Hydrothermally deposited Sb2S3 absorber, and a Sb2S3/CdS solar cell with VOC approaching 800 mV

We report the hydrothermal deposition of Sb2S3 thin film on top of CdS buffer layer, and the fabrication of prototype photovoltaic devices utilizing spiro-OMeTAD as the hole transport layer. The as-deposited films were amorphous, which transformed to polycrystalline after thermal processing. The pri...

Full description

Saved in:
Bibliographic Details
Published inSolar energy materials and solar cells Vol. 274; p. 112995
Main Authors Pokhrel, Dipendra, Mathews, N.R., Mathew, X., Rijal, Suman, Karade, Vijay C., Kummar, Samietha S., Friedl, Jared, Mariam, Tamanna, Adhikari, Alisha, Song, Zhaoning, Bastola, Ebin, Abasi, Abudulimu, Phillips, Adam, Heben, Michael J., Yan, Yanfa, Ellingson, Randy J.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report the hydrothermal deposition of Sb2S3 thin film on top of CdS buffer layer, and the fabrication of prototype photovoltaic devices utilizing spiro-OMeTAD as the hole transport layer. The as-deposited films were amorphous, which transformed to polycrystalline after thermal processing. The pristine films were annealed at different temperatures and showed effective recrystallization at 350 °C which resulted in larger grains, intense XRD patterns, and significantly improved device parameters. The obtained VOC of 795 mV is among the highest reported for a Sb2S3 based solar cell. Deep level transient spectroscopy studies detected an electron trap with activation energy 0.61 eV in the pristine annealed absorber, which became deeper (0.66 eV) upon Na incorporation. However, the capture cross-section decreased by an order of magnitude, and the trap density halved. The reduction in the capture cross-section and trap density for the Na-incorporated device coincides with the improved EQE response in the mid- and long-wavelength regions and a 9 % increase in device efficiency. The light intensity dependence of VOC clearly demonstrated that Na incorporation reduced the trap-assisted recombination and facilitated efficient charge transport in the device. •Reporting Sb2S3 based solar cell with VOC close to 800 mV, which is an achievement with respect to the state-of-the-art in this area.•With Na doping, the current collection in the mid- and long-wavelength regions improved, predominantly due to reduction in the capture cross-section and density of a deep trap, leading to 9 % relative increase in device efficiency.
AbstractList We report the hydrothermal deposition of Sb2S3 thin film on top of CdS buffer layer, and the fabrication of prototype photovoltaic devices utilizing spiro-OMeTAD as the hole transport layer. The as-deposited films were amorphous, which transformed to polycrystalline after thermal processing. The pristine films were annealed at different temperatures and showed effective recrystallization at 350 °C which resulted in larger grains, intense XRD patterns, and significantly improved device parameters. The obtained VOC of 795 mV is among the highest reported for a Sb2S3 based solar cell. Deep level transient spectroscopy studies detected an electron trap with activation energy 0.61 eV in the pristine annealed absorber, which became deeper (0.66 eV) upon Na incorporation. However, the capture cross-section decreased by an order of magnitude, and the trap density halved. The reduction in the capture cross-section and trap density for the Na-incorporated device coincides with the improved EQE response in the mid- and long-wavelength regions and a 9 % increase in device efficiency. The light intensity dependence of VOC clearly demonstrated that Na incorporation reduced the trap-assisted recombination and facilitated efficient charge transport in the device. •Reporting Sb2S3 based solar cell with VOC close to 800 mV, which is an achievement with respect to the state-of-the-art in this area.•With Na doping, the current collection in the mid- and long-wavelength regions improved, predominantly due to reduction in the capture cross-section and density of a deep trap, leading to 9 % relative increase in device efficiency.
ArticleNumber 112995
Author Bastola, Ebin
Ellingson, Randy J.
Mariam, Tamanna
Friedl, Jared
Phillips, Adam
Pokhrel, Dipendra
Mathews, N.R.
Karade, Vijay C.
Mathew, X.
Kummar, Samietha S.
Heben, Michael J.
Rijal, Suman
Abasi, Abudulimu
Adhikari, Alisha
Song, Zhaoning
Yan, Yanfa
Author_xml – sequence: 1
  givenname: Dipendra
  orcidid: 0000-0002-7698-1795
  surname: Pokhrel
  fullname: Pokhrel, Dipendra
  organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
– sequence: 2
  givenname: N.R.
  surname: Mathews
  fullname: Mathews, N.R.
  organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
– sequence: 3
  givenname: X.
  orcidid: 0000-0002-3017-5552
  surname: Mathew
  fullname: Mathew, X.
  email: xm@ier.unam.mx
  organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
– sequence: 4
  givenname: Suman
  orcidid: 0000-0002-7738-4917
  surname: Rijal
  fullname: Rijal, Suman
  organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
– sequence: 5
  givenname: Vijay C.
  orcidid: 0000-0002-0443-408X
  surname: Karade
  fullname: Karade, Vijay C.
  organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
– sequence: 6
  givenname: Samietha S.
  surname: Kummar
  fullname: Kummar, Samietha S.
  organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
– sequence: 7
  givenname: Jared
  surname: Friedl
  fullname: Friedl, Jared
  organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
– sequence: 8
  givenname: Tamanna
  surname: Mariam
  fullname: Mariam, Tamanna
  organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
– sequence: 9
  givenname: Alisha
  surname: Adhikari
  fullname: Adhikari, Alisha
  organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
– sequence: 10
  givenname: Zhaoning
  orcidid: 0000-0002-6677-0994
  surname: Song
  fullname: Song, Zhaoning
  organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
– sequence: 11
  givenname: Ebin
  surname: Bastola
  fullname: Bastola, Ebin
  organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
– sequence: 12
  givenname: Abudulimu
  surname: Abasi
  fullname: Abasi, Abudulimu
  organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
– sequence: 13
  givenname: Adam
  orcidid: 0000-0002-2675-5052
  surname: Phillips
  fullname: Phillips, Adam
  organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
– sequence: 14
  givenname: Michael J.
  surname: Heben
  fullname: Heben, Michael J.
  organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
– sequence: 15
  givenname: Yanfa
  surname: Yan
  fullname: Yan, Yanfa
  organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
– sequence: 16
  givenname: Randy J.
  orcidid: 0000-0001-9520-6586
  surname: Ellingson
  fullname: Ellingson, Randy J.
  email: Randy.Ellingson@utoledo.edu
  organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
BookMark eNqFkMtKAzEUhoNUsK2-gYs8gNPmMre4EKSoFYQuqt3GJHPGpsxMhiQofRufxSezZVy50NWB__D9h_NN0KhzHSB0ScmMEprPd7PgmlbFGSMsnVHKhMhO0JiWhUg4F-UIjYlgRXLYlmdoEsKOEMJyno7R63JfeRe34FvVNHtcQe-CjVDhtWZrjpUOzmvwV1h1FVZDOl9Ua3w4qTw20DT4w8Yt3qwWWPW9d8psbfeGS0K-PtvNOTqtVRPg4mdO0cv93fNimTytHh4Xt0-J4SSPiS6LOstzxXhdF0A1qFxzQ0pKGNGKU14a0HmqtdA8LbgGnjHQosyEElWWA5-i66HXeBeCh1oaG1W0rote2UZSIo-u5E4OruTRlRxcHeD0F9x72yq__w-7GTA4PPZuwctgLHQGKuvBRFk5-3fBN4U4h7k
CitedBy_id crossref_primary_10_1021_acsami_4c17684
crossref_primary_10_1134_S2070205124702253
crossref_primary_10_1016_j_solmat_2025_113424
crossref_primary_10_1016_j_solmat_2024_113260
crossref_primary_10_1016_j_jpcs_2025_112611
Cites_doi 10.1016/j.tsf.2014.08.024
10.1039/C4NR04148H
10.1021/jp4072394
10.1038/nnano.2011.145
10.1016/j.solmat.2023.112208
10.1021/acsami.9b15148
10.1016/j.ijleo.2013.10.114
10.1016/j.solmat.2023.112210
10.1016/j.solener.2016.02.015
10.1016/j.solmat.2022.112139
10.1021/acsenergylett.0c00940
10.1088/0022-3727/13/5/018
10.1002/adfm.201901720
10.1002/adfm.201304238
10.1021/nn403058f
10.1021/nn204382k
10.1127/0935-1221/2009/0021-1914
10.1016/j.apsusc.2016.10.051
10.1149/1.2059248
10.1016/j.ijhydene.2013.02.069
10.1002/solr.202000551
10.1007/s10854-016-5033-0
10.1088/0022-3727/40/8/005
10.1016/j.mssp.2021.106209
10.1002/solr.201800272
10.1039/c2dt31348k
10.1002/adfm.202002887
10.1016/j.joule.2018.04.003
10.1016/j.solmat.2024.112961
10.1016/j.scib.2018.12.013
10.1002/advs.201500059
10.1557/jmr.2016.470
10.1016/j.vibspec.2013.07.007
10.1016/j.solener.2021.06.037
10.1002/solr.202201009
10.1021/jz400638x
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.solmat.2024.112995
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3398
ExternalDocumentID 10_1016_j_solmat_2024_112995
S0927024824003076
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
4.4
457
4G.
5VS
6OB
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABNUV
ABXRA
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSG
SSK
SSM
SSR
SSZ
T5K
TWZ
WH7
XPP
ZMT
~02
~G-
1~5
7-5
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SCB
SET
SMS
SSH
WUQ
ID FETCH-LOGICAL-c306t-b87f566a23ff7e1bea6b3c081020ba3138ceb64bb9b3473be352eb9859a9d56e3
IEDL.DBID .~1
ISSN 0927-0248
IngestDate Thu Jul 03 08:20:44 EDT 2025
Thu Apr 24 23:09:59 EDT 2025
Sat Jul 06 15:30:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords No-toxic and earth abundant
Hydrothermal deposition
Sb2S3
Chalcogenide solar cell
DLTS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-b87f566a23ff7e1bea6b3c081020ba3138ceb64bb9b3473be352eb9859a9d56e3
ORCID 0000-0002-7738-4917
0000-0002-7698-1795
0000-0002-3017-5552
0000-0001-9520-6586
0000-0002-0443-408X
0000-0002-6677-0994
0000-0002-2675-5052
ParticipantIDs crossref_citationtrail_10_1016_j_solmat_2024_112995
crossref_primary_10_1016_j_solmat_2024_112995
elsevier_sciencedirect_doi_10_1016_j_solmat_2024_112995
PublicationCentury 2000
PublicationDate 2024-08-15
PublicationDateYYYYMMDD 2024-08-15
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-15
  day: 15
PublicationDecade 2020
PublicationTitle Solar energy materials and solar cells
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Deng (bib1) 2019; 29
Makreski, Petruševski, Ugarković, Jovanovski (bib29) 2013; 68
Jiang, Tang, Wang, Ju, Chen, Chen (bib13) 2019; 3
Medina-Montes, Montiel-González, Paraguay-Delgado, Mathews, Mathew (bib31) 2016; 27
Shaji (bib30) 2017; 393
Pal, Mathews, Mathew (bib3) 2017; 32
Peng (bib5) 2023; 253
Ishaq (bib27) 2020; 4
Rühle (bib35) 2016; 130
Bi, Yang, Boschloo, Hagfeldt, Johansson (bib38) 2013; 4
Han (bib14) 2019; 12
Lakhdar, Ouni, Amlouk (bib34) 2014; 125
Darga (bib36) 2013; 117
Jin (bib10) 2020; 30
Chen, Tang (bib20) 2020; 5
Holzwarth, Gibson (bib26) 2011; 6
Kharbish, Libowitzky, Beran (bib32) 2009; 21
Pokhrel (bib24) 2022
Boix (bib19) 2012; 6
Choi, Lee, Noh, Kim, Seok (bib2) 2014; 24
Rijal (bib25) 2023; 7
Maiti, Im, Lim, Seok (bib17) 2012; 41
Kondrotas, Chen, Tang (bib7) 2018; 2
Christians, Kamat (bib37) 2013; 7
Eensalu, Tonsuaadu, Acik, Krunks (bib4) 2022; 137
Escorcia-García, Becerra, Nair, Nair (bib33) 2014; 569
De Vos (bib8) 1980; 13
Ito, Tsujimoto, Nguyen, Manabe, Nishino (bib21) 2013; 38
Cao (bib15) 2024; 273
Jaramillo-Quintero, Baron-Jaimes, Miranda-Gamboa, Rincon (bib22) 2021; 224
Yin (bib12) 2019; 64
Savadogo, Mandal (bib23) 1994/10/01 1994; 141
Okil, Shaker, Ahmed, Abdolkader, Salem (bib9) 2023; 253
Krautmann (bib6) 2023; 251
Zimmermann (bib11) 2015; 2
Kim (bib16) 2014; 6
Perales, Lifante, Agullo-Rueda, De las Heras (bib18) 2007; 40
Pokhrel (bib28) 2022
Boix (10.1016/j.solmat.2024.112995_bib19) 2012; 6
Ito (10.1016/j.solmat.2024.112995_bib21) 2013; 38
Zimmermann (10.1016/j.solmat.2024.112995_bib11) 2015; 2
Shaji (10.1016/j.solmat.2024.112995_bib30) 2017; 393
Medina-Montes (10.1016/j.solmat.2024.112995_bib31) 2016; 27
Pokhrel (10.1016/j.solmat.2024.112995_bib24) 2022
Chen (10.1016/j.solmat.2024.112995_bib20) 2020; 5
Pokhrel (10.1016/j.solmat.2024.112995_bib28) 2022
Kondrotas (10.1016/j.solmat.2024.112995_bib7) 2018; 2
Jin (10.1016/j.solmat.2024.112995_bib10) 2020; 30
Pal (10.1016/j.solmat.2024.112995_bib3) 2017; 32
Maiti (10.1016/j.solmat.2024.112995_bib17) 2012; 41
Savadogo (10.1016/j.solmat.2024.112995_bib23) 1994; 141
Jaramillo-Quintero (10.1016/j.solmat.2024.112995_bib22) 2021; 224
Lakhdar (10.1016/j.solmat.2024.112995_bib34) 2014; 125
Jiang (10.1016/j.solmat.2024.112995_bib13) 2019; 3
Rijal (10.1016/j.solmat.2024.112995_bib25) 2023; 7
Deng (10.1016/j.solmat.2024.112995_bib1) 2019; 29
Peng (10.1016/j.solmat.2024.112995_bib5) 2023; 253
Bi (10.1016/j.solmat.2024.112995_bib38) 2013; 4
Perales (10.1016/j.solmat.2024.112995_bib18) 2007; 40
De Vos (10.1016/j.solmat.2024.112995_bib8) 1980; 13
Yin (10.1016/j.solmat.2024.112995_bib12) 2019; 64
Makreski (10.1016/j.solmat.2024.112995_bib29) 2013; 68
Darga (10.1016/j.solmat.2024.112995_bib36) 2013; 117
Eensalu (10.1016/j.solmat.2024.112995_bib4) 2022; 137
Kim (10.1016/j.solmat.2024.112995_bib16) 2014; 6
Ishaq (10.1016/j.solmat.2024.112995_bib27) 2020; 4
Holzwarth (10.1016/j.solmat.2024.112995_bib26) 2011; 6
Cao (10.1016/j.solmat.2024.112995_bib15) 2024; 273
Han (10.1016/j.solmat.2024.112995_bib14) 2019; 12
Krautmann (10.1016/j.solmat.2024.112995_bib6) 2023; 251
Okil (10.1016/j.solmat.2024.112995_bib9) 2023; 253
Escorcia-García (10.1016/j.solmat.2024.112995_bib33) 2014; 569
Choi (10.1016/j.solmat.2024.112995_bib2) 2014; 24
Rühle (10.1016/j.solmat.2024.112995_bib35) 2016; 130
Christians (10.1016/j.solmat.2024.112995_bib37) 2013; 7
Kharbish (10.1016/j.solmat.2024.112995_bib32) 2009; 21
References_xml – volume: 569
  start-page: 28
  year: 2014
  end-page: 34
  ident: bib33
  article-title: Heterojunction CdS/Sb2S3 solar cells using antimony sulfide thin films prepared by thermal evaporation
  publication-title: Thin Solid Films
– volume: 2
  start-page: 857
  year: 2018
  end-page: 878
  ident: bib7
  article-title: Sb2S3 solar cells
  publication-title: Joule
– volume: 6
  start-page: 14549
  year: 2014
  end-page: 14554
  ident: bib16
  article-title: Highly reproducible planar Sb 2 S 3-sensitized solar cells based on atomic layer deposition
  publication-title: Nanoscale
– volume: 393
  start-page: 369
  year: 2017
  end-page: 376
  ident: bib30
  article-title: Antimony sulfide thin films prepared by laser assisted chemical bath deposition
  publication-title: Appl. Surf. Sci.
– volume: 6
  start-page: 873
  year: 2012
  end-page: 880
  ident: bib19
  article-title: From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells
  publication-title: ACS Nano
– volume: 41
  start-page: 11569
  year: 2012
  end-page: 11572
  ident: bib17
  article-title: A chemical precursor for depositing Sb 2 S 3 onto mesoporous TiO 2 layers in nonaqueous media and its application to solar cells
  publication-title: Dalton Trans.
– volume: 7
  year: 2023
  ident: bib25
  article-title: Post‐annealing treatment on hydrothermally grown antimony sulfoselenide thin films for efficient solar cells
  publication-title: Sol. RRL
– volume: 3
  year: 2019
  ident: bib13
  article-title: Alkali metals doping for high‐performance planar heterojunction Sb2S3 solar cells
  publication-title: Sol. RRL
– volume: 30
  year: 2020
  ident: bib10
  article-title: In situ growth of [hk1]‐oriented Sb2S3 for solution‐processed planar heterojunction solar cell with 6.4% efficiency
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 2294
  year: 2020
  ident: bib20
  publication-title: ACS Energy Lett.
– volume: 6
  year: 2011
  ident: bib26
  article-title: The Scherrer equation versus the'Debye-Scherrer equation
  publication-title: Nat. Nanotechnol.
– volume: 224
  start-page: 697
  year: 2021
  end-page: 702
  ident: bib22
  article-title: Cadmium-free ZnS interfacial layer for hydrothermally processed Sb2S3 solar cells
  publication-title: Sol. Energy
– volume: 38
  start-page: 16749
  year: 2013
  end-page: 16754
  ident: bib21
  article-title: Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency
  publication-title: Int. J. Hydrogen Energy
– year: 2022
  ident: bib28
  article-title: Novel and Nano-Structured Materials for Advanced Chalcogenide Photovoltaics
– volume: 64
  start-page: 136
  year: 2019
  end-page: 141
  ident: bib12
  article-title: Composition engineering of Sb2S3 film enabling high performance solar cells
  publication-title: Sci. Bull.
– start-page: 792
  year: 2022
  end-page: 794
  ident: bib24
  article-title: Hydrothermally deposited antimony sulfide solar cells with $\mathrm {V} _ {\text {OC}} $ approaching 800 mV
  publication-title: 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC)
– volume: 12
  start-page: 4970
  year: 2019
  end-page: 4979
  ident: bib14
  article-title: Solution-processed Sb2S3 planar thin film solar cells with a conversion efficiency of 6.9% at an open circuit voltage of 0.7 V achieved via surface passivation by a SbCl3 interface layer
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 7967
  year: 2013
  end-page: 7974
  ident: bib37
  article-title: Trap and transfer. Two-step hole injection across the Sb2S3/CuSCN interface in solid-state solar cells
  publication-title: ACS Nano
– volume: 68
  start-page: 177
  year: 2013
  end-page: 182
  ident: bib29
  article-title: Laser-induced transformation of stibnite (Sb2S3) and other structurally related salts
  publication-title: Vib. Spectrosc.
– volume: 21
  start-page: 325
  year: 2009
  end-page: 333
  ident: bib32
  article-title: Raman spectra of isolated and interconnected pyramidal XS3 groups (X= Sb, Bi) in stibnite, bismuthinite, kermesite, stephanite and bournonite
  publication-title: Eur. J. Mineral
– volume: 273
  year: 2024
  ident: bib15
  article-title: Boosting conversion efficiency by bandgap engineering of ecofriendly antimony trisulfide indoor photovoltaics via a modeling approach
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 29
  year: 2019
  ident: bib1
  article-title: Quasiepitaxy strategy for efficient full‐inorganic Sb2S3 solar cells
  publication-title: Adv. Funct. Mater.
– volume: 24
  start-page: 3587
  year: 2014
  end-page: 3592
  ident: bib2
  article-title: Highly improved Sb2S3 sensitized‐inorganic–organic heterojunction solar cells and quantification of traps by deep‐level transient spectroscopy
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 839
  year: 1980
  ident: bib8
  article-title: Detailed balance limit of the efficiency of tandem solar cells
  publication-title: J. Phys. Appl. Phys.
– volume: 141
  start-page: 2871
  year: 1994/10/01 1994
  end-page: 2877
  ident: bib23
  article-title: Low cost Schottky barrier solar cells fabricated on CdSe and Sb2 S 3 films chemically deposited with silicotungstic acid
  publication-title: J. Electrochem. Soc.
– volume: 125
  start-page: 2295
  year: 2014
  end-page: 2301
  ident: bib34
  article-title: Thickness effect on the structural and optical constants of stibnite thin films prepared by sulfidation annealing of antimony films
  publication-title: Optik
– volume: 253
  year: 2023
  ident: bib5
  article-title: Controllable (hk 1) preferred orientation of Sb2S3 thin films fabricated by pulse electrodeposition
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 253
  year: 2023
  ident: bib9
  article-title: Design and analysis of Sb2S3/Si thin film tandem solar cell
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 251
  year: 2023
  ident: bib6
  article-title: Low processing temperatures explored in Sb2S3 solar cells by close-spaced sublimation and analysis of bulk and interface related defects
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 117
  start-page: 20525
  year: 2013
  end-page: 20530
  ident: bib36
  article-title: On charge carrier recombination in Sb2S3 and its implication for the performance of solar cells
  publication-title: J. Phys. Chem. C
– volume: 4
  year: 2020
  ident: bib27
  article-title: High open‐circuit voltage in full‐inorganic Sb2S3 solar cell via modified Zn‐doped TiO2 electron transport layer
  publication-title: Sol. RRL
– volume: 4
  start-page: 1532
  year: 2013
  end-page: 1536
  ident: bib38
  article-title: Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells
  publication-title: J. Phys. Chem. Lett.
– volume: 27
  start-page: 9710
  year: 2016
  end-page: 9719
  ident: bib31
  article-title: Structural, morphological and spectroscopic ellipsometry studies on sputter deposited Sb2S3 thin films
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 130
  start-page: 139
  year: 2016
  end-page: 147
  ident: bib35
  article-title: Tabulated values of the Shockley–Queisser limit for single junction solar cells
  publication-title: Sol. Energy
– volume: 2
  year: 2015
  ident: bib11
  article-title: Toward high‐efficiency solution‐processed planar heterojunction Sb2S3 solar cells
  publication-title: Adv. Sci.
– volume: 40
  start-page: 2440
  year: 2007
  ident: bib18
  article-title: Optical and structural properties in the amorphous to polycrystalline transition in Sb2S3 thin films
  publication-title: J. Phys. Appl. Phys.
– volume: 32
  start-page: 530
  year: 2017
  end-page: 538
  ident: bib3
  article-title: Surfactant-mediated self-assembly of Sb2S3 nanorods during hydrothermal synthesis
  publication-title: J. Mater. Res.
– volume: 137
  year: 2022
  ident: bib4
  article-title: Sb2S3 thin films by ultrasonic spray pyrolysis of antimony ethyl xanthate
  publication-title: Mater. Sci. Semicond. Process.
– volume: 569
  start-page: 28
  year: 2014
  ident: 10.1016/j.solmat.2024.112995_bib33
  article-title: Heterojunction CdS/Sb2S3 solar cells using antimony sulfide thin films prepared by thermal evaporation
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2014.08.024
– year: 2022
  ident: 10.1016/j.solmat.2024.112995_bib28
– volume: 6
  start-page: 14549
  issue: 23
  year: 2014
  ident: 10.1016/j.solmat.2024.112995_bib16
  article-title: Highly reproducible planar Sb 2 S 3-sensitized solar cells based on atomic layer deposition
  publication-title: Nanoscale
  doi: 10.1039/C4NR04148H
– volume: 117
  start-page: 20525
  issue: 40
  year: 2013
  ident: 10.1016/j.solmat.2024.112995_bib36
  article-title: On charge carrier recombination in Sb2S3 and its implication for the performance of solar cells
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4072394
– volume: 6
  issue: 9
  year: 2011
  ident: 10.1016/j.solmat.2024.112995_bib26
  article-title: The Scherrer equation versus the'Debye-Scherrer equation
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.145
– volume: 253
  year: 2023
  ident: 10.1016/j.solmat.2024.112995_bib5
  article-title: Controllable (hk 1) preferred orientation of Sb2S3 thin films fabricated by pulse electrodeposition
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2023.112208
– volume: 12
  start-page: 4970
  issue: 4
  year: 2019
  ident: 10.1016/j.solmat.2024.112995_bib14
  article-title: Solution-processed Sb2S3 planar thin film solar cells with a conversion efficiency of 6.9% at an open circuit voltage of 0.7 V achieved via surface passivation by a SbCl3 interface layer
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b15148
– volume: 125
  start-page: 2295
  issue: 10
  year: 2014
  ident: 10.1016/j.solmat.2024.112995_bib34
  article-title: Thickness effect on the structural and optical constants of stibnite thin films prepared by sulfidation annealing of antimony films
  publication-title: Optik
  doi: 10.1016/j.ijleo.2013.10.114
– volume: 253
  year: 2023
  ident: 10.1016/j.solmat.2024.112995_bib9
  article-title: Design and analysis of Sb2S3/Si thin film tandem solar cell
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2023.112210
– volume: 130
  start-page: 139
  year: 2016
  ident: 10.1016/j.solmat.2024.112995_bib35
  article-title: Tabulated values of the Shockley–Queisser limit for single junction solar cells
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.02.015
– volume: 251
  year: 2023
  ident: 10.1016/j.solmat.2024.112995_bib6
  article-title: Low processing temperatures explored in Sb2S3 solar cells by close-spaced sublimation and analysis of bulk and interface related defects
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2022.112139
– volume: 5
  start-page: 2294
  issue: 7
  year: 2020
  ident: 10.1016/j.solmat.2024.112995_bib20
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00940
– volume: 13
  start-page: 839
  issue: 5
  year: 1980
  ident: 10.1016/j.solmat.2024.112995_bib8
  article-title: Detailed balance limit of the efficiency of tandem solar cells
  publication-title: J. Phys. Appl. Phys.
  doi: 10.1088/0022-3727/13/5/018
– volume: 29
  issue: 31
  year: 2019
  ident: 10.1016/j.solmat.2024.112995_bib1
  article-title: Quasiepitaxy strategy for efficient full‐inorganic Sb2S3 solar cells
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901720
– volume: 24
  start-page: 3587
  issue: 23
  year: 2014
  ident: 10.1016/j.solmat.2024.112995_bib2
  article-title: Highly improved Sb2S3 sensitized‐inorganic–organic heterojunction solar cells and quantification of traps by deep‐level transient spectroscopy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201304238
– volume: 7
  start-page: 7967
  issue: 9
  year: 2013
  ident: 10.1016/j.solmat.2024.112995_bib37
  article-title: Trap and transfer. Two-step hole injection across the Sb2S3/CuSCN interface in solid-state solar cells
  publication-title: ACS Nano
  doi: 10.1021/nn403058f
– volume: 6
  start-page: 873
  issue: 1
  year: 2012
  ident: 10.1016/j.solmat.2024.112995_bib19
  article-title: From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells
  publication-title: ACS Nano
  doi: 10.1021/nn204382k
– volume: 21
  start-page: 325
  issue: 2
  year: 2009
  ident: 10.1016/j.solmat.2024.112995_bib32
  article-title: Raman spectra of isolated and interconnected pyramidal XS3 groups (X= Sb, Bi) in stibnite, bismuthinite, kermesite, stephanite and bournonite
  publication-title: Eur. J. Mineral
  doi: 10.1127/0935-1221/2009/0021-1914
– volume: 393
  start-page: 369
  year: 2017
  ident: 10.1016/j.solmat.2024.112995_bib30
  article-title: Antimony sulfide thin films prepared by laser assisted chemical bath deposition
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.10.051
– volume: 141
  start-page: 2871
  issue: 10
  year: 1994
  ident: 10.1016/j.solmat.2024.112995_bib23
  article-title: Low cost Schottky barrier solar cells fabricated on CdSe and Sb2 S 3 films chemically deposited with silicotungstic acid
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2059248
– start-page: 792
  year: 2022
  ident: 10.1016/j.solmat.2024.112995_bib24
  article-title: Hydrothermally deposited antimony sulfide solar cells with $\mathrm {V} _ {\text {OC}} $ approaching 800 mV
– volume: 38
  start-page: 16749
  issue: 36
  year: 2013
  ident: 10.1016/j.solmat.2024.112995_bib21
  article-title: Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.02.069
– volume: 4
  issue: 12
  year: 2020
  ident: 10.1016/j.solmat.2024.112995_bib27
  article-title: High open‐circuit voltage in full‐inorganic Sb2S3 solar cell via modified Zn‐doped TiO2 electron transport layer
  publication-title: Sol. RRL
  doi: 10.1002/solr.202000551
– volume: 27
  start-page: 9710
  issue: 9
  year: 2016
  ident: 10.1016/j.solmat.2024.112995_bib31
  article-title: Structural, morphological and spectroscopic ellipsometry studies on sputter deposited Sb2S3 thin films
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-016-5033-0
– volume: 40
  start-page: 2440
  issue: 8
  year: 2007
  ident: 10.1016/j.solmat.2024.112995_bib18
  article-title: Optical and structural properties in the amorphous to polycrystalline transition in Sb2S3 thin films
  publication-title: J. Phys. Appl. Phys.
  doi: 10.1088/0022-3727/40/8/005
– volume: 137
  year: 2022
  ident: 10.1016/j.solmat.2024.112995_bib4
  article-title: Sb2S3 thin films by ultrasonic spray pyrolysis of antimony ethyl xanthate
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2021.106209
– volume: 3
  issue: 1
  year: 2019
  ident: 10.1016/j.solmat.2024.112995_bib13
  article-title: Alkali metals doping for high‐performance planar heterojunction Sb2S3 solar cells
  publication-title: Sol. RRL
  doi: 10.1002/solr.201800272
– volume: 41
  start-page: 11569
  issue: 38
  year: 2012
  ident: 10.1016/j.solmat.2024.112995_bib17
  article-title: A chemical precursor for depositing Sb 2 S 3 onto mesoporous TiO 2 layers in nonaqueous media and its application to solar cells
  publication-title: Dalton Trans.
  doi: 10.1039/c2dt31348k
– volume: 30
  issue: 35
  year: 2020
  ident: 10.1016/j.solmat.2024.112995_bib10
  article-title: In situ growth of [hk1]‐oriented Sb2S3 for solution‐processed planar heterojunction solar cell with 6.4% efficiency
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202002887
– volume: 2
  start-page: 857
  issue: 5
  year: 2018
  ident: 10.1016/j.solmat.2024.112995_bib7
  article-title: Sb2S3 solar cells
  publication-title: Joule
  doi: 10.1016/j.joule.2018.04.003
– volume: 273
  year: 2024
  ident: 10.1016/j.solmat.2024.112995_bib15
  article-title: Boosting conversion efficiency by bandgap engineering of ecofriendly antimony trisulfide indoor photovoltaics via a modeling approach
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2024.112961
– volume: 64
  start-page: 136
  issue: 2
  year: 2019
  ident: 10.1016/j.solmat.2024.112995_bib12
  article-title: Composition engineering of Sb2S3 film enabling high performance solar cells
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2018.12.013
– volume: 2
  issue: 5
  year: 2015
  ident: 10.1016/j.solmat.2024.112995_bib11
  article-title: Toward high‐efficiency solution‐processed planar heterojunction Sb2S3 solar cells
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500059
– volume: 32
  start-page: 530
  issue: 3
  year: 2017
  ident: 10.1016/j.solmat.2024.112995_bib3
  article-title: Surfactant-mediated self-assembly of Sb2S3 nanorods during hydrothermal synthesis
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2016.470
– volume: 68
  start-page: 177
  year: 2013
  ident: 10.1016/j.solmat.2024.112995_bib29
  article-title: Laser-induced transformation of stibnite (Sb2S3) and other structurally related salts
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2013.07.007
– volume: 224
  start-page: 697
  year: 2021
  ident: 10.1016/j.solmat.2024.112995_bib22
  article-title: Cadmium-free ZnS interfacial layer for hydrothermally processed Sb2S3 solar cells
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2021.06.037
– volume: 7
  issue: 4
  year: 2023
  ident: 10.1016/j.solmat.2024.112995_bib25
  article-title: Post‐annealing treatment on hydrothermally grown antimony sulfoselenide thin films for efficient solar cells
  publication-title: Sol. RRL
  doi: 10.1002/solr.202201009
– volume: 4
  start-page: 1532
  issue: 9
  year: 2013
  ident: 10.1016/j.solmat.2024.112995_bib38
  article-title: Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz400638x
SSID ssj0002634
Score 2.4910336
Snippet We report the hydrothermal deposition of Sb2S3 thin film on top of CdS buffer layer, and the fabrication of prototype photovoltaic devices utilizing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112995
SubjectTerms Chalcogenide solar cell
DLTS
Hydrothermal deposition
No-toxic and earth abundant
Sb2S3
Title Hydrothermally deposited Sb2S3 absorber, and a Sb2S3/CdS solar cell with VOC approaching 800 mV
URI https://dx.doi.org/10.1016/j.solmat.2024.112995
Volume 274
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUquMABsYqyVD5wxKSJne1YRVQBRDmEVr0Fb5WK2rRKy6EXvoVv4cvwZIEiIZA4xrKjaDyaeeO8eUbowpfSYyA5y3zOCZO2IsGIe0QxzbTLbOkUbPf7nhf32e3QHTZQVPfCAK2yiv1lTC-idTViVda05uOxlbRD6KViAbAgjaeC7DZjPnj51esXzcPxij_LMJnA7Lp9ruB4me01uNBUiQ6DXpoQbpn4KT2tpZzuLtqpsCLulJ-zhxo620fbawqCB-gpXqm8aKKa8slkhZUuWFha4UQ4CcVcLGa50Pkl5pnCvBy1IpXgBdS0GM7tMZzF4sFDhGuBcfNqbCDe-9t0cIj63evHKCbVpQlEGvS_JCLwRwaicYeORr62heaeoNIkfoMLBac2DaQWHhMiFJT5VGiDwLQIAzfkoXI9TY_QRjbL9DHCmtnc4DGhlATheQMd2sIDxSlTAjqUsyaita1SWSmKw8UWk7Smjj2npYVTsHBaWriJyOeqeamo8cd8v96G9JtnpCbo_7ry5N8rT9EWPMHZse2eoY1l_qLPDfhYilbhXS202bm5i3sfrs_X3A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhU7PsCNUBI7TnLggAqo7IcC4ha8VSoqBbVFqBe-hX_gD_gyZrKwSAgkJK5JbDnj0cwb-80MwFpkjBRUclZESnnC-NaLG0p6VjjhQuGbIGO7n5zK2oU4vAqvBuClzIUhWmVh-3Obnlnr4kmlkGblvtms1LcSyqUSMbEgUVNlwaw8cv1HjNu62we7uMnrQbC_d16teUVrAc8gRu55Oo4aCGRUwBuNyPnaKam5QfeI6Ekr7vPYOC2F1onmIuLaIU5xOonDRCU2lI7jvIMwLNBcUNuEzacPXkkgs6tsWp1Hyyvz9TJSGeoTAlEMSwNByTsJtbX4zh9-8nH7EzBegFO2k___JAy49hSMfSpZOA3Xtb7tZFlbt6rV6jPrMtqXs6yugzpnSnfvOtp1NphqW6byp5WqrbMuBdGMLgoYHf6yy7MqKyua49QMMeXr8-3lDFz8iyhnYah913ZzwJzwFQJAba2hSveIVba0pBJXGHMGXIl54KWsUlOUMKdOGq205KrdpLmEU5Jwmkt4Hrz3Ufd5CY9fvo_KbUi_qGKKXubHkQt_HrkKI7Xzk-P0-OD0aBFG6Q0dXPvhEgz1Og9uGZFPT69kmsbg-r9V-w15FxQH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrothermally+deposited+Sb2S3+absorber%2C+and+a+Sb2S3%2FCdS+solar+cell+with+VOC+approaching+800%C2%A0mV&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=Pokhrel%2C+Dipendra&rft.au=Mathews%2C+N.R.&rft.au=Mathew%2C+X.&rft.au=Rijal%2C+Suman&rft.date=2024-08-15&rft.pub=Elsevier+B.V&rft.issn=0927-0248&rft.eissn=1879-3398&rft.volume=274&rft_id=info:doi/10.1016%2Fj.solmat.2024.112995&rft.externalDocID=S0927024824003076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon