A simple correlation for predicting the material parameter in micropolar modeling of EHD-enhanced forced convection through a flat channel

Numerical modeling of Electrohydrodynamic (EHD) induced flow in hydraulically laminar regimes has always been a discussible subject. Recently, the micropolar approach has been examined as an alternative for the aforementioned cases. The model was found to be reliable, but time-consuming, since it ne...

Full description

Saved in:
Bibliographic Details
Published inJournal of electrostatics Vol. 103; p. 103408
Main Authors Moayedi, Hesam, Amanifard, Nima, Deylami, Hamed Mohaddes
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2020
Subjects
Online AccessGet full text
ISSN0304-3886
1873-5738
DOI10.1016/j.elstat.2019.103408

Cover

Abstract Numerical modeling of Electrohydrodynamic (EHD) induced flow in hydraulically laminar regimes has always been a discussible subject. Recently, the micropolar approach has been examined as an alternative for the aforementioned cases. The model was found to be reliable, but time-consuming, since it needed difficult attempts to make guesses at the material parameter (κω/μ). This study aims to complement and facilitate the use of this model by providing a fast tool to guess the material parameter. In this regard, the studies show that the EHD number is a sufficient criterion to predict an adequate parameter. To satisfy this purpose, a series of well-designed studies have been carried out to calculate the EHD number for different flow characteristics; Reynolds number, applied voltage, type of the collector electrode, size of the collector plate, and the arrangement of emitter electrodes. In each case, the desired material parameter has been numerically determined by trial and error. A two-dimensional flat channel was chosen as the computational model and the results of the computational attempts, which were made using the k-ε turbulence model, were selected as the basis of the appropriate material parameter estimation. •The micropolar model with an adequate material parameter can be used to model the EHD flow.•The material parameter only depends on EHD strength (NEHD).•By increasing the applied electrical voltage and decreasing the Reynolds number, NEHD and the adequate κω/μ are increased.•A general correlation for the adequate material parameter is derived based on the NEHD.
AbstractList Numerical modeling of Electrohydrodynamic (EHD) induced flow in hydraulically laminar regimes has always been a discussible subject. Recently, the micropolar approach has been examined as an alternative for the aforementioned cases. The model was found to be reliable, but time-consuming, since it needed difficult attempts to make guesses at the material parameter (κω/μ). This study aims to complement and facilitate the use of this model by providing a fast tool to guess the material parameter. In this regard, the studies show that the EHD number is a sufficient criterion to predict an adequate parameter. To satisfy this purpose, a series of well-designed studies have been carried out to calculate the EHD number for different flow characteristics; Reynolds number, applied voltage, type of the collector electrode, size of the collector plate, and the arrangement of emitter electrodes. In each case, the desired material parameter has been numerically determined by trial and error. A two-dimensional flat channel was chosen as the computational model and the results of the computational attempts, which were made using the k-ε turbulence model, were selected as the basis of the appropriate material parameter estimation. •The micropolar model with an adequate material parameter can be used to model the EHD flow.•The material parameter only depends on EHD strength (NEHD).•By increasing the applied electrical voltage and decreasing the Reynolds number, NEHD and the adequate κω/μ are increased.•A general correlation for the adequate material parameter is derived based on the NEHD.
ArticleNumber 103408
Author Amanifard, Nima
Deylami, Hamed Mohaddes
Moayedi, Hesam
Author_xml – sequence: 1
  givenname: Hesam
  surname: Moayedi
  fullname: Moayedi, Hesam
  organization: Thermo and Fluids Department, Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran
– sequence: 2
  givenname: Nima
  surname: Amanifard
  fullname: Amanifard, Nima
  email: namanif@guilan.ac.ir
  organization: Thermo and Fluids Department, Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran
– sequence: 3
  givenname: Hamed Mohaddes
  surname: Deylami
  fullname: Deylami, Hamed Mohaddes
  organization: Faculty of Technology and Engineering, East of Guilan, University of Guilan, Rudsar, Iran
BookMark eNqFkE1OwzAQhS0EEm3hBix8gRQ7aRKHBVJVCkWqxAbWlrHHrSvHjhxTiStwapyGFQtYjebnvZn5pujceQcI3VAyp4RWt4c52D6KOM8JbVKpWBB2hiaU1UVW1gU7RxNSkEVWMFZdomnfHwghlJXNBH0tcW_azgKWPgSwIhrvsPYBdwGUkdG4HY57wK2IEIywuBNBtJASbBxujQy-81YE3HoFdpj2Gq83Dxm4vXAS1GA2BOndEeTJPu6D_9jtscA6LcQyDTqwV-hCC9vD9U-cobfH9etqk21fnp5Xy20mC1LF7L1keU5V0-gK0nONZGUhBQCrNa1zTRspWa1oziolRVnSvKEsNWReK12rnBQztBh90-l9H0DzLphWhE9OCR948gMfefKBJx95JtndL5k08YQrBmHsf-L7UZx6cDQQeC8NDHhMSFC48uZvg2-DbZhz
CitedBy_id crossref_primary_10_1140_epjp_s13360_020_00942_3
crossref_primary_10_1080_01457632_2021_2016141
crossref_primary_10_1016_j_elstat_2020_103520
crossref_primary_10_1016_j_applthermaleng_2022_118471
crossref_primary_10_1016_j_elstat_2023_103825
crossref_primary_10_1007_s40430_022_03623_7
crossref_primary_10_1016_j_applthermaleng_2023_121122
crossref_primary_10_1140_epjp_s13360_021_01791_4
crossref_primary_10_1016_j_ijhydene_2023_09_055
Cites_doi 10.1063/1.869691
10.1063/1.168744
10.1016/j.elstat.2013.03.007
10.1016/0020-7225(73)90038-4
10.1016/j.ijheatmasstransfer.2015.10.043
10.1109/TDEI.2006.1593414
10.1109/TDEI.2010.5658236
10.1109/TDEI.2017.006550
10.1016/j.applthermaleng.2019.113857
10.1016/j.elstat.2004.01.021
10.1080/01457630500341748
10.1016/j.elstat.2009.01.055
10.1109/TIA.2008.921453
10.1007/s00231-019-02693-z
10.1007/s00231-017-1994-7
10.1016/j.applthermaleng.2005.12.012
10.1016/j.ijheatmasstransfer.2017.05.079
10.1016/j.elstat.2017.03.006
10.1016/j.elstat.2018.08.002
10.1016/j.elstat.2010.07.002
10.1016/j.buildenv.2013.06.009
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.elstat.2019.103408
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-5738
ExternalDocumentID 10_1016_j_elstat_2019_103408
S0304388619302487
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSM
SSQ
SST
SSZ
T5K
UHS
WUQ
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-b58221d99f6e5739c853caee87f172f19cc87d1286dca5512918172c27df7d203
IEDL.DBID AIKHN
ISSN 0304-3886
IngestDate Tue Jul 01 00:49:02 EDT 2025
Thu Apr 24 23:13:30 EDT 2025
Fri Feb 23 02:48:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Material parameter
Electrohydrodynamic
Numerical simulation
Micropolar model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-b58221d99f6e5739c853caee87f172f19cc87d1286dca5512918172c27df7d203
ParticipantIDs crossref_primary_10_1016_j_elstat_2019_103408
crossref_citationtrail_10_1016_j_elstat_2019_103408
elsevier_sciencedirect_doi_10_1016_j_elstat_2019_103408
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationTitle Journal of electrostatics
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Feng, Long, Adamiak (bib11) 2018 Apr; 25
Kasayapanand (bib14) 2006 Oct 1; 26
Soldati, Banerjee (bib13) 1998 Jul; 10
Farnoosh, Adamiak, Castle (bib10) 2010 Dec 1; 68
Deylami (bib22) 2019
Shen, Yu, Jia, Kang (bib7) 2018 Oct 1; 95
Ahmedou, Havet (bib3) 2009 May 1; 67
Fujishima, Morita, Okubo, Yamamoto (bib4) 2006 Feb; 13
Deylami, Amanifard, Dolati, Kouhikamali, Mostajiri (bib5) 2013 Aug 31; 71
Adamiak, Atten (bib21) 2004 Jun 1; 61
Fadaki, Amanifard, Deylami, Dolati (bib2) 2017 Jul 1; 53
Zhao, Adamiak (bib6) 2008 May; 44
Moayedi, Amanifard, Deylami, Dolati (bib17) 2017 Jun 1; 87
Peng, Wang, Wang (bib1) 2016 Feb 1; 93
Shrimpton, Kourmatzis (bib12) 2010 Dec; 17
Zhang, Zhou, Wang (bib19) 2013 Oct 1; 68
Wang, Peng, Wang, Yan (bib9) 2017 Oct 1; 113
Weller, Tabor, Jasak, Fureby (bib20) 1998 Nov; 12
Molki, Damronglerd (bib8) 2006 Jan 1; 27
Ariman, Turk, Sylvester (bib15) 1973 Aug 1; 11
Moayedi, Amanifard, Deylami (bib18) 2019 May 29
Eringen (bib16) 2001 Mar 30
Zhao (10.1016/j.elstat.2019.103408_bib6) 2008; 44
Adamiak (10.1016/j.elstat.2019.103408_bib21) 2004; 61
Farnoosh (10.1016/j.elstat.2019.103408_bib10) 2010; 68
Weller (10.1016/j.elstat.2019.103408_bib20) 1998; 12
Kasayapanand (10.1016/j.elstat.2019.103408_bib14) 2006; 26
Ariman (10.1016/j.elstat.2019.103408_bib15) 1973; 11
Molki (10.1016/j.elstat.2019.103408_bib8) 2006; 27
Deylami (10.1016/j.elstat.2019.103408_bib5) 2013; 71
Eringen (10.1016/j.elstat.2019.103408_bib16) 2001
Peng (10.1016/j.elstat.2019.103408_bib1) 2016; 93
Shrimpton (10.1016/j.elstat.2019.103408_bib12) 2010; 17
Deylami (10.1016/j.elstat.2019.103408_bib22) 2019
Fadaki (10.1016/j.elstat.2019.103408_bib2) 2017; 53
Shen (10.1016/j.elstat.2019.103408_bib7) 2018; 95
Fujishima (10.1016/j.elstat.2019.103408_bib4) 2006; 13
Moayedi (10.1016/j.elstat.2019.103408_bib17) 2017; 87
Zhang (10.1016/j.elstat.2019.103408_bib19) 2013; 68
Soldati (10.1016/j.elstat.2019.103408_bib13) 1998; 10
Ahmedou (10.1016/j.elstat.2019.103408_bib3) 2009; 67
Wang (10.1016/j.elstat.2019.103408_bib9) 2017; 113
Feng (10.1016/j.elstat.2019.103408_bib11) 2018; 25
Moayedi (10.1016/j.elstat.2019.103408_bib18) 2019
References_xml – volume: 93
  start-page: 1072
  year: 2016 Feb 1
  end-page: 1081
  ident: bib1
  article-title: Effect of longitudinal electrode arrangement on EHD-induced heat transfer enhancement in a rectangular channel
  publication-title: Int. J. Heat Mass Transf.
– volume: 113
  start-page: 373
  year: 2017 Oct 1
  end-page: 383
  ident: bib9
  article-title: Investigation of heat transfer enhancement by electrohydrodynamics in a double-wall-heated channel
  publication-title: Int. J. Heat Mass Transf.
– volume: 13
  start-page: 160
  year: 2006 Feb
  end-page: 167
  ident: bib4
  article-title: Numerical simulation of three-dimensional electrohydrodynamics of spiked-electrode electrostatic precipitators
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 61
  start-page: 85
  year: 2004 Jun 1
  end-page: 98
  ident: bib21
  article-title: Simulation of corona discharge in point–plane configuration
  publication-title: J. Electrost.
– volume: 11
  start-page: 905
  year: 1973 Aug 1
  end-page: 930
  ident: bib15
  article-title: Microcontinuum fluid mechanics—a review
  publication-title: Int. J. Eng. Sci.
– volume: 71
  start-page: 656
  year: 2013 Aug 31
  end-page: 665
  ident: bib5
  article-title: Numerical investigation of using various electrode arrangements for amplifying the EHD enhanced heat transfer in a smooth channel
  publication-title: J. Electrost.
– volume: 53
  start-page: 2445
  year: 2017 Jul 1
  end-page: 2460
  ident: bib2
  article-title: Numerical analysis of the EHD driven flow with heat transfer in a smooth channel using multiple collectors
  publication-title: Heat Mass Transf.
– volume: 25
  start-page: 404
  year: 2018 Apr
  end-page: 412
  ident: bib11
  article-title: Numerical simulation of electrohydrodynamic flow and vortex analysis in electrostatic precipitators
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 12
  start-page: 620
  year: 1998 Nov
  end-page: 631
  ident: bib20
  article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques
  publication-title: Comput. Phys.
– volume: 68
  start-page: 513
  year: 2010 Dec 1
  end-page: 522
  ident: bib10
  article-title: 3-D numerical analysis of EHD turbulent flow and mono-disperse charged particle transport and collection in a wire-plate ESP
  publication-title: J. Electrost.
– start-page: 113857
  year: 2019 May 29
  ident: bib18
  article-title: Evaluation of using micropolar fluid approach for the EHD-enhanced forced convection through a rectangular channel using multiple electrode arrangements
  publication-title: Appl. Therm. Eng.
– volume: 27
  start-page: 35
  year: 2006 Jan 1
  end-page: 45
  ident: bib8
  article-title: Electrohydrodynamic enhancement of heat transfer for developing air flow in square ducts
  publication-title: Heat Transf. Eng.
– volume: 17
  year: 2010 Dec
  ident: bib12
  article-title: Direct numerical simulation of forced flow dielectric EHD within charge injection atomizers
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 44
  start-page: 683
  year: 2008 May
  end-page: 691
  ident: bib6
  article-title: Numerical simulation of the electrohydrodynamic flow in a single wire-plate electrostatic precipitator
  publication-title: IEEE Trans. Ind. Appl.
– volume: 95
  start-page: 61
  year: 2018 Oct 1
  end-page: 70
  ident: bib7
  article-title: Electrohydrodynamic flows in electrostatic precipitator of five shaped collecting electrodes
  publication-title: J. Electrost.
– volume: 67
  start-page: 222
  year: 2009 May 1
  end-page: 227
  ident: bib3
  article-title: Effect of process parameters on the EHD airflow
  publication-title: J. Electrost.
– volume: 10
  start-page: 1742
  year: 1998 Jul
  end-page: 1756
  ident: bib13
  article-title: Turbulence modification by large-scale organized electrohydrodynamic flows
  publication-title: Phys. Fluids
– volume: 68
  start-page: 159
  year: 2013 Oct 1
  end-page: 169
  ident: bib19
  article-title: An adjustment to the standard temperature wall function for CFD modeling of indoor convective heat transfer
  publication-title: Build. Environ.
– year: 2019
  ident: bib22
  article-title: Effects of EHD on the flow and heat transfer characteristics in a rectangular corrugated channel
  publication-title: Heat Mass Transf.
– volume: 87
  start-page: 51
  year: 2017 Jun 1
  end-page: 63
  ident: bib17
  article-title: Numerical investigation of using micropolar fluid model for EHD flow through a smooth channel
  publication-title: J. Electrost.
– volume: 26
  start-page: 1471
  year: 2006 Oct 1
  end-page: 1480
  ident: bib14
  article-title: Numerical study of electrode bank enhanced heat transfer
  publication-title: Appl. Therm. Eng.
– year: 2001 Mar 30
  ident: bib16
  article-title: Microcontinuum Field Theories: II. Fluent Media
– volume: 10
  start-page: 1742
  issue: 7
  year: 1998
  ident: 10.1016/j.elstat.2019.103408_bib13
  article-title: Turbulence modification by large-scale organized electrohydrodynamic flows
  publication-title: Phys. Fluids
  doi: 10.1063/1.869691
– volume: 12
  start-page: 620
  issue: 6
  year: 1998
  ident: 10.1016/j.elstat.2019.103408_bib20
  article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques
  publication-title: Comput. Phys.
  doi: 10.1063/1.168744
– volume: 71
  start-page: 656
  issue: 4
  year: 2013
  ident: 10.1016/j.elstat.2019.103408_bib5
  article-title: Numerical investigation of using various electrode arrangements for amplifying the EHD enhanced heat transfer in a smooth channel
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2013.03.007
– volume: 11
  start-page: 905
  issue: 8
  year: 1973
  ident: 10.1016/j.elstat.2019.103408_bib15
  article-title: Microcontinuum fluid mechanics—a review
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/0020-7225(73)90038-4
– volume: 93
  start-page: 1072
  year: 2016
  ident: 10.1016/j.elstat.2019.103408_bib1
  article-title: Effect of longitudinal electrode arrangement on EHD-induced heat transfer enhancement in a rectangular channel
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.10.043
– volume: 13
  start-page: 160
  issue: 1
  year: 2006
  ident: 10.1016/j.elstat.2019.103408_bib4
  article-title: Numerical simulation of three-dimensional electrohydrodynamics of spiked-electrode electrostatic precipitators
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2006.1593414
– volume: 17
  issue: 6
  year: 2010
  ident: 10.1016/j.elstat.2019.103408_bib12
  article-title: Direct numerical simulation of forced flow dielectric EHD within charge injection atomizers
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2010.5658236
– volume: 25
  start-page: 404
  issue: 2
  year: 2018
  ident: 10.1016/j.elstat.2019.103408_bib11
  article-title: Numerical simulation of electrohydrodynamic flow and vortex analysis in electrostatic precipitators
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2017.006550
– start-page: 113857
  year: 2019
  ident: 10.1016/j.elstat.2019.103408_bib18
  article-title: Evaluation of using micropolar fluid approach for the EHD-enhanced forced convection through a rectangular channel using multiple electrode arrangements
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.113857
– volume: 61
  start-page: 85
  issue: 2
  year: 2004
  ident: 10.1016/j.elstat.2019.103408_bib21
  article-title: Simulation of corona discharge in point–plane configuration
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2004.01.021
– volume: 27
  start-page: 35
  issue: 1
  year: 2006
  ident: 10.1016/j.elstat.2019.103408_bib8
  article-title: Electrohydrodynamic enhancement of heat transfer for developing air flow in square ducts
  publication-title: Heat Transf. Eng.
  doi: 10.1080/01457630500341748
– volume: 67
  start-page: 222
  issue: 2–3
  year: 2009
  ident: 10.1016/j.elstat.2019.103408_bib3
  article-title: Effect of process parameters on the EHD airflow
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2009.01.055
– volume: 44
  start-page: 683
  issue: 3
  year: 2008
  ident: 10.1016/j.elstat.2019.103408_bib6
  article-title: Numerical simulation of the electrohydrodynamic flow in a single wire-plate electrostatic precipitator
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2008.921453
– year: 2019
  ident: 10.1016/j.elstat.2019.103408_bib22
  article-title: Effects of EHD on the flow and heat transfer characteristics in a rectangular corrugated channel
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-019-02693-z
– volume: 53
  start-page: 2445
  issue: 7
  year: 2017
  ident: 10.1016/j.elstat.2019.103408_bib2
  article-title: Numerical analysis of the EHD driven flow with heat transfer in a smooth channel using multiple collectors
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-017-1994-7
– volume: 26
  start-page: 1471
  issue: 14–15
  year: 2006
  ident: 10.1016/j.elstat.2019.103408_bib14
  article-title: Numerical study of electrode bank enhanced heat transfer
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2005.12.012
– volume: 113
  start-page: 373
  year: 2017
  ident: 10.1016/j.elstat.2019.103408_bib9
  article-title: Investigation of heat transfer enhancement by electrohydrodynamics in a double-wall-heated channel
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.05.079
– year: 2001
  ident: 10.1016/j.elstat.2019.103408_bib16
– volume: 87
  start-page: 51
  year: 2017
  ident: 10.1016/j.elstat.2019.103408_bib17
  article-title: Numerical investigation of using micropolar fluid model for EHD flow through a smooth channel
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2017.03.006
– volume: 95
  start-page: 61
  year: 2018
  ident: 10.1016/j.elstat.2019.103408_bib7
  article-title: Electrohydrodynamic flows in electrostatic precipitator of five shaped collecting electrodes
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2018.08.002
– volume: 68
  start-page: 513
  issue: 6
  year: 2010
  ident: 10.1016/j.elstat.2019.103408_bib10
  article-title: 3-D numerical analysis of EHD turbulent flow and mono-disperse charged particle transport and collection in a wire-plate ESP
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2010.07.002
– volume: 68
  start-page: 159
  year: 2013
  ident: 10.1016/j.elstat.2019.103408_bib19
  article-title: An adjustment to the standard temperature wall function for CFD modeling of indoor convective heat transfer
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.06.009
SSID ssj0001859
Score 2.2871635
Snippet Numerical modeling of Electrohydrodynamic (EHD) induced flow in hydraulically laminar regimes has always been a discussible subject. Recently, the micropolar...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103408
SubjectTerms Electrohydrodynamic
Material parameter
Micropolar model
Numerical simulation
Title A simple correlation for predicting the material parameter in micropolar modeling of EHD-enhanced forced convection through a flat channel
URI https://dx.doi.org/10.1016/j.elstat.2019.103408
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50RdCD-MQ3c_Aat23apjkuPlgVvajgrbRpgituXXS9-gP81c6krSiIgqdC6bQlk873pflmBuDAFaGyYRkIV7lCxET5hS4zK0pCw0AaWyYlJzhfXqXD2_j8LrmbgaMuF4ZllW3sb2K6j9btmX47mv3JaNS_5k09mWW0ApBcmEvNwlwkdZr0YG5wdjG8-gzIBEm62UyIBRt0GXRe5kUIRKyONV6aE9Bj7jP5E0J9QZ3TZVhq6SIOmjdagRlbr8LilyKCqzDvRZzmZQ3eB_gy4mq_aLjnRqNyQ2KlOHnm_RhWOCMRPiSW6icecuHvMQticFTjmLV5E17qou-Pw1c_OTwZHgtb33ulAN-MD16r7jMisG30gwU6eiByInFtH9fh9vTk5mgo2l4LwtCiYSrKhJhCWGntUpsoqQ3BuCmszZQjiuNCbUymKgKztDJFwiyBqIGKTKQqp6ookBvQq59quwlog5QGXMvQySKObZTZimyDWBE31PTBb4Hsxjc3bSFy7ofxmHeKs4e88UrOXskbr2yB-LSaNIU4_rheda7Lv02onLDiV8vtf1vuwELEy3H_h2YXetPnV7tHnGVa7sPs4Vu4387MD5rH7Po
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IOpBfOLbOXiN2zbtpjmKD9bnRQVvpU0TXFnrouvVH-CvdiZtfYAoeFoomXbJpPm-ab6ZAdh1eahsWATClS4XMVF-oYvUioLQMJDGFknBCc4Xl93eTXx6m9yOwUGbC8Oyymbvr_d0v1s3VzrNbHaG_X7nig_1ZJpSBCC5MJcah8k4kYp1fXuvnzoPAiRdHyXEgoe3-XNe5EX4Q5yOFV6a089j7jL5Ez59wZzjeZhryCLu1_9nAcZstQizX0oILsKUl3Ca5yV428fnPtf6RcMdN2qNGxInxeETn8awvhmJ7iFxVL_skMt-P7AcBvsVPrAyb8iBLvruODz60eFR71DY6s7rBPhm_OOV6j4fAps2P5ijowcipxFXdrAMN8dH1wc90XRaEIZChpEoEuIJYam169pESW0IxE1ubaocERwXamNSVRKUdUuTJ8wRiBioyESqdKqMArkCE9VjZVcBbdClCdcydDKPYxultiTbIFbEDDW97msg2_nNTFOGnLthDLJWb3af1V7J2CtZ7ZU1EB9Ww7oMxx_jVeu67NtyyggpfrVc_7flDkz3ri_Os_OTy7MNmIk4MPffajZhYvT0YreIvYyKbb863wGcpu3F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+correlation+for+predicting+the+material+parameter+in+micropolar+modeling+of+EHD-enhanced+forced+convection+through+a+flat+channel&rft.jtitle=Journal+of+electrostatics&rft.au=Moayedi%2C+Hesam&rft.au=Amanifard%2C+Nima&rft.au=Deylami%2C+Hamed+Mohaddes&rft.date=2020-01-01&rft.pub=Elsevier+B.V&rft.issn=0304-3886&rft.eissn=1873-5738&rft.volume=103&rft_id=info:doi/10.1016%2Fj.elstat.2019.103408&rft.externalDocID=S0304388619302487
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3886&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3886&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3886&client=summon