Unveiling the underlying mechanism of nitrogen fixation by a new class of electrocatalysts two-dimensional TM@g-C4N3 monosheets
Four new electrocatalysts TM@g-C4N3 (TM = V, Tc, Os, Pt) of NRR obtained from high-throughput screening and first-principles calculations of 3d, 4d and 5d transition metal series. [Display omitted] •The hierarchical high-throughput screening method was developed and applied.•The most active catalyst...
Saved in:
Published in | Applied surface science Vol. 576; p. 151839 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Four new electrocatalysts TM@g-C4N3 (TM = V, Tc, Os, Pt) of NRR obtained from high-throughput screening and first-principles calculations of 3d, 4d and 5d transition metal series.
[Display omitted]
•The hierarchical high-throughput screening method was developed and applied.•The most active catalyst is V@g-C4N3 with onset potential as low as -0.37 V.•ΔEads(*N2) can be an descriptor to characterize the activity of catalysts.•The evolution trend of catalytic activity is consistent with that of d-band center.
The potential of TM atoms embedded g-C4N3 as a new class of electrocatalysts (TM@g-C4N3, TM = 3d, 4d and 5d transition metal) towards nitrogen reduction reaction (NRR) were systematically investigated through the combination of high-throughput screening and first-principles calculations. Among 30 candidate materials, TM@g-C4N3 (TM = V, Tc, Os, Pt) exhibited the highest activity for electrocatalytic N2 reduction to produce NH3. Particularly, V@g-C4N3 is identified as the most active catalyst for NRR with onset potential of −0.37 V. Interestingly, a volcano curve between Uonset (onset potential) and ΔEads(*N2) (the adsorption energy of N2) is established, and thus ΔEads(*N2) can be used as a descriptor to characterize the activity of catalysts. Among all investigated catalysts, the lowest onset potential of V@g-C4N3 can be attributed to its moderate adsorption energies for N2. After in-deep analysis of the intrinsic properties of the four catalysts, we found that the increasing order of catalytic activity is consistent with the increasing order of d-band center (εd) of the four catalysts. In addition, the excellent thermal stability of the four catalysts is verified via simulated annealing at 500 K for 10 ps. Furthermore, three catalysts TM@g-C4N3 (TM = V, Tc, Pt) demonstrate good selectivity. Therefore, V@g-C4N3 is a promising electrocatalyst for NRR. Our work opens the way for g-C4N3 as a new type of support to construct efficient single-atom catalyst for electrocatalytic ammonia synthesis. The predicted TM@g-C4N3 catalysts will provide useful guidance for experimental synthesis and rational design of catalysts in future. |
---|---|
AbstractList | Four new electrocatalysts TM@g-C4N3 (TM = V, Tc, Os, Pt) of NRR obtained from high-throughput screening and first-principles calculations of 3d, 4d and 5d transition metal series.
[Display omitted]
•The hierarchical high-throughput screening method was developed and applied.•The most active catalyst is V@g-C4N3 with onset potential as low as -0.37 V.•ΔEads(*N2) can be an descriptor to characterize the activity of catalysts.•The evolution trend of catalytic activity is consistent with that of d-band center.
The potential of TM atoms embedded g-C4N3 as a new class of electrocatalysts (TM@g-C4N3, TM = 3d, 4d and 5d transition metal) towards nitrogen reduction reaction (NRR) were systematically investigated through the combination of high-throughput screening and first-principles calculations. Among 30 candidate materials, TM@g-C4N3 (TM = V, Tc, Os, Pt) exhibited the highest activity for electrocatalytic N2 reduction to produce NH3. Particularly, V@g-C4N3 is identified as the most active catalyst for NRR with onset potential of −0.37 V. Interestingly, a volcano curve between Uonset (onset potential) and ΔEads(*N2) (the adsorption energy of N2) is established, and thus ΔEads(*N2) can be used as a descriptor to characterize the activity of catalysts. Among all investigated catalysts, the lowest onset potential of V@g-C4N3 can be attributed to its moderate adsorption energies for N2. After in-deep analysis of the intrinsic properties of the four catalysts, we found that the increasing order of catalytic activity is consistent with the increasing order of d-band center (εd) of the four catalysts. In addition, the excellent thermal stability of the four catalysts is verified via simulated annealing at 500 K for 10 ps. Furthermore, three catalysts TM@g-C4N3 (TM = V, Tc, Pt) demonstrate good selectivity. Therefore, V@g-C4N3 is a promising electrocatalyst for NRR. Our work opens the way for g-C4N3 as a new type of support to construct efficient single-atom catalyst for electrocatalytic ammonia synthesis. The predicted TM@g-C4N3 catalysts will provide useful guidance for experimental synthesis and rational design of catalysts in future. |
ArticleNumber | 151839 |
Author | Yang, Li-Ming Wang, Xiaolin |
Author_xml | – sequence: 1 givenname: Xiaolin surname: Wang fullname: Wang, Xiaolin – sequence: 2 givenname: Li-Ming surname: Yang fullname: Yang, Li-Ming email: lmyang.uio@gmail.com, Lmyang@hust.edu.cn |
BookMark | eNqFkMtOwzAQRS0EEm3hD1j4B1L8iNOEBQJVvKQCm3ZtOc6kdZXYle22dMWvkxJWLGA1mpl7RpozRKfWWUDoipIxJTS7Xo_VJmyDHjPC6JgKmvPiBA1oPuGJEHl6igZdrEhSztk5GoawJoSybjtAnwu7A9MYu8RxBXhrK_DN4di2oFfKmtBiV2NrondLsLg2HyoaZ3F5wApb2GPdqBCOGWhAdymtomoOIQYc9y6pTAs2dIBq8Pz1bplM0zeOW2ddWAHEcIHOatUEuPypI7R4fJhPn5PZ-9PL9H6WaE6ymJSiYLykTAjOylqkmpUlMF1Mcl12E0HyWogsh5xSkhZMZ0SVBWVVpdMCqqLiI5T2d7V3IXio5cabVvmDpEQeJcq17CXKo0TZS-ywm1-YNvFbQPTKNP_Btz0M3WM7A14GbcBqqIzvVMnKmb8PfAF77pS- |
CitedBy_id | crossref_primary_10_1039_D3CP03073C crossref_primary_10_1021_acsami_3c00004 crossref_primary_10_1007_s40843_022_2222_6 crossref_primary_10_1016_j_coelec_2023_101404 crossref_primary_10_1039_D3MA00917C crossref_primary_10_1007_s12274_023_5619_9 crossref_primary_10_1016_j_ijhydene_2023_09_298 crossref_primary_10_1021_acs_langmuir_4c00951 crossref_primary_10_1039_D2NJ04716K crossref_primary_10_1021_acs_jpcc_4c04313 crossref_primary_10_1016_j_cplett_2024_141284 crossref_primary_10_1021_acs_jpcc_4c02531 crossref_primary_10_1039_D1RA08572G crossref_primary_10_1039_D1TA11024A crossref_primary_10_1007_s40843_023_2805_y crossref_primary_10_1039_D2NJ01497A crossref_primary_10_1016_j_mcat_2023_113031 crossref_primary_10_1007_s12598_024_03151_4 crossref_primary_10_1039_D1NR08466F crossref_primary_10_1021_acsmaterialslett_3c01604 crossref_primary_10_1016_j_mcat_2022_112327 crossref_primary_10_1039_D2NR02796H crossref_primary_10_1039_D3CP04249A crossref_primary_10_1039_D3NR00286A crossref_primary_10_1021_acsami_4c11523 crossref_primary_10_1016_j_diamond_2024_110849 crossref_primary_10_1016_j_apsusc_2024_162055 crossref_primary_10_1016_j_chemphys_2023_111837 crossref_primary_10_1039_D3CS01130E crossref_primary_10_1021_acsami_4c13025 crossref_primary_10_1002_eem2_12888 crossref_primary_10_1039_D4MA00732H crossref_primary_10_1021_acs_jpcc_2c00312 crossref_primary_10_1016_j_apsusc_2024_161648 crossref_primary_10_1063_5_0112520 crossref_primary_10_1063_5_0107095 crossref_primary_10_1039_D2NH00451H crossref_primary_10_2139_ssrn_4125798 crossref_primary_10_1016_j_jhazmat_2022_129608 crossref_primary_10_1002_sstr_202200306 crossref_primary_10_1016_j_apsusc_2022_154828 crossref_primary_10_1016_j_jcis_2024_06_231 crossref_primary_10_1021_acsami_1c23643 crossref_primary_10_1007_s40843_021_1950_0 crossref_primary_10_1016_j_cjche_2023_03_009 crossref_primary_10_1021_acscatal_2c02629 crossref_primary_10_1016_j_mcat_2022_112862 crossref_primary_10_1039_D4TA03424D crossref_primary_10_1016_j_apsusc_2022_154069 crossref_primary_10_1016_j_mcat_2024_113879 crossref_primary_10_1039_D3TA07452H crossref_primary_10_1007_s12598_024_02836_0 crossref_primary_10_1021_acsami_4c01342 crossref_primary_10_1016_j_apsusc_2023_158959 |
Cites_doi | 10.1016/j.crcon.2018.06.004 10.1016/j.commatsci.2005.04.010 10.1016/j.cjph.2018.12.019 10.1063/1.3382344 10.1039/C8TA04064H 10.1002/anie.201305812 10.1021/ja513209c 10.1002/adfm.202000768 10.1021/acsami.1c06368 10.1088/2053-1591/ab07f2 10.1021/jacs.8b13075 10.1021/acs.chemrev.9b00659 10.1007/s12274-018-1987-y 10.1039/c0ee00071j 10.1038/22672 10.1103/PhysRevB.47.558 10.1002/cssc.201500322 10.1039/D0CP00722F 10.1016/j.rinp.2021.104010 10.1021/jacs.9b03811 10.1002/smtd.201800376 10.1021/acsami.0c18472 10.1103/PhysRevB.59.1758 10.1088/2053-1591/aae1c1 10.1002/cber.19110440303 10.1021/acs.jpcc.8b11696 10.1063/1.447334 10.1126/science.aar6611 10.1002/aenm.201800369 10.1038/s41570-018-0010-1 10.1016/S1872-2067(14)60118-2 10.7240/marufbd.399357 10.1002/adma.201604799 10.1021/acsami.0c20553 10.1016/j.physe.2021.114751 10.1016/j.physleta.2017.09.026 10.1021/acscatal.8b00905 10.1021/acsami.1c06414 10.1016/j.cap.2016.04.019 10.1103/PhysRevB.13.5188 10.1002/adma.200903403 10.1016/S1872-2067(17)62839-0 10.1016/j.mcat.2019.110705 10.1126/science.aaq1684 10.1038/ngeo325 10.1103/PhysRevLett.77.3865 10.1126/science.1136674 10.1007/s12274-018-2268-5 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apsusc.2021.151839 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-5584 |
ExternalDocumentID | 10_1016_j_apsusc_2021_151839 S0169433221028828 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCB SDF SDG SDP SES SMS SPC SPCBC SPD SPG SSK SSM SSQ SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- RIG SEW SSH WUQ |
ID | FETCH-LOGICAL-c306t-b5923b125532bf54c2bbe2c978cb32b508f5568e8110492c60ab912ddc49ed9d3 |
IEDL.DBID | .~1 |
ISSN | 0169-4332 |
IngestDate | Thu Apr 24 23:13:11 EDT 2025 Tue Jul 01 01:40:23 EDT 2025 Fri Feb 23 02:41:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | High-throughput screening First-principles calculations Single-atom catalysts Electrocatalytic nitrogen reduction reaction Two-dimensional TM@g-C4N3 monosheets |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-b5923b125532bf54c2bbe2c978cb32b508f5568e8110492c60ab912ddc49ed9d3 |
ParticipantIDs | crossref_primary_10_1016_j_apsusc_2021_151839 crossref_citationtrail_10_1016_j_apsusc_2021_151839 elsevier_sciencedirect_doi_10_1016_j_apsusc_2021_151839 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 2022-02-00 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied surface science |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Abdullahi, Yoon (b0150) 2019; 57 Cao, Zheng (b0040) 2018; 11 Wang, Zhang, Deng, Bao (b0095) 2017; 38 Li, Feng, Sun, Ma, Tang, Dai (b0135) 2021; 23 Zhao, Xie, Chang, Zhang, Zhu, Tong, Wang, Luo, Wei, Wang, Sun (b0050) 2019; 1 Montoya, Tsai, Vojvodic, Nørskov (b0070) 2015; 8 Xue, Chen, Yan, Zhao, Hu, Zhang, Yang, Jin (b0075) 2019; 12 Chen, Crooks, Seefeldt, Bren, Bullock, Darensbourg, Holland, Hoffman, Janik, Jones, Kanatzidis, King, Lancaster, Lymar, Pfromm, Schneider, Schrock (b0030) 2018; 360 Abdullahi, Yoon, Mohammad (b0155) 2018; 5 Kresse, Joubert (b0185) 1999; 59 Liu (b0020) 2014; 35 Qing, Ghazfar, Jackowski, Habibzadeh, Ashtiani, Chen, Smith, Hamann (b0065) 2020; 120 Abdullahi, Yoon, Halim, Hashim, Mat Jafri, Leng (b0165) 2016; 16 Bao, Zhang, Meng, Zhong, Shi, Zhang, Yan, Jiang, Zhang (b0245) 2017; 29 Zhang, Guan (b0085) 2020; 30 Smil (b0005) 1999; 400 Sabatier (b0235) 1911; 44 Li, Feng, Ma, Tang, Ruan, Wang, Dai (b0130) 2021; 131 Galloway, Townsend, Erisman, Bekunda, Cai, Freney, Martinelli, Seitzinger, Sutton (b0010) 2008; 320 . Kresse, Hafner (b0175) 1993; 47 Perdew, Burke, Ernzerhof (b0180) 1996; 77 Xu, Yang, Ganz (b0105) 2021; 13 Ling, Ouyang, Li, Bai, Mao, Du, Wang (b0225) 2019; 3 Lv, Huang, Li, Yang (b0100) 2021; 13 Grimme, Antony, Ehrlich, Krieg (b0190) 2010; 132 Choi, Back, Kim, Lim, Kim, Jung (b0230) 2018; 8 Zhu, Hu, Wei, Hua (b0250) 2019; 123 Abdullahi, Yoon, Lim (b0160) 2019; 6 Zhao, Song, Yang (b0115) 2021; 13 Wang, Smith, Zheng (b0045) 2018; 1 Kandemir, Schuster, Senyshyn, Behrens, Schlögl (b0025) 2013; 52 Yang, Bačić, Popov, Boldyrev, Heine, Frauenheim, Ganz (b0120) 2015; 137 Peterson, Abild-Pedersen, Studt, Rossmeisl, Nørskov (b0210) 2010; 3 Lee, Wang, Luo, Dai (b0170) 2010; 22 Computational Chemistry Comparison and Benchmark Database. Huang, Li, Yang, Ganz (b0110) 2021; 13 Liu, Jiao, Zheng, Jaroniec, Qiao (b0220) 2019; 141 Nosé (b0205) 1984; 81 Wang, Li, Zhang (b0080) 2018; 2 Su, Ge, Dong, Hao, Chen (b0090) 2018; 6 Abdullahi, Leong, Halim, Hashim, Leng, Uebayashi (b0145) 2017; 381 Erisman, Sutton, Galloway, Klimont, Winiwarter (b0015) 2008; 1 Sarikurt, Ersan (b0140) 2018; 30 Monkhorst, Pack (b0195) 1976; 13 Légaré, Bélanger-Chabot, Dewhurst, Welz, Krummenacher, Engels, Braunschweig (b0240) 2018; 359 Cui, Tang, Zhang (b0035) 2018; 8 Feng, Tang, Chen, Wei, Ma, Dai (b0060) 2020; 483 Henkelman, Arnaldsson, Jónsson (b0200) 2006; 36 Feng, Tang, Chen, Li, Li, Ma, Dai (b0055) 2020; 22 Song, Zhou, Yang, Liao, Yang, Yang, Ganz (b0125) 2019; 141 Choi (10.1016/j.apsusc.2021.151839_b0230) 2018; 8 Kresse (10.1016/j.apsusc.2021.151839_b0185) 1999; 59 Wang (10.1016/j.apsusc.2021.151839_b0080) 2018; 2 Peterson (10.1016/j.apsusc.2021.151839_b0210) 2010; 3 Lv (10.1016/j.apsusc.2021.151839_b0100) 2021; 13 Nosé (10.1016/j.apsusc.2021.151839_b0205) 1984; 81 Smil (10.1016/j.apsusc.2021.151839_b0005) 1999; 400 Feng (10.1016/j.apsusc.2021.151839_b0055) 2020; 22 Abdullahi (10.1016/j.apsusc.2021.151839_b0165) 2016; 16 Sabatier (10.1016/j.apsusc.2021.151839_b0235) 1911; 44 Lee (10.1016/j.apsusc.2021.151839_b0170) 2010; 22 Xu (10.1016/j.apsusc.2021.151839_b0105) 2021; 13 Zhao (10.1016/j.apsusc.2021.151839_b0115) 2021; 13 Montoya (10.1016/j.apsusc.2021.151839_b0070) 2015; 8 Liu (10.1016/j.apsusc.2021.151839_b0020) 2014; 35 Abdullahi (10.1016/j.apsusc.2021.151839_b0160) 2019; 6 Cao (10.1016/j.apsusc.2021.151839_b0040) 2018; 11 Wang (10.1016/j.apsusc.2021.151839_b0095) 2017; 38 Abdullahi (10.1016/j.apsusc.2021.151839_b0150) 2019; 57 Zhu (10.1016/j.apsusc.2021.151839_b0250) 2019; 123 Li (10.1016/j.apsusc.2021.151839_b0130) 2021; 131 Song (10.1016/j.apsusc.2021.151839_b0125) 2019; 141 Cui (10.1016/j.apsusc.2021.151839_b0035) 2018; 8 10.1016/j.apsusc.2021.151839_b0215 Xue (10.1016/j.apsusc.2021.151839_b0075) 2019; 12 Abdullahi (10.1016/j.apsusc.2021.151839_b0145) 2017; 381 Abdullahi (10.1016/j.apsusc.2021.151839_b0155) 2018; 5 Chen (10.1016/j.apsusc.2021.151839_b0030) 2018; 360 Li (10.1016/j.apsusc.2021.151839_b0135) 2021; 23 Zhang (10.1016/j.apsusc.2021.151839_b0085) 2020; 30 Ling (10.1016/j.apsusc.2021.151839_b0225) 2019; 3 Huang (10.1016/j.apsusc.2021.151839_b0110) 2021; 13 Kandemir (10.1016/j.apsusc.2021.151839_b0025) 2013; 52 Bao (10.1016/j.apsusc.2021.151839_b0245) 2017; 29 Qing (10.1016/j.apsusc.2021.151839_b0065) 2020; 120 Su (10.1016/j.apsusc.2021.151839_b0090) 2018; 6 Galloway (10.1016/j.apsusc.2021.151839_b0010) 2008; 320 Feng (10.1016/j.apsusc.2021.151839_b0060) 2020; 483 Sarikurt (10.1016/j.apsusc.2021.151839_b0140) 2018; 30 Monkhorst (10.1016/j.apsusc.2021.151839_b0195) 1976; 13 Grimme (10.1016/j.apsusc.2021.151839_b0190) 2010; 132 Perdew (10.1016/j.apsusc.2021.151839_b0180) 1996; 77 Erisman (10.1016/j.apsusc.2021.151839_b0015) 2008; 1 Wang (10.1016/j.apsusc.2021.151839_b0045) 2018; 1 Yang (10.1016/j.apsusc.2021.151839_b0120) 2015; 137 Henkelman (10.1016/j.apsusc.2021.151839_b0200) 2006; 36 Légaré (10.1016/j.apsusc.2021.151839_b0240) 2018; 359 Kresse (10.1016/j.apsusc.2021.151839_b0175) 1993; 47 Zhao (10.1016/j.apsusc.2021.151839_b0050) 2019; 1 Liu (10.1016/j.apsusc.2021.151839_b0220) 2019; 141 |
References_xml | – volume: 320 start-page: 889 year: 2008 end-page: 892 ident: b0010 article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions publication-title: Science – volume: 3 start-page: 1800376 year: 2019 ident: b0225 article-title: A General two-step strategy-based high-throughput screening of single atom catalysts for nitrogen fixation publication-title: Small Methods – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: b0180 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 16 start-page: 809 year: 2016 end-page: 815 ident: b0165 article-title: Geometric and electric properties of graphitic carbon nitride sheet with embedded single manganese atom under bi-axial tensile strain publication-title: Curr. Appl Phys. – volume: 23 start-page: 104010 year: 2021 ident: b0135 article-title: Electronic, thermoelectric, transport and optical properties of MoSe publication-title: Results Phys. – volume: 137 start-page: 2757 year: 2015 end-page: 2762 ident: b0120 article-title: Two-dimensional Cu publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1229 year: 2019 end-page: 1249 ident: b0075 article-title: Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: advances, challenges and perspectives publication-title: Nano Res. – volume: 38 start-page: 1443 year: 2017 ident: b0095 article-title: Two-dimensional materials confining single atoms for catalysis publication-title: Chin. J. Catal. – volume: 400 year: 1999 ident: b0005 article-title: Detonator of the population explosion publication-title: Nature – volume: 6 start-page: 065603 year: 2019 ident: b0160 article-title: Biogas detection on carbon nitride sheet with embedded Mn atom: dispersion-corrected density functional theory publication-title: Mater. Res. Express – volume: 22 start-page: 1004 year: 2010 end-page: 1007 ident: b0170 article-title: Fluidic carbon precursors for formation of functional carbon under ambient pressure based on ionic liquids publication-title: Adv. Mater. – volume: 6 start-page: 14025 year: 2018 end-page: 14042 ident: b0090 article-title: Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion publication-title: J. Mater. Chem. A – volume: 1 start-page: 636 year: 2008 end-page: 639 ident: b0015 article-title: How a century of ammonia synthesis changed the world publication-title: Nat. Geosci. – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: b0185 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B – volume: 8 start-page: 2180 year: 2015 end-page: 2186 ident: b0070 article-title: The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations publication-title: ChemSusChem – volume: 131 start-page: 114751 year: 2021 ident: b0130 article-title: Band engineering of large scale graphene/hexagonal boron nitride in-plane heterostructure: role of the connecting angle publication-title: Physica E – volume: 13 start-page: 29641 year: 2021 end-page: 29653 ident: b0100 article-title: Electrocatalytic mechanism of N publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 125605 year: 2018 ident: b0155 article-title: Selective hydrogen adsorption on a buckled carbon nitride sheet: first-principles calculation publication-title: Mater. Res. Express – volume: 81 start-page: 511 year: 1984 end-page: 519 ident: b0205 article-title: A unified formulation of the constant temperature molecular dynamics methods publication-title: J. Chem. Phys. – volume: 44 start-page: 1984 year: 1911 end-page: 2001 ident: b0235 article-title: Hydrogénations et déshydrogénations par catalyse publication-title: Ber. Dtsch. Chem. Ges. – volume: 141 start-page: 9664 year: 2019 end-page: 9672 ident: b0220 article-title: Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 154104 year: 2010 ident: b0190 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: J. Chem. Phys. – volume: 35 start-page: 1619 year: 2014 end-page: 1640 ident: b0020 article-title: Ammonia synthesis catalyst 100 years: practice, enlightenment and challenge publication-title: Chin. J. Catal. – volume: 483 start-page: 110705 year: 2020 ident: b0060 article-title: O-doped graphdiyne as metal-free catalysts for nitrogen reduction reaction publication-title: Mol. Catal. – volume: 30 start-page: 383 year: 2018 end-page: 387 ident: b0140 article-title: Phononic stability analysis of two-dimensional carbon nitride monolayers publication-title: Marmara Fen Bilimleri Dergisi – volume: 22 start-page: 9216 year: 2020 end-page: 9224 ident: b0055 article-title: Graphdiyne coordinated transition metals as single-atom catalysts for nitrogen fixation publication-title: Phys. Chem. Chem. Phys. – volume: 2 start-page: 65 year: 2018 end-page: 81 ident: b0080 article-title: Heterogeneous single-atom catalysis publication-title: Nat. Rev. Chem. – volume: 52 start-page: 12723 year: 2013 end-page: 12726 ident: b0025 article-title: The Haber-Bosch process revisited: on the real structure and stability of “ammonia iron” under working conditions publication-title: Angew. Chem. Int. Ed. – volume: 381 start-page: 3664 year: 2017 end-page: 3674 ident: b0145 article-title: Adsorption of atoms and molecules on s-triazine sheet with embedded manganese atom: first-principles calculations publication-title: Phys. Lett. A – volume: 1 start-page: 100011 year: 2019 ident: b0050 article-title: Recent progress in the electrochemical ammonia synthesis under ambient conditions publication-title: J. Energy Chem. – volume: 13 start-page: 14091 year: 2021 end-page: 14101 ident: b0105 article-title: Electrocatalytic reduction of N publication-title: ACS Appl. Mater. Interfaces – reference: Computational Chemistry Comparison and Benchmark Database. – volume: 120 start-page: 5437 year: 2020 end-page: 5516 ident: b0065 article-title: Recent advances and challenges of electrocatalytic N publication-title: Chem. Rev. – volume: 141 start-page: 3630 year: 2019 end-page: 3640 ident: b0125 article-title: Two-dimensional Anti-Van’t Hoff/Le Bel array AlB publication-title: J. Am. Chem. Soc. – volume: 360 start-page: 6611 year: 2018 ident: b0030 article-title: Beyond fossil fuel-driven nitrogen transformations publication-title: Science – volume: 30 start-page: 2000768 year: 2020 ident: b0085 article-title: Single-atom catalysts for electrocatalytic applications publication-title: Adv. Funct. Mater. – volume: 13 start-page: 608 year: 2021 end-page: 621 ident: b0110 article-title: Ammonia synthesis using single-atom catalysts based on two-dimensional organometallic metal phthalocyanine monolayers under ambient conditions publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 1604799 year: 2017 ident: b0245 article-title: Electrochemical reduction of N publication-title: Adv. Mater. – volume: 8 start-page: 1800369 year: 2018 ident: b0035 article-title: A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions publication-title: Adv. Energy Mater. – volume: 1 start-page: 2 year: 2018 end-page: 31 ident: b0045 article-title: Electron-driven heterogeneous catalytic synthesis of ammonia: current states and perspective publication-title: Carbon Resour. Convers. – volume: 123 start-page: 4274 year: 2019 end-page: 4281 ident: b0250 article-title: Single-metal atom anchored on boron monolayer (β publication-title: J. Phys. Chem. C – volume: 359 start-page: 896 year: 2018 end-page: 900 ident: b0240 article-title: Nitrogen fixation and reduction at boron publication-title: Science – volume: 3 start-page: 1311 year: 2010 end-page: 1315 ident: b0210 article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels publication-title: Energy Environ. Sci. – volume: 47 start-page: 558 year: 1993 end-page: 561 ident: b0175 article-title: Ab initio molecular dynamics for liquid metals publication-title: Phys. Rev. B – reference: . – volume: 57 start-page: 1 year: 2019 end-page: 5 ident: b0150 article-title: Tuning the electronic and magnetic properties of Fe atom embedded heptazine sheet by atomic and molecular adsorption: first-principles calculations publication-title: Chin. J. Phys. – volume: 36 start-page: 354 year: 2006 end-page: 360 ident: b0200 article-title: A fast and robust algorithm for Bader decomposition of charge density publication-title: Comput. Mater. Sci. – volume: 13 start-page: 26109 year: 2021 end-page: 26122 ident: b0115 article-title: Two-dimensional single-atom catalyst TM publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 2992 year: 2018 end-page: 3008 ident: b0040 article-title: Aqueous electrocatalytic N publication-title: Nano Res. – volume: 8 start-page: 7517 year: 2018 end-page: 7525 ident: b0230 article-title: Suppression of hydrogen evolution reaction in electrochemical N publication-title: ACS Catal. – volume: 13 start-page: 5188 year: 1976 end-page: 5192 ident: b0195 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B – volume: 1 start-page: 2 issue: 1 year: 2018 ident: 10.1016/j.apsusc.2021.151839_b0045 article-title: Electron-driven heterogeneous catalytic synthesis of ammonia: current states and perspective publication-title: Carbon Resour. Convers. doi: 10.1016/j.crcon.2018.06.004 – volume: 36 start-page: 354 issue: 3 year: 2006 ident: 10.1016/j.apsusc.2021.151839_b0200 article-title: A fast and robust algorithm for Bader decomposition of charge density publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2005.04.010 – ident: 10.1016/j.apsusc.2021.151839_b0215 – volume: 57 start-page: 1 year: 2019 ident: 10.1016/j.apsusc.2021.151839_b0150 article-title: Tuning the electronic and magnetic properties of Fe atom embedded heptazine sheet by atomic and molecular adsorption: first-principles calculations publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2018.12.019 – volume: 132 start-page: 154104 issue: 15 year: 2010 ident: 10.1016/j.apsusc.2021.151839_b0190 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 6 start-page: 14025 issue: 29 year: 2018 ident: 10.1016/j.apsusc.2021.151839_b0090 article-title: Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion publication-title: J. Mater. Chem. A doi: 10.1039/C8TA04064H – volume: 52 start-page: 12723 issue: 48 year: 2013 ident: 10.1016/j.apsusc.2021.151839_b0025 article-title: The Haber-Bosch process revisited: on the real structure and stability of “ammonia iron” under working conditions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201305812 – volume: 137 start-page: 2757 issue: 7 year: 2015 ident: 10.1016/j.apsusc.2021.151839_b0120 article-title: Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding publication-title: J. Am. Chem. Soc. doi: 10.1021/ja513209c – volume: 30 start-page: 2000768 issue: 31 year: 2020 ident: 10.1016/j.apsusc.2021.151839_b0085 article-title: Single-atom catalysts for electrocatalytic applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000768 – volume: 13 start-page: 29641 issue: 25 year: 2021 ident: 10.1016/j.apsusc.2021.151839_b0100 article-title: Electrocatalytic mechanism of N2 reduction reaction by single-atom catalyst rectangular TM-TCNQ Monolayers publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c06368 – volume: 6 start-page: 065603 issue: 6 year: 2019 ident: 10.1016/j.apsusc.2021.151839_b0160 article-title: Biogas detection on carbon nitride sheet with embedded Mn atom: dispersion-corrected density functional theory publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab07f2 – volume: 1 start-page: 100011 issue: 2 year: 2019 ident: 10.1016/j.apsusc.2021.151839_b0050 article-title: Recent progress in the electrochemical ammonia synthesis under ambient conditions publication-title: J. Energy Chem. – volume: 141 start-page: 3630 issue: 8 year: 2019 ident: 10.1016/j.apsusc.2021.151839_b0125 article-title: Two-dimensional Anti-Van’t Hoff/Le Bel array AlB6 with high stability, unique motif, triple dirac cones, and superconductivity publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13075 – volume: 120 start-page: 5437 issue: 12 year: 2020 ident: 10.1016/j.apsusc.2021.151839_b0065 article-title: Recent advances and challenges of electrocatalytic N2 reduction to ammonia publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00659 – volume: 11 start-page: 2992 issue: 6 year: 2018 ident: 10.1016/j.apsusc.2021.151839_b0040 article-title: Aqueous electrocatalytic N2 reduction under ambient conditions publication-title: Nano Res. doi: 10.1007/s12274-018-1987-y – volume: 3 start-page: 1311 issue: 9 year: 2010 ident: 10.1016/j.apsusc.2021.151839_b0210 article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00071j – volume: 400 issue: 6743 year: 1999 ident: 10.1016/j.apsusc.2021.151839_b0005 article-title: Detonator of the population explosion publication-title: Nature doi: 10.1038/22672 – volume: 47 start-page: 558 issue: 1 year: 1993 ident: 10.1016/j.apsusc.2021.151839_b0175 article-title: Ab initio molecular dynamics for liquid metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 8 start-page: 2180 issue: 13 year: 2015 ident: 10.1016/j.apsusc.2021.151839_b0070 article-title: The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations publication-title: ChemSusChem doi: 10.1002/cssc.201500322 – volume: 22 start-page: 9216 issue: 17 year: 2020 ident: 10.1016/j.apsusc.2021.151839_b0055 article-title: Graphdiyne coordinated transition metals as single-atom catalysts for nitrogen fixation publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP00722F – volume: 23 start-page: 104010 year: 2021 ident: 10.1016/j.apsusc.2021.151839_b0135 article-title: Electronic, thermoelectric, transport and optical properties of MoSe2/BAs van der Waals heterostructures publication-title: Results Phys. doi: 10.1016/j.rinp.2021.104010 – volume: 141 start-page: 9664 issue: 24 year: 2019 ident: 10.1016/j.apsusc.2021.151839_b0220 article-title: Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03811 – volume: 3 start-page: 1800376 issue: 9 year: 2019 ident: 10.1016/j.apsusc.2021.151839_b0225 article-title: A General two-step strategy-based high-throughput screening of single atom catalysts for nitrogen fixation publication-title: Small Methods doi: 10.1002/smtd.201800376 – volume: 13 start-page: 608 issue: 1 year: 2021 ident: 10.1016/j.apsusc.2021.151839_b0110 article-title: Ammonia synthesis using single-atom catalysts based on two-dimensional organometallic metal phthalocyanine monolayers under ambient conditions publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c18472 – volume: 59 start-page: 1758 issue: 3 year: 1999 ident: 10.1016/j.apsusc.2021.151839_b0185 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 5 start-page: 125605 issue: 12 year: 2018 ident: 10.1016/j.apsusc.2021.151839_b0155 article-title: Selective hydrogen adsorption on a buckled carbon nitride sheet: first-principles calculation publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aae1c1 – volume: 44 start-page: 1984 issue: 3 year: 1911 ident: 10.1016/j.apsusc.2021.151839_b0235 article-title: Hydrogénations et déshydrogénations par catalyse publication-title: Ber. Dtsch. Chem. Ges. doi: 10.1002/cber.19110440303 – volume: 123 start-page: 4274 issue: 7 year: 2019 ident: 10.1016/j.apsusc.2021.151839_b0250 article-title: Single-metal atom anchored on boron monolayer (β12) as an electrocatalyst for nitrogen reduction into ammonia at ambient conditions: a first-principles study publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b11696 – volume: 81 start-page: 511 issue: 1 year: 1984 ident: 10.1016/j.apsusc.2021.151839_b0205 article-title: A unified formulation of the constant temperature molecular dynamics methods publication-title: J. Chem. Phys. doi: 10.1063/1.447334 – volume: 360 start-page: 6611 issue: 6391 year: 2018 ident: 10.1016/j.apsusc.2021.151839_b0030 article-title: Beyond fossil fuel-driven nitrogen transformations publication-title: Science doi: 10.1126/science.aar6611 – volume: 8 start-page: 1800369 issue: 22 year: 2018 ident: 10.1016/j.apsusc.2021.151839_b0035 article-title: A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800369 – volume: 2 start-page: 65 issue: 6 year: 2018 ident: 10.1016/j.apsusc.2021.151839_b0080 article-title: Heterogeneous single-atom catalysis publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 35 start-page: 1619 issue: 10 year: 2014 ident: 10.1016/j.apsusc.2021.151839_b0020 article-title: Ammonia synthesis catalyst 100 years: practice, enlightenment and challenge publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(14)60118-2 – volume: 30 start-page: 383 issue: 4 year: 2018 ident: 10.1016/j.apsusc.2021.151839_b0140 article-title: Phononic stability analysis of two-dimensional carbon nitride monolayers publication-title: Marmara Fen Bilimleri Dergisi doi: 10.7240/marufbd.399357 – volume: 29 start-page: 1604799 issue: 3 year: 2017 ident: 10.1016/j.apsusc.2021.151839_b0245 article-title: Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle publication-title: Adv. Mater. doi: 10.1002/adma.201604799 – volume: 13 start-page: 14091 issue: 12 year: 2021 ident: 10.1016/j.apsusc.2021.151839_b0105 article-title: Electrocatalytic reduction of N2 using metal-doped borophene publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c20553 – volume: 131 start-page: 114751 year: 2021 ident: 10.1016/j.apsusc.2021.151839_b0130 article-title: Band engineering of large scale graphene/hexagonal boron nitride in-plane heterostructure: role of the connecting angle publication-title: Physica E doi: 10.1016/j.physe.2021.114751 – volume: 381 start-page: 3664 issue: 43 year: 2017 ident: 10.1016/j.apsusc.2021.151839_b0145 article-title: Adsorption of atoms and molecules on s-triazine sheet with embedded manganese atom: first-principles calculations publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2017.09.026 – volume: 8 start-page: 7517 issue: 8 year: 2018 ident: 10.1016/j.apsusc.2021.151839_b0230 article-title: Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline publication-title: ACS Catal. doi: 10.1021/acscatal.8b00905 – volume: 13 start-page: 26109 issue: 22 year: 2021 ident: 10.1016/j.apsusc.2021.151839_b0115 article-title: Two-dimensional single-atom catalyst TM3(HAB)2 monolayers for electrocatalytic dinitrogen reduction using hierarchical high-throughput screening publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c06414 – volume: 16 start-page: 809 issue: 8 year: 2016 ident: 10.1016/j.apsusc.2021.151839_b0165 article-title: Geometric and electric properties of graphitic carbon nitride sheet with embedded single manganese atom under bi-axial tensile strain publication-title: Curr. Appl Phys. doi: 10.1016/j.cap.2016.04.019 – volume: 13 start-page: 5188 issue: 12 year: 1976 ident: 10.1016/j.apsusc.2021.151839_b0195 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 22 start-page: 1004 issue: 9 year: 2010 ident: 10.1016/j.apsusc.2021.151839_b0170 article-title: Fluidic carbon precursors for formation of functional carbon under ambient pressure based on ionic liquids publication-title: Adv. Mater. doi: 10.1002/adma.200903403 – volume: 38 start-page: 1443 issue: 9 year: 2017 ident: 10.1016/j.apsusc.2021.151839_b0095 article-title: Two-dimensional materials confining single atoms for catalysis publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(17)62839-0 – volume: 483 start-page: 110705 year: 2020 ident: 10.1016/j.apsusc.2021.151839_b0060 article-title: O-doped graphdiyne as metal-free catalysts for nitrogen reduction reaction publication-title: Mol. Catal. doi: 10.1016/j.mcat.2019.110705 – volume: 359 start-page: 896 issue: 6378 year: 2018 ident: 10.1016/j.apsusc.2021.151839_b0240 article-title: Nitrogen fixation and reduction at boron publication-title: Science doi: 10.1126/science.aaq1684 – volume: 1 start-page: 636 issue: 10 year: 2008 ident: 10.1016/j.apsusc.2021.151839_b0015 article-title: How a century of ammonia synthesis changed the world publication-title: Nat. Geosci. doi: 10.1038/ngeo325 – volume: 77 start-page: 3865 issue: 18 year: 1996 ident: 10.1016/j.apsusc.2021.151839_b0180 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 320 start-page: 889 issue: 5878 year: 2008 ident: 10.1016/j.apsusc.2021.151839_b0010 article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions publication-title: Science doi: 10.1126/science.1136674 – volume: 12 start-page: 1229 issue: 6 year: 2019 ident: 10.1016/j.apsusc.2021.151839_b0075 article-title: Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: advances, challenges and perspectives publication-title: Nano Res. doi: 10.1007/s12274-018-2268-5 |
SSID | ssj0012873 |
Score | 2.5681543 |
Snippet | Four new electrocatalysts TM@g-C4N3 (TM = V, Tc, Os, Pt) of NRR obtained from high-throughput screening and first-principles calculations of 3d, 4d and 5d... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 151839 |
SubjectTerms | Electrocatalytic nitrogen reduction reaction First-principles calculations High-throughput screening Single-atom catalysts Two-dimensional TM@g-C4N3 monosheets |
Title | Unveiling the underlying mechanism of nitrogen fixation by a new class of electrocatalysts two-dimensional TM@g-C4N3 monosheets |
URI | https://dx.doi.org/10.1016/j.apsusc.2021.151839 |
Volume | 576 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPvHNHrxuW3c3r5tSlKrYiy14C9nNrkbapDTx0Yv-dWfyKAqi4DXshrAzmfkmme8bQk6kNcblXDMbuVCgCBsxqGw5i63xIYG6vigtfTtw-yN5fe_ct0iv4cJgW2Ud-6uYXkbr-kqnPs3ONEk6d6gjgupbWLQATkTCr5Qeenn7fdHmAeG3-ssMi5EdxBv6XNnjFUElmqOQIT9tQ-rzcWT4T-npS8q5XCdrNVak59XjbJCWSTfJ6hcFwS3yMUpfTIKUcgpIjiIjbDZG5hKdGOT0JvmEZpbCezvLwFWoTd5KU1A1pxEFSE01wmdcUw_EKb_nzPMip8VrxmIU_6-EO-jw9uyB9eRAUHDdLH80psi3yejyYtjrs3qmAtNw6gVTDiA6BajGEVxZR2qulOEaakmt4ArANYuaZMYHWCADrt1upIJTHsdaBiYOYrFDltIsNbuEBsaJrBcJ30ior_1Awa1EV2kjpBN1PbtHRHOUoa4Fx3HuxThsOsuewsoAIRogrAywR9hi17QS3PhjvddYKfzmOCHkhF937v975wFZ4ciCKJu3D8lSMXs2R4BNCnVcOt8xWT6_uukPPgEK-eW6 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOQAHxCp2fOBqWuwkTW5UFags7YVW4hbFjg1B0KAmLD3x68xkQSAhkLhadhR5xp43ybw3AIeONcYTQnMbeZigSBtxzGwFj63xMYB6viws3R94vZFzcePezEC35sJQWWV195d3enFbVyPNajebT0nSvCYdEVLfoqQFcaI_C3OkTuU2YK5zftkbfP5MwKRAlhLfARGERM2gK8q8IkxGM9IyFMdHGP186hr-U4T6EnXOlmGpgousU77RCsyY8SosfhERXIP30fjFJMQqZwjmGJHCJg9EXmKPhmi9SfbIUsvw6E5S9BZmk7fCGkxNWcQQVTNNCJrmVD1xik860yzPWP6a8pj0_0vtDjbsn9zyrjOQDL03ze6MybN1GJ2dDrs9XrVV4Bo3PufKRVCnENi4UijrOlooZYTGdFIrHEHEZkmWzPiIDJxAaK8VqeBYxLF2AhMHsdyAxjgdm01ggXEj246kbxxMsf1A4aNkS2kjHTdqte0WyHorQ11pjlPri4ewLi67D0sDhGSAsDTAFvDPVU-l5sYf89u1lcJvvhNiWPh15fa_Vx7AfG_YvwqvzgeXO7AgiBRR1HLvQiOfPJs9hCq52q9c8QPr6uhr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+the+underlying+mechanism+of+nitrogen+fixation+by+a+new+class+of+electrocatalysts+two-dimensional+TM%40g-C4N3+monosheets&rft.jtitle=Applied+surface+science&rft.au=Wang%2C+Xiaolin&rft.au=Yang%2C+Li-Ming&rft.date=2022-02-01&rft.pub=Elsevier+B.V&rft.issn=0169-4332&rft.eissn=1873-5584&rft.volume=576&rft_id=info:doi/10.1016%2Fj.apsusc.2021.151839&rft.externalDocID=S0169433221028828 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon |