A simple correlation for predicting the material parameter in micropolar modeling of EHD-enhanced forced convection through a flat channel
Numerical modeling of Electrohydrodynamic (EHD) induced flow in hydraulically laminar regimes has always been a discussible subject. Recently, the micropolar approach has been examined as an alternative for the aforementioned cases. The model was found to be reliable, but time-consuming, since it ne...
Saved in:
Published in | Journal of electrostatics Vol. 103; p. 103408 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-3886 1873-5738 |
DOI | 10.1016/j.elstat.2019.103408 |
Cover
Abstract | Numerical modeling of Electrohydrodynamic (EHD) induced flow in hydraulically laminar regimes has always been a discussible subject. Recently, the micropolar approach has been examined as an alternative for the aforementioned cases. The model was found to be reliable, but time-consuming, since it needed difficult attempts to make guesses at the material parameter (κω/μ). This study aims to complement and facilitate the use of this model by providing a fast tool to guess the material parameter. In this regard, the studies show that the EHD number is a sufficient criterion to predict an adequate parameter. To satisfy this purpose, a series of well-designed studies have been carried out to calculate the EHD number for different flow characteristics; Reynolds number, applied voltage, type of the collector electrode, size of the collector plate, and the arrangement of emitter electrodes. In each case, the desired material parameter has been numerically determined by trial and error. A two-dimensional flat channel was chosen as the computational model and the results of the computational attempts, which were made using the k-ε turbulence model, were selected as the basis of the appropriate material parameter estimation.
•The micropolar model with an adequate material parameter can be used to model the EHD flow.•The material parameter only depends on EHD strength (NEHD).•By increasing the applied electrical voltage and decreasing the Reynolds number, NEHD and the adequate κω/μ are increased.•A general correlation for the adequate material parameter is derived based on the NEHD. |
---|---|
AbstractList | Numerical modeling of Electrohydrodynamic (EHD) induced flow in hydraulically laminar regimes has always been a discussible subject. Recently, the micropolar approach has been examined as an alternative for the aforementioned cases. The model was found to be reliable, but time-consuming, since it needed difficult attempts to make guesses at the material parameter (κω/μ). This study aims to complement and facilitate the use of this model by providing a fast tool to guess the material parameter. In this regard, the studies show that the EHD number is a sufficient criterion to predict an adequate parameter. To satisfy this purpose, a series of well-designed studies have been carried out to calculate the EHD number for different flow characteristics; Reynolds number, applied voltage, type of the collector electrode, size of the collector plate, and the arrangement of emitter electrodes. In each case, the desired material parameter has been numerically determined by trial and error. A two-dimensional flat channel was chosen as the computational model and the results of the computational attempts, which were made using the k-ε turbulence model, were selected as the basis of the appropriate material parameter estimation.
•The micropolar model with an adequate material parameter can be used to model the EHD flow.•The material parameter only depends on EHD strength (NEHD).•By increasing the applied electrical voltage and decreasing the Reynolds number, NEHD and the adequate κω/μ are increased.•A general correlation for the adequate material parameter is derived based on the NEHD. |
ArticleNumber | 103408 |
Author | Amanifard, Nima Deylami, Hamed Mohaddes Moayedi, Hesam |
Author_xml | – sequence: 1 givenname: Hesam surname: Moayedi fullname: Moayedi, Hesam organization: Thermo and Fluids Department, Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran – sequence: 2 givenname: Nima surname: Amanifard fullname: Amanifard, Nima email: namanif@guilan.ac.ir organization: Thermo and Fluids Department, Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran – sequence: 3 givenname: Hamed Mohaddes surname: Deylami fullname: Deylami, Hamed Mohaddes organization: Faculty of Technology and Engineering, East of Guilan, University of Guilan, Rudsar, Iran |
BookMark | eNqFkE1OwzAQhS0EEm3hBix8gRQ7aRKHBVJVCkWqxAbWlrHHrSvHjhxTiStwapyGFQtYjebnvZn5pujceQcI3VAyp4RWt4c52D6KOM8JbVKpWBB2hiaU1UVW1gU7RxNSkEVWMFZdomnfHwghlJXNBH0tcW_azgKWPgSwIhrvsPYBdwGUkdG4HY57wK2IEIywuBNBtJASbBxujQy-81YE3HoFdpj2Gq83Dxm4vXAS1GA2BOndEeTJPu6D_9jtscA6LcQyDTqwV-hCC9vD9U-cobfH9etqk21fnp5Xy20mC1LF7L1keU5V0-gK0nONZGUhBQCrNa1zTRspWa1oziolRVnSvKEsNWReK12rnBQztBh90-l9H0DzLphWhE9OCR948gMfefKBJx95JtndL5k08YQrBmHsf-L7UZx6cDQQeC8NDHhMSFC48uZvg2-DbZhz |
CitedBy_id | crossref_primary_10_1140_epjp_s13360_020_00942_3 crossref_primary_10_1080_01457632_2021_2016141 crossref_primary_10_1016_j_elstat_2020_103520 crossref_primary_10_1016_j_applthermaleng_2022_118471 crossref_primary_10_1016_j_elstat_2023_103825 crossref_primary_10_1007_s40430_022_03623_7 crossref_primary_10_1016_j_applthermaleng_2023_121122 crossref_primary_10_1140_epjp_s13360_021_01791_4 crossref_primary_10_1016_j_ijhydene_2023_09_055 |
Cites_doi | 10.1063/1.869691 10.1063/1.168744 10.1016/j.elstat.2013.03.007 10.1016/0020-7225(73)90038-4 10.1016/j.ijheatmasstransfer.2015.10.043 10.1109/TDEI.2006.1593414 10.1109/TDEI.2010.5658236 10.1109/TDEI.2017.006550 10.1016/j.applthermaleng.2019.113857 10.1016/j.elstat.2004.01.021 10.1080/01457630500341748 10.1016/j.elstat.2009.01.055 10.1109/TIA.2008.921453 10.1007/s00231-019-02693-z 10.1007/s00231-017-1994-7 10.1016/j.applthermaleng.2005.12.012 10.1016/j.ijheatmasstransfer.2017.05.079 10.1016/j.elstat.2017.03.006 10.1016/j.elstat.2018.08.002 10.1016/j.elstat.2010.07.002 10.1016/j.buildenv.2013.06.009 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.elstat.2019.103408 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-5738 |
ExternalDocumentID | 10_1016_j_elstat_2019_103408 S0304388619302487 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SPD SSM SSQ SST SSZ T5K UHS WUQ ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-b58221d99f6e5739c853caee87f172f19cc87d1286dca5512918172c27df7d203 |
IEDL.DBID | AIKHN |
ISSN | 0304-3886 |
IngestDate | Tue Jul 01 00:49:02 EDT 2025 Thu Apr 24 23:13:30 EDT 2025 Fri Feb 23 02:48:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Material parameter Electrohydrodynamic Numerical simulation Micropolar model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-b58221d99f6e5739c853caee87f172f19cc87d1286dca5512918172c27df7d203 |
ParticipantIDs | crossref_primary_10_1016_j_elstat_2019_103408 crossref_citationtrail_10_1016_j_elstat_2019_103408 elsevier_sciencedirect_doi_10_1016_j_elstat_2019_103408 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationTitle | Journal of electrostatics |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Feng, Long, Adamiak (bib11) 2018 Apr; 25 Kasayapanand (bib14) 2006 Oct 1; 26 Soldati, Banerjee (bib13) 1998 Jul; 10 Farnoosh, Adamiak, Castle (bib10) 2010 Dec 1; 68 Deylami (bib22) 2019 Shen, Yu, Jia, Kang (bib7) 2018 Oct 1; 95 Ahmedou, Havet (bib3) 2009 May 1; 67 Fujishima, Morita, Okubo, Yamamoto (bib4) 2006 Feb; 13 Deylami, Amanifard, Dolati, Kouhikamali, Mostajiri (bib5) 2013 Aug 31; 71 Adamiak, Atten (bib21) 2004 Jun 1; 61 Fadaki, Amanifard, Deylami, Dolati (bib2) 2017 Jul 1; 53 Zhao, Adamiak (bib6) 2008 May; 44 Moayedi, Amanifard, Deylami, Dolati (bib17) 2017 Jun 1; 87 Peng, Wang, Wang (bib1) 2016 Feb 1; 93 Shrimpton, Kourmatzis (bib12) 2010 Dec; 17 Zhang, Zhou, Wang (bib19) 2013 Oct 1; 68 Wang, Peng, Wang, Yan (bib9) 2017 Oct 1; 113 Weller, Tabor, Jasak, Fureby (bib20) 1998 Nov; 12 Molki, Damronglerd (bib8) 2006 Jan 1; 27 Ariman, Turk, Sylvester (bib15) 1973 Aug 1; 11 Moayedi, Amanifard, Deylami (bib18) 2019 May 29 Eringen (bib16) 2001 Mar 30 Zhao (10.1016/j.elstat.2019.103408_bib6) 2008; 44 Adamiak (10.1016/j.elstat.2019.103408_bib21) 2004; 61 Farnoosh (10.1016/j.elstat.2019.103408_bib10) 2010; 68 Weller (10.1016/j.elstat.2019.103408_bib20) 1998; 12 Kasayapanand (10.1016/j.elstat.2019.103408_bib14) 2006; 26 Ariman (10.1016/j.elstat.2019.103408_bib15) 1973; 11 Molki (10.1016/j.elstat.2019.103408_bib8) 2006; 27 Deylami (10.1016/j.elstat.2019.103408_bib5) 2013; 71 Eringen (10.1016/j.elstat.2019.103408_bib16) 2001 Peng (10.1016/j.elstat.2019.103408_bib1) 2016; 93 Shrimpton (10.1016/j.elstat.2019.103408_bib12) 2010; 17 Deylami (10.1016/j.elstat.2019.103408_bib22) 2019 Fadaki (10.1016/j.elstat.2019.103408_bib2) 2017; 53 Shen (10.1016/j.elstat.2019.103408_bib7) 2018; 95 Fujishima (10.1016/j.elstat.2019.103408_bib4) 2006; 13 Moayedi (10.1016/j.elstat.2019.103408_bib17) 2017; 87 Zhang (10.1016/j.elstat.2019.103408_bib19) 2013; 68 Soldati (10.1016/j.elstat.2019.103408_bib13) 1998; 10 Ahmedou (10.1016/j.elstat.2019.103408_bib3) 2009; 67 Wang (10.1016/j.elstat.2019.103408_bib9) 2017; 113 Feng (10.1016/j.elstat.2019.103408_bib11) 2018; 25 Moayedi (10.1016/j.elstat.2019.103408_bib18) 2019 |
References_xml | – volume: 93 start-page: 1072 year: 2016 Feb 1 end-page: 1081 ident: bib1 article-title: Effect of longitudinal electrode arrangement on EHD-induced heat transfer enhancement in a rectangular channel publication-title: Int. J. Heat Mass Transf. – volume: 113 start-page: 373 year: 2017 Oct 1 end-page: 383 ident: bib9 article-title: Investigation of heat transfer enhancement by electrohydrodynamics in a double-wall-heated channel publication-title: Int. J. Heat Mass Transf. – volume: 13 start-page: 160 year: 2006 Feb end-page: 167 ident: bib4 article-title: Numerical simulation of three-dimensional electrohydrodynamics of spiked-electrode electrostatic precipitators publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 61 start-page: 85 year: 2004 Jun 1 end-page: 98 ident: bib21 article-title: Simulation of corona discharge in point–plane configuration publication-title: J. Electrost. – volume: 11 start-page: 905 year: 1973 Aug 1 end-page: 930 ident: bib15 article-title: Microcontinuum fluid mechanics—a review publication-title: Int. J. Eng. Sci. – volume: 71 start-page: 656 year: 2013 Aug 31 end-page: 665 ident: bib5 article-title: Numerical investigation of using various electrode arrangements for amplifying the EHD enhanced heat transfer in a smooth channel publication-title: J. Electrost. – volume: 53 start-page: 2445 year: 2017 Jul 1 end-page: 2460 ident: bib2 article-title: Numerical analysis of the EHD driven flow with heat transfer in a smooth channel using multiple collectors publication-title: Heat Mass Transf. – volume: 25 start-page: 404 year: 2018 Apr end-page: 412 ident: bib11 article-title: Numerical simulation of electrohydrodynamic flow and vortex analysis in electrostatic precipitators publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 12 start-page: 620 year: 1998 Nov end-page: 631 ident: bib20 article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques publication-title: Comput. Phys. – volume: 68 start-page: 513 year: 2010 Dec 1 end-page: 522 ident: bib10 article-title: 3-D numerical analysis of EHD turbulent flow and mono-disperse charged particle transport and collection in a wire-plate ESP publication-title: J. Electrost. – start-page: 113857 year: 2019 May 29 ident: bib18 article-title: Evaluation of using micropolar fluid approach for the EHD-enhanced forced convection through a rectangular channel using multiple electrode arrangements publication-title: Appl. Therm. Eng. – volume: 27 start-page: 35 year: 2006 Jan 1 end-page: 45 ident: bib8 article-title: Electrohydrodynamic enhancement of heat transfer for developing air flow in square ducts publication-title: Heat Transf. Eng. – volume: 17 year: 2010 Dec ident: bib12 article-title: Direct numerical simulation of forced flow dielectric EHD within charge injection atomizers publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 44 start-page: 683 year: 2008 May end-page: 691 ident: bib6 article-title: Numerical simulation of the electrohydrodynamic flow in a single wire-plate electrostatic precipitator publication-title: IEEE Trans. Ind. Appl. – volume: 95 start-page: 61 year: 2018 Oct 1 end-page: 70 ident: bib7 article-title: Electrohydrodynamic flows in electrostatic precipitator of five shaped collecting electrodes publication-title: J. Electrost. – volume: 67 start-page: 222 year: 2009 May 1 end-page: 227 ident: bib3 article-title: Effect of process parameters on the EHD airflow publication-title: J. Electrost. – volume: 10 start-page: 1742 year: 1998 Jul end-page: 1756 ident: bib13 article-title: Turbulence modification by large-scale organized electrohydrodynamic flows publication-title: Phys. Fluids – volume: 68 start-page: 159 year: 2013 Oct 1 end-page: 169 ident: bib19 article-title: An adjustment to the standard temperature wall function for CFD modeling of indoor convective heat transfer publication-title: Build. Environ. – year: 2019 ident: bib22 article-title: Effects of EHD on the flow and heat transfer characteristics in a rectangular corrugated channel publication-title: Heat Mass Transf. – volume: 87 start-page: 51 year: 2017 Jun 1 end-page: 63 ident: bib17 article-title: Numerical investigation of using micropolar fluid model for EHD flow through a smooth channel publication-title: J. Electrost. – volume: 26 start-page: 1471 year: 2006 Oct 1 end-page: 1480 ident: bib14 article-title: Numerical study of electrode bank enhanced heat transfer publication-title: Appl. Therm. Eng. – year: 2001 Mar 30 ident: bib16 article-title: Microcontinuum Field Theories: II. Fluent Media – volume: 10 start-page: 1742 issue: 7 year: 1998 ident: 10.1016/j.elstat.2019.103408_bib13 article-title: Turbulence modification by large-scale organized electrohydrodynamic flows publication-title: Phys. Fluids doi: 10.1063/1.869691 – volume: 12 start-page: 620 issue: 6 year: 1998 ident: 10.1016/j.elstat.2019.103408_bib20 article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques publication-title: Comput. Phys. doi: 10.1063/1.168744 – volume: 71 start-page: 656 issue: 4 year: 2013 ident: 10.1016/j.elstat.2019.103408_bib5 article-title: Numerical investigation of using various electrode arrangements for amplifying the EHD enhanced heat transfer in a smooth channel publication-title: J. Electrost. doi: 10.1016/j.elstat.2013.03.007 – volume: 11 start-page: 905 issue: 8 year: 1973 ident: 10.1016/j.elstat.2019.103408_bib15 article-title: Microcontinuum fluid mechanics—a review publication-title: Int. J. Eng. Sci. doi: 10.1016/0020-7225(73)90038-4 – volume: 93 start-page: 1072 year: 2016 ident: 10.1016/j.elstat.2019.103408_bib1 article-title: Effect of longitudinal electrode arrangement on EHD-induced heat transfer enhancement in a rectangular channel publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.10.043 – volume: 13 start-page: 160 issue: 1 year: 2006 ident: 10.1016/j.elstat.2019.103408_bib4 article-title: Numerical simulation of three-dimensional electrohydrodynamics of spiked-electrode electrostatic precipitators publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2006.1593414 – volume: 17 issue: 6 year: 2010 ident: 10.1016/j.elstat.2019.103408_bib12 article-title: Direct numerical simulation of forced flow dielectric EHD within charge injection atomizers publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2010.5658236 – volume: 25 start-page: 404 issue: 2 year: 2018 ident: 10.1016/j.elstat.2019.103408_bib11 article-title: Numerical simulation of electrohydrodynamic flow and vortex analysis in electrostatic precipitators publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2017.006550 – start-page: 113857 year: 2019 ident: 10.1016/j.elstat.2019.103408_bib18 article-title: Evaluation of using micropolar fluid approach for the EHD-enhanced forced convection through a rectangular channel using multiple electrode arrangements publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.113857 – volume: 61 start-page: 85 issue: 2 year: 2004 ident: 10.1016/j.elstat.2019.103408_bib21 article-title: Simulation of corona discharge in point–plane configuration publication-title: J. Electrost. doi: 10.1016/j.elstat.2004.01.021 – volume: 27 start-page: 35 issue: 1 year: 2006 ident: 10.1016/j.elstat.2019.103408_bib8 article-title: Electrohydrodynamic enhancement of heat transfer for developing air flow in square ducts publication-title: Heat Transf. Eng. doi: 10.1080/01457630500341748 – volume: 67 start-page: 222 issue: 2–3 year: 2009 ident: 10.1016/j.elstat.2019.103408_bib3 article-title: Effect of process parameters on the EHD airflow publication-title: J. Electrost. doi: 10.1016/j.elstat.2009.01.055 – volume: 44 start-page: 683 issue: 3 year: 2008 ident: 10.1016/j.elstat.2019.103408_bib6 article-title: Numerical simulation of the electrohydrodynamic flow in a single wire-plate electrostatic precipitator publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2008.921453 – year: 2019 ident: 10.1016/j.elstat.2019.103408_bib22 article-title: Effects of EHD on the flow and heat transfer characteristics in a rectangular corrugated channel publication-title: Heat Mass Transf. doi: 10.1007/s00231-019-02693-z – volume: 53 start-page: 2445 issue: 7 year: 2017 ident: 10.1016/j.elstat.2019.103408_bib2 article-title: Numerical analysis of the EHD driven flow with heat transfer in a smooth channel using multiple collectors publication-title: Heat Mass Transf. doi: 10.1007/s00231-017-1994-7 – volume: 26 start-page: 1471 issue: 14–15 year: 2006 ident: 10.1016/j.elstat.2019.103408_bib14 article-title: Numerical study of electrode bank enhanced heat transfer publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2005.12.012 – volume: 113 start-page: 373 year: 2017 ident: 10.1016/j.elstat.2019.103408_bib9 article-title: Investigation of heat transfer enhancement by electrohydrodynamics in a double-wall-heated channel publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.05.079 – year: 2001 ident: 10.1016/j.elstat.2019.103408_bib16 – volume: 87 start-page: 51 year: 2017 ident: 10.1016/j.elstat.2019.103408_bib17 article-title: Numerical investigation of using micropolar fluid model for EHD flow through a smooth channel publication-title: J. Electrost. doi: 10.1016/j.elstat.2017.03.006 – volume: 95 start-page: 61 year: 2018 ident: 10.1016/j.elstat.2019.103408_bib7 article-title: Electrohydrodynamic flows in electrostatic precipitator of five shaped collecting electrodes publication-title: J. Electrost. doi: 10.1016/j.elstat.2018.08.002 – volume: 68 start-page: 513 issue: 6 year: 2010 ident: 10.1016/j.elstat.2019.103408_bib10 article-title: 3-D numerical analysis of EHD turbulent flow and mono-disperse charged particle transport and collection in a wire-plate ESP publication-title: J. Electrost. doi: 10.1016/j.elstat.2010.07.002 – volume: 68 start-page: 159 year: 2013 ident: 10.1016/j.elstat.2019.103408_bib19 article-title: An adjustment to the standard temperature wall function for CFD modeling of indoor convective heat transfer publication-title: Build. Environ. doi: 10.1016/j.buildenv.2013.06.009 |
SSID | ssj0001859 |
Score | 2.2871635 |
Snippet | Numerical modeling of Electrohydrodynamic (EHD) induced flow in hydraulically laminar regimes has always been a discussible subject. Recently, the micropolar... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103408 |
SubjectTerms | Electrohydrodynamic Material parameter Micropolar model Numerical simulation |
Title | A simple correlation for predicting the material parameter in micropolar modeling of EHD-enhanced forced convection through a flat channel |
URI | https://dx.doi.org/10.1016/j.elstat.2019.103408 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50RdCD-MQ3c_Aat23apjkuPlgVvajgrbRpgituXXS9-gP81c6krSiIgqdC6bQlk873pflmBuDAFaGyYRkIV7lCxET5hS4zK0pCw0AaWyYlJzhfXqXD2_j8LrmbgaMuF4ZllW3sb2K6j9btmX47mv3JaNS_5k09mWW0ApBcmEvNwlwkdZr0YG5wdjG8-gzIBEm62UyIBRt0GXRe5kUIRKyONV6aE9Bj7jP5E0J9QZ3TZVhq6SIOmjdagRlbr8LilyKCqzDvRZzmZQ3eB_gy4mq_aLjnRqNyQ2KlOHnm_RhWOCMRPiSW6icecuHvMQticFTjmLV5E17qou-Pw1c_OTwZHgtb33ulAN-MD16r7jMisG30gwU6eiByInFtH9fh9vTk5mgo2l4LwtCiYSrKhJhCWGntUpsoqQ3BuCmszZQjiuNCbUymKgKztDJFwiyBqIGKTKQqp6ookBvQq59quwlog5QGXMvQySKObZTZimyDWBE31PTBb4Hsxjc3bSFy7ofxmHeKs4e88UrOXskbr2yB-LSaNIU4_rheda7Lv02onLDiV8vtf1vuwELEy3H_h2YXetPnV7tHnGVa7sPs4Vu4387MD5rH7Po |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IOpBfOLbOXiN2zbtpjmKD9bnRQVvpU0TXFnrouvVH-CvdiZtfYAoeFoomXbJpPm-ab6ZAdh1eahsWATClS4XMVF-oYvUioLQMJDGFknBCc4Xl93eTXx6m9yOwUGbC8Oyymbvr_d0v1s3VzrNbHaG_X7nig_1ZJpSBCC5MJcah8k4kYp1fXuvnzoPAiRdHyXEgoe3-XNe5EX4Q5yOFV6a089j7jL5Ez59wZzjeZhryCLu1_9nAcZstQizX0oILsKUl3Ca5yV428fnPtf6RcMdN2qNGxInxeETn8awvhmJ7iFxVL_skMt-P7AcBvsVPrAyb8iBLvruODz60eFR71DY6s7rBPhm_OOV6j4fAps2P5ijowcipxFXdrAMN8dH1wc90XRaEIZChpEoEuIJYam169pESW0IxE1ubaocERwXamNSVRKUdUuTJ8wRiBioyESqdKqMArkCE9VjZVcBbdClCdcydDKPYxultiTbIFbEDDW97msg2_nNTFOGnLthDLJWb3af1V7J2CtZ7ZU1EB9Ww7oMxx_jVeu67NtyyggpfrVc_7flDkz3ri_Os_OTy7MNmIk4MPffajZhYvT0YreIvYyKbb863wGcpu3F |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+correlation+for+predicting+the+material+parameter+in+micropolar+modeling+of+EHD-enhanced+forced+convection+through+a+flat+channel&rft.jtitle=Journal+of+electrostatics&rft.au=Moayedi%2C+Hesam&rft.au=Amanifard%2C+Nima&rft.au=Deylami%2C+Hamed+Mohaddes&rft.date=2020-01-01&rft.pub=Elsevier+B.V&rft.issn=0304-3886&rft.eissn=1873-5738&rft.volume=103&rft_id=info:doi/10.1016%2Fj.elstat.2019.103408&rft.externalDocID=S0304388619302487 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3886&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3886&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3886&client=summon |