Deep reinforcement learning-based joint task and energy offloading in UAV-aided 6G intelligent edge networks

Edge networks are expected to play an important role in 6G where machine learning-based methods are widely applied, which promote the concept of Edge Intelligence. Meanwhile, Unmanned Aerial Vehicle (UAV)-enabled aerial network is significant in 6G networks to achieve seamless coverage and super-con...

Full description

Saved in:
Bibliographic Details
Published inComputer communications Vol. 192; pp. 234 - 244
Main Authors Cheng, Zhipeng, Liwang, Minghui, Chen, Ning, Huang, Lianfen, Du, Xiaojiang, Guizani, Mohsen
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2022
Subjects
Online AccessGet full text
ISSN0140-3664
1873-703X
DOI10.1016/j.comcom.2022.06.017

Cover

Abstract Edge networks are expected to play an important role in 6G where machine learning-based methods are widely applied, which promote the concept of Edge Intelligence. Meanwhile, Unmanned Aerial Vehicle (UAV)-enabled aerial network is significant in 6G networks to achieve seamless coverage and super-connectivity. To this end, a joint task and energy offloading problem is studied under a UAV-aided and energy-constrained intelligent edge network, consisting of a high altitude platform (HAP), multiple UAVs, and on-ground fog computing nodes (FCNs). To guarantee the energy supply of UAVs and FCNs, both simultaneous wireless information and power transfer (SWIPT), as well as laser charging techniques are considered. Specifically, we investigate a scenario where each UAV needs to execute a computation-intensive task during each time slot and can be powered by the laser beam transmitted from the HAP. Due to the limited computation resources, each UAV can offload part of the task and energy to the FCNs for collaborative computing, to reduce local energy consumption and the overall task execution delay by adopting SWIPT. Considering the dynamics of the network, e.g., the time-varying locations of UAVs and available computation resources of FCNs, the problem is formulated as a cooperative multi-agent Markov game for UAVs, which aims to maximize the total system utility, by optimizing the task partitioning and power allocation strategies of each UAV, regarding task size, average delay and energy consumption of task execution. To tackle this problem, we propose a multi-agent soft actor–critic (MASAC)-based approach to resolve the problem. Numerical simulation results prove the superiority of our proposed approach as compared with benchmark methods.
AbstractList Edge networks are expected to play an important role in 6G where machine learning-based methods are widely applied, which promote the concept of Edge Intelligence. Meanwhile, Unmanned Aerial Vehicle (UAV)-enabled aerial network is significant in 6G networks to achieve seamless coverage and super-connectivity. To this end, a joint task and energy offloading problem is studied under a UAV-aided and energy-constrained intelligent edge network, consisting of a high altitude platform (HAP), multiple UAVs, and on-ground fog computing nodes (FCNs). To guarantee the energy supply of UAVs and FCNs, both simultaneous wireless information and power transfer (SWIPT), as well as laser charging techniques are considered. Specifically, we investigate a scenario where each UAV needs to execute a computation-intensive task during each time slot and can be powered by the laser beam transmitted from the HAP. Due to the limited computation resources, each UAV can offload part of the task and energy to the FCNs for collaborative computing, to reduce local energy consumption and the overall task execution delay by adopting SWIPT. Considering the dynamics of the network, e.g., the time-varying locations of UAVs and available computation resources of FCNs, the problem is formulated as a cooperative multi-agent Markov game for UAVs, which aims to maximize the total system utility, by optimizing the task partitioning and power allocation strategies of each UAV, regarding task size, average delay and energy consumption of task execution. To tackle this problem, we propose a multi-agent soft actor–critic (MASAC)-based approach to resolve the problem. Numerical simulation results prove the superiority of our proposed approach as compared with benchmark methods.
Author Chen, Ning
Huang, Lianfen
Liwang, Minghui
Guizani, Mohsen
Du, Xiaojiang
Cheng, Zhipeng
Author_xml – sequence: 1
  givenname: Zhipeng
  surname: Cheng
  fullname: Cheng, Zhipeng
  organization: Xiamen University, Xiamen 361005, China
– sequence: 2
  givenname: Minghui
  surname: Liwang
  fullname: Liwang, Minghui
  email: minghuilw@xmu.edu.cn
  organization: Xiamen University, Xiamen 361005, China
– sequence: 3
  givenname: Ning
  surname: Chen
  fullname: Chen, Ning
  organization: Xiamen University, Xiamen 361005, China
– sequence: 4
  givenname: Lianfen
  surname: Huang
  fullname: Huang, Lianfen
  organization: Xiamen University, Xiamen 361005, China
– sequence: 5
  givenname: Xiaojiang
  surname: Du
  fullname: Du, Xiaojiang
  organization: Stevens Institute of Technology, Hoboken, NJ, 07030, USA
– sequence: 6
  givenname: Mohsen
  surname: Guizani
  fullname: Guizani, Mohsen
  organization: Department of Computer Science and Engineering, Qatar University, Qatar
BookMark eNqFkM1KQzEQhYMoWH_ewEVe4F6Tm9ykdSEUf6pQcGPFXUiTSUl7m5QkKL69KXXlQmFgmOF8B845Q8chBkDoipKWEiqu162J2zptR7quJaIlVB6hER1L1kjC3o_RiFBOGiYEP0VnOa8JIVxKNkLDPcAOJ_DBxWRgC6HgAXQKPqyapc5g8Tr6-iw6b7AOFkOAtPrC0bkhaltl2Ae8mL412tuqFrN6FxgGv9p7gV0BDlA-Y9rkC3Ti9JDh8mefo8Xjw-vdUzN_mT3fTeeNYUSUZjnurRAMJrabWM6Npt0SzMRRBq7vBdOcU2sl44SDc44bEExKKvueLGtkYOfo5uBrUsw5gVPGF118DCVpPyhK1L43tVaH3tS-N0WEqr1VmP-Cd8lvdfr6D7s9YFCDfXhIKhsPwYD1CUxRNvq_Db4BrxSNhQ
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3419904
crossref_primary_10_3390_electronics12122599
crossref_primary_10_3390_s23136095
crossref_primary_10_1109_TNSE_2024_3371434
crossref_primary_10_1016_j_iot_2024_101281
crossref_primary_10_1109_TMC_2024_3394568
crossref_primary_10_1016_j_adhoc_2023_103371
crossref_primary_10_1016_j_comnet_2024_110387
crossref_primary_10_1145_3712599
crossref_primary_10_3390_math11102376
crossref_primary_10_1016_j_compeleceng_2023_108581
crossref_primary_10_1109_TMC_2024_3384405
crossref_primary_10_1016_j_comnet_2024_110801
crossref_primary_10_1016_j_vehcom_2025_100900
crossref_primary_10_3390_rs15020429
crossref_primary_10_1109_ACCESS_2023_3241881
crossref_primary_10_3390_drones7040236
crossref_primary_10_1002_cav_2182
crossref_primary_10_1109_JIOT_2024_3441236
crossref_primary_10_3390_computers13030064
crossref_primary_10_1016_j_cosrev_2024_100656
crossref_primary_10_1016_j_comcom_2023_05_013
crossref_primary_10_1109_ACCESS_2023_3236801
crossref_primary_10_3390_su15097315
crossref_primary_10_1109_COMST_2023_3323344
crossref_primary_10_1016_j_comnet_2024_110575
crossref_primary_10_1145_3626566
Cites_doi 10.1016/j.adhoc.2004.03.004
10.1109/COMST.2015.2495297
10.1109/JIOT.2018.2880812
10.1109/TVT.2021.3074304
10.1109/TNSE.2021.3130251
10.1109/TGCN.2019.2926131
10.1109/JIOT.2019.2958975
10.1109/JIOT.2020.2964951
10.1109/TVT.2020.3014788
10.1109/TWC.2020.2964765
10.1109/LCOMM.2019.2947039
10.1109/TVT.2018.2890685
10.1109/TWC.2018.2794345
10.1109/ICCW.2018.8403572
10.1109/JIOT.2020.2968951
10.1109/COMST.2017.2745201
10.1109/TWC.2020.2970920
10.1109/TWC.2019.2935201
10.1109/JPROC.2011.2159690
10.1109/TVT.2020.3028011
10.1109/GLOBECOM42002.2020.9322269
10.1109/JPROC.2019.2918951
10.1109/JIOT.2020.3003398
10.1109/COMST.2017.2783901
10.1109/JSAC.2018.2864426
10.1109/TWC.2020.3019097
10.1109/MCOM.2008.4427231
10.1109/TNSE.2021.3066598
10.1109/JIOT.2020.3021006
10.1109/JIOT.2018.2851070
10.1109/TIE.2010.2046002
10.1109/TWC.2013.031813.120224
10.1109/MNET.011.2000651
10.1109/JSAC.2020.3018804
10.1109/COMST.2014.2368999
10.1109/GCWkshps50303.2020.9367493
10.1109/TGCN.2022.3157735
10.1109/ACCESS.2020.3036416
10.1109/TWC.2020.2971987
10.1109/TMC.2019.2928811
10.1109/JIOT.2021.3091508
10.1109/MNET.010.2100025
10.1002/wcm.344
10.1109/TCOMM.2020.2995373
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.comcom.2022.06.017
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-703X
EndPage 244
ExternalDocumentID 10_1016_j_comcom_2022_06_017
S0140366422002195
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
WH7
ZMT
~G-
07C
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
F0J
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SEW
SSH
TAE
UHS
VH1
VOH
WUQ
XPP
ZY4
ID FETCH-LOGICAL-c306t-b85d663e9d29d44ca12bec9f13ef5563a441dd73404efff4ce637717550b873e3
IEDL.DBID AIKHN
ISSN 0140-3664
IngestDate Tue Jul 01 02:43:08 EDT 2025
Thu Apr 24 23:03:57 EDT 2025
Fri Feb 23 02:40:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords MASAC
SWIPT
UAV
Multi-agent Markov game
Task offloading
Laser
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-b85d663e9d29d44ca12bec9f13ef5563a441dd73404efff4ce637717550b873e3
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_comcom_2022_06_017
crossref_primary_10_1016_j_comcom_2022_06_017
elsevier_sciencedirect_doi_10_1016_j_comcom_2022_06_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
2022-08-00
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Computer communications
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mao, You, Zhang, Huang, Letaief (b4) 2017; 19
Gupta, Jain, Vaszkun (b9) 2016; 18
Min, Xiao, Chen, Cheng, Wu, Zhuang (b26) 2019; 68
Senadhira, Durrani, Zhou, Yang, Ding (b10) 2020; 68
Yin, Zhao, Li, Yu (b40) 2019; 3
Lahmeri, Kishk, Alouini (b21) 2020; 24
Lu, Gu, Luo, Ding, Zheng, Shen (b42) 2020; 8
Hu, Wong, Zhang (b35) 2020; 19
Zhou, Wu, Hu, Qian (b32) 2018; 36
Sample, Meyer, Smith (b11) 2011; 58
Zhang, Fang, Liu, Wu, Xia, Yang (b20) 2018; 5
Lu, Wang, Niyato, Kim, Han (b14) 2015; 17
Zhao, Shi, Zhao (b22) 2020; 19
Y. Wang, L. Zhang, M. Min, C. Guo, V. Sharma, Z. Han, Privacy-aware wireless power transfer for aerial computation offloading via colonel blotto game, in: Proc. 2020 IEEE Globecom Workshops, 2020, pp. 1–6.
Cheng, Min, Liwang, Huang, Gao (b13) 2022; 9
Zhang, Mou, Gao, Jiang, Ding, Han (b44) 2020; 69
Sacco, Esposito, Marchetto, Montuschi (b12) 2021; 70
Ponnimbaduge Perera, Jayakody, Sharma, Chatzinotas, Li (b17) 2018; 20
Dong (b6) 2021; 35
H.-M. Chung, S. Maharjan, Y. Zhang, F. Eliassen, T. Yuan, Edge intelligence empowered UAVs for automated wind farm monitoring in smart grids, in: Proc. 2020 IEEE Globecom, 2020, pp. 1–6.
Du (b3) 2004; 2
Wang, Xu, Cui (b15) 2020; 19
Hu, Wong, Yang (b29) 2018; 17
Haarnoja, Zhou, Hartikainen, Tucker, Ha, Tan, Kumar, Zhu, Gupta, Abbeel (b41) 2018
Cheng, Gao, Liwang, Huang, Du, Guizani (b23) 2021; 35
K. Xiong, et al., Joint Optimization of Trajectory, Task Offloading and CPU Control in UAV-assisted Wireless Powered Fog Computing Networks, IEEE Trans. Green Commun.
Zhang, Ho (b16) 2013; 12
Zhang, Hanzo (b39) 2020; 69
Cao, Zhou, Li, Huang, Wu (b45) 2020; 7
Mohammed, Mehmood, Pavlidou, Mohorcic (b47) 2011; 99
Cai, Yang, Wang, Wu, Yang, Luo (b31) 2020; 7
.
Xiao, Leung, Pan, Du (b2) 2005; 5
Liu, Zhao, Qin, Geng, Meng (b37) 2022; 9
Jiang, Ma, Liu, Hu, Chen, Humar (b36) 2022; 9
Khairy, Balaprakash, Cai, Cheng (b8) 2021; 39
Liu, Nie, Li, Ahmed, Lim, Miao (b38) 2021; 8
Huang, Bi, Zhang (b30) 2020; 19
Zhou, Chen, Li, Zeng, Luo, Zhang (b5) 2019; 107
Zhou, Hu (b27) 2020; 19
Cui, Liu, Nallanathan (b46) 2020; 19
T. Haarnoja, et al. Soft actor-critic: off policy maximum entropy deep reinforcement learning with a stochastic actor, in Proc. ICML, 2018, 80 pp. 1861–1870.
Liu, Xiong, Ni, Fan, Letaief (b33) 2020; 7
J. Ouyang, Y. Che, J. Xu, K. Wu, Throughput maximization for laser-powered UAV wireless communication systems, in: Proc. 2018 ICC Workshops, 2018, pp. 1–6.
Yang, Ou, Chen (b1) 2008; 46
R. Lowe, Y. Wu, A. Tamar, J. Harb, O.P. Abbeel, I. Mordatch, Multi-agent actor-critic for mixed cooperative-competitive environments, in: Proc. 31st Int. Conf. Neural Inf. Process. Syst. 2017, pp. 6379–6390.
Fu, Kang, Zhang, Yu, Wu (b43) 2021; 8
Ji, Guo (b28) 2019; 6
Xiao (10.1016/j.comcom.2022.06.017_b2) 2005; 5
Dong (10.1016/j.comcom.2022.06.017_b6) 2021; 35
Sample (10.1016/j.comcom.2022.06.017_b11) 2011; 58
Cao (10.1016/j.comcom.2022.06.017_b45) 2020; 7
Yang (10.1016/j.comcom.2022.06.017_b1) 2008; 46
Min (10.1016/j.comcom.2022.06.017_b26) 2019; 68
Zhou (10.1016/j.comcom.2022.06.017_b5) 2019; 107
Ji (10.1016/j.comcom.2022.06.017_b28) 2019; 6
Hu (10.1016/j.comcom.2022.06.017_b29) 2018; 17
Lu (10.1016/j.comcom.2022.06.017_b14) 2015; 17
Liu (10.1016/j.comcom.2022.06.017_b33) 2020; 7
10.1016/j.comcom.2022.06.017_b25
Mohammed (10.1016/j.comcom.2022.06.017_b47) 2011; 99
10.1016/j.comcom.2022.06.017_b24
Cui (10.1016/j.comcom.2022.06.017_b46) 2020; 19
Zhao (10.1016/j.comcom.2022.06.017_b22) 2020; 19
Mao (10.1016/j.comcom.2022.06.017_b4) 2017; 19
Lahmeri (10.1016/j.comcom.2022.06.017_b21) 2020; 24
Zhang (10.1016/j.comcom.2022.06.017_b20) 2018; 5
Cai (10.1016/j.comcom.2022.06.017_b31) 2020; 7
Zhang (10.1016/j.comcom.2022.06.017_b44) 2020; 69
Sacco (10.1016/j.comcom.2022.06.017_b12) 2021; 70
Zhou (10.1016/j.comcom.2022.06.017_b27) 2020; 19
Haarnoja (10.1016/j.comcom.2022.06.017_b41) 2018
Liu (10.1016/j.comcom.2022.06.017_b37) 2022; 9
Yin (10.1016/j.comcom.2022.06.017_b40) 2019; 3
Zhang (10.1016/j.comcom.2022.06.017_b16) 2013; 12
Ponnimbaduge Perera (10.1016/j.comcom.2022.06.017_b17) 2018; 20
Senadhira (10.1016/j.comcom.2022.06.017_b10) 2020; 68
Zhou (10.1016/j.comcom.2022.06.017_b32) 2018; 36
Du (10.1016/j.comcom.2022.06.017_b3) 2004; 2
Gupta (10.1016/j.comcom.2022.06.017_b9) 2016; 18
Cheng (10.1016/j.comcom.2022.06.017_b13) 2022; 9
10.1016/j.comcom.2022.06.017_b7
10.1016/j.comcom.2022.06.017_b34
Hu (10.1016/j.comcom.2022.06.017_b35) 2020; 19
Wang (10.1016/j.comcom.2022.06.017_b15) 2020; 19
Jiang (10.1016/j.comcom.2022.06.017_b36) 2022; 9
Liu (10.1016/j.comcom.2022.06.017_b38) 2021; 8
Huang (10.1016/j.comcom.2022.06.017_b30) 2020; 19
Zhang (10.1016/j.comcom.2022.06.017_b39) 2020; 69
Lu (10.1016/j.comcom.2022.06.017_b42) 2020; 8
Fu (10.1016/j.comcom.2022.06.017_b43) 2021; 8
Khairy (10.1016/j.comcom.2022.06.017_b8) 2021; 39
Cheng (10.1016/j.comcom.2022.06.017_b23) 2021; 35
10.1016/j.comcom.2022.06.017_b18
10.1016/j.comcom.2022.06.017_b19
References_xml – volume: 46
  start-page: 56
  year: 2008
  end-page: 63
  ident: b1
  article-title: On effective offloading services for resource-constrained mobile devices running heavier mobile internet applications
  publication-title: IEEE Commun. Mag.
– volume: 19
  start-page: 3170
  year: 2020
  end-page: 3184
  ident: b27
  article-title: Computation efficiency maximization in wireless-powered mobile edge computing networks
  publication-title: IEEE Trans. Wireless Commun.
– volume: 68
  start-page: 1930
  year: 2019
  end-page: 1941
  ident: b26
  article-title: Learning-based computation offloading for IoT devices with energy harvesting
  publication-title: IEEE Trans. Veh. Technol.
– volume: 12
  start-page: 1989
  year: 2013
  end-page: 2001
  ident: b16
  article-title: MIMO broadcasting for simultaneous wireless information and power transfer
  publication-title: IEEE Trans. Wireless Commun.
– volume: 69
  start-page: 11599
  year: 2020
  end-page: 11611
  ident: b44
  article-title: Uav-enabled secure communications by multi-agent deep reinforcement learning
  publication-title: IEEE Trans. Veh. Technol.
– volume: 99
  start-page: 1939
  year: 2011
  end-page: 1953
  ident: b47
  article-title: The role of high-altitude platforms (HAPs) in the global wireless connectivity
  publication-title: Proc. IEEE
– reference: Y. Wang, L. Zhang, M. Min, C. Guo, V. Sharma, Z. Han, Privacy-aware wireless power transfer for aerial computation offloading via colonel blotto game, in: Proc. 2020 IEEE Globecom Workshops, 2020, pp. 1–6.
– volume: 36
  start-page: 1927
  year: 2018
  end-page: 1941
  ident: b32
  article-title: Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems
  publication-title: IEEE J. Sel. Areas Commun.
– year: 2018
  ident: b41
  article-title: Soft actor-critic algorithms and applications
– volume: 39
  start-page: 1101
  year: 2021
  end-page: 1115
  ident: b8
  article-title: Constrained deep reinforcement learning for energy sustainable multi-UAV based random access IoT networks with NOMA
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 68
  start-page: 5242
  year: 2020
  end-page: 5258
  ident: b10
  article-title: Uplink NOMA for cellular-connected UAV: Impact of UAV trajectories and altitude
  publication-title: IEEE Trans. Commun.
– volume: 9
  start-page: 104
  year: 2022
  end-page: 116
  ident: b13
  article-title: Multiagent DDPG-based joint task partitioning and power control in fog computing networks
  publication-title: IEEE Internet Things J.
– volume: 58
  start-page: 544
  year: 2011
  end-page: 554
  ident: b11
  article-title: Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer
  publication-title: IEEE Trans. Ind. Electron.
– volume: 19
  start-page: 2322
  year: 2017
  end-page: 2358
  ident: b4
  article-title: A survey on mobile edge computing: The communication perspective
  publication-title: IEEE Commun. Surv. Tutorials
– reference: K. Xiong, et al., Joint Optimization of Trajectory, Task Offloading and CPU Control in UAV-assisted Wireless Powered Fog Computing Networks, IEEE Trans. Green Commun.
– volume: 70
  start-page: 5003
  year: 2021
  end-page: 5015
  ident: b12
  article-title: Sustainable task offloading in UAV networks via multi-agent reinforcement learning
  publication-title: IEEE Trans. Veh. Technol.
– reference: H.-M. Chung, S. Maharjan, Y. Zhang, F. Eliassen, T. Yuan, Edge intelligence empowered UAVs for automated wind farm monitoring in smart grids, in: Proc. 2020 IEEE Globecom, 2020, pp. 1–6.
– volume: 8
  start-page: 1308
  year: 2021
  end-page: 1321
  ident: b43
  article-title: Soft actor-critic DRL for live transcoding and streaming in vehicular fog computing-enabled IoV
  publication-title: IEEE Internet Things J.
– volume: 5
  start-page: 3853
  year: 2018
  end-page: 3864
  ident: b20
  article-title: Distributed laser charging: A wireless power transfer approach
  publication-title: IEEE Internet Things J.
– volume: 7
  start-page: 2777
  year: 2020
  end-page: 2790
  ident: b33
  article-title: Uav-assisted wireless powered cooperative mobile edge computing: Joint offloading, CPU control, and trajectory optimization
  publication-title: IEEE Internet Things J.
– volume: 35
  start-page: 42
  year: 2021
  end-page: 49
  ident: b23
  article-title: Intelligent task offloading and energy allocation in the UAV-aided mobile edge-cloud continuum
  publication-title: IEEE Netw.
– volume: 17
  start-page: 757
  year: 2015
  end-page: 789
  ident: b14
  article-title: Wireless networks with RF energy harvesting: A contemporary survey
  publication-title: IEEE Commun. Surv. Tutorials
– volume: 9
  start-page: 299
  year: 2022
  end-page: 309
  ident: b36
  article-title: MER-WearNet: Medical-emergency response wearable networking powered by UAV-assisted computing offloading and WPT
  publication-title: IEEE Trans. Network Sci. Eng.
– volume: 19
  start-page: 729
  year: 2020
  end-page: 743
  ident: b46
  article-title: Multi-agent reinforcement learning-based resource allocation for UAV networks
  publication-title: IEEE Trans. Wirel. Commun.
– reference: R. Lowe, Y. Wu, A. Tamar, J. Harb, O.P. Abbeel, I. Mordatch, Multi-agent actor-critic for mixed cooperative-competitive environments, in: Proc. 31st Int. Conf. Neural Inf. Process. Syst. 2017, pp. 6379–6390.
– volume: 69
  start-page: 14104
  year: 2020
  end-page: 14109
  ident: b39
  article-title: Federated learning assisted multi-UAV networks
  publication-title: IEEE Trans. Veh. Technol.
– volume: 20
  start-page: 264
  year: 2018
  end-page: 302
  ident: b17
  article-title: Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges
  publication-title: IEEE Commun. Surv. Tutorials
– volume: 2
  start-page: 241
  year: 2004
  end-page: 254
  ident: b3
  article-title: Qos routing based on multi-class nodes for mobile ad hoc networks
  publication-title: Ad Hoc Netw.
– volume: 19
  start-page: 3257
  year: 2020
  end-page: 3272
  ident: b22
  article-title: Efficiency maximization for UAV-enabled mobile relaying systems with laser charging
  publication-title: IEEE Trans. Wireless Commun.
– volume: 107
  start-page: 1738
  year: 2019
  end-page: 1762
  ident: b5
  article-title: Edge intelligence: Paving the last mile of artificial intelligence with edge computing
  publication-title: Proc. IEEE
– volume: 9
  start-page: 660
  year: 2022
  end-page: 677
  ident: b37
  article-title: Joint dynamic task offloading and resource scheduling for WPT enabled space-air-ground power internet of things
  publication-title: IEEE Trans. Network Sci. Eng.
– volume: 7
  start-page: 6201
  year: 2020
  end-page: 6213
  ident: b45
  article-title: Multiagent deep reinforcement learning for joint multichannel access and task offloading of mobile-edge computing in industry 4.0
  publication-title: IEEE Internet Things J.
– reference: J. Ouyang, Y. Che, J. Xu, K. Wu, Throughput maximization for laser-powered UAV wireless communication systems, in: Proc. 2018 ICC Workshops, 2018, pp. 1–6.
– volume: 19
  start-page: 2443
  year: 2020
  end-page: 2459
  ident: b15
  article-title: Optimal energy allocation and task offloading policy for wireless powered mobile edge computing systems
  publication-title: IEEE Trans. Wireless Commun.
– reference: .
– volume: 8
  start-page: 9827
  year: 2021
  end-page: 9837
  ident: b38
  article-title: Federated learning in the sky: Aerial-ground air quality sensing framework with UAV swarms
  publication-title: IEEE Internet Things J.
– volume: 6
  start-page: 4744
  year: 2019
  end-page: 4754
  ident: b28
  article-title: Energy-efficient cooperative resource allocation in wireless powered mobile edge computing
  publication-title: IEEE Internet Things J.
– volume: 17
  start-page: 2375
  year: 2018
  end-page: 2388
  ident: b29
  article-title: Wireless powered cooperation-assisted mobile edge computing
  publication-title: IEEE Trans. Wireless Commun.
– volume: 18
  start-page: 1123
  year: 2016
  end-page: 1152
  ident: b9
  article-title: Survey of important issues in UAV communication networks
  publication-title: IEEE Commun. Surv. Tutorials
– volume: 7
  start-page: 3067
  year: 2020
  end-page: 3082
  ident: b31
  article-title: JOTE: Joint offloading of tasks and energy in fog-enabled IoT networks
  publication-title: IEEE Internet Things J.
– volume: 24
  start-page: 173
  year: 2020
  end-page: 177
  ident: b21
  article-title: Stochastic geometry-based analysis of airborne base stations with laser-powered UAVs
  publication-title: IEEE Commun. Lett.
– reference: T. Haarnoja, et al. Soft actor-critic: off policy maximum entropy deep reinforcement learning with a stochastic actor, in Proc. ICML, 2018, 80 pp. 1861–1870.
– volume: 19
  start-page: 8083
  year: 2020
  end-page: 8098
  ident: b35
  article-title: Wireless-powered edge computing with cooperative UAV: Task, time scheduling and trajectory design
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 5
  start-page: 805
  year: 2005
  end-page: 823
  ident: b2
  article-title: Architecture, mobility management and quality of service for integrated 3G and WLAN networks
  publication-title: Wirel. Commun. Mob. Comput.
– volume: 19
  start-page: 2581
  year: 2020
  end-page: 2593
  ident: b30
  article-title: Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks
  publication-title: IEEE Trans. Mob. Comput.
– volume: 8
  year: 2020
  ident: b42
  article-title: Optimization of task offloading strategy for mobile edge computing based on multi-agent deep reinforcement learning
  publication-title: IEEE Access
– volume: 3
  start-page: 1044
  year: 2019
  end-page: 1057
  ident: b40
  article-title: UAV-assisted cooperative communications with power-splitting information and power transfer
  publication-title: IEEE Trans. Green Commun. Netw.
– volume: 35
  start-page: 167
  year: 2021
  end-page: 175
  ident: b6
  article-title: UAVs as an intelligent service: Boosting edge intelligence for air-ground integrated networks
  publication-title: IEEE Netw.
– volume: 2
  start-page: 241
  issue: 3
  year: 2004
  ident: 10.1016/j.comcom.2022.06.017_b3
  article-title: Qos routing based on multi-class nodes for mobile ad hoc networks
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2004.03.004
– ident: 10.1016/j.comcom.2022.06.017_b24
– volume: 18
  start-page: 1123
  issue: 2
  year: 2016
  ident: 10.1016/j.comcom.2022.06.017_b9
  article-title: Survey of important issues in UAV communication networks
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2015.2495297
– volume: 6
  start-page: 4744
  issue: 3
  year: 2019
  ident: 10.1016/j.comcom.2022.06.017_b28
  article-title: Energy-efficient cooperative resource allocation in wireless powered mobile edge computing
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2880812
– volume: 70
  start-page: 5003
  issue: 5
  year: 2021
  ident: 10.1016/j.comcom.2022.06.017_b12
  article-title: Sustainable task offloading in UAV networks via multi-agent reinforcement learning
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3074304
– volume: 9
  start-page: 660
  issue: 2
  year: 2022
  ident: 10.1016/j.comcom.2022.06.017_b37
  article-title: Joint dynamic task offloading and resource scheduling for WPT enabled space-air-ground power internet of things
  publication-title: IEEE Trans. Network Sci. Eng.
  doi: 10.1109/TNSE.2021.3130251
– volume: 3
  start-page: 1044
  issue: 4
  year: 2019
  ident: 10.1016/j.comcom.2022.06.017_b40
  article-title: UAV-assisted cooperative communications with power-splitting information and power transfer
  publication-title: IEEE Trans. Green Commun. Netw.
  doi: 10.1109/TGCN.2019.2926131
– volume: 7
  start-page: 2777
  issue: 4
  year: 2020
  ident: 10.1016/j.comcom.2022.06.017_b33
  article-title: Uav-assisted wireless powered cooperative mobile edge computing: Joint offloading, CPU control, and trajectory optimization
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2958975
– volume: 7
  start-page: 3067
  issue: 4
  year: 2020
  ident: 10.1016/j.comcom.2022.06.017_b31
  article-title: JOTE: Joint offloading of tasks and energy in fog-enabled IoT networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2964951
– volume: 69
  start-page: 11599
  issue: 10
  year: 2020
  ident: 10.1016/j.comcom.2022.06.017_b44
  article-title: Uav-enabled secure communications by multi-agent deep reinforcement learning
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3014788
– volume: 19
  start-page: 2443
  issue: 4
  year: 2020
  ident: 10.1016/j.comcom.2022.06.017_b15
  article-title: Optimal energy allocation and task offloading policy for wireless powered mobile edge computing systems
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2020.2964765
– volume: 24
  start-page: 173
  issue: 1
  year: 2020
  ident: 10.1016/j.comcom.2022.06.017_b21
  article-title: Stochastic geometry-based analysis of airborne base stations with laser-powered UAVs
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2019.2947039
– volume: 68
  start-page: 1930
  issue: 2
  year: 2019
  ident: 10.1016/j.comcom.2022.06.017_b26
  article-title: Learning-based computation offloading for IoT devices with energy harvesting
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2890685
– volume: 17
  start-page: 2375
  issue: 4
  year: 2018
  ident: 10.1016/j.comcom.2022.06.017_b29
  article-title: Wireless powered cooperation-assisted mobile edge computing
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2018.2794345
– ident: 10.1016/j.comcom.2022.06.017_b19
  doi: 10.1109/ICCW.2018.8403572
– volume: 7
  start-page: 6201
  issue: 7
  year: 2020
  ident: 10.1016/j.comcom.2022.06.017_b45
  article-title: Multiagent deep reinforcement learning for joint multichannel access and task offloading of mobile-edge computing in industry 4.0
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2968951
– volume: 19
  start-page: 2322
  issue: 4
  year: 2017
  ident: 10.1016/j.comcom.2022.06.017_b4
  article-title: A survey on mobile edge computing: The communication perspective
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2017.2745201
– volume: 19
  start-page: 3170
  issue: 5
  year: 2020
  ident: 10.1016/j.comcom.2022.06.017_b27
  article-title: Computation efficiency maximization in wireless-powered mobile edge computing networks
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2020.2970920
– volume: 19
  start-page: 729
  issue: 2
  year: 2020
  ident: 10.1016/j.comcom.2022.06.017_b46
  article-title: Multi-agent reinforcement learning-based resource allocation for UAV networks
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2019.2935201
– volume: 99
  start-page: 1939
  issue: 11
  year: 2011
  ident: 10.1016/j.comcom.2022.06.017_b47
  article-title: The role of high-altitude platforms (HAPs) in the global wireless connectivity
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2011.2159690
– volume: 69
  start-page: 14104
  issue: 11
  year: 2020
  ident: 10.1016/j.comcom.2022.06.017_b39
  article-title: Federated learning assisted multi-UAV networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3028011
– ident: 10.1016/j.comcom.2022.06.017_b7
  doi: 10.1109/GLOBECOM42002.2020.9322269
– volume: 107
  start-page: 1738
  issue: 8
  year: 2019
  ident: 10.1016/j.comcom.2022.06.017_b5
  article-title: Edge intelligence: Paving the last mile of artificial intelligence with edge computing
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2019.2918951
– volume: 8
  start-page: 1308
  issue: 3
  year: 2021
  ident: 10.1016/j.comcom.2022.06.017_b43
  article-title: Soft actor-critic DRL for live transcoding and streaming in vehicular fog computing-enabled IoV
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3003398
– volume: 20
  start-page: 264
  issue: 1
  year: 2018
  ident: 10.1016/j.comcom.2022.06.017_b17
  article-title: Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2017.2783901
– year: 2018
  ident: 10.1016/j.comcom.2022.06.017_b41
– volume: 36
  start-page: 1927
  issue: 9
  year: 2018
  ident: 10.1016/j.comcom.2022.06.017_b32
  article-title: Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2018.2864426
– volume: 19
  start-page: 8083
  issue: 12
  year: 2020
  ident: 10.1016/j.comcom.2022.06.017_b35
  article-title: Wireless-powered edge computing with cooperative UAV: Task, time scheduling and trajectory design
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2020.3019097
– ident: 10.1016/j.comcom.2022.06.017_b25
– volume: 46
  start-page: 56
  issue: 1
  year: 2008
  ident: 10.1016/j.comcom.2022.06.017_b1
  article-title: On effective offloading services for resource-constrained mobile devices running heavier mobile internet applications
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2008.4427231
– volume: 9
  start-page: 299
  issue: 1
  year: 2022
  ident: 10.1016/j.comcom.2022.06.017_b36
  article-title: MER-WearNet: Medical-emergency response wearable networking powered by UAV-assisted computing offloading and WPT
  publication-title: IEEE Trans. Network Sci. Eng.
  doi: 10.1109/TNSE.2021.3066598
– volume: 8
  start-page: 9827
  issue: 12
  year: 2021
  ident: 10.1016/j.comcom.2022.06.017_b38
  article-title: Federated learning in the sky: Aerial-ground air quality sensing framework with UAV swarms
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3021006
– volume: 5
  start-page: 3853
  issue: 5
  year: 2018
  ident: 10.1016/j.comcom.2022.06.017_b20
  article-title: Distributed laser charging: A wireless power transfer approach
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2851070
– volume: 58
  start-page: 544
  issue: 2
  year: 2011
  ident: 10.1016/j.comcom.2022.06.017_b11
  article-title: Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2010.2046002
– volume: 12
  start-page: 1989
  issue: 5
  year: 2013
  ident: 10.1016/j.comcom.2022.06.017_b16
  article-title: MIMO broadcasting for simultaneous wireless information and power transfer
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2013.031813.120224
– volume: 35
  start-page: 167
  issue: 4
  year: 2021
  ident: 10.1016/j.comcom.2022.06.017_b6
  article-title: UAVs as an intelligent service: Boosting edge intelligence for air-ground integrated networks
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.011.2000651
– volume: 39
  start-page: 1101
  issue: 4
  year: 2021
  ident: 10.1016/j.comcom.2022.06.017_b8
  article-title: Constrained deep reinforcement learning for energy sustainable multi-UAV based random access IoT networks with NOMA
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2020.3018804
– volume: 17
  start-page: 757
  issue: 2
  year: 2015
  ident: 10.1016/j.comcom.2022.06.017_b14
  article-title: Wireless networks with RF energy harvesting: A contemporary survey
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2014.2368999
– ident: 10.1016/j.comcom.2022.06.017_b18
  doi: 10.1109/GCWkshps50303.2020.9367493
– ident: 10.1016/j.comcom.2022.06.017_b34
  doi: 10.1109/TGCN.2022.3157735
– volume: 8
  year: 2020
  ident: 10.1016/j.comcom.2022.06.017_b42
  article-title: Optimization of task offloading strategy for mobile edge computing based on multi-agent deep reinforcement learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3036416
– volume: 19
  start-page: 3257
  issue: 5
  year: 2020
  ident: 10.1016/j.comcom.2022.06.017_b22
  article-title: Efficiency maximization for UAV-enabled mobile relaying systems with laser charging
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2020.2971987
– volume: 19
  start-page: 2581
  issue: 11
  year: 2020
  ident: 10.1016/j.comcom.2022.06.017_b30
  article-title: Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2019.2928811
– volume: 9
  start-page: 104
  issue: 1
  year: 2022
  ident: 10.1016/j.comcom.2022.06.017_b13
  article-title: Multiagent DDPG-based joint task partitioning and power control in fog computing networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3091508
– volume: 35
  start-page: 42
  issue: 5
  year: 2021
  ident: 10.1016/j.comcom.2022.06.017_b23
  article-title: Intelligent task offloading and energy allocation in the UAV-aided mobile edge-cloud continuum
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.010.2100025
– volume: 5
  start-page: 805
  issue: 7
  year: 2005
  ident: 10.1016/j.comcom.2022.06.017_b2
  article-title: Architecture, mobility management and quality of service for integrated 3G and WLAN networks
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1002/wcm.344
– volume: 68
  start-page: 5242
  issue: 8
  year: 2020
  ident: 10.1016/j.comcom.2022.06.017_b10
  article-title: Uplink NOMA for cellular-connected UAV: Impact of UAV trajectories and altitude
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2020.2995373
SSID ssj0004773
Score 2.511566
Snippet Edge networks are expected to play an important role in 6G where machine learning-based methods are widely applied, which promote the concept of Edge...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 234
SubjectTerms Laser
MASAC
Multi-agent Markov game
SWIPT
Task offloading
UAV
Title Deep reinforcement learning-based joint task and energy offloading in UAV-aided 6G intelligent edge networks
URI https://dx.doi.org/10.1016/j.comcom.2022.06.017
Volume 192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71scCAeIryqDywmjZxEidjVSgFRCeKukV-BaVUSdWGld-O7SSlSAgkxlg5Jzpb97C_-w7gSirqMm7QU-Zu3RCSYybCPo4CwZ0-EwHl5mjgaRKMp97DzJ81YFjXwhhYZWX7S5turXU10qu02Vumac_Ckkig42eLM4j8JrRdoj_Wgvbg_nE8-SqPpOVFs0EyGoG6gs7CvPT0Bjbial9miTxt57IfPNSW1xntw14VLqJB-UcH0FDZIexukQgeweJGqSVaKUuBKuxpH6p6Qbxi46QkmuepHizY-g2xTCJl6_1QniSL3ELoUZqh6eAFG7pIiYI7lG6IOgtkDtxQVqLF18cwHd0-D8e46qGAhU4GCsxDX-qgQkXSjaTnCea4etWixCEqMdxgTIdDUlLi9T2VJIknVECoTvF04sJDShQ5gVaWZ-oUUN9nfsQ97dCp9IigTLpK-aE2ATxQget2gNR6i0VFMG76XCziGkk2j0ttx0bbsQHUObQDeCO1LAk2_nif1ksSf9sosfYBv0qe_VvyHHbMU4n7u4BWsXpXlzoWKXgXmtcfTrfacZ9duN6N
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT4MwFMebOQ_qwfgzzp89eMUBLRSOy3RO3XbazG6ktMUwF1g2vPq321dAZ2I08QotIa_Ne6_tp9-H0LVUzOUx0FNwtg6C5BYXgW2FvogdmwufxbA1MBz5_Ql9nHrTBurWd2EAq6x8f-nTjbeunrQra7YXado2WBLxdf5sOIPQ20Cb1CMMuL6b9y_Og7LymBk4Rmhe358zkJf-OEAjro5kRsbT1C37IT6txZzeHtqtkkXcKf9nHzVUdoB21iQED9H8VqkFXiojgCrMXh-uKkG8WBCiJJ7lqX5Y8NUr5pnEytz2w3mSzHMD0OM0w5POswVikRL79zj9lOksMGy34axkxVdHaNK7G3f7VlVBwRJ6KVBYceBJnVKoULqhpFRwx9VjFiYOUQkog3GdDEnJCLWpSpKECuUTphd4etkSB4wocoyaWZ6pE4Rtj3thTHU4Z5ISwbh0lfIC7QBiX_mu20KktlskKnlxqHIxj2qObBaV1o7A2hHgdA5rIeuz16KU1_ijPauHJPo2TSIdAX7tefrvnldoqz8eDqLBw-jpDG3Dm5IAPEfNYvmmLnRWUsSXZtZ9AD4p31g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+reinforcement+learning-based+joint+task+and+energy+offloading+in+UAV-aided+6G+intelligent+edge+networks&rft.jtitle=Computer+communications&rft.au=Cheng%2C+Zhipeng&rft.au=Liwang%2C+Minghui&rft.au=Chen%2C+Ning&rft.au=Huang%2C+Lianfen&rft.date=2022-08-01&rft.issn=0140-3664&rft.volume=192&rft.spage=234&rft.epage=244&rft_id=info:doi/10.1016%2Fj.comcom.2022.06.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_comcom_2022_06_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon