic solvent extraction of calcium: Modeling and optimization of the process variables publication-title: Sep. Purif. Technol. – volume: 209 start-page: 175 year: 2019 end-page: 181 ident: b0250 article-title: Solvent extraction behavior of metal ions and selective separation Sc3+ in phosphoric acid medium using P204 publication-title: Sep. Purif. Technol. – volume: 46 start-page: 7210 year: 2017 end-page: 7218 ident: b0020 article-title: Extraction behaviour and mechanism of Pt (IV) and Pd (II) by liquid–liquid extraction with an ionic liquid [HBBIm] Br publication-title: Dalton Trans. – volume: 29 start-page: 1267 year: 2014 end-page: 1284 ident: b0075 article-title: Extraction of rare earth and heavy metals, using ionic solvents as extraction medium (A Review) publication-title: Orient. J. Chem. – volume: 30 start-page: 363 year: 1984 end-page: 368 ident: b0005 article-title: Coiled configuration for flow inversion and its effect on residence time distribution publication-title: AIChE J. – volume: 32 start-page: 1186 year: 1993 end-page: 1195 ident: b0145 article-title: Hollow fiber solvent extraction removal of toxic heavy metals from aqueous waste streams publication-title: Ind. Eng. Chem. Res. – volume: 44 start-page: 3679 year: 1999 end-page: 3689 ident: b0525 article-title: State-of-the-art in microreaction technology: concepts, manufacturing and applications publication-title: Electrochim. Acta – volume: 213 start-page: 120 year: 2015 end-page: 130 ident: b0685 article-title: Developing the biofacility of the future based on continuous processing and single-use technology publication-title: J. Biotechnol. – volume: 115 start-page: 367 year: 2003 end-page: 373 ident: b0030 article-title: Recovery of zinc and manganese from spent alkaline batteries by liquid–liquid extraction with Cyanex 272 publication-title: J. Power Sources – volume: 61 start-page: 324 year: 2008 end-page: 331 ident: b0505 article-title: Solvent extraction of selected endocrine-disrupting phenols using ionic liquids publication-title: Sep. Purif. Technol. – volume: 125 start-page: 24 year: 2012 end-page: 28 ident: b0510 article-title: Studies on the extraction of Co (II) and Ni (II) from aqueous chloride solutions using Primene JMT-Cyanex272 ionic liquid extractant publication-title: Hydrometallurgy – volume: 34 start-page: 591 year: 2015 end-page: 622 ident: b0105 article-title: Metal extraction to ionic liquids: the relationship between structure, mechanism and application publication-title: Int. Rev. Phys. Chem. – volume: 58 start-page: 239 year: 2000 end-page: 250 ident: b0255 article-title: Separation of nickel and calcium by solvent extraction using mixtures of carboxylic acids and alkylpyridines publication-title: Hydrometallurgy – volume: 1 start-page: 72 year: 2001 end-page: 75 ident: b0515 article-title: Integration of a wet analysis system on a glass chip: determination of Co (II) as 2-nitroso-1-naphthol chelates by solvent extraction and thermal lens microscopy publication-title: Lab Chip. – volume: 143 start-page: 276 year: 2016 end-page: 286 ident: b0520 article-title: Intensified Eu (III) extraction using ionic liquids in small channels publication-title: Chem. Eng. Sci. – volume: 119 start-page: 6747 year: 2015 end-page: 6757 ident: b0490 article-title: Overview of the effect of salts on biphasic ionic liquid/water solvent extraction systems: anion exchange, mutual solubility, and thermomorphic properties publication-title: J. Phys. Chem. B – volume: 38 start-page: 1807 year: 2015 end-page: 1812 ident: b0585 article-title: Evaluation of plutonium (IV) extraction rate between nitric acid and tri-n-butylphosphate solution using a glass chip microchannel publication-title: J. Sep. Sci. – volume: 201 start-page: 318 year: 2018 end-page: 326 ident: b0175 article-title: Separation of transition metals from rare earths by non-aqueous solvent extraction from ethylene glycol solutions using Aliquat 336 publication-title: Sep. Purif. Technol. – volume: 209 start-page: 984 year: 2019 end-page: 989 ident: b0400 article-title: Extraction of cobalt (II) using ionic liquid-based bi-phase and three-phase systems without adding any chelating agents with new recycling procedure publication-title: J. Sep. Purif. Technol. – volume: 894 start-page: 19 year: 2000 end-page: 23 ident: b0545 article-title: Integration of a microextraction system: Solvent extraction of a Co–2-nitroso-5-dimethylaminophenol complex on a microchip publication-title: J. Chromatogr. A – volume: 89 start-page: 253 year: 2007 end-page: 259 ident: b0180 article-title: Palladium stripping rates in PGM refining publication-title: Hydrometallurgy – volume: 36 start-page: 985 year: 2013 end-page: 992 ident: b0575 article-title: An experimental study of copper extraction characteristics in a T-junction microchannel publication-title: Chem. Eng. Technol. – volume: 104 start-page: 45 year: 2010 end-page: 52 ident: b0035 article-title: Recovery of nickel and cobalt from laterite leach solutions using direct solvent extraction: Part 1—selection of a synergistic SX system publication-title: Hydrometallurgy – volume: 5 start-page: 922 year: 2018 end-page: 931 ident: b0440 article-title: A novel N-methylimidazolium-based poly (ionic liquid) to recover trace tetrachloroaurate from aqueous solution based on multiple supramolecular interactions publication-title: Inorg. Chem. Front. – volume: 44 start-page: 20131 year: 2015 end-page: 20138 ident: b0415 article-title: Possibilities and limitations in separating Pt (IV) from Pd (II) combining imidazolium and phosphonium ionic liquids publication-title: Dalton Trans. – volume: 111 start-page: 1 year: 2012 end-page: 9 ident: b0100 article-title: Review on solvent extraction of cadmium from various solutions publication-title: Hydrometallurgy – volume: 176 start-page: 119 year: 2010 end-page: 124 ident: b0130 article-title: Solid phase extraction of uranium (VI) onto benzoylthiourea-anchored activated carbon publication-title: J. Hazard. Mater. – volume: 121 start-page: 74 year: 2012 end-page: 80 ident: b0065 article-title: Solvent extraction separation of La from chloride solution containing Pr and Nd with Cyanex 272 publication-title: Hydrometallurgy – volume: 46 start-page: 5043 year: 2007 end-page: 5050 ident: b0660 article-title: Experimental investigation of pressure drop during two-phase flow in a coiled flow inverter publication-title: Ind. Eng. Chem. Res. – volume: 64 start-page: 75 year: 2005 end-page: 82 ident: b0210 article-title: Packed column study of the sorption of hexavalent chromium by novel solvent impregnated resins containing aliquat 336: Effect of chloride and sulfate ions publication-title: React. Funct. Polym. – volume: 57 start-page: 1563 year: 2018 end-page: 1566 ident: b0460 article-title: Ionic-liquid-based acidic aqueous biphasic systems for simultaneous leaching and extraction of metallic ions publication-title: J. Angew. Chem. Int. Ed. – volume: 167 start-page: 700 year: 2011 end-page: 704 ident: b0535 article-title: Development of cesium ion extraction process using a slug flow microreactor publication-title: Chem. Eng. J. – volume: 16 start-page: 1371 year: 2003 end-page: 1374 ident: b0055 article-title: Cobalt and zinc recovery from copper sulphate solution by solvent extraction publication-title: Miner. Eng. – volume: 2 start-page: 815 year: 1984 end-page: 838 ident: b0160 article-title: Cobalt-nickel separation by solvent extraction with bis (2, 4, 4 trimethylpentyl) phosphinic acid publication-title: Solvent Extr. Ion Exch. – volume: 31 start-page: 534 year: 1964 end-page: 544 ident: b0480 article-title: Liquid-liquid extraction with long-chain quaternary ammonium halides publication-title: Anal. Chim. Acta – volume: 52 start-page: 1186 year: 2017 end-page: 1192 ident: b0245 article-title: Solvent extraction of metal ions using a new extractant, biuret (C8) publication-title: Sep. Sci. Technol. – volume: 112 start-page: 2286 year: 2012 end-page: 2322 ident: b0500 article-title: Hofmeister phenomena: an update on ion specificity in biology publication-title: Chem. Rev. – volume: 36 start-page: 175 year: 2018 end-page: 190 ident: b0045 article-title: Separation and recovery of heavy metals from concentrated smelting wastewater by synergistic solvent extraction using a mixture of 2-hydroxy-5-nonylacetophenone oxime and bis (2, 4, 4-trimethylpentyl)-phosphinic acid publication-title: Solvent Extr. Ion Exch. – volume: 36 start-page: 1198 year: 2018 end-page: 1204 ident: b0070 article-title: Development of a microfluidic-chip system based on parallel flow for intensified Gd (III) extraction from nitrate media using cationic extractant publication-title: J. Rare Earths – volume: 193 start-page: 312 year: 2019 end-page: 324 ident: b0690 article-title: Compact coiled flow inverter for process intensification publication-title: Chem. Eng. Sci. – volume: 58 start-page: 15628 year: 2019 end-page: 15636 ident: b0365 article-title: Enhancing metal separations using hydrophilic ionic liquids and analogues as complexing agents in the more polar phase of liquid-liquid extraction systems publication-title: Ind. Eng. Chem. Res. – volume: 15 start-page: 919 year: 2013 end-page: 927 ident: b0475 article-title: Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling publication-title: Green Chem. – volume: 266 start-page: 195 year: 2008 end-page: 201 ident: b0710 article-title: A group contribution method for viscosity estimation of ionic liquids publication-title: Fluid Phase Equilib. – volume: 21 start-page: 141 year: 2003 end-page: 170 ident: b0040 article-title: Development of effective solvent modifiers for the solvent extraction of cesium from alkaline high-level tank waste publication-title: Solvent Extr. Ion Exch. – year: 2015 ident: b0720 article-title: Studies of Intensified Small-scale Processes for Liquid-liquid Separations in Spent nuclear fuel Reprocessing – volume: 232 start-page: 115952 year: 2020 ident: b0385 article-title: Separation and recovery of rare earth elements using novel ammonium-based task-specific ionic liquids with bidentate and tridentate O-donor functional groups publication-title: Sep. Purif. Technol. – volume: 558 start-page: 75 year: 2006 end-page: 79 ident: b0555 article-title: Quantitative extraction using flowing nano-liter droplet in microfluidic system publication-title: Anal. Chim. Acta – volume: 102 start-page: 219 year: 2016 end-page: 228 ident: b0670 article-title: Pilot plant study for effective heat transfer area of coiled flow inverter publication-title: Chem. Eng. Process. Process Intensif. – volume: 65 start-page: e16606 year: 2019 ident: b0345 article-title: Role of ionic liquids in the efficient transfer of lithium by Cyanex 923 in solvent extraction system publication-title: AIChE J. – volume: 4 start-page: 3 year: 2015 end-page: 10 ident: b0590 article-title: Solvent extraction of Nd (III) in a Y type microchannel with 2-ethylhexyl phosphoric acid-2-ethylhexyl ester publication-title: Green Process. Synth, – volume: 211 start-page: 764 year: 2019 end-page: 767 ident: b0375 article-title: Extraction of indium(III) from sulphuric acid medium by the ionic liquid (PJMTH+ HSO4−) publication-title: Sep. Purif. Technol. – volume: 36 start-page: 1704 year: 2015 end-page: 1720 ident: b0285 article-title: A novel viewpoint of imidazolium salts for selective extraction of cobalt in the presence of nickel from acidic thiocyanate solutions by ionic-liquid-based solvent-extraction technique publication-title: J. Dispersion Sci. Technol. – volume: 144 start-page: 54 year: 2014 end-page: 62 ident: b0650 article-title: Liquid–liquid extraction in microchannels with Zinc–D2EHPA system publication-title: Hydrometallurgy – volume: 74 start-page: 131 year: 2004 end-page: 147 ident: b0185 article-title: Design optimisation study of solvent extraction: chemical reaction, mass transfer and mixer–settler hydrodynamics publication-title: Hydrometallurgy – volume: 61 start-page: 81 year: 2001 end-page: 87 ident: b0225 article-title: Liquid–liquid extraction separation of iron (III) from titania wastes using TBP–MIBK mixed solvent system publication-title: Hydrometallurgy – volume: 53 start-page: 2064 year: 2018 end-page: 2073 ident: b0330 article-title: Separation of Pt (IV), Pd (II), Ru (III), and Rh (III) from chloride medium using liquid–liquid extraction with mixed imidazolium-based ionic liquids publication-title: Sep. Sci. Technol. – volume: 49 start-page: 872 year: 2014 end-page: 881 ident: b0405 article-title: Methods for recovery of ionic liquids—a review publication-title: J. Process Biochem. – volume: 36 start-page: 975 year: 2013 end-page: 984 ident: b0730 article-title: Slug flow of ionic liquids in capillary microcontactors: fluid dynamic intensification for solvent extraction publication-title: J. Chem. Eng. Technol. – volume: 307 start-page: 1 year: 2017 end-page: 8 ident: b0215 article-title: Co and Ni extraction and separation in segmented micro-flow using a coiled flow inverter publication-title: Chem. Eng. J. – volume: 51 start-page: 599 year: 2017 end-page: 609 ident: b0110 article-title: Development of solvent extraction methods for recovering rare earth metals publication-title: Theor. Found. Chem. Eng. – reference: Q. Li, P.J.C.E.S. Angeli, Intensified Eu (III) extraction using ionic liquids in small channels, 143 (2016) 276–286. – volume: 63 start-page: 269 year: 2002 end-page: 276 ident: b0140 article-title: Solvent extraction separation of indium and gallium from sulphate solutions using D2EHPA publication-title: Hydrometallurgy – volume: 35 start-page: 1312 year: 2012 end-page: 1319 ident: b0570 article-title: Microfluidic solvent extraction of metal ions and complexes from leach solutions containing nanoparticles publication-title: Chem. Eng. Technol. – volume: 146 start-page: 106106 year: 2020 ident: b0025 article-title: The extraction of vanadium from titanomagnetites and other sources publication-title: Miner. Eng. – volume: 72 start-page: 2275 year: 2000 end-page: 2287 ident: b0265 article-title: Influence of chloride, water, and organic solvents on the physical properties of ionic liquids publication-title: Pure Appl. Chem. – volume: 41 start-page: 17084 year: 2016 end-page: 17092 ident: b0695 article-title: Using conical reactor to improve efficiency of ethanol steam reforming publication-title: Int. J. Hydrogen Energy – volume: 27 start-page: 75 year: 1992 end-page: 85 ident: b0155 article-title: Selective transport of alkali metal cations in solvent extraction by proton-ionizable dibenzocrown ethers publication-title: J. Coord. Chem. – volume: 6 start-page: 1288 year: 2018 end-page: 1304 ident: b0115 article-title: Novel technologies and conventional processes for recovery of metals from waste electrical and electronic equipment: challenges & opportunities–a review publication-title: J. Environ. Chem. Eng. – volume: 74 start-page: 1565 year: 2002 end-page: 1571 ident: b0550 article-title: Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network publication-title: Anal. Chem. – volume: 110 start-page: 50 year: 2011 end-page: 55 ident: b0010 article-title: Solvent extraction and separation of rare-earths from phosphoric acid solutions with TOPS 99 publication-title: Hydrometallurgy – volume: 77 start-page: 269 year: 2008 end-page: 272 ident: b0560 article-title: Improved microfluidic chip-based sequential-injection trapped-droplet array liquid–liquid extraction system for determination of aluminium publication-title: Talanta – volume: 38 start-page: 471 year: 2020 end-page: 477 ident: b0610 article-title: Green effectively enhanced extraction to produce yttrium (III) in slug flow microreactor publication-title: Chin. J. Chem . – year: 2013 ident: b0275 article-title: Green Solvents: Ionic Liquids – start-page: 135 year: 2001 end-page: 136 ident: b0295 article-title: Task-specific ionic liquids for the extraction of metal ions from aqueous solutions publication-title: J. Chem. Commun. – volume: 95 start-page: 22 year: 2015 end-page: 33 ident: b0665 article-title: Narrow residence time distribution in tubular reactor concept for Reynolds number range of 10–100 publication-title: Chem. Eng. Res. Des. – start-page: 107921 year: 2020 ident: b0625 article-title: Hydrodynamics and mass transfer in segmented flow small channel contactors for uranium extraction publication-title: Chem. Eng. Process.-Process Intensif. – volume: 332 start-page: 131 year: 2018 end-page: 139 ident: b0595 article-title: Liquid-liquid extraction for the separation of Co (II) from Ni (II) with Cyanex 272 using a pilot scale Re-entrance flow microreactor publication-title: Chem. Eng. J. – volume: 324 start-page: 241 year: 2017 end-page: 249 ident: b0395 article-title: Task-specific thioglycolate ionic liquids for heavy metal extraction: synthesis, extraction efficacies and recycling properties publication-title: J. Hazard. Mater. – volume: 72 start-page: 1711 year: 2000 end-page: 1714 ident: b0540 article-title: Integration of a microextraction system on a glass chip: ion-pair solvent extraction of Fe (II) with 4, 7-diphenyl-1, 10-phenanthrolinedisulfonic acid and tri-n-octylmethylammonium chloride publication-title: Anal. Chem. – volume: 72 start-page: 153 year: 2015 end-page: 168 ident: b0270 article-title: Opportunities and shortcomings of ionic liquids in single-drop microextraction publication-title: TrAC, Trends Anal. Chem. – volume: 92 start-page: 571 year: 2014 end-page: 580 ident: b0580 article-title: Extraction kinetics of Fe (III) by di-(2-ethylhexyl) phosphoric acid using a Y-Y shaped microfluidic device publication-title: Chem. Eng. Res. Des. – volume: 55 start-page: 513 year: 2020 end-page: 522 ident: b0380 article-title: Counter-current separation of cobalt (II)–nickel (II) from aqueous sulphate media with a mixture of Primene JMT-Versatic 10 diluted in kerosene publication-title: Sep. Sci. Technol. – volume: 101 start-page: 33 year: 2016 end-page: 40 ident: b0640 article-title: Liquid–liquid extraction in twisted micromixers publication-title: Chem. Eng. Process. Process Intensif. – volume: 90 start-page: 2034 year: 2012 end-page: 2040 ident: b0705 article-title: The use of an ionic liquid in a Karr reciprocating plate extraction column publication-title: Chem. Eng. Res. Des. – volume: 51 start-page: 7364 year: 2012 end-page: 7372 ident: b0420 article-title: Mass Transfer from single drops and the influence of temperature publication-title: Ind. Eng. Chem. Res. – volume: 284 start-page: 764 year: 2016 end-page: 777 ident: b0715 article-title: Liquid–liquid extraction system with microstructured coiled flow inverter and other capillary setups for single-stage extraction applications publication-title: Chem. Eng. J. – volume: 13 start-page: 234 year: 1996 end-page: 241 ident: b0200 article-title: Mass transfer in a countercurrent spray column at supercritical conditions publication-title: Korean J. Chem. Eng. – volume: 93 start-page: 1714 year: 2018 end-page: 1721 ident: b0485 article-title: Solvent extraction of Pt (IV), Pd (II), and Rh (III) with the ionic liquid trioctyl (dodecyl) phosphonium chloride publication-title: J. Chem. Technol. Biotechnol. – volume: 204 start-page: 175 year: 2018 end-page: 184 ident: b0495 article-title: Salting-out effect on extraction of phenol from aqueous solutions by [Hmim][NTf2] ionic liquid: Experimental investigations and modeling publication-title: Sep. Purif. Technol. – volume: 64 start-page: 35 year: 2002 end-page: 42 ident: b0060 article-title: Extraction and separation of rare earth metals using microcapsules containing bis (2-ethylhexyl) phosphinic acid publication-title: Hydrometallurgy – volume: 182 start-page: 903 year: 2010 end-page: 911 ident: b0235 article-title: Mathematical modeling of cadmium (II) solvent extraction from neutral and acidic chloride media using Cyanex 923 extractant as a metal carrier publication-title: J. Hazard. Mater. – year: 2020 ident: b0310 article-title: Continuous-flow extraction of adjacent metals–a disruptive economic window for in-situ resource utilization of asteroids? publication-title: Angew. Chem. Int. Ed. – volume: 189 start-page: 340 year: 2018 end-page: 359 ident: b0085 article-title: Multiphase processes with ionic liquids in microreactors: hydrodynamics, mass transfer and applications publication-title: Chem. Eng. Sci. – volume: 143 start-page: 107562 year: 2019 ident: b0600 article-title: Separation of Zn (II) from Zn-Ni-Co sulphate solution by di-(2-ethylhexyl) phosphoric acid (D2EHPA) using a slug flow microreactor publication-title: Chem. Eng. Process.-Process Intensif. – volume: 48 start-page: 7687 year: 2009 end-page: 7693 ident: b0190 article-title: Liquid− Liquid Extraction in a Rotating-Spray Column: Removal of Cr (VI) by Aliquat 336 publication-title: Ind. Eng. Chem. Res. – start-page: 1 year: 2019 end-page: 8 ident: b0290 article-title: Extraction of heavy metal ions using ionic liquids publication-title: Encyclopedia of Ionic Liquids – volume: 34 start-page: 591 year: 2015 end-page: 622 ident: b0335 article-title: Metal extraction to ionic liquids: the relationship between structure, mechanism and application publication-title: J. Int. Rev. Phys. Chem. – volume: 55 start-page: 3861 year: 2016 end-page: 3870 ident: b0675 article-title: Novel membrane module for permeate flux augmentation and process intensification publication-title: Ind. Eng. Chem. Res. – volume: 210 start-page: 292 year: 2019 end-page: 303 ident: b0340 article-title: Recent advances in metal extraction improvement: Mixture systems consisting of ionic liquid and molecular extractant publication-title: J. Sep. Purif. Technol. – volume: 108 start-page: 166 year: 2013 end-page: 173 ident: b0325 article-title: Ionic liquid based three-liquid-phase partitioning and one-step separation of Pt (IV), Pd (II) and Rh (III) publication-title: Sep. Purif. Technol. – volume: 19 start-page: 665 year: 2019 end-page: 673 ident: b0645 article-title: Large-scale production of compound bubbles using parallelized microfluidics for efficient extraction of metal ions publication-title: Lab Chip – volume: 82 start-page: 269 year: 2020 end-page: 277 ident: b0355 article-title: Separation of lithium, cobalt and nickel from spent lithium-ion batteries using TBP and imidazolium-based ionic liquids publication-title: J. Ind. Eng. Chem. – volume: 40 start-page: 3085 year: 2001 end-page: 3091 ident: b0080 article-title: Review of advanced liquid− liquid extraction systems for the separation of metal ions by a combination of conversion of the metal species with chemical reaction publication-title: Ind. Eng. Chem. Res. – volume: 30 start-page: 345 year: 1992 end-page: 365 ident: b0165 article-title: Solvent extraction characteristics of thiosubstituted organophosphinic acid extractants publication-title: Hydrometallurgy – volume: 6 start-page: 1 year: 2016 end-page: 7 ident: b0455 article-title: Thermoreversible (ionic-liquid-based) aqueous biphasic systems publication-title: J. Sci. Rep. – volume: 209 start-page: 900 year: 2019 end-page: 907 ident: b0605 article-title: Predictive model for the design of reactive micro-separations publication-title: Sep. Purif. Technol. – year: 2020 ident: b0120 article-title: Sustainable Metal Extraction from Waste Streams – volume: 356 start-page: 492 year: 2019 end-page: 505 ident: b0635 article-title: Liquid-liquid extraction of calcium using ionic liquids in spiral microfluidics publication-title: Chem. Eng. J. – volume: 169 start-page: 179 year: 2017 end-page: 185 ident: b0725 article-title: Coiled flow inverter as a novel alternative for the intensification of a liquid-liquid reaction publication-title: Chem. Eng. Sci. – volume: 95 start-page: 22 year: 2015 ident: 10.1016/j.seppur.2020.118289_b0665 article-title: Narrow residence time distribution in tubular reactor concept for Reynolds number range of 10–100 publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2015.01.003 – volume: 29 start-page: 1267 year: 2014 ident: 10.1016/j.seppur.2020.118289_b0075 article-title: Extraction of rare earth and heavy metals, using ionic solvents as extraction medium (A Review) publication-title: Orient. J. Chem. doi: 10.13005/ojc/290402 – volume: 58 start-page: 1779 year: 2019 ident: 10.1016/j.seppur.2020.118289_b0425 article-title: Extraction of Pt (IV), Pt (II), and Pd (II) from acidic chloride media using imidazolium-based task-specific polymeric ionic liquid publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b03408 – volume: 143 start-page: 107562 year: 2019 ident: 10.1016/j.seppur.2020.118289_b0600 article-title: Separation of Zn (II) from Zn-Ni-Co sulphate solution by di-(2-ethylhexyl) phosphoric acid (D2EHPA) using a slug flow microreactor publication-title: Chem. Eng. Process.-Process Intensif. doi: 10.1016/j.cep.2019.107562 – volume: 4 start-page: 3 year: 2015 ident: 10.1016/j.seppur.2020.118289_b0590 article-title: Solvent extraction of Nd (III) in a Y type microchannel with 2-ethylhexyl phosphoric acid-2-ethylhexyl ester publication-title: Green Process. Synth, – volume: 167 start-page: 700 year: 2011 ident: 10.1016/j.seppur.2020.118289_b0535 article-title: Development of cesium ion extraction process using a slug flow microreactor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.11.002 – volume: 227 start-page: 151 year: 2013 ident: 10.1016/j.seppur.2020.118289_b0630 article-title: Dioxouranium (VI) extraction in microchannels using ionic liquids publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.08.064 – volume: 293 start-page: 111040 year: 2019 ident: 10.1016/j.seppur.2020.118289_b0360 article-title: Extraction and stripping of platinum (IV) from acidic chloride media using guanidinium ionic liquid publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.111040 – start-page: 135 year: 2001 ident: 10.1016/j.seppur.2020.118289_b0295 article-title: Task-specific ionic liquids for the extraction of metal ions from aqueous solutions publication-title: J. Chem. Commun. doi: 10.1039/b008041l – volume: 102 start-page: 219 year: 2016 ident: 10.1016/j.seppur.2020.118289_b0670 article-title: Pilot plant study for effective heat transfer area of coiled flow inverter publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/j.cep.2016.02.001 – volume: 64 start-page: 75 year: 2005 ident: 10.1016/j.seppur.2020.118289_b0210 article-title: Packed column study of the sorption of hexavalent chromium by novel solvent impregnated resins containing aliquat 336: Effect of chloride and sulfate ions publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2005.05.002 – volume: 57 start-page: 1563 year: 2018 ident: 10.1016/j.seppur.2020.118289_b0460 article-title: Ionic-liquid-based acidic aqueous biphasic systems for simultaneous leaching and extraction of metallic ions publication-title: J. Angew. Chem. Int. Ed. doi: 10.1002/anie.201711068 – volume: 52 start-page: 1186 year: 2017 ident: 10.1016/j.seppur.2020.118289_b0245 article-title: Solvent extraction of metal ions using a new extractant, biuret (C8) publication-title: Sep. Sci. Technol. doi: 10.1080/01496395.2017.1284863 – volume: 111 start-page: 1 year: 2012 ident: 10.1016/j.seppur.2020.118289_b0100 article-title: Review on solvent extraction of cadmium from various solutions publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2011.09.001 – volume: 40 start-page: 3085 year: 2001 ident: 10.1016/j.seppur.2020.118289_b0080 article-title: Review of advanced liquid− liquid extraction systems for the separation of metal ions by a combination of conversion of the metal species with chemical reaction publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie010022+ – volume: 127 start-page: 1 year: 2012 ident: 10.1016/j.seppur.2020.118289_b0240 article-title: Separation and recovery of copper, nickel, cobalt and zinc in chloride solutions by synergistic solvent extraction publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2012.07.001 – volume: 213 start-page: 120 year: 2015 ident: 10.1016/j.seppur.2020.118289_b0685 article-title: Developing the biofacility of the future based on continuous processing and single-use technology publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2015.06.388 – volume: 46 start-page: 644 year: 1954 ident: 10.1016/j.seppur.2020.118289_b0150 article-title: Separation of tantalum and niobium by liquid-liquid extraction publication-title: Ind. Eng. Chem. doi: 10.1021/ie50532a020 – volume: 35 start-page: 1312 year: 2012 ident: 10.1016/j.seppur.2020.118289_b0570 article-title: Microfluidic solvent extraction of metal ions and complexes from leach solutions containing nanoparticles publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201100602 – volume: 894 start-page: 19 year: 2000 ident: 10.1016/j.seppur.2020.118289_b0545 article-title: Integration of a microextraction system: Solvent extraction of a Co–2-nitroso-5-dimethylaminophenol complex on a microchip publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(00)00683-X – volume: 48 start-page: 7687 year: 2009 ident: 10.1016/j.seppur.2020.118289_b0190 article-title: Liquid− Liquid Extraction in a Rotating-Spray Column: Removal of Cr (VI) by Aliquat 336 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie900012k – volume: 307 start-page: 1 year: 2017 ident: 10.1016/j.seppur.2020.118289_b0215 article-title: Co and Ni extraction and separation in segmented micro-flow using a coiled flow inverter publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.08.062 – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.seppur.2020.118289_b0455 article-title: Thermoreversible (ionic-liquid-based) aqueous biphasic systems publication-title: J. Sci. Rep. – volume: 558 start-page: 75 year: 2006 ident: 10.1016/j.seppur.2020.118289_b0555 article-title: Quantitative extraction using flowing nano-liter droplet in microfluidic system publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2005.10.086 – volume: 41 start-page: 1 year: 1996 ident: 10.1016/j.seppur.2020.118289_b0260 article-title: The recovery of rare earth oxides from a phosphoric acid by-product. Part 1: Leaching of rare earth values and recovery of a mixed rare earth oxide by solvent extraction publication-title: Hydrometallurgy doi: 10.1016/0304-386X(95)00051-H – volume: 36 start-page: 985 year: 2013 ident: 10.1016/j.seppur.2020.118289_b0575 article-title: An experimental study of copper extraction characteristics in a T-junction microchannel publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201200464 – volume: 74 start-page: 131 year: 2004 ident: 10.1016/j.seppur.2020.118289_b0185 article-title: Design optimisation study of solvent extraction: chemical reaction, mass transfer and mixer–settler hydrodynamics publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2004.02.002 – volume: 143 start-page: 276 year: 2016 ident: 10.1016/j.seppur.2020.118289_b0520 article-title: Intensified Eu (III) extraction using ionic liquids in small channels publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2016.01.004 – volume: 284 start-page: 764 year: 2016 ident: 10.1016/j.seppur.2020.118289_b0715 article-title: Liquid–liquid extraction system with microstructured coiled flow inverter and other capillary setups for single-stage extraction applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.08.099 – volume: 49 start-page: 872 year: 2014 ident: 10.1016/j.seppur.2020.118289_b0405 article-title: Methods for recovery of ionic liquids—a review publication-title: J. Process Biochem. doi: 10.1016/j.procbio.2014.01.016 – volume: 52 start-page: 63 year: 1999 ident: 10.1016/j.seppur.2020.118289_b0450 article-title: Solvent extraction of gold (III) by the chloride salt of the tertiary amine Hostarex A327. Estimation of the interaction coefficient between AuCl4− and H+ publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(99)00014-6 – volume: 38 start-page: 471 year: 2020 ident: 10.1016/j.seppur.2020.118289_b0610 article-title: Green effectively enhanced extraction to produce yttrium (III) in slug flow microreactor publication-title: Chin. J. Chem . doi: 10.1002/cjoc.201900453 – volume: 58 start-page: 239 year: 2000 ident: 10.1016/j.seppur.2020.118289_b0255 article-title: Separation of nickel and calcium by solvent extraction using mixtures of carboxylic acids and alkylpyridines publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(00)00135-3 – year: 2020 ident: 10.1016/j.seppur.2020.118289_b0120 – volume: 6 start-page: 62717 year: 2016 ident: 10.1016/j.seppur.2020.118289_b0470 article-title: Highly selective separation of individual platinum group metals (Pd, Pt, Rh) from acidic chloride media using phosphonium-based ionic liquid in aromatic diluent publication-title: RSC Adv. doi: 10.1039/C6RA09328K – volume: 44 start-page: 3679 year: 1999 ident: 10.1016/j.seppur.2020.118289_b0525 article-title: State-of-the-art in microreaction technology: concepts, manufacturing and applications publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(99)00071-7 – year: 2013 ident: 10.1016/j.seppur.2020.118289_b0275 – volume: 125 start-page: 24 year: 2012 ident: 10.1016/j.seppur.2020.118289_b0510 article-title: Studies on the extraction of Co (II) and Ni (II) from aqueous chloride solutions using Primene JMT-Cyanex272 ionic liquid extractant publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2012.05.003 – volume: 34 start-page: 591 year: 2015 ident: 10.1016/j.seppur.2020.118289_b0335 article-title: Metal extraction to ionic liquids: the relationship between structure, mechanism and application publication-title: J. Int. Rev. Phys. Chem. doi: 10.1080/0144235X.2015.1088217 – volume: 210 start-page: 292 year: 2019 ident: 10.1016/j.seppur.2020.118289_b0340 article-title: Recent advances in metal extraction improvement: Mixture systems consisting of ionic liquid and molecular extractant publication-title: J. Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.08.016 – volume: 99 start-page: 69 year: 2012 ident: 10.1016/j.seppur.2020.118289_b0205 article-title: Continuous removal of hexavalent chromium by emulsion liquid membrane in a modified spray column publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2012.08.026 – volume: 266 start-page: 195 year: 2008 ident: 10.1016/j.seppur.2020.118289_b0710 article-title: A group contribution method for viscosity estimation of ionic liquids publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2008.01.021 – volume: 55 start-page: 513 year: 2020 ident: 10.1016/j.seppur.2020.118289_b0380 article-title: Counter-current separation of cobalt (II)–nickel (II) from aqueous sulphate media with a mixture of Primene JMT-Versatic 10 diluted in kerosene publication-title: Sep. Sci. Technol. doi: 10.1080/01496395.2019.1577271 – volume: 14 start-page: 1657 year: 2012 ident: 10.1016/j.seppur.2020.118289_b0305 article-title: An environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids publication-title: Green Chem. doi: 10.1039/c2gc35246j – volume: 193 start-page: 312 year: 2019 ident: 10.1016/j.seppur.2020.118289_b0690 article-title: Compact coiled flow inverter for process intensification publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.09.008 – year: 2015 ident: 10.1016/j.seppur.2020.118289_b0720 – volume: 65 start-page: e16606 year: 2019 ident: 10.1016/j.seppur.2020.118289_b0345 article-title: Role of ionic liquids in the efficient transfer of lithium by Cyanex 923 in solvent extraction system publication-title: AIChE J. doi: 10.1002/aic.16606 – volume: 30 start-page: 345 year: 1992 ident: 10.1016/j.seppur.2020.118289_b0165 article-title: Solvent extraction characteristics of thiosubstituted organophosphinic acid extractants publication-title: Hydrometallurgy doi: 10.1016/0304-386X(92)90093-F – volume: 32 start-page: 1186 year: 1993 ident: 10.1016/j.seppur.2020.118289_b0145 article-title: Hollow fiber solvent extraction removal of toxic heavy metals from aqueous waste streams publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00018a026 – volume: 231 start-page: 115875 year: 2020 ident: 10.1016/j.seppur.2020.118289_b0615 article-title: Microfluidic solvent extraction of calcium: Modeling and optimization of the process variables publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.115875 – volume: 55 start-page: 3861 year: 2016 ident: 10.1016/j.seppur.2020.118289_b0675 article-title: Novel membrane module for permeate flux augmentation and process intensification publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b04865 – volume: 98 start-page: 481 year: 2012 ident: 10.1016/j.seppur.2020.118289_b0170 article-title: Solvent extraction separation of Pr and Nd from chloride solution containing La using Cyanex 272 and its mixture with other extractants publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2012.08.015 – volume: 104 start-page: 45 year: 2010 ident: 10.1016/j.seppur.2020.118289_b0035 article-title: Recovery of nickel and cobalt from laterite leach solutions using direct solvent extraction: Part 1—selection of a synergistic SX system publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2010.04.009 – volume: 238 start-page: 116496 year: 2020 ident: 10.1016/j.seppur.2020.118289_b0390 article-title: Synthesis of succinimide based ionic liquids and comparison of extraction behavior of Co (II) and Ni (II) with bi-functional ionic liquids synthesized by Aliquat336 and organophosphorus acids publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.116496 – volume: 113 start-page: 79 year: 2012 ident: 10.1016/j.seppur.2020.118289_b0445 article-title: Extractive recovery of palladium (II) from hydrochloric acid solutions with Cyphos® IL 104 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2011.12.006 – volume: 44 start-page: 20131 year: 2015 ident: 10.1016/j.seppur.2020.118289_b0415 article-title: Possibilities and limitations in separating Pt (IV) from Pd (II) combining imidazolium and phosphonium ionic liquids publication-title: Dalton Trans. doi: 10.1039/C5DT03791C – volume: 112 start-page: 2286 year: 2012 ident: 10.1016/j.seppur.2020.118289_b0500 article-title: Hofmeister phenomena: an update on ion specificity in biology publication-title: Chem. Rev. doi: 10.1021/cr200271j – volume: 212 start-page: 791 year: 2019 ident: 10.1016/j.seppur.2020.118289_b0350 article-title: Separation of Pt (IV), Pd (II), Ru (III) and Rh (III) from model chloride solutions by liquid-liquid extraction with phosphonium ionic liquids publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.11.091 – volume: 189 start-page: 105148 year: 2019 ident: 10.1016/j.seppur.2020.118289_b0435 article-title: Recovery of palladium from acidic nitrate media with triazole type extractants in ionic liquid publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2019.105148 – volume: 110 start-page: 50 year: 2011 ident: 10.1016/j.seppur.2020.118289_b0010 article-title: Solvent extraction and separation of rare-earths from phosphoric acid solutions with TOPS 99 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2011.08.004 – volume: 1 start-page: 72 year: 2001 ident: 10.1016/j.seppur.2020.118289_b0515 article-title: Integration of a wet analysis system on a glass chip: determination of Co (II) as 2-nitroso-1-naphthol chelates by solvent extraction and thermal lens microscopy publication-title: Lab Chip. doi: 10.1039/b102790p – volume: 324 start-page: 241 year: 2017 ident: 10.1016/j.seppur.2020.118289_b0395 article-title: Task-specific thioglycolate ionic liquids for heavy metal extraction: synthesis, extraction efficacies and recycling properties publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.10.054 – volume: 14 start-page: 171 year: 1985 ident: 10.1016/j.seppur.2020.118289_b0135 article-title: Solvent extraction of metals by carboxylic acids publication-title: Hydrometallurgy doi: 10.1016/0304-386X(85)90032-5 – volume: 101 start-page: 33 year: 2016 ident: 10.1016/j.seppur.2020.118289_b0640 article-title: Liquid–liquid extraction in twisted micromixers publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/j.cep.2015.12.013 – volume: 46 start-page: 5043 year: 2007 ident: 10.1016/j.seppur.2020.118289_b0660 article-title: Experimental investigation of pressure drop during two-phase flow in a coiled flow inverter publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie061490s – volume: 90 start-page: 2034 year: 2012 ident: 10.1016/j.seppur.2020.118289_b0705 article-title: The use of an ionic liquid in a Karr reciprocating plate extraction column publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2012.03.006 – volume: 21 start-page: 141 year: 2003 ident: 10.1016/j.seppur.2020.118289_b0040 article-title: Development of effective solvent modifiers for the solvent extraction of cesium from alkaline high-level tank waste publication-title: Solvent Extr. Ion Exch. doi: 10.1081/SEI-120018944 – volume: 93 start-page: 1714 year: 2018 ident: 10.1016/j.seppur.2020.118289_b0485 article-title: Solvent extraction of Pt (IV), Pd (II), and Rh (III) with the ionic liquid trioctyl (dodecyl) phosphonium chloride publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.5544 – start-page: 107921 year: 2020 ident: 10.1016/j.seppur.2020.118289_b0625 article-title: Hydrodynamics and mass transfer in segmented flow small channel contactors for uranium extraction publication-title: Chem. Eng. Process.-Process Intensif. doi: 10.1016/j.cep.2020.107921 – volume: 36 start-page: 975 year: 2013 ident: 10.1016/j.seppur.2020.118289_b0730 article-title: Slug flow of ionic liquids in capillary microcontactors: fluid dynamic intensification for solvent extraction publication-title: J. Chem. Eng. Technol. doi: 10.1002/ceat.201200600 – volume: 64 start-page: 35 year: 2002 ident: 10.1016/j.seppur.2020.118289_b0060 article-title: Extraction and separation of rare earth metals using microcapsules containing bis (2-ethylhexyl) phosphinic acid publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(02)00011-7 – volume: 232 start-page: 115952 year: 2020 ident: 10.1016/j.seppur.2020.118289_b0385 article-title: Separation and recovery of rare earth elements using novel ammonium-based task-specific ionic liquids with bidentate and tridentate O-donor functional groups publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.115952 – volume: 105 start-page: 102015 year: 2009 ident: 10.1016/j.seppur.2020.118289_b0565 article-title: Quantification of Ag (I) and kinetic analysis using ion-pair extraction across a liquid/liquid interface in a laminar flow by fluorescence microscopy publication-title: J. Appl. Phys. doi: 10.1063/1.3116092 – volume: 61 start-page: 324 year: 2008 ident: 10.1016/j.seppur.2020.118289_b0505 article-title: Solvent extraction of selected endocrine-disrupting phenols using ionic liquids publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2007.11.005 – volume: 332 start-page: 131 year: 2018 ident: 10.1016/j.seppur.2020.118289_b0595 article-title: Liquid-liquid extraction for the separation of Co (II) from Ni (II) with Cyanex 272 using a pilot scale Re-entrance flow microreactor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.046 – volume: 38 start-page: 1807 year: 2015 ident: 10.1016/j.seppur.2020.118289_b0585 article-title: Evaluation of plutonium (IV) extraction rate between nitric acid and tri-n-butylphosphate solution using a glass chip microchannel publication-title: J. Sep. Sci. doi: 10.1002/jssc.201401315 – volume: 204 start-page: 175 year: 2018 ident: 10.1016/j.seppur.2020.118289_b0495 article-title: Salting-out effect on extraction of phenol from aqueous solutions by [Hmim][NTf2] ionic liquid: Experimental investigations and modeling publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.04.075 – start-page: 1 year: 2019 ident: 10.1016/j.seppur.2020.118289_b0290 article-title: Extraction of heavy metal ions using ionic liquids – volume: 25 start-page: 857 year: 2007 ident: 10.1016/j.seppur.2020.118289_b0655 article-title: Separation of zinc by a non-dispersion solvent extraction process in a hollow fiber contactor publication-title: Solvent Extr. Ion Exch. doi: 10.1080/07366290701634610 – volume: 92 start-page: 571 year: 2014 ident: 10.1016/j.seppur.2020.118289_b0580 article-title: Extraction kinetics of Fe (III) by di-(2-ethylhexyl) phosphoric acid using a Y-Y shaped microfluidic device publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2013.08.033 – volume: 46 start-page: 195 year: 2017 ident: 10.1016/j.seppur.2020.118289_b0050 article-title: Solvent extraction and its applications on ore processing and recovery of metals: classical approach publication-title: Sep. Purif. Rev. doi: 10.1080/15422119.2016.1240085 – volume: 42 start-page: 65 year: 2005 ident: 10.1016/j.seppur.2020.118289_b0195 article-title: Extraction separation of Co (II)/Ni (II) from concentrated HCl solutions in rotating disc and hollow-fiber membrane contactors publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2004.06.005 – volume: 189 start-page: 105104 year: 2019 ident: 10.1016/j.seppur.2020.118289_b0370 article-title: Solvent extraction of indium (III) from HCl solutions by the ionic liquid (A324H+)(Cl−) dissolved in Solvesso 100 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2019.105104 – volume: 27 start-page: 75 year: 1992 ident: 10.1016/j.seppur.2020.118289_b0155 article-title: Selective transport of alkali metal cations in solvent extraction by proton-ionizable dibenzocrown ethers publication-title: J. Coord. Chem. doi: 10.1080/00958979209407944 – volume: 72 start-page: 153 year: 2015 ident: 10.1016/j.seppur.2020.118289_b0270 article-title: Opportunities and shortcomings of ionic liquids in single-drop microextraction publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2015.03.024 – volume: 169 start-page: 179 year: 2017 ident: 10.1016/j.seppur.2020.118289_b0725 article-title: Coiled flow inverter as a novel alternative for the intensification of a liquid-liquid reaction publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2017.01.016 – volume: 36 start-page: 1198 year: 2018 ident: 10.1016/j.seppur.2020.118289_b0070 article-title: Development of a microfluidic-chip system based on parallel flow for intensified Gd (III) extraction from nitrate media using cationic extractant publication-title: J. Rare Earths doi: 10.1016/j.jre.2018.03.024 – volume: 29 start-page: 719 year: 2011 ident: 10.1016/j.seppur.2020.118289_b0095 article-title: Synergistic solvent extraction of nickel and cobalt: A review of recent developments publication-title: Solvent Extr. Ion Exch. doi: 10.1080/07366299.2011.595636 – volume: 74 start-page: 1565 year: 2002 ident: 10.1016/j.seppur.2020.118289_b0550 article-title: Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network publication-title: Anal. Chem. doi: 10.1021/ac011111z – volume: 115 start-page: 367 year: 2003 ident: 10.1016/j.seppur.2020.118289_b0030 article-title: Recovery of zinc and manganese from spent alkaline batteries by liquid–liquid extraction with Cyanex 272 publication-title: J. Power Sources doi: 10.1016/S0378-7753(03)00025-9 – volume: 34 start-page: 591 year: 2015 ident: 10.1016/j.seppur.2020.118289_b0105 article-title: Metal extraction to ionic liquids: the relationship between structure, mechanism and application publication-title: Int. Rev. Phys. Chem. doi: 10.1080/0144235X.2015.1088217 – volume: 7 start-page: 35992 year: 2017 ident: 10.1016/j.seppur.2020.118289_b0280 article-title: Cobalt (II)/nickel (II) separation from sulfate media by solvent extraction with an undiluted quaternary phosphonium ionic liquid publication-title: RSC Adv. doi: 10.1039/C7RA04753C – volume: 209 start-page: 900 year: 2019 ident: 10.1016/j.seppur.2020.118289_b0605 article-title: Predictive model for the design of reactive micro-separations publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.09.028 – volume: 189 start-page: 340 year: 2018 ident: 10.1016/j.seppur.2020.118289_b0085 article-title: Multiphase processes with ionic liquids in microreactors: hydrodynamics, mass transfer and applications publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.06.007 – volume: 41 start-page: 17084 year: 2016 ident: 10.1016/j.seppur.2020.118289_b0695 article-title: Using conical reactor to improve efficiency of ethanol steam reforming publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.07.040 – volume: 82 start-page: 269 year: 2020 ident: 10.1016/j.seppur.2020.118289_b0355 article-title: Separation of lithium, cobalt and nickel from spent lithium-ion batteries using TBP and imidazolium-based ionic liquids publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2019.10.023 – volume: 58 start-page: 15628 year: 2019 ident: 10.1016/j.seppur.2020.118289_b0365 article-title: Enhancing metal separations using hydrophilic ionic liquids and analogues as complexing agents in the more polar phase of liquid-liquid extraction systems publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b03472 – volume: 51 start-page: 15932 year: 2015 ident: 10.1016/j.seppur.2020.118289_b0465 article-title: Separation of cobalt and nickel using a thermomorphic ionic-liquid-based aqueous biphasic system publication-title: J. Chem. Commun. doi: 10.1039/C5CC06595J – volume: 50 start-page: 38 year: 2015 ident: 10.1016/j.seppur.2020.118289_b0315 article-title: Extraction of metal ions with task specific ionic liquids: influence of a coordinating anion publication-title: Sep. Sci. Technol. doi: 10.1080/01496395.2014.952747 – volume: 20 start-page: 211 year: 2007 ident: 10.1016/j.seppur.2020.118289_b0090 article-title: A review on hydrometallurgical extraction and recovery of cadmium from various resources publication-title: Miner. Eng. doi: 10.1016/j.mineng.2006.07.001 – volume: 43 start-page: 974 year: 2020 ident: 10.1016/j.seppur.2020.118289_b0620 article-title: Removal of Cu2+ from Water Using Liquid-Liquid Microchannel Extraction publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201900168 – ident: 10.1016/j.seppur.2020.118289_b0735 doi: 10.1016/j.ces.2016.01.004 – volume: 31 start-page: 534 year: 1964 ident: 10.1016/j.seppur.2020.118289_b0480 article-title: Liquid-liquid extraction with long-chain quaternary ammonium halides publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(00)88873-X – volume: 209 start-page: 175 year: 2019 ident: 10.1016/j.seppur.2020.118289_b0250 article-title: Solvent extraction behavior of metal ions and selective separation Sc3+ in phosphoric acid medium using P204 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.07.033 – volume: 51 start-page: 7364 year: 2012 ident: 10.1016/j.seppur.2020.118289_b0420 article-title: Mass Transfer from single drops and the influence of temperature publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie300649d – volume: 13 start-page: 234 year: 1996 ident: 10.1016/j.seppur.2020.118289_b0200 article-title: Mass transfer in a countercurrent spray column at supercritical conditions publication-title: Korean J. Chem. Eng. doi: 10.1007/BF02705944 – year: 2020 ident: 10.1016/j.seppur.2020.118289_b0310 article-title: Continuous-flow extraction of adjacent metals–a disruptive economic window for in-situ resource utilization of asteroids? publication-title: Angew. Chem. Int. Ed. – volume: 47 start-page: 1296 year: 2012 ident: 10.1016/j.seppur.2020.118289_b0320 article-title: Nickel (II) and cobalt (II) extraction from chloride solutions with quaternary phosphonium salts publication-title: Sep. Sci. Technol. doi: 10.1080/01496395.2012.672532 – volume: 77 start-page: 269 year: 2008 ident: 10.1016/j.seppur.2020.118289_b0560 article-title: Improved microfluidic chip-based sequential-injection trapped-droplet array liquid–liquid extraction system for determination of aluminium publication-title: Talanta doi: 10.1016/j.talanta.2008.06.016 – volume: 176 start-page: 119 year: 2010 ident: 10.1016/j.seppur.2020.118289_b0130 article-title: Solid phase extraction of uranium (VI) onto benzoylthiourea-anchored activated carbon publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.11.005 – volume: 5 start-page: 682 year: 2003 ident: 10.1016/j.seppur.2020.118289_b0300 article-title: Influence of solvent structural variations on the mechanism of facilitated ion transfer into room-temperature ionic liquids publication-title: J. Green Chem. doi: 10.1039/B310507P – volume: 201 start-page: 318 year: 2018 ident: 10.1016/j.seppur.2020.118289_b0175 article-title: Separation of transition metals from rare earths by non-aqueous solvent extraction from ethylene glycol solutions using Aliquat 336 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.03.022 – volume: 121 start-page: 74 year: 2012 ident: 10.1016/j.seppur.2020.118289_b0065 article-title: Solvent extraction separation of La from chloride solution containing Pr and Nd with Cyanex 272 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2012.04.003 – volume: 89 start-page: 253 year: 2007 ident: 10.1016/j.seppur.2020.118289_b0180 article-title: Palladium stripping rates in PGM refining publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2007.07.012 – volume: 146 start-page: 106106 year: 2020 ident: 10.1016/j.seppur.2020.118289_b0025 article-title: The extraction of vanadium from titanomagnetites and other sources publication-title: Miner. Eng. doi: 10.1016/j.mineng.2019.106106 – volume: 19 start-page: 665 year: 2019 ident: 10.1016/j.seppur.2020.118289_b0645 article-title: Large-scale production of compound bubbles using parallelized microfluidics for efficient extraction of metal ions publication-title: Lab Chip doi: 10.1039/C9LC90021G – volume: 43 start-page: 299 year: 1996 ident: 10.1016/j.seppur.2020.118289_b0220 article-title: Extraction of iron (III) at macro-level concentrations using TBP, MIBK and their mixtures publication-title: Hydrometallurgy doi: 10.1016/0304-386X(95)00117-Y – volume: 108 start-page: 166 year: 2013 ident: 10.1016/j.seppur.2020.118289_b0325 article-title: Ionic liquid based three-liquid-phase partitioning and one-step separation of Pt (IV), Pd (II) and Rh (III) publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2013.02.021 – volume: 20 start-page: 701 year: 2002 ident: 10.1016/j.seppur.2020.118289_b0230 article-title: Solvent extraction of scandium (III), yttrium (III), lanthanides (III), anddivalent metal ions with sec-nonylphenoxy acetic acid publication-title: Solvent Extr. Ion Exch. doi: 10.1081/SEI-120016074 – volume: 211 start-page: 764 year: 2019 ident: 10.1016/j.seppur.2020.118289_b0375 article-title: Extraction of indium(III) from sulphuric acid medium by the ionic liquid (PJMTH+ HSO4−) publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.10.051 – volume: 36 start-page: 1704 year: 2015 ident: 10.1016/j.seppur.2020.118289_b0285 article-title: A novel viewpoint of imidazolium salts for selective extraction of cobalt in the presence of nickel from acidic thiocyanate solutions by ionic-liquid-based solvent-extraction technique publication-title: J. Dispersion Sci. Technol. doi: 10.1080/01932691.2015.1004185 – volume: 46 start-page: 7210 year: 2017 ident: 10.1016/j.seppur.2020.118289_b0020 article-title: Extraction behaviour and mechanism of Pt (IV) and Pd (II) by liquid–liquid extraction with an ionic liquid [HBBIm] Br publication-title: Dalton Trans. doi: 10.1039/C7DT01142C – volume: 72 start-page: 2275 year: 2000 ident: 10.1016/j.seppur.2020.118289_b0265 article-title: Influence of chloride, water, and organic solvents on the physical properties of ionic liquids publication-title: Pure Appl. Chem. doi: 10.1351/pac200072122275 – volume: 216 start-page: 18 year: 2016 ident: 10.1016/j.seppur.2020.118289_b0410 article-title: Selective recovery of Au (III), Pt (IV), and Pd (II) from aqueous solutions by liquid–liquid extraction using ionic liquid Aliquat-336 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.01.016 – volume: 30 start-page: 363 year: 1984 ident: 10.1016/j.seppur.2020.118289_b0005 article-title: Coiled configuration for flow inversion and its effect on residence time distribution publication-title: AIChE J. doi: 10.1002/aic.690300303 – volume: 15 start-page: 919 year: 2013 ident: 10.1016/j.seppur.2020.118289_b0475 article-title: Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling publication-title: Green Chem. doi: 10.1039/c3gc40198g – volume: 18 start-page: 1029 year: 2000 ident: 10.1016/j.seppur.2020.118289_b0430 article-title: Thermodynamics of solvent extraction publication-title: Solvent Extr. Ion Exch. doi: 10.1080/07366290008934721 – volume: 36 start-page: 175 year: 2018 ident: 10.1016/j.seppur.2020.118289_b0045 article-title: Separation and recovery of heavy metals from concentrated smelting wastewater by synergistic solvent extraction using a mixture of 2-hydroxy-5-nonylacetophenone oxime and bis (2, 4, 4-trimethylpentyl)-phosphinic acid publication-title: Solvent Extr. Ion Exch. doi: 10.1080/07366299.2018.1446680 – volume: 73 start-page: 237 year: 2004 ident: 10.1016/j.seppur.2020.118289_b0125 article-title: Process development for the recovery of high-grade lanthanum by solvent extraction publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2003.10.008 – volume: 86 start-page: 78 year: 2014 ident: 10.1016/j.seppur.2020.118289_b0680 article-title: Novel three-dimensional microfluidic device for process intensification publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/j.cep.2014.10.013 – volume: 54 start-page: 705 year: 2015 ident: 10.1016/j.seppur.2020.118289_b0015 article-title: Extraction and stripping of platinum from hydrochloric acid medium by mixed imidazolium ionic liquids publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie503502g – volume: 119 start-page: 6747 year: 2015 ident: 10.1016/j.seppur.2020.118289_b0490 article-title: Overview of the effect of salts on biphasic ionic liquid/water solvent extraction systems: anion exchange, mutual solubility, and thermomorphic properties publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.5b02980 – volume: 182 start-page: 903 year: 2010 ident: 10.1016/j.seppur.2020.118289_b0235 article-title: Mathematical modeling of cadmium (II) solvent extraction from neutral and acidic chloride media using Cyanex 923 extractant as a metal carrier publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.07.004 – volume: 63 start-page: 269 year: 2002 ident: 10.1016/j.seppur.2020.118289_b0140 article-title: Solvent extraction separation of indium and gallium from sulphate solutions using D2EHPA publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(02)00004-X – volume: 16 start-page: 1371 year: 2003 ident: 10.1016/j.seppur.2020.118289_b0055 article-title: Cobalt and zinc recovery from copper sulphate solution by solvent extraction publication-title: Miner. Eng. doi: 10.1016/j.mineng.2003.09.001 – volume: 61 start-page: 81 year: 2001 ident: 10.1016/j.seppur.2020.118289_b0225 article-title: Liquid–liquid extraction separation of iron (III) from titania wastes using TBP–MIBK mixed solvent system publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(01)00146-3 – volume: 356 start-page: 492 year: 2019 ident: 10.1016/j.seppur.2020.118289_b0635 article-title: Liquid-liquid extraction of calcium using ionic liquids in spiral microfluidics publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.030 – volume: 53 start-page: 2064 year: 2018 ident: 10.1016/j.seppur.2020.118289_b0330 article-title: Separation of Pt (IV), Pd (II), Ru (III), and Rh (III) from chloride medium using liquid–liquid extraction with mixed imidazolium-based ionic liquids publication-title: Sep. Sci. Technol. doi: 10.1080/01496395.2018.1440304 – volume: 129 start-page: 1008 year: 2004 ident: 10.1016/j.seppur.2020.118289_b0530 article-title: Intermittent partition walls promote solvent extraction of metal ions in a microfluidic device publication-title: Analyst doi: 10.1039/b411630p – volume: 5 start-page: 922 year: 2018 ident: 10.1016/j.seppur.2020.118289_b0440 article-title: A novel N-methylimidazolium-based poly (ionic liquid) to recover trace tetrachloroaurate from aqueous solution based on multiple supramolecular interactions publication-title: Inorg. Chem. Front. doi: 10.1039/C7QI00753A – volume: 141 start-page: 107536 year: 2019 ident: 10.1016/j.seppur.2020.118289_b0700 article-title: Thermal and hydrodynamic performance of a novel passive mixer ‘wavering coiled flow inverter’ publication-title: Chem. Eng. Process.-Process Intensif. doi: 10.1016/j.cep.2019.107536 – volume: 2 start-page: 815 year: 1984 ident: 10.1016/j.seppur.2020.118289_b0160 article-title: Cobalt-nickel separation by solvent extraction with bis (2, 4, 4 trimethylpentyl) phosphinic acid publication-title: Solvent Extr. Ion Exch. doi: 10.1080/07366298408918476 – volume: 209 start-page: 984 year: 2019 ident: 10.1016/j.seppur.2020.118289_b0400 article-title: Extraction of cobalt (II) using ionic liquid-based bi-phase and three-phase systems without adding any chelating agents with new recycling procedure publication-title: J. Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.09.046 – volume: 6 start-page: 1288 year: 2018 ident: 10.1016/j.seppur.2020.118289_b0115 article-title: Novel technologies and conventional processes for recovery of metals from waste electrical and electronic equipment: challenges & opportunities–a review publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2018.01.032 – volume: 144 start-page: 54 year: 2014 ident: 10.1016/j.seppur.2020.118289_b0650 article-title: Liquid–liquid extraction in microchannels with Zinc–D2EHPA system publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2014.01.010 – volume: 72 start-page: 1711 year: 2000 ident: 10.1016/j.seppur.2020.118289_b0540 article-title: Integration of a microextraction system on a glass chip: ion-pair solvent extraction of Fe (II) with 4, 7-diphenyl-1, 10-phenanthrolinedisulfonic acid and tri-n-octylmethylammonium chloride publication-title: Anal. Chem. doi: 10.1021/ac991147f – volume: 51 start-page: 599 year: 2017 ident: 10.1016/j.seppur.2020.118289_b0110 article-title: Development of solvent extraction methods for recovering rare earth metals publication-title: Theor. Found. Chem. Eng. doi: 10.1134/S004057951605002X |
SSID | ssj0017182 |
Score | 2.5553722 |
SecondaryResourceType | review_article |
Snippet | •Up-to-date progress of the metal extraction process.•Solvents and technologies were used in conventional and current extraction methods.•Important parameters... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 118289 |
SubjectTerms | Coiled flow inverter Ionic liquids Metal ion extraction Microfluidics Microreactors Process intensification |
Title | Solvent extraction of metals: Role of ionic liquids and microfluidics |
URI | https://dx.doi.org/10.1016/j.seppur.2020.118289 |
Volume | 262 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14jc1rN4m3UipVsQdrobewT4ikSWzaq7_d2TxKBVHwuMkMhMnmm5nsNzMI3brwMTNle1YklYYExSMW86VvcT_0JeUyYNzUO79M6WTuPy3IooNGbS2MoVU22F9jeoXWzZVBY81BkSSDmQPJFQkpNTPAIRmvKtj9wOzyu88tzcMB7K1OPEHYMtJt-VzF8SpVUWxMV1DXYIdJPn52Tzsu5-EIHTaxIh7Wj3OMOio7QQc7HQRP0XiWp4axiAFjV3WNAs41XiqIqct7_JqnyqzNT1eB0-Rjk8gSs0zipSHi6RTWiSjP0Pxh_DaaWM1kBEtAiL-2uOBUu5Ix7SoRahURQZnkrnDtEG5BUCYDGQU29yB4ppDVEVvpiELqwD0XdLxz1M3yTF0gHIKTj6TDTF96XxAvcqTwJCE6IoEtA95DXmuQWDRtw830ijRu-WHvcW3G2Jgxrs3YQ9ZWq6jbZvwhH7S2jr-9_hiQ_VfNy39rXqF91xBUKvbiNequVxt1AxHGmverLdRHe8PH58n0C7Y30XY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEBUhObQ9lK40XXXo1cSxLC-9hZDgNsuhSSA3o83g4thulv_vyEtIobTQo2wNmEF6M896M0Lo2YLNzJRJDF-qCAgKoQazpW1w27Olw6XLuK53nkydYGG_Lemygfp1LYyWVVbYX2J6gdbVk07lzU4ex51ZF8gV9RxH3wEOZBwoUEt3p6JN1Oq9joLp_jAB4Lc49IT5hjaoK-gKmddG5flONwa1NHxo_vFzhDqIOsMzdFqli7hXftE5aqj0Ap0cNBG8RINZlmjRIgaYXZdlCjiL8EpBWr15we9ZovRY_3cVOIk_d7HcYJZKvNJavCiBcSw2V2gxHMz7gVFdjmAIyPK3BhfciSzJWGQp4UXKp8JhklvCMj14BXmZdKXvmpxA_uwAsaOminwH2AMnFtiQa9RMs1TdIOxBnPdll-nW9LagxO9KQSSlkU9dU7q8jUjtkFBUncP1BRZJWEvEPsLSjaF2Y1i6sY2MvVVeds74Y75b-zr8tgJCAPdfLW__bfmEjoL5ZByOX6ejO3Rsab1KIWa8R83teqceIOHY8sdqQX0B8-vUJw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solvent+extraction+of+metals%3A+Role+of+ionic+liquids+and+microfluidics&rft.jtitle=Separation+and+purification+technology&rft.au=Asrami%2C+Mahdieh+Razi&rft.au=Tran%2C+Nam+Nghiep&rft.au=Nigam%2C+Krishna+Deo+Prasad&rft.au=Hessel%2C+Volker&rft.date=2021-05-01&rft.pub=Elsevier+B.V&rft.issn=1383-5866&rft.eissn=1873-3794&rft.volume=262&rft_id=info:doi/10.1016%2Fj.seppur.2020.118289&rft.externalDocID=S1383586620327611 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon |