Hydrothermally deposited Sb2S3 absorber, and a Sb2S3/CdS solar cell with VOC approaching 800 mV
We report the hydrothermal deposition of Sb2S3 thin film on top of CdS buffer layer, and the fabrication of prototype photovoltaic devices utilizing spiro-OMeTAD as the hole transport layer. The as-deposited films were amorphous, which transformed to polycrystalline after thermal processing. The pri...
Saved in:
Published in | Solar energy materials and solar cells Vol. 274; p. 112995 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report the hydrothermal deposition of Sb2S3 thin film on top of CdS buffer layer, and the fabrication of prototype photovoltaic devices utilizing spiro-OMeTAD as the hole transport layer. The as-deposited films were amorphous, which transformed to polycrystalline after thermal processing. The pristine films were annealed at different temperatures and showed effective recrystallization at 350 °C which resulted in larger grains, intense XRD patterns, and significantly improved device parameters. The obtained VOC of 795 mV is among the highest reported for a Sb2S3 based solar cell. Deep level transient spectroscopy studies detected an electron trap with activation energy 0.61 eV in the pristine annealed absorber, which became deeper (0.66 eV) upon Na incorporation. However, the capture cross-section decreased by an order of magnitude, and the trap density halved. The reduction in the capture cross-section and trap density for the Na-incorporated device coincides with the improved EQE response in the mid- and long-wavelength regions and a 9 % increase in device efficiency. The light intensity dependence of VOC clearly demonstrated that Na incorporation reduced the trap-assisted recombination and facilitated efficient charge transport in the device.
•Reporting Sb2S3 based solar cell with VOC close to 800 mV, which is an achievement with respect to the state-of-the-art in this area.•With Na doping, the current collection in the mid- and long-wavelength regions improved, predominantly due to reduction in the capture cross-section and density of a deep trap, leading to 9 % relative increase in device efficiency. |
---|---|
AbstractList | We report the hydrothermal deposition of Sb2S3 thin film on top of CdS buffer layer, and the fabrication of prototype photovoltaic devices utilizing spiro-OMeTAD as the hole transport layer. The as-deposited films were amorphous, which transformed to polycrystalline after thermal processing. The pristine films were annealed at different temperatures and showed effective recrystallization at 350 °C which resulted in larger grains, intense XRD patterns, and significantly improved device parameters. The obtained VOC of 795 mV is among the highest reported for a Sb2S3 based solar cell. Deep level transient spectroscopy studies detected an electron trap with activation energy 0.61 eV in the pristine annealed absorber, which became deeper (0.66 eV) upon Na incorporation. However, the capture cross-section decreased by an order of magnitude, and the trap density halved. The reduction in the capture cross-section and trap density for the Na-incorporated device coincides with the improved EQE response in the mid- and long-wavelength regions and a 9 % increase in device efficiency. The light intensity dependence of VOC clearly demonstrated that Na incorporation reduced the trap-assisted recombination and facilitated efficient charge transport in the device.
•Reporting Sb2S3 based solar cell with VOC close to 800 mV, which is an achievement with respect to the state-of-the-art in this area.•With Na doping, the current collection in the mid- and long-wavelength regions improved, predominantly due to reduction in the capture cross-section and density of a deep trap, leading to 9 % relative increase in device efficiency. |
ArticleNumber | 112995 |
Author | Bastola, Ebin Ellingson, Randy J. Mariam, Tamanna Friedl, Jared Phillips, Adam Pokhrel, Dipendra Mathews, N.R. Karade, Vijay C. Mathew, X. Kummar, Samietha S. Heben, Michael J. Rijal, Suman Abasi, Abudulimu Adhikari, Alisha Song, Zhaoning Yan, Yanfa |
Author_xml | – sequence: 1 givenname: Dipendra orcidid: 0000-0002-7698-1795 surname: Pokhrel fullname: Pokhrel, Dipendra organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA – sequence: 2 givenname: N.R. surname: Mathews fullname: Mathews, N.R. organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA – sequence: 3 givenname: X. orcidid: 0000-0002-3017-5552 surname: Mathew fullname: Mathew, X. email: xm@ier.unam.mx organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA – sequence: 4 givenname: Suman orcidid: 0000-0002-7738-4917 surname: Rijal fullname: Rijal, Suman organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA – sequence: 5 givenname: Vijay C. orcidid: 0000-0002-0443-408X surname: Karade fullname: Karade, Vijay C. organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA – sequence: 6 givenname: Samietha S. surname: Kummar fullname: Kummar, Samietha S. organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA – sequence: 7 givenname: Jared surname: Friedl fullname: Friedl, Jared organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA – sequence: 8 givenname: Tamanna surname: Mariam fullname: Mariam, Tamanna organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA – sequence: 9 givenname: Alisha surname: Adhikari fullname: Adhikari, Alisha organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA – sequence: 10 givenname: Zhaoning orcidid: 0000-0002-6677-0994 surname: Song fullname: Song, Zhaoning organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA – sequence: 11 givenname: Ebin surname: Bastola fullname: Bastola, Ebin organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA – sequence: 12 givenname: Abudulimu surname: Abasi fullname: Abasi, Abudulimu organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA – sequence: 13 givenname: Adam orcidid: 0000-0002-2675-5052 surname: Phillips fullname: Phillips, Adam organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA – sequence: 14 givenname: Michael J. surname: Heben fullname: Heben, Michael J. organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA – sequence: 15 givenname: Yanfa surname: Yan fullname: Yan, Yanfa organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA – sequence: 16 givenname: Randy J. orcidid: 0000-0001-9520-6586 surname: Ellingson fullname: Ellingson, Randy J. email: Randy.Ellingson@utoledo.edu organization: Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA |
BookMark | eNqFkMtKAzEUhoNUsK2-gYs8gNPmMre4EKSoFYQuqt3GJHPGpsxMhiQofRufxSezZVy50NWB__D9h_NN0KhzHSB0ScmMEprPd7PgmlbFGSMsnVHKhMhO0JiWhUg4F-UIjYlgRXLYlmdoEsKOEMJyno7R63JfeRe34FvVNHtcQe-CjVDhtWZrjpUOzmvwV1h1FVZDOl9Ua3w4qTw20DT4w8Yt3qwWWPW9d8psbfeGS0K-PtvNOTqtVRPg4mdO0cv93fNimTytHh4Xt0-J4SSPiS6LOstzxXhdF0A1qFxzQ0pKGNGKU14a0HmqtdA8LbgGnjHQosyEElWWA5-i66HXeBeCh1oaG1W0rote2UZSIo-u5E4OruTRlRxcHeD0F9x72yq__w-7GTA4PPZuwctgLHQGKuvBRFk5-3fBN4U4h7k |
CitedBy_id | crossref_primary_10_1021_acsami_4c17684 crossref_primary_10_1134_S2070205124702253 crossref_primary_10_1016_j_solmat_2025_113424 crossref_primary_10_1016_j_solmat_2024_113260 crossref_primary_10_1016_j_jpcs_2025_112611 |
Cites_doi | 10.1016/j.tsf.2014.08.024 10.1039/C4NR04148H 10.1021/jp4072394 10.1038/nnano.2011.145 10.1016/j.solmat.2023.112208 10.1021/acsami.9b15148 10.1016/j.ijleo.2013.10.114 10.1016/j.solmat.2023.112210 10.1016/j.solener.2016.02.015 10.1016/j.solmat.2022.112139 10.1021/acsenergylett.0c00940 10.1088/0022-3727/13/5/018 10.1002/adfm.201901720 10.1002/adfm.201304238 10.1021/nn403058f 10.1021/nn204382k 10.1127/0935-1221/2009/0021-1914 10.1016/j.apsusc.2016.10.051 10.1149/1.2059248 10.1016/j.ijhydene.2013.02.069 10.1002/solr.202000551 10.1007/s10854-016-5033-0 10.1088/0022-3727/40/8/005 10.1016/j.mssp.2021.106209 10.1002/solr.201800272 10.1039/c2dt31348k 10.1002/adfm.202002887 10.1016/j.joule.2018.04.003 10.1016/j.solmat.2024.112961 10.1016/j.scib.2018.12.013 10.1002/advs.201500059 10.1557/jmr.2016.470 10.1016/j.vibspec.2013.07.007 10.1016/j.solener.2021.06.037 10.1002/solr.202201009 10.1021/jz400638x |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.solmat.2024.112995 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3398 |
ExternalDocumentID | 10_1016_j_solmat_2024_112995 S0927024824003076 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 4.4 457 4G. 5VS 6OB 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABNUV ABXRA ACDAQ ACGFS ACIWK ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSG SSK SSM SSR SSZ T5K TWZ WH7 XPP ZMT ~02 ~G- 1~5 7-5 AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SCB SET SMS SSH WUQ |
ID | FETCH-LOGICAL-c306t-b87f566a23ff7e1bea6b3c081020ba3138ceb64bb9b3473be352eb9859a9d56e3 |
IEDL.DBID | .~1 |
ISSN | 0927-0248 |
IngestDate | Thu Jul 03 08:20:44 EDT 2025 Thu Apr 24 23:09:59 EDT 2025 Sat Jul 06 15:30:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | No-toxic and earth abundant Hydrothermal deposition Sb2S3 Chalcogenide solar cell DLTS |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-b87f566a23ff7e1bea6b3c081020ba3138ceb64bb9b3473be352eb9859a9d56e3 |
ORCID | 0000-0002-7738-4917 0000-0002-7698-1795 0000-0002-3017-5552 0000-0001-9520-6586 0000-0002-0443-408X 0000-0002-6677-0994 0000-0002-2675-5052 |
ParticipantIDs | crossref_citationtrail_10_1016_j_solmat_2024_112995 crossref_primary_10_1016_j_solmat_2024_112995 elsevier_sciencedirect_doi_10_1016_j_solmat_2024_112995 |
PublicationCentury | 2000 |
PublicationDate | 2024-08-15 |
PublicationDateYYYYMMDD | 2024-08-15 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Solar energy materials and solar cells |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Deng (bib1) 2019; 29 Makreski, Petruševski, Ugarković, Jovanovski (bib29) 2013; 68 Jiang, Tang, Wang, Ju, Chen, Chen (bib13) 2019; 3 Medina-Montes, Montiel-González, Paraguay-Delgado, Mathews, Mathew (bib31) 2016; 27 Shaji (bib30) 2017; 393 Pal, Mathews, Mathew (bib3) 2017; 32 Peng (bib5) 2023; 253 Ishaq (bib27) 2020; 4 Rühle (bib35) 2016; 130 Bi, Yang, Boschloo, Hagfeldt, Johansson (bib38) 2013; 4 Han (bib14) 2019; 12 Lakhdar, Ouni, Amlouk (bib34) 2014; 125 Darga (bib36) 2013; 117 Jin (bib10) 2020; 30 Chen, Tang (bib20) 2020; 5 Holzwarth, Gibson (bib26) 2011; 6 Kharbish, Libowitzky, Beran (bib32) 2009; 21 Pokhrel (bib24) 2022 Boix (bib19) 2012; 6 Choi, Lee, Noh, Kim, Seok (bib2) 2014; 24 Rijal (bib25) 2023; 7 Maiti, Im, Lim, Seok (bib17) 2012; 41 Kondrotas, Chen, Tang (bib7) 2018; 2 Christians, Kamat (bib37) 2013; 7 Eensalu, Tonsuaadu, Acik, Krunks (bib4) 2022; 137 Escorcia-García, Becerra, Nair, Nair (bib33) 2014; 569 De Vos (bib8) 1980; 13 Ito, Tsujimoto, Nguyen, Manabe, Nishino (bib21) 2013; 38 Cao (bib15) 2024; 273 Jaramillo-Quintero, Baron-Jaimes, Miranda-Gamboa, Rincon (bib22) 2021; 224 Yin (bib12) 2019; 64 Savadogo, Mandal (bib23) 1994/10/01 1994; 141 Okil, Shaker, Ahmed, Abdolkader, Salem (bib9) 2023; 253 Krautmann (bib6) 2023; 251 Zimmermann (bib11) 2015; 2 Kim (bib16) 2014; 6 Perales, Lifante, Agullo-Rueda, De las Heras (bib18) 2007; 40 Pokhrel (bib28) 2022 Boix (10.1016/j.solmat.2024.112995_bib19) 2012; 6 Ito (10.1016/j.solmat.2024.112995_bib21) 2013; 38 Zimmermann (10.1016/j.solmat.2024.112995_bib11) 2015; 2 Shaji (10.1016/j.solmat.2024.112995_bib30) 2017; 393 Medina-Montes (10.1016/j.solmat.2024.112995_bib31) 2016; 27 Pokhrel (10.1016/j.solmat.2024.112995_bib24) 2022 Chen (10.1016/j.solmat.2024.112995_bib20) 2020; 5 Pokhrel (10.1016/j.solmat.2024.112995_bib28) 2022 Kondrotas (10.1016/j.solmat.2024.112995_bib7) 2018; 2 Jin (10.1016/j.solmat.2024.112995_bib10) 2020; 30 Pal (10.1016/j.solmat.2024.112995_bib3) 2017; 32 Maiti (10.1016/j.solmat.2024.112995_bib17) 2012; 41 Savadogo (10.1016/j.solmat.2024.112995_bib23) 1994; 141 Jaramillo-Quintero (10.1016/j.solmat.2024.112995_bib22) 2021; 224 Lakhdar (10.1016/j.solmat.2024.112995_bib34) 2014; 125 Jiang (10.1016/j.solmat.2024.112995_bib13) 2019; 3 Rijal (10.1016/j.solmat.2024.112995_bib25) 2023; 7 Deng (10.1016/j.solmat.2024.112995_bib1) 2019; 29 Peng (10.1016/j.solmat.2024.112995_bib5) 2023; 253 Bi (10.1016/j.solmat.2024.112995_bib38) 2013; 4 Perales (10.1016/j.solmat.2024.112995_bib18) 2007; 40 De Vos (10.1016/j.solmat.2024.112995_bib8) 1980; 13 Yin (10.1016/j.solmat.2024.112995_bib12) 2019; 64 Makreski (10.1016/j.solmat.2024.112995_bib29) 2013; 68 Darga (10.1016/j.solmat.2024.112995_bib36) 2013; 117 Eensalu (10.1016/j.solmat.2024.112995_bib4) 2022; 137 Kim (10.1016/j.solmat.2024.112995_bib16) 2014; 6 Ishaq (10.1016/j.solmat.2024.112995_bib27) 2020; 4 Holzwarth (10.1016/j.solmat.2024.112995_bib26) 2011; 6 Cao (10.1016/j.solmat.2024.112995_bib15) 2024; 273 Han (10.1016/j.solmat.2024.112995_bib14) 2019; 12 Krautmann (10.1016/j.solmat.2024.112995_bib6) 2023; 251 Okil (10.1016/j.solmat.2024.112995_bib9) 2023; 253 Escorcia-García (10.1016/j.solmat.2024.112995_bib33) 2014; 569 Choi (10.1016/j.solmat.2024.112995_bib2) 2014; 24 Rühle (10.1016/j.solmat.2024.112995_bib35) 2016; 130 Christians (10.1016/j.solmat.2024.112995_bib37) 2013; 7 Kharbish (10.1016/j.solmat.2024.112995_bib32) 2009; 21 |
References_xml | – volume: 569 start-page: 28 year: 2014 end-page: 34 ident: bib33 article-title: Heterojunction CdS/Sb2S3 solar cells using antimony sulfide thin films prepared by thermal evaporation publication-title: Thin Solid Films – volume: 2 start-page: 857 year: 2018 end-page: 878 ident: bib7 article-title: Sb2S3 solar cells publication-title: Joule – volume: 6 start-page: 14549 year: 2014 end-page: 14554 ident: bib16 article-title: Highly reproducible planar Sb 2 S 3-sensitized solar cells based on atomic layer deposition publication-title: Nanoscale – volume: 393 start-page: 369 year: 2017 end-page: 376 ident: bib30 article-title: Antimony sulfide thin films prepared by laser assisted chemical bath deposition publication-title: Appl. Surf. Sci. – volume: 6 start-page: 873 year: 2012 end-page: 880 ident: bib19 article-title: From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells publication-title: ACS Nano – volume: 41 start-page: 11569 year: 2012 end-page: 11572 ident: bib17 article-title: A chemical precursor for depositing Sb 2 S 3 onto mesoporous TiO 2 layers in nonaqueous media and its application to solar cells publication-title: Dalton Trans. – volume: 7 year: 2023 ident: bib25 article-title: Post‐annealing treatment on hydrothermally grown antimony sulfoselenide thin films for efficient solar cells publication-title: Sol. RRL – volume: 3 year: 2019 ident: bib13 article-title: Alkali metals doping for high‐performance planar heterojunction Sb2S3 solar cells publication-title: Sol. RRL – volume: 30 year: 2020 ident: bib10 article-title: In situ growth of [hk1]‐oriented Sb2S3 for solution‐processed planar heterojunction solar cell with 6.4% efficiency publication-title: Adv. Funct. Mater. – volume: 5 start-page: 2294 year: 2020 ident: bib20 publication-title: ACS Energy Lett. – volume: 6 year: 2011 ident: bib26 article-title: The Scherrer equation versus the'Debye-Scherrer equation publication-title: Nat. Nanotechnol. – volume: 224 start-page: 697 year: 2021 end-page: 702 ident: bib22 article-title: Cadmium-free ZnS interfacial layer for hydrothermally processed Sb2S3 solar cells publication-title: Sol. Energy – volume: 38 start-page: 16749 year: 2013 end-page: 16754 ident: bib21 article-title: Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency publication-title: Int. J. Hydrogen Energy – year: 2022 ident: bib28 article-title: Novel and Nano-Structured Materials for Advanced Chalcogenide Photovoltaics – volume: 64 start-page: 136 year: 2019 end-page: 141 ident: bib12 article-title: Composition engineering of Sb2S3 film enabling high performance solar cells publication-title: Sci. Bull. – start-page: 792 year: 2022 end-page: 794 ident: bib24 article-title: Hydrothermally deposited antimony sulfide solar cells with $\mathrm {V} _ {\text {OC}} $ approaching 800 mV publication-title: 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC) – volume: 12 start-page: 4970 year: 2019 end-page: 4979 ident: bib14 article-title: Solution-processed Sb2S3 planar thin film solar cells with a conversion efficiency of 6.9% at an open circuit voltage of 0.7 V achieved via surface passivation by a SbCl3 interface layer publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 7967 year: 2013 end-page: 7974 ident: bib37 article-title: Trap and transfer. Two-step hole injection across the Sb2S3/CuSCN interface in solid-state solar cells publication-title: ACS Nano – volume: 68 start-page: 177 year: 2013 end-page: 182 ident: bib29 article-title: Laser-induced transformation of stibnite (Sb2S3) and other structurally related salts publication-title: Vib. Spectrosc. – volume: 21 start-page: 325 year: 2009 end-page: 333 ident: bib32 article-title: Raman spectra of isolated and interconnected pyramidal XS3 groups (X= Sb, Bi) in stibnite, bismuthinite, kermesite, stephanite and bournonite publication-title: Eur. J. Mineral – volume: 273 year: 2024 ident: bib15 article-title: Boosting conversion efficiency by bandgap engineering of ecofriendly antimony trisulfide indoor photovoltaics via a modeling approach publication-title: Sol. Energy Mater. Sol. Cell. – volume: 29 year: 2019 ident: bib1 article-title: Quasiepitaxy strategy for efficient full‐inorganic Sb2S3 solar cells publication-title: Adv. Funct. Mater. – volume: 24 start-page: 3587 year: 2014 end-page: 3592 ident: bib2 article-title: Highly improved Sb2S3 sensitized‐inorganic–organic heterojunction solar cells and quantification of traps by deep‐level transient spectroscopy publication-title: Adv. Funct. Mater. – volume: 13 start-page: 839 year: 1980 ident: bib8 article-title: Detailed balance limit of the efficiency of tandem solar cells publication-title: J. Phys. Appl. Phys. – volume: 141 start-page: 2871 year: 1994/10/01 1994 end-page: 2877 ident: bib23 article-title: Low cost Schottky barrier solar cells fabricated on CdSe and Sb2 S 3 films chemically deposited with silicotungstic acid publication-title: J. Electrochem. Soc. – volume: 125 start-page: 2295 year: 2014 end-page: 2301 ident: bib34 article-title: Thickness effect on the structural and optical constants of stibnite thin films prepared by sulfidation annealing of antimony films publication-title: Optik – volume: 253 year: 2023 ident: bib5 article-title: Controllable (hk 1) preferred orientation of Sb2S3 thin films fabricated by pulse electrodeposition publication-title: Sol. Energy Mater. Sol. Cell. – volume: 253 year: 2023 ident: bib9 article-title: Design and analysis of Sb2S3/Si thin film tandem solar cell publication-title: Sol. Energy Mater. Sol. Cell. – volume: 251 year: 2023 ident: bib6 article-title: Low processing temperatures explored in Sb2S3 solar cells by close-spaced sublimation and analysis of bulk and interface related defects publication-title: Sol. Energy Mater. Sol. Cell. – volume: 117 start-page: 20525 year: 2013 end-page: 20530 ident: bib36 article-title: On charge carrier recombination in Sb2S3 and its implication for the performance of solar cells publication-title: J. Phys. Chem. C – volume: 4 year: 2020 ident: bib27 article-title: High open‐circuit voltage in full‐inorganic Sb2S3 solar cell via modified Zn‐doped TiO2 electron transport layer publication-title: Sol. RRL – volume: 4 start-page: 1532 year: 2013 end-page: 1536 ident: bib38 article-title: Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells publication-title: J. Phys. Chem. Lett. – volume: 27 start-page: 9710 year: 2016 end-page: 9719 ident: bib31 article-title: Structural, morphological and spectroscopic ellipsometry studies on sputter deposited Sb2S3 thin films publication-title: J. Mater. Sci. Mater. Electron. – volume: 130 start-page: 139 year: 2016 end-page: 147 ident: bib35 article-title: Tabulated values of the Shockley–Queisser limit for single junction solar cells publication-title: Sol. Energy – volume: 2 year: 2015 ident: bib11 article-title: Toward high‐efficiency solution‐processed planar heterojunction Sb2S3 solar cells publication-title: Adv. Sci. – volume: 40 start-page: 2440 year: 2007 ident: bib18 article-title: Optical and structural properties in the amorphous to polycrystalline transition in Sb2S3 thin films publication-title: J. Phys. Appl. Phys. – volume: 32 start-page: 530 year: 2017 end-page: 538 ident: bib3 article-title: Surfactant-mediated self-assembly of Sb2S3 nanorods during hydrothermal synthesis publication-title: J. Mater. Res. – volume: 137 year: 2022 ident: bib4 article-title: Sb2S3 thin films by ultrasonic spray pyrolysis of antimony ethyl xanthate publication-title: Mater. Sci. Semicond. Process. – volume: 569 start-page: 28 year: 2014 ident: 10.1016/j.solmat.2024.112995_bib33 article-title: Heterojunction CdS/Sb2S3 solar cells using antimony sulfide thin films prepared by thermal evaporation publication-title: Thin Solid Films doi: 10.1016/j.tsf.2014.08.024 – year: 2022 ident: 10.1016/j.solmat.2024.112995_bib28 – volume: 6 start-page: 14549 issue: 23 year: 2014 ident: 10.1016/j.solmat.2024.112995_bib16 article-title: Highly reproducible planar Sb 2 S 3-sensitized solar cells based on atomic layer deposition publication-title: Nanoscale doi: 10.1039/C4NR04148H – volume: 117 start-page: 20525 issue: 40 year: 2013 ident: 10.1016/j.solmat.2024.112995_bib36 article-title: On charge carrier recombination in Sb2S3 and its implication for the performance of solar cells publication-title: J. Phys. Chem. C doi: 10.1021/jp4072394 – volume: 6 issue: 9 year: 2011 ident: 10.1016/j.solmat.2024.112995_bib26 article-title: The Scherrer equation versus the'Debye-Scherrer equation publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.145 – volume: 253 year: 2023 ident: 10.1016/j.solmat.2024.112995_bib5 article-title: Controllable (hk 1) preferred orientation of Sb2S3 thin films fabricated by pulse electrodeposition publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2023.112208 – volume: 12 start-page: 4970 issue: 4 year: 2019 ident: 10.1016/j.solmat.2024.112995_bib14 article-title: Solution-processed Sb2S3 planar thin film solar cells with a conversion efficiency of 6.9% at an open circuit voltage of 0.7 V achieved via surface passivation by a SbCl3 interface layer publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b15148 – volume: 125 start-page: 2295 issue: 10 year: 2014 ident: 10.1016/j.solmat.2024.112995_bib34 article-title: Thickness effect on the structural and optical constants of stibnite thin films prepared by sulfidation annealing of antimony films publication-title: Optik doi: 10.1016/j.ijleo.2013.10.114 – volume: 253 year: 2023 ident: 10.1016/j.solmat.2024.112995_bib9 article-title: Design and analysis of Sb2S3/Si thin film tandem solar cell publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2023.112210 – volume: 130 start-page: 139 year: 2016 ident: 10.1016/j.solmat.2024.112995_bib35 article-title: Tabulated values of the Shockley–Queisser limit for single junction solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2016.02.015 – volume: 251 year: 2023 ident: 10.1016/j.solmat.2024.112995_bib6 article-title: Low processing temperatures explored in Sb2S3 solar cells by close-spaced sublimation and analysis of bulk and interface related defects publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2022.112139 – volume: 5 start-page: 2294 issue: 7 year: 2020 ident: 10.1016/j.solmat.2024.112995_bib20 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00940 – volume: 13 start-page: 839 issue: 5 year: 1980 ident: 10.1016/j.solmat.2024.112995_bib8 article-title: Detailed balance limit of the efficiency of tandem solar cells publication-title: J. Phys. Appl. Phys. doi: 10.1088/0022-3727/13/5/018 – volume: 29 issue: 31 year: 2019 ident: 10.1016/j.solmat.2024.112995_bib1 article-title: Quasiepitaxy strategy for efficient full‐inorganic Sb2S3 solar cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901720 – volume: 24 start-page: 3587 issue: 23 year: 2014 ident: 10.1016/j.solmat.2024.112995_bib2 article-title: Highly improved Sb2S3 sensitized‐inorganic–organic heterojunction solar cells and quantification of traps by deep‐level transient spectroscopy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201304238 – volume: 7 start-page: 7967 issue: 9 year: 2013 ident: 10.1016/j.solmat.2024.112995_bib37 article-title: Trap and transfer. Two-step hole injection across the Sb2S3/CuSCN interface in solid-state solar cells publication-title: ACS Nano doi: 10.1021/nn403058f – volume: 6 start-page: 873 issue: 1 year: 2012 ident: 10.1016/j.solmat.2024.112995_bib19 article-title: From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells publication-title: ACS Nano doi: 10.1021/nn204382k – volume: 21 start-page: 325 issue: 2 year: 2009 ident: 10.1016/j.solmat.2024.112995_bib32 article-title: Raman spectra of isolated and interconnected pyramidal XS3 groups (X= Sb, Bi) in stibnite, bismuthinite, kermesite, stephanite and bournonite publication-title: Eur. J. Mineral doi: 10.1127/0935-1221/2009/0021-1914 – volume: 393 start-page: 369 year: 2017 ident: 10.1016/j.solmat.2024.112995_bib30 article-title: Antimony sulfide thin films prepared by laser assisted chemical bath deposition publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.10.051 – volume: 141 start-page: 2871 issue: 10 year: 1994 ident: 10.1016/j.solmat.2024.112995_bib23 article-title: Low cost Schottky barrier solar cells fabricated on CdSe and Sb2 S 3 films chemically deposited with silicotungstic acid publication-title: J. Electrochem. Soc. doi: 10.1149/1.2059248 – start-page: 792 year: 2022 ident: 10.1016/j.solmat.2024.112995_bib24 article-title: Hydrothermally deposited antimony sulfide solar cells with $\mathrm {V} _ {\text {OC}} $ approaching 800 mV – volume: 38 start-page: 16749 issue: 36 year: 2013 ident: 10.1016/j.solmat.2024.112995_bib21 article-title: Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.02.069 – volume: 4 issue: 12 year: 2020 ident: 10.1016/j.solmat.2024.112995_bib27 article-title: High open‐circuit voltage in full‐inorganic Sb2S3 solar cell via modified Zn‐doped TiO2 electron transport layer publication-title: Sol. RRL doi: 10.1002/solr.202000551 – volume: 27 start-page: 9710 issue: 9 year: 2016 ident: 10.1016/j.solmat.2024.112995_bib31 article-title: Structural, morphological and spectroscopic ellipsometry studies on sputter deposited Sb2S3 thin films publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-016-5033-0 – volume: 40 start-page: 2440 issue: 8 year: 2007 ident: 10.1016/j.solmat.2024.112995_bib18 article-title: Optical and structural properties in the amorphous to polycrystalline transition in Sb2S3 thin films publication-title: J. Phys. Appl. Phys. doi: 10.1088/0022-3727/40/8/005 – volume: 137 year: 2022 ident: 10.1016/j.solmat.2024.112995_bib4 article-title: Sb2S3 thin films by ultrasonic spray pyrolysis of antimony ethyl xanthate publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2021.106209 – volume: 3 issue: 1 year: 2019 ident: 10.1016/j.solmat.2024.112995_bib13 article-title: Alkali metals doping for high‐performance planar heterojunction Sb2S3 solar cells publication-title: Sol. RRL doi: 10.1002/solr.201800272 – volume: 41 start-page: 11569 issue: 38 year: 2012 ident: 10.1016/j.solmat.2024.112995_bib17 article-title: A chemical precursor for depositing Sb 2 S 3 onto mesoporous TiO 2 layers in nonaqueous media and its application to solar cells publication-title: Dalton Trans. doi: 10.1039/c2dt31348k – volume: 30 issue: 35 year: 2020 ident: 10.1016/j.solmat.2024.112995_bib10 article-title: In situ growth of [hk1]‐oriented Sb2S3 for solution‐processed planar heterojunction solar cell with 6.4% efficiency publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202002887 – volume: 2 start-page: 857 issue: 5 year: 2018 ident: 10.1016/j.solmat.2024.112995_bib7 article-title: Sb2S3 solar cells publication-title: Joule doi: 10.1016/j.joule.2018.04.003 – volume: 273 year: 2024 ident: 10.1016/j.solmat.2024.112995_bib15 article-title: Boosting conversion efficiency by bandgap engineering of ecofriendly antimony trisulfide indoor photovoltaics via a modeling approach publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2024.112961 – volume: 64 start-page: 136 issue: 2 year: 2019 ident: 10.1016/j.solmat.2024.112995_bib12 article-title: Composition engineering of Sb2S3 film enabling high performance solar cells publication-title: Sci. Bull. doi: 10.1016/j.scib.2018.12.013 – volume: 2 issue: 5 year: 2015 ident: 10.1016/j.solmat.2024.112995_bib11 article-title: Toward high‐efficiency solution‐processed planar heterojunction Sb2S3 solar cells publication-title: Adv. Sci. doi: 10.1002/advs.201500059 – volume: 32 start-page: 530 issue: 3 year: 2017 ident: 10.1016/j.solmat.2024.112995_bib3 article-title: Surfactant-mediated self-assembly of Sb2S3 nanorods during hydrothermal synthesis publication-title: J. Mater. Res. doi: 10.1557/jmr.2016.470 – volume: 68 start-page: 177 year: 2013 ident: 10.1016/j.solmat.2024.112995_bib29 article-title: Laser-induced transformation of stibnite (Sb2S3) and other structurally related salts publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2013.07.007 – volume: 224 start-page: 697 year: 2021 ident: 10.1016/j.solmat.2024.112995_bib22 article-title: Cadmium-free ZnS interfacial layer for hydrothermally processed Sb2S3 solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2021.06.037 – volume: 7 issue: 4 year: 2023 ident: 10.1016/j.solmat.2024.112995_bib25 article-title: Post‐annealing treatment on hydrothermally grown antimony sulfoselenide thin films for efficient solar cells publication-title: Sol. RRL doi: 10.1002/solr.202201009 – volume: 4 start-page: 1532 issue: 9 year: 2013 ident: 10.1016/j.solmat.2024.112995_bib38 article-title: Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz400638x |
SSID | ssj0002634 |
Score | 2.4910336 |
Snippet | We report the hydrothermal deposition of Sb2S3 thin film on top of CdS buffer layer, and the fabrication of prototype photovoltaic devices utilizing... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 112995 |
SubjectTerms | Chalcogenide solar cell DLTS Hydrothermal deposition No-toxic and earth abundant Sb2S3 |
Title | Hydrothermally deposited Sb2S3 absorber, and a Sb2S3/CdS solar cell with VOC approaching 800 mV |
URI | https://dx.doi.org/10.1016/j.solmat.2024.112995 |
Volume | 274 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUquMABsYqyVD5wxKSJne1YRVQBRDmEVr0Fb5WK2rRKy6EXvoVv4cvwZIEiIZA4xrKjaDyaeeO8eUbowpfSYyA5y3zOCZO2IsGIe0QxzbTLbOkUbPf7nhf32e3QHTZQVPfCAK2yiv1lTC-idTViVda05uOxlbRD6KViAbAgjaeC7DZjPnj51esXzcPxij_LMJnA7Lp9ruB4me01uNBUiQ6DXpoQbpn4KT2tpZzuLtqpsCLulJ-zhxo620fbawqCB-gpXqm8aKKa8slkhZUuWFha4UQ4CcVcLGa50Pkl5pnCvBy1IpXgBdS0GM7tMZzF4sFDhGuBcfNqbCDe-9t0cIj63evHKCbVpQlEGvS_JCLwRwaicYeORr62heaeoNIkfoMLBac2DaQWHhMiFJT5VGiDwLQIAzfkoXI9TY_QRjbL9DHCmtnc4DGhlATheQMd2sIDxSlTAjqUsyaita1SWSmKw8UWk7Smjj2npYVTsHBaWriJyOeqeamo8cd8v96G9JtnpCbo_7ry5N8rT9EWPMHZse2eoY1l_qLPDfhYilbhXS202bm5i3sfrs_X3A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhU7PsCNUBI7TnLggAqo7IcC4ha8VSoqBbVFqBe-hX_gD_gyZrKwSAgkJK5JbDnj0cwb-80MwFpkjBRUclZESnnC-NaLG0p6VjjhQuGbIGO7n5zK2oU4vAqvBuClzIUhWmVh-3Obnlnr4kmlkGblvtms1LcSyqUSMbEgUVNlwaw8cv1HjNu62we7uMnrQbC_d16teUVrAc8gRu55Oo4aCGRUwBuNyPnaKam5QfeI6Ekr7vPYOC2F1onmIuLaIU5xOonDRCU2lI7jvIMwLNBcUNuEzacPXkkgs6tsWp1Hyyvz9TJSGeoTAlEMSwNByTsJtbX4zh9-8nH7EzBegFO2k___JAy49hSMfSpZOA3Xtb7tZFlbt6rV6jPrMtqXs6yugzpnSnfvOtp1NphqW6byp5WqrbMuBdGMLgoYHf6yy7MqKyua49QMMeXr8-3lDFz8iyhnYah913ZzwJzwFQJAba2hSveIVba0pBJXGHMGXIl54KWsUlOUMKdOGq205KrdpLmEU5Jwmkt4Hrz3Ufd5CY9fvo_KbUi_qGKKXubHkQt_HrkKI7Xzk-P0-OD0aBFG6Q0dXPvhEgz1Og9uGZFPT69kmsbg-r9V-w15FxQH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrothermally+deposited+Sb2S3+absorber%2C+and+a+Sb2S3%2FCdS+solar+cell+with+VOC+approaching+800%C2%A0mV&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=Pokhrel%2C+Dipendra&rft.au=Mathews%2C+N.R.&rft.au=Mathew%2C+X.&rft.au=Rijal%2C+Suman&rft.date=2024-08-15&rft.pub=Elsevier+B.V&rft.issn=0927-0248&rft.eissn=1879-3398&rft.volume=274&rft_id=info:doi/10.1016%2Fj.solmat.2024.112995&rft.externalDocID=S0927024824003076 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon |