Unveiling the underlying mechanism of nitrogen fixation by a new class of electrocatalysts two-dimensional TM@g-C4N3 monosheets

Four new electrocatalysts TM@g-C4N3 (TM = V, Tc, Os, Pt) of NRR obtained from high-throughput screening and first-principles calculations of 3d, 4d and 5d transition metal series. [Display omitted] •The hierarchical high-throughput screening method was developed and applied.•The most active catalyst...

Full description

Saved in:
Bibliographic Details
Published inApplied surface science Vol. 576; p. 151839
Main Authors Wang, Xiaolin, Yang, Li-Ming
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Four new electrocatalysts TM@g-C4N3 (TM = V, Tc, Os, Pt) of NRR obtained from high-throughput screening and first-principles calculations of 3d, 4d and 5d transition metal series. [Display omitted] •The hierarchical high-throughput screening method was developed and applied.•The most active catalyst is V@g-C4N3 with onset potential as low as -0.37 V.•ΔEads(*N2) can be an descriptor to characterize the activity of catalysts.•The evolution trend of catalytic activity is consistent with that of d-band center. The potential of TM atoms embedded g-C4N3 as a new class of electrocatalysts (TM@g-C4N3, TM = 3d, 4d and 5d transition metal) towards nitrogen reduction reaction (NRR) were systematically investigated through the combination of high-throughput screening and first-principles calculations. Among 30 candidate materials, TM@g-C4N3 (TM = V, Tc, Os, Pt) exhibited the highest activity for electrocatalytic N2 reduction to produce NH3. Particularly, V@g-C4N3 is identified as the most active catalyst for NRR with onset potential of −0.37 V. Interestingly, a volcano curve between Uonset (onset potential) and ΔEads(*N2) (the adsorption energy of N2) is established, and thus ΔEads(*N2) can be used as a descriptor to characterize the activity of catalysts. Among all investigated catalysts, the lowest onset potential of V@g-C4N3 can be attributed to its moderate adsorption energies for N2. After in-deep analysis of the intrinsic properties of the four catalysts, we found that the increasing order of catalytic activity is consistent with the increasing order of d-band center (εd) of the four catalysts. In addition, the excellent thermal stability of the four catalysts is verified via simulated annealing at 500 K for 10 ps. Furthermore, three catalysts TM@g-C4N3 (TM = V, Tc, Pt) demonstrate good selectivity. Therefore, V@g-C4N3 is a promising electrocatalyst for NRR. Our work opens the way for g-C4N3 as a new type of support to construct efficient single-atom catalyst for electrocatalytic ammonia synthesis. The predicted TM@g-C4N3 catalysts will provide useful guidance for experimental synthesis and rational design of catalysts in future.
AbstractList Four new electrocatalysts TM@g-C4N3 (TM = V, Tc, Os, Pt) of NRR obtained from high-throughput screening and first-principles calculations of 3d, 4d and 5d transition metal series. [Display omitted] •The hierarchical high-throughput screening method was developed and applied.•The most active catalyst is V@g-C4N3 with onset potential as low as -0.37 V.•ΔEads(*N2) can be an descriptor to characterize the activity of catalysts.•The evolution trend of catalytic activity is consistent with that of d-band center. The potential of TM atoms embedded g-C4N3 as a new class of electrocatalysts (TM@g-C4N3, TM = 3d, 4d and 5d transition metal) towards nitrogen reduction reaction (NRR) were systematically investigated through the combination of high-throughput screening and first-principles calculations. Among 30 candidate materials, TM@g-C4N3 (TM = V, Tc, Os, Pt) exhibited the highest activity for electrocatalytic N2 reduction to produce NH3. Particularly, V@g-C4N3 is identified as the most active catalyst for NRR with onset potential of −0.37 V. Interestingly, a volcano curve between Uonset (onset potential) and ΔEads(*N2) (the adsorption energy of N2) is established, and thus ΔEads(*N2) can be used as a descriptor to characterize the activity of catalysts. Among all investigated catalysts, the lowest onset potential of V@g-C4N3 can be attributed to its moderate adsorption energies for N2. After in-deep analysis of the intrinsic properties of the four catalysts, we found that the increasing order of catalytic activity is consistent with the increasing order of d-band center (εd) of the four catalysts. In addition, the excellent thermal stability of the four catalysts is verified via simulated annealing at 500 K for 10 ps. Furthermore, three catalysts TM@g-C4N3 (TM = V, Tc, Pt) demonstrate good selectivity. Therefore, V@g-C4N3 is a promising electrocatalyst for NRR. Our work opens the way for g-C4N3 as a new type of support to construct efficient single-atom catalyst for electrocatalytic ammonia synthesis. The predicted TM@g-C4N3 catalysts will provide useful guidance for experimental synthesis and rational design of catalysts in future.
ArticleNumber 151839
Author Yang, Li-Ming
Wang, Xiaolin
Author_xml – sequence: 1
  givenname: Xiaolin
  surname: Wang
  fullname: Wang, Xiaolin
– sequence: 2
  givenname: Li-Ming
  surname: Yang
  fullname: Yang, Li-Ming
  email: lmyang.uio@gmail.com, Lmyang@hust.edu.cn
BookMark eNqFkMtOwzAQRS0EEm3hD1j4B1L8iNOEBQJVvKQCm3ZtOc6kdZXYle22dMWvkxJWLGA1mpl7RpozRKfWWUDoipIxJTS7Xo_VJmyDHjPC6JgKmvPiBA1oPuGJEHl6igZdrEhSztk5GoawJoSybjtAnwu7A9MYu8RxBXhrK_DN4di2oFfKmtBiV2NrondLsLg2HyoaZ3F5wApb2GPdqBCOGWhAdymtomoOIQYc9y6pTAs2dIBq8Pz1bplM0zeOW2ddWAHEcIHOatUEuPypI7R4fJhPn5PZ-9PL9H6WaE6ymJSiYLykTAjOylqkmpUlMF1Mcl12E0HyWogsh5xSkhZMZ0SVBWVVpdMCqqLiI5T2d7V3IXio5cabVvmDpEQeJcq17CXKo0TZS-ywm1-YNvFbQPTKNP_Btz0M3WM7A14GbcBqqIzvVMnKmb8PfAF77pS-
CitedBy_id crossref_primary_10_1039_D3CP03073C
crossref_primary_10_1021_acsami_3c00004
crossref_primary_10_1007_s40843_022_2222_6
crossref_primary_10_1016_j_coelec_2023_101404
crossref_primary_10_1039_D3MA00917C
crossref_primary_10_1007_s12274_023_5619_9
crossref_primary_10_1016_j_ijhydene_2023_09_298
crossref_primary_10_1021_acs_langmuir_4c00951
crossref_primary_10_1039_D2NJ04716K
crossref_primary_10_1021_acs_jpcc_4c04313
crossref_primary_10_1016_j_cplett_2024_141284
crossref_primary_10_1021_acs_jpcc_4c02531
crossref_primary_10_1039_D1RA08572G
crossref_primary_10_1039_D1TA11024A
crossref_primary_10_1007_s40843_023_2805_y
crossref_primary_10_1039_D2NJ01497A
crossref_primary_10_1016_j_mcat_2023_113031
crossref_primary_10_1007_s12598_024_03151_4
crossref_primary_10_1039_D1NR08466F
crossref_primary_10_1021_acsmaterialslett_3c01604
crossref_primary_10_1016_j_mcat_2022_112327
crossref_primary_10_1039_D2NR02796H
crossref_primary_10_1039_D3CP04249A
crossref_primary_10_1039_D3NR00286A
crossref_primary_10_1021_acsami_4c11523
crossref_primary_10_1016_j_diamond_2024_110849
crossref_primary_10_1016_j_apsusc_2024_162055
crossref_primary_10_1016_j_chemphys_2023_111837
crossref_primary_10_1039_D3CS01130E
crossref_primary_10_1021_acsami_4c13025
crossref_primary_10_1002_eem2_12888
crossref_primary_10_1039_D4MA00732H
crossref_primary_10_1021_acs_jpcc_2c00312
crossref_primary_10_1016_j_apsusc_2024_161648
crossref_primary_10_1063_5_0112520
crossref_primary_10_1063_5_0107095
crossref_primary_10_1039_D2NH00451H
crossref_primary_10_2139_ssrn_4125798
crossref_primary_10_1016_j_jhazmat_2022_129608
crossref_primary_10_1002_sstr_202200306
crossref_primary_10_1016_j_apsusc_2022_154828
crossref_primary_10_1016_j_jcis_2024_06_231
crossref_primary_10_1021_acsami_1c23643
crossref_primary_10_1007_s40843_021_1950_0
crossref_primary_10_1016_j_cjche_2023_03_009
crossref_primary_10_1021_acscatal_2c02629
crossref_primary_10_1016_j_mcat_2022_112862
crossref_primary_10_1039_D4TA03424D
crossref_primary_10_1016_j_apsusc_2022_154069
crossref_primary_10_1016_j_mcat_2024_113879
crossref_primary_10_1039_D3TA07452H
crossref_primary_10_1007_s12598_024_02836_0
crossref_primary_10_1021_acsami_4c01342
crossref_primary_10_1016_j_apsusc_2023_158959
Cites_doi 10.1016/j.crcon.2018.06.004
10.1016/j.commatsci.2005.04.010
10.1016/j.cjph.2018.12.019
10.1063/1.3382344
10.1039/C8TA04064H
10.1002/anie.201305812
10.1021/ja513209c
10.1002/adfm.202000768
10.1021/acsami.1c06368
10.1088/2053-1591/ab07f2
10.1021/jacs.8b13075
10.1021/acs.chemrev.9b00659
10.1007/s12274-018-1987-y
10.1039/c0ee00071j
10.1038/22672
10.1103/PhysRevB.47.558
10.1002/cssc.201500322
10.1039/D0CP00722F
10.1016/j.rinp.2021.104010
10.1021/jacs.9b03811
10.1002/smtd.201800376
10.1021/acsami.0c18472
10.1103/PhysRevB.59.1758
10.1088/2053-1591/aae1c1
10.1002/cber.19110440303
10.1021/acs.jpcc.8b11696
10.1063/1.447334
10.1126/science.aar6611
10.1002/aenm.201800369
10.1038/s41570-018-0010-1
10.1016/S1872-2067(14)60118-2
10.7240/marufbd.399357
10.1002/adma.201604799
10.1021/acsami.0c20553
10.1016/j.physe.2021.114751
10.1016/j.physleta.2017.09.026
10.1021/acscatal.8b00905
10.1021/acsami.1c06414
10.1016/j.cap.2016.04.019
10.1103/PhysRevB.13.5188
10.1002/adma.200903403
10.1016/S1872-2067(17)62839-0
10.1016/j.mcat.2019.110705
10.1126/science.aaq1684
10.1038/ngeo325
10.1103/PhysRevLett.77.3865
10.1126/science.1136674
10.1007/s12274-018-2268-5
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apsusc.2021.151839
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5584
ExternalDocumentID 10_1016_j_apsusc_2021_151839
S0169433221028828
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SPG
SSK
SSM
SSQ
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
NDZJH
R2-
RIG
SEW
SSH
WUQ
ID FETCH-LOGICAL-c306t-b5923b125532bf54c2bbe2c978cb32b508f5568e8110492c60ab912ddc49ed9d3
IEDL.DBID .~1
ISSN 0169-4332
IngestDate Thu Apr 24 23:13:11 EDT 2025
Tue Jul 01 01:40:23 EDT 2025
Fri Feb 23 02:41:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords High-throughput screening
First-principles calculations
Single-atom catalysts
Electrocatalytic nitrogen reduction reaction
Two-dimensional TM@g-C4N3 monosheets
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-b5923b125532bf54c2bbe2c978cb32b508f5568e8110492c60ab912ddc49ed9d3
ParticipantIDs crossref_primary_10_1016_j_apsusc_2021_151839
crossref_citationtrail_10_1016_j_apsusc_2021_151839
elsevier_sciencedirect_doi_10_1016_j_apsusc_2021_151839
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
2022-02-00
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied surface science
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Abdullahi, Yoon (b0150) 2019; 57
Cao, Zheng (b0040) 2018; 11
Wang, Zhang, Deng, Bao (b0095) 2017; 38
Li, Feng, Sun, Ma, Tang, Dai (b0135) 2021; 23
Zhao, Xie, Chang, Zhang, Zhu, Tong, Wang, Luo, Wei, Wang, Sun (b0050) 2019; 1
Montoya, Tsai, Vojvodic, Nørskov (b0070) 2015; 8
Xue, Chen, Yan, Zhao, Hu, Zhang, Yang, Jin (b0075) 2019; 12
Chen, Crooks, Seefeldt, Bren, Bullock, Darensbourg, Holland, Hoffman, Janik, Jones, Kanatzidis, King, Lancaster, Lymar, Pfromm, Schneider, Schrock (b0030) 2018; 360
Abdullahi, Yoon, Mohammad (b0155) 2018; 5
Kresse, Joubert (b0185) 1999; 59
Liu (b0020) 2014; 35
Qing, Ghazfar, Jackowski, Habibzadeh, Ashtiani, Chen, Smith, Hamann (b0065) 2020; 120
Abdullahi, Yoon, Halim, Hashim, Mat Jafri, Leng (b0165) 2016; 16
Bao, Zhang, Meng, Zhong, Shi, Zhang, Yan, Jiang, Zhang (b0245) 2017; 29
Zhang, Guan (b0085) 2020; 30
Smil (b0005) 1999; 400
Sabatier (b0235) 1911; 44
Li, Feng, Ma, Tang, Ruan, Wang, Dai (b0130) 2021; 131
Galloway, Townsend, Erisman, Bekunda, Cai, Freney, Martinelli, Seitzinger, Sutton (b0010) 2008; 320
.
Kresse, Hafner (b0175) 1993; 47
Perdew, Burke, Ernzerhof (b0180) 1996; 77
Xu, Yang, Ganz (b0105) 2021; 13
Ling, Ouyang, Li, Bai, Mao, Du, Wang (b0225) 2019; 3
Lv, Huang, Li, Yang (b0100) 2021; 13
Grimme, Antony, Ehrlich, Krieg (b0190) 2010; 132
Choi, Back, Kim, Lim, Kim, Jung (b0230) 2018; 8
Zhu, Hu, Wei, Hua (b0250) 2019; 123
Abdullahi, Yoon, Lim (b0160) 2019; 6
Zhao, Song, Yang (b0115) 2021; 13
Wang, Smith, Zheng (b0045) 2018; 1
Kandemir, Schuster, Senyshyn, Behrens, Schlögl (b0025) 2013; 52
Yang, Bačić, Popov, Boldyrev, Heine, Frauenheim, Ganz (b0120) 2015; 137
Peterson, Abild-Pedersen, Studt, Rossmeisl, Nørskov (b0210) 2010; 3
Lee, Wang, Luo, Dai (b0170) 2010; 22
Computational Chemistry Comparison and Benchmark Database.
Huang, Li, Yang, Ganz (b0110) 2021; 13
Liu, Jiao, Zheng, Jaroniec, Qiao (b0220) 2019; 141
Nosé (b0205) 1984; 81
Wang, Li, Zhang (b0080) 2018; 2
Su, Ge, Dong, Hao, Chen (b0090) 2018; 6
Abdullahi, Leong, Halim, Hashim, Leng, Uebayashi (b0145) 2017; 381
Erisman, Sutton, Galloway, Klimont, Winiwarter (b0015) 2008; 1
Sarikurt, Ersan (b0140) 2018; 30
Monkhorst, Pack (b0195) 1976; 13
Légaré, Bélanger-Chabot, Dewhurst, Welz, Krummenacher, Engels, Braunschweig (b0240) 2018; 359
Cui, Tang, Zhang (b0035) 2018; 8
Feng, Tang, Chen, Wei, Ma, Dai (b0060) 2020; 483
Henkelman, Arnaldsson, Jónsson (b0200) 2006; 36
Feng, Tang, Chen, Li, Li, Ma, Dai (b0055) 2020; 22
Song, Zhou, Yang, Liao, Yang, Yang, Ganz (b0125) 2019; 141
Choi (10.1016/j.apsusc.2021.151839_b0230) 2018; 8
Kresse (10.1016/j.apsusc.2021.151839_b0185) 1999; 59
Wang (10.1016/j.apsusc.2021.151839_b0080) 2018; 2
Peterson (10.1016/j.apsusc.2021.151839_b0210) 2010; 3
Lv (10.1016/j.apsusc.2021.151839_b0100) 2021; 13
Nosé (10.1016/j.apsusc.2021.151839_b0205) 1984; 81
Smil (10.1016/j.apsusc.2021.151839_b0005) 1999; 400
Feng (10.1016/j.apsusc.2021.151839_b0055) 2020; 22
Abdullahi (10.1016/j.apsusc.2021.151839_b0165) 2016; 16
Sabatier (10.1016/j.apsusc.2021.151839_b0235) 1911; 44
Lee (10.1016/j.apsusc.2021.151839_b0170) 2010; 22
Xu (10.1016/j.apsusc.2021.151839_b0105) 2021; 13
Zhao (10.1016/j.apsusc.2021.151839_b0115) 2021; 13
Montoya (10.1016/j.apsusc.2021.151839_b0070) 2015; 8
Liu (10.1016/j.apsusc.2021.151839_b0020) 2014; 35
Abdullahi (10.1016/j.apsusc.2021.151839_b0160) 2019; 6
Cao (10.1016/j.apsusc.2021.151839_b0040) 2018; 11
Wang (10.1016/j.apsusc.2021.151839_b0095) 2017; 38
Abdullahi (10.1016/j.apsusc.2021.151839_b0150) 2019; 57
Zhu (10.1016/j.apsusc.2021.151839_b0250) 2019; 123
Li (10.1016/j.apsusc.2021.151839_b0130) 2021; 131
Song (10.1016/j.apsusc.2021.151839_b0125) 2019; 141
Cui (10.1016/j.apsusc.2021.151839_b0035) 2018; 8
10.1016/j.apsusc.2021.151839_b0215
Xue (10.1016/j.apsusc.2021.151839_b0075) 2019; 12
Abdullahi (10.1016/j.apsusc.2021.151839_b0145) 2017; 381
Abdullahi (10.1016/j.apsusc.2021.151839_b0155) 2018; 5
Chen (10.1016/j.apsusc.2021.151839_b0030) 2018; 360
Li (10.1016/j.apsusc.2021.151839_b0135) 2021; 23
Zhang (10.1016/j.apsusc.2021.151839_b0085) 2020; 30
Ling (10.1016/j.apsusc.2021.151839_b0225) 2019; 3
Huang (10.1016/j.apsusc.2021.151839_b0110) 2021; 13
Kandemir (10.1016/j.apsusc.2021.151839_b0025) 2013; 52
Bao (10.1016/j.apsusc.2021.151839_b0245) 2017; 29
Qing (10.1016/j.apsusc.2021.151839_b0065) 2020; 120
Su (10.1016/j.apsusc.2021.151839_b0090) 2018; 6
Galloway (10.1016/j.apsusc.2021.151839_b0010) 2008; 320
Feng (10.1016/j.apsusc.2021.151839_b0060) 2020; 483
Sarikurt (10.1016/j.apsusc.2021.151839_b0140) 2018; 30
Monkhorst (10.1016/j.apsusc.2021.151839_b0195) 1976; 13
Grimme (10.1016/j.apsusc.2021.151839_b0190) 2010; 132
Perdew (10.1016/j.apsusc.2021.151839_b0180) 1996; 77
Erisman (10.1016/j.apsusc.2021.151839_b0015) 2008; 1
Wang (10.1016/j.apsusc.2021.151839_b0045) 2018; 1
Yang (10.1016/j.apsusc.2021.151839_b0120) 2015; 137
Henkelman (10.1016/j.apsusc.2021.151839_b0200) 2006; 36
Légaré (10.1016/j.apsusc.2021.151839_b0240) 2018; 359
Kresse (10.1016/j.apsusc.2021.151839_b0175) 1993; 47
Zhao (10.1016/j.apsusc.2021.151839_b0050) 2019; 1
Liu (10.1016/j.apsusc.2021.151839_b0220) 2019; 141
References_xml – volume: 320
  start-page: 889
  year: 2008
  end-page: 892
  ident: b0010
  article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions
  publication-title: Science
– volume: 3
  start-page: 1800376
  year: 2019
  ident: b0225
  article-title: A General two-step strategy-based high-throughput screening of single atom catalysts for nitrogen fixation
  publication-title: Small Methods
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: b0180
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 16
  start-page: 809
  year: 2016
  end-page: 815
  ident: b0165
  article-title: Geometric and electric properties of graphitic carbon nitride sheet with embedded single manganese atom under bi-axial tensile strain
  publication-title: Curr. Appl Phys.
– volume: 23
  start-page: 104010
  year: 2021
  ident: b0135
  article-title: Electronic, thermoelectric, transport and optical properties of MoSe
  publication-title: Results Phys.
– volume: 137
  start-page: 2757
  year: 2015
  end-page: 2762
  ident: b0120
  article-title: Two-dimensional Cu
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1229
  year: 2019
  end-page: 1249
  ident: b0075
  article-title: Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: advances, challenges and perspectives
  publication-title: Nano Res.
– volume: 38
  start-page: 1443
  year: 2017
  ident: b0095
  article-title: Two-dimensional materials confining single atoms for catalysis
  publication-title: Chin. J. Catal.
– volume: 400
  year: 1999
  ident: b0005
  article-title: Detonator of the population explosion
  publication-title: Nature
– volume: 6
  start-page: 065603
  year: 2019
  ident: b0160
  article-title: Biogas detection on carbon nitride sheet with embedded Mn atom: dispersion-corrected density functional theory
  publication-title: Mater. Res. Express
– volume: 22
  start-page: 1004
  year: 2010
  end-page: 1007
  ident: b0170
  article-title: Fluidic carbon precursors for formation of functional carbon under ambient pressure based on ionic liquids
  publication-title: Adv. Mater.
– volume: 6
  start-page: 14025
  year: 2018
  end-page: 14042
  ident: b0090
  article-title: Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 636
  year: 2008
  end-page: 639
  ident: b0015
  article-title: How a century of ammonia synthesis changed the world
  publication-title: Nat. Geosci.
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: b0185
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 2180
  year: 2015
  end-page: 2186
  ident: b0070
  article-title: The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations
  publication-title: ChemSusChem
– volume: 131
  start-page: 114751
  year: 2021
  ident: b0130
  article-title: Band engineering of large scale graphene/hexagonal boron nitride in-plane heterostructure: role of the connecting angle
  publication-title: Physica E
– volume: 13
  start-page: 29641
  year: 2021
  end-page: 29653
  ident: b0100
  article-title: Electrocatalytic mechanism of N
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 125605
  year: 2018
  ident: b0155
  article-title: Selective hydrogen adsorption on a buckled carbon nitride sheet: first-principles calculation
  publication-title: Mater. Res. Express
– volume: 81
  start-page: 511
  year: 1984
  end-page: 519
  ident: b0205
  article-title: A unified formulation of the constant temperature molecular dynamics methods
  publication-title: J. Chem. Phys.
– volume: 44
  start-page: 1984
  year: 1911
  end-page: 2001
  ident: b0235
  article-title: Hydrogénations et déshydrogénations par catalyse
  publication-title: Ber. Dtsch. Chem. Ges.
– volume: 141
  start-page: 9664
  year: 2019
  end-page: 9672
  ident: b0220
  article-title: Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 154104
  year: 2010
  ident: b0190
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
  publication-title: J. Chem. Phys.
– volume: 35
  start-page: 1619
  year: 2014
  end-page: 1640
  ident: b0020
  article-title: Ammonia synthesis catalyst 100 years: practice, enlightenment and challenge
  publication-title: Chin. J. Catal.
– volume: 483
  start-page: 110705
  year: 2020
  ident: b0060
  article-title: O-doped graphdiyne as metal-free catalysts for nitrogen reduction reaction
  publication-title: Mol. Catal.
– volume: 30
  start-page: 383
  year: 2018
  end-page: 387
  ident: b0140
  article-title: Phononic stability analysis of two-dimensional carbon nitride monolayers
  publication-title: Marmara Fen Bilimleri Dergisi
– volume: 22
  start-page: 9216
  year: 2020
  end-page: 9224
  ident: b0055
  article-title: Graphdiyne coordinated transition metals as single-atom catalysts for nitrogen fixation
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  start-page: 65
  year: 2018
  end-page: 81
  ident: b0080
  article-title: Heterogeneous single-atom catalysis
  publication-title: Nat. Rev. Chem.
– volume: 52
  start-page: 12723
  year: 2013
  end-page: 12726
  ident: b0025
  article-title: The Haber-Bosch process revisited: on the real structure and stability of “ammonia iron” under working conditions
  publication-title: Angew. Chem. Int. Ed.
– volume: 381
  start-page: 3664
  year: 2017
  end-page: 3674
  ident: b0145
  article-title: Adsorption of atoms and molecules on s-triazine sheet with embedded manganese atom: first-principles calculations
  publication-title: Phys. Lett. A
– volume: 1
  start-page: 100011
  year: 2019
  ident: b0050
  article-title: Recent progress in the electrochemical ammonia synthesis under ambient conditions
  publication-title: J. Energy Chem.
– volume: 13
  start-page: 14091
  year: 2021
  end-page: 14101
  ident: b0105
  article-title: Electrocatalytic reduction of N
  publication-title: ACS Appl. Mater. Interfaces
– reference: Computational Chemistry Comparison and Benchmark Database.
– volume: 120
  start-page: 5437
  year: 2020
  end-page: 5516
  ident: b0065
  article-title: Recent advances and challenges of electrocatalytic N
  publication-title: Chem. Rev.
– volume: 141
  start-page: 3630
  year: 2019
  end-page: 3640
  ident: b0125
  article-title: Two-dimensional Anti-Van’t Hoff/Le Bel array AlB
  publication-title: J. Am. Chem. Soc.
– volume: 360
  start-page: 6611
  year: 2018
  ident: b0030
  article-title: Beyond fossil fuel-driven nitrogen transformations
  publication-title: Science
– volume: 30
  start-page: 2000768
  year: 2020
  ident: b0085
  article-title: Single-atom catalysts for electrocatalytic applications
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 608
  year: 2021
  end-page: 621
  ident: b0110
  article-title: Ammonia synthesis using single-atom catalysts based on two-dimensional organometallic metal phthalocyanine monolayers under ambient conditions
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 1604799
  year: 2017
  ident: b0245
  article-title: Electrochemical reduction of N
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1800369
  year: 2018
  ident: b0035
  article-title: A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 2
  year: 2018
  end-page: 31
  ident: b0045
  article-title: Electron-driven heterogeneous catalytic synthesis of ammonia: current states and perspective
  publication-title: Carbon Resour. Convers.
– volume: 123
  start-page: 4274
  year: 2019
  end-page: 4281
  ident: b0250
  article-title: Single-metal atom anchored on boron monolayer (β
  publication-title: J. Phys. Chem. C
– volume: 359
  start-page: 896
  year: 2018
  end-page: 900
  ident: b0240
  article-title: Nitrogen fixation and reduction at boron
  publication-title: Science
– volume: 3
  start-page: 1311
  year: 2010
  end-page: 1315
  ident: b0210
  article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
  publication-title: Energy Environ. Sci.
– volume: 47
  start-page: 558
  year: 1993
  end-page: 561
  ident: b0175
  article-title: Ab initio molecular dynamics for liquid metals
  publication-title: Phys. Rev. B
– reference: .
– volume: 57
  start-page: 1
  year: 2019
  end-page: 5
  ident: b0150
  article-title: Tuning the electronic and magnetic properties of Fe atom embedded heptazine sheet by atomic and molecular adsorption: first-principles calculations
  publication-title: Chin. J. Phys.
– volume: 36
  start-page: 354
  year: 2006
  end-page: 360
  ident: b0200
  article-title: A fast and robust algorithm for Bader decomposition of charge density
  publication-title: Comput. Mater. Sci.
– volume: 13
  start-page: 26109
  year: 2021
  end-page: 26122
  ident: b0115
  article-title: Two-dimensional single-atom catalyst TM
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 2992
  year: 2018
  end-page: 3008
  ident: b0040
  article-title: Aqueous electrocatalytic N
  publication-title: Nano Res.
– volume: 8
  start-page: 7517
  year: 2018
  end-page: 7525
  ident: b0230
  article-title: Suppression of hydrogen evolution reaction in electrochemical N
  publication-title: ACS Catal.
– volume: 13
  start-page: 5188
  year: 1976
  end-page: 5192
  ident: b0195
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
– volume: 1
  start-page: 2
  issue: 1
  year: 2018
  ident: 10.1016/j.apsusc.2021.151839_b0045
  article-title: Electron-driven heterogeneous catalytic synthesis of ammonia: current states and perspective
  publication-title: Carbon Resour. Convers.
  doi: 10.1016/j.crcon.2018.06.004
– volume: 36
  start-page: 354
  issue: 3
  year: 2006
  ident: 10.1016/j.apsusc.2021.151839_b0200
  article-title: A fast and robust algorithm for Bader decomposition of charge density
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2005.04.010
– ident: 10.1016/j.apsusc.2021.151839_b0215
– volume: 57
  start-page: 1
  year: 2019
  ident: 10.1016/j.apsusc.2021.151839_b0150
  article-title: Tuning the electronic and magnetic properties of Fe atom embedded heptazine sheet by atomic and molecular adsorption: first-principles calculations
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2018.12.019
– volume: 132
  start-page: 154104
  issue: 15
  year: 2010
  ident: 10.1016/j.apsusc.2021.151839_b0190
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 6
  start-page: 14025
  issue: 29
  year: 2018
  ident: 10.1016/j.apsusc.2021.151839_b0090
  article-title: Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA04064H
– volume: 52
  start-page: 12723
  issue: 48
  year: 2013
  ident: 10.1016/j.apsusc.2021.151839_b0025
  article-title: The Haber-Bosch process revisited: on the real structure and stability of “ammonia iron” under working conditions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201305812
– volume: 137
  start-page: 2757
  issue: 7
  year: 2015
  ident: 10.1016/j.apsusc.2021.151839_b0120
  article-title: Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja513209c
– volume: 30
  start-page: 2000768
  issue: 31
  year: 2020
  ident: 10.1016/j.apsusc.2021.151839_b0085
  article-title: Single-atom catalysts for electrocatalytic applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000768
– volume: 13
  start-page: 29641
  issue: 25
  year: 2021
  ident: 10.1016/j.apsusc.2021.151839_b0100
  article-title: Electrocatalytic mechanism of N2 reduction reaction by single-atom catalyst rectangular TM-TCNQ Monolayers
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c06368
– volume: 6
  start-page: 065603
  issue: 6
  year: 2019
  ident: 10.1016/j.apsusc.2021.151839_b0160
  article-title: Biogas detection on carbon nitride sheet with embedded Mn atom: dispersion-corrected density functional theory
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab07f2
– volume: 1
  start-page: 100011
  issue: 2
  year: 2019
  ident: 10.1016/j.apsusc.2021.151839_b0050
  article-title: Recent progress in the electrochemical ammonia synthesis under ambient conditions
  publication-title: J. Energy Chem.
– volume: 141
  start-page: 3630
  issue: 8
  year: 2019
  ident: 10.1016/j.apsusc.2021.151839_b0125
  article-title: Two-dimensional Anti-Van’t Hoff/Le Bel array AlB6 with high stability, unique motif, triple dirac cones, and superconductivity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13075
– volume: 120
  start-page: 5437
  issue: 12
  year: 2020
  ident: 10.1016/j.apsusc.2021.151839_b0065
  article-title: Recent advances and challenges of electrocatalytic N2 reduction to ammonia
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00659
– volume: 11
  start-page: 2992
  issue: 6
  year: 2018
  ident: 10.1016/j.apsusc.2021.151839_b0040
  article-title: Aqueous electrocatalytic N2 reduction under ambient conditions
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-1987-y
– volume: 3
  start-page: 1311
  issue: 9
  year: 2010
  ident: 10.1016/j.apsusc.2021.151839_b0210
  article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00071j
– volume: 400
  issue: 6743
  year: 1999
  ident: 10.1016/j.apsusc.2021.151839_b0005
  article-title: Detonator of the population explosion
  publication-title: Nature
  doi: 10.1038/22672
– volume: 47
  start-page: 558
  issue: 1
  year: 1993
  ident: 10.1016/j.apsusc.2021.151839_b0175
  article-title: Ab initio molecular dynamics for liquid metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 8
  start-page: 2180
  issue: 13
  year: 2015
  ident: 10.1016/j.apsusc.2021.151839_b0070
  article-title: The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201500322
– volume: 22
  start-page: 9216
  issue: 17
  year: 2020
  ident: 10.1016/j.apsusc.2021.151839_b0055
  article-title: Graphdiyne coordinated transition metals as single-atom catalysts for nitrogen fixation
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP00722F
– volume: 23
  start-page: 104010
  year: 2021
  ident: 10.1016/j.apsusc.2021.151839_b0135
  article-title: Electronic, thermoelectric, transport and optical properties of MoSe2/BAs van der Waals heterostructures
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2021.104010
– volume: 141
  start-page: 9664
  issue: 24
  year: 2019
  ident: 10.1016/j.apsusc.2021.151839_b0220
  article-title: Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03811
– volume: 3
  start-page: 1800376
  issue: 9
  year: 2019
  ident: 10.1016/j.apsusc.2021.151839_b0225
  article-title: A General two-step strategy-based high-throughput screening of single atom catalysts for nitrogen fixation
  publication-title: Small Methods
  doi: 10.1002/smtd.201800376
– volume: 13
  start-page: 608
  issue: 1
  year: 2021
  ident: 10.1016/j.apsusc.2021.151839_b0110
  article-title: Ammonia synthesis using single-atom catalysts based on two-dimensional organometallic metal phthalocyanine monolayers under ambient conditions
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c18472
– volume: 59
  start-page: 1758
  issue: 3
  year: 1999
  ident: 10.1016/j.apsusc.2021.151839_b0185
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 5
  start-page: 125605
  issue: 12
  year: 2018
  ident: 10.1016/j.apsusc.2021.151839_b0155
  article-title: Selective hydrogen adsorption on a buckled carbon nitride sheet: first-principles calculation
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aae1c1
– volume: 44
  start-page: 1984
  issue: 3
  year: 1911
  ident: 10.1016/j.apsusc.2021.151839_b0235
  article-title: Hydrogénations et déshydrogénations par catalyse
  publication-title: Ber. Dtsch. Chem. Ges.
  doi: 10.1002/cber.19110440303
– volume: 123
  start-page: 4274
  issue: 7
  year: 2019
  ident: 10.1016/j.apsusc.2021.151839_b0250
  article-title: Single-metal atom anchored on boron monolayer (β12) as an electrocatalyst for nitrogen reduction into ammonia at ambient conditions: a first-principles study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b11696
– volume: 81
  start-page: 511
  issue: 1
  year: 1984
  ident: 10.1016/j.apsusc.2021.151839_b0205
  article-title: A unified formulation of the constant temperature molecular dynamics methods
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447334
– volume: 360
  start-page: 6611
  issue: 6391
  year: 2018
  ident: 10.1016/j.apsusc.2021.151839_b0030
  article-title: Beyond fossil fuel-driven nitrogen transformations
  publication-title: Science
  doi: 10.1126/science.aar6611
– volume: 8
  start-page: 1800369
  issue: 22
  year: 2018
  ident: 10.1016/j.apsusc.2021.151839_b0035
  article-title: A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800369
– volume: 2
  start-page: 65
  issue: 6
  year: 2018
  ident: 10.1016/j.apsusc.2021.151839_b0080
  article-title: Heterogeneous single-atom catalysis
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0010-1
– volume: 35
  start-page: 1619
  issue: 10
  year: 2014
  ident: 10.1016/j.apsusc.2021.151839_b0020
  article-title: Ammonia synthesis catalyst 100 years: practice, enlightenment and challenge
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(14)60118-2
– volume: 30
  start-page: 383
  issue: 4
  year: 2018
  ident: 10.1016/j.apsusc.2021.151839_b0140
  article-title: Phononic stability analysis of two-dimensional carbon nitride monolayers
  publication-title: Marmara Fen Bilimleri Dergisi
  doi: 10.7240/marufbd.399357
– volume: 29
  start-page: 1604799
  issue: 3
  year: 2017
  ident: 10.1016/j.apsusc.2021.151839_b0245
  article-title: Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604799
– volume: 13
  start-page: 14091
  issue: 12
  year: 2021
  ident: 10.1016/j.apsusc.2021.151839_b0105
  article-title: Electrocatalytic reduction of N2 using metal-doped borophene
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c20553
– volume: 131
  start-page: 114751
  year: 2021
  ident: 10.1016/j.apsusc.2021.151839_b0130
  article-title: Band engineering of large scale graphene/hexagonal boron nitride in-plane heterostructure: role of the connecting angle
  publication-title: Physica E
  doi: 10.1016/j.physe.2021.114751
– volume: 381
  start-page: 3664
  issue: 43
  year: 2017
  ident: 10.1016/j.apsusc.2021.151839_b0145
  article-title: Adsorption of atoms and molecules on s-triazine sheet with embedded manganese atom: first-principles calculations
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2017.09.026
– volume: 8
  start-page: 7517
  issue: 8
  year: 2018
  ident: 10.1016/j.apsusc.2021.151839_b0230
  article-title: Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00905
– volume: 13
  start-page: 26109
  issue: 22
  year: 2021
  ident: 10.1016/j.apsusc.2021.151839_b0115
  article-title: Two-dimensional single-atom catalyst TM3(HAB)2 monolayers for electrocatalytic dinitrogen reduction using hierarchical high-throughput screening
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c06414
– volume: 16
  start-page: 809
  issue: 8
  year: 2016
  ident: 10.1016/j.apsusc.2021.151839_b0165
  article-title: Geometric and electric properties of graphitic carbon nitride sheet with embedded single manganese atom under bi-axial tensile strain
  publication-title: Curr. Appl Phys.
  doi: 10.1016/j.cap.2016.04.019
– volume: 13
  start-page: 5188
  issue: 12
  year: 1976
  ident: 10.1016/j.apsusc.2021.151839_b0195
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 22
  start-page: 1004
  issue: 9
  year: 2010
  ident: 10.1016/j.apsusc.2021.151839_b0170
  article-title: Fluidic carbon precursors for formation of functional carbon under ambient pressure based on ionic liquids
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903403
– volume: 38
  start-page: 1443
  issue: 9
  year: 2017
  ident: 10.1016/j.apsusc.2021.151839_b0095
  article-title: Two-dimensional materials confining single atoms for catalysis
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(17)62839-0
– volume: 483
  start-page: 110705
  year: 2020
  ident: 10.1016/j.apsusc.2021.151839_b0060
  article-title: O-doped graphdiyne as metal-free catalysts for nitrogen reduction reaction
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2019.110705
– volume: 359
  start-page: 896
  issue: 6378
  year: 2018
  ident: 10.1016/j.apsusc.2021.151839_b0240
  article-title: Nitrogen fixation and reduction at boron
  publication-title: Science
  doi: 10.1126/science.aaq1684
– volume: 1
  start-page: 636
  issue: 10
  year: 2008
  ident: 10.1016/j.apsusc.2021.151839_b0015
  article-title: How a century of ammonia synthesis changed the world
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo325
– volume: 77
  start-page: 3865
  issue: 18
  year: 1996
  ident: 10.1016/j.apsusc.2021.151839_b0180
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 320
  start-page: 889
  issue: 5878
  year: 2008
  ident: 10.1016/j.apsusc.2021.151839_b0010
  article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions
  publication-title: Science
  doi: 10.1126/science.1136674
– volume: 12
  start-page: 1229
  issue: 6
  year: 2019
  ident: 10.1016/j.apsusc.2021.151839_b0075
  article-title: Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: advances, challenges and perspectives
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2268-5
SSID ssj0012873
Score 2.5681543
Snippet Four new electrocatalysts TM@g-C4N3 (TM = V, Tc, Os, Pt) of NRR obtained from high-throughput screening and first-principles calculations of 3d, 4d and 5d...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 151839
SubjectTerms Electrocatalytic nitrogen reduction reaction
First-principles calculations
High-throughput screening
Single-atom catalysts
Two-dimensional TM@g-C4N3 monosheets
Title Unveiling the underlying mechanism of nitrogen fixation by a new class of electrocatalysts two-dimensional TM@g-C4N3 monosheets
URI https://dx.doi.org/10.1016/j.apsusc.2021.151839
Volume 576
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPvHNHrxuW3c3r5tSlKrYiy14C9nNrkbapDTx0Yv-dWfyKAqi4DXshrAzmfkmme8bQk6kNcblXDMbuVCgCBsxqGw5i63xIYG6vigtfTtw-yN5fe_ct0iv4cJgW2Ud-6uYXkbr-kqnPs3ONEk6d6gjgupbWLQATkTCr5Qeenn7fdHmAeG3-ssMi5EdxBv6XNnjFUElmqOQIT9tQ-rzcWT4T-npS8q5XCdrNVak59XjbJCWSTfJ6hcFwS3yMUpfTIKUcgpIjiIjbDZG5hKdGOT0JvmEZpbCezvLwFWoTd5KU1A1pxEFSE01wmdcUw_EKb_nzPMip8VrxmIU_6-EO-jw9uyB9eRAUHDdLH80psi3yejyYtjrs3qmAtNw6gVTDiA6BajGEVxZR2qulOEaakmt4ArANYuaZMYHWCADrt1upIJTHsdaBiYOYrFDltIsNbuEBsaJrBcJ30ior_1Awa1EV2kjpBN1PbtHRHOUoa4Fx3HuxThsOsuewsoAIRogrAywR9hi17QS3PhjvddYKfzmOCHkhF937v975wFZ4ciCKJu3D8lSMXs2R4BNCnVcOt8xWT6_uukPPgEK-eW6
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOQAHxCp2fOBqWuwkTW5UFags7YVW4hbFjg1B0KAmLD3x68xkQSAhkLhadhR5xp43ybw3AIeONcYTQnMbeZigSBtxzGwFj63xMYB6viws3R94vZFzcePezEC35sJQWWV195d3enFbVyPNajebT0nSvCYdEVLfoqQFcaI_C3OkTuU2YK5zftkbfP5MwKRAlhLfARGERM2gK8q8IkxGM9IyFMdHGP186hr-U4T6EnXOlmGpgousU77RCsyY8SosfhERXIP30fjFJMQqZwjmGJHCJg9EXmKPhmi9SfbIUsvw6E5S9BZmk7fCGkxNWcQQVTNNCJrmVD1xik860yzPWP6a8pj0_0vtDjbsn9zyrjOQDL03ze6MybN1GJ2dDrs9XrVV4Bo3PufKRVCnENi4UijrOlooZYTGdFIrHEHEZkmWzPiIDJxAaK8VqeBYxLF2AhMHsdyAxjgdm01ggXEj246kbxxMsf1A4aNkS2kjHTdqte0WyHorQ11pjlPri4ewLi67D0sDhGSAsDTAFvDPVU-l5sYf89u1lcJvvhNiWPh15fa_Vx7AfG_YvwqvzgeXO7AgiBRR1HLvQiOfPJs9hCq52q9c8QPr6uhr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+the+underlying+mechanism+of+nitrogen+fixation+by+a+new+class+of+electrocatalysts+two-dimensional+TM%40g-C4N3+monosheets&rft.jtitle=Applied+surface+science&rft.au=Wang%2C+Xiaolin&rft.au=Yang%2C+Li-Ming&rft.date=2022-02-01&rft.pub=Elsevier+B.V&rft.issn=0169-4332&rft.eissn=1873-5584&rft.volume=576&rft_id=info:doi/10.1016%2Fj.apsusc.2021.151839&rft.externalDocID=S0169433221028828
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon