Homotopy perturbation method for strongly nonlinear oscillators
Saved in:
Published in | Mathematics and computers in simulation Vol. 204; pp. 243 - 258 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.02.2023
|
Online Access | Get full text |
Cover
Loading…
Author | Khan, Yasir Jiao, Man-Li Gepreel, Khaled A. He, Ji-Huan |
---|---|
Author_xml | – sequence: 1 givenname: Ji-Huan orcidid: 0000-0002-1636-0559 surname: He fullname: He, Ji-Huan – sequence: 2 givenname: Man-Li surname: Jiao fullname: Jiao, Man-Li – sequence: 3 givenname: Khaled A. surname: Gepreel fullname: Gepreel, Khaled A. – sequence: 4 givenname: Yasir surname: Khan fullname: Khan, Yasir |
BookMark | eNp9j71OwzAUhT0UibbwBgx5gYRrx39lQagCilSJBWbLcWxwlMSRbYa8PSllYmC6Z_nOud8GrcYwWoRuMFQYML_tqkFnE4aKACEVyAqArdAaaiFLKhi9RJuUOgBYMluj-0MYQg7TXEw25q_Y6OzDWAw2f4a2cCEWKccwfvRzsQz1frQ6FiEZ3_c6h5iu0IXTfbLXv3eL3p8e3_aH8vj6_LJ_OJamBp7LhjHZcK2tJA52VnPZEmGdpEw0FLcEHNY13lFMhdCcEQqGYSeMZc5h63i9RXfnXhNDStE6ZXz--TVH7XuFQZ30VafO-uqkr0CqRX-B6R94in7Qcf4f-wZd7Wdm |
CitedBy_id | crossref_primary_10_2298_TSCI2403153L crossref_primary_10_2298_TSCI2403125S crossref_primary_10_1016_j_cam_2023_115296 crossref_primary_10_1142_S0218348X24500117 crossref_primary_10_54684_ijmem_2024_4_2_88 crossref_primary_10_1142_S0218348X23500706 crossref_primary_10_1177_14613484221133603 crossref_primary_10_1016_j_cnsns_2023_107590 crossref_primary_10_1177_14613484231193261 crossref_primary_10_1088_1572_9494_ad3192 crossref_primary_10_1016_j_asej_2023_102623 crossref_primary_10_1177_14613484231188756 crossref_primary_10_1177_14613484221145183 crossref_primary_10_3390_math11051124 crossref_primary_10_1371_journal_pone_0301719 crossref_primary_10_1142_S0218348X23501104 crossref_primary_10_1016_j_matcom_2024_01_004 crossref_primary_10_1016_j_cjph_2024_03_047 crossref_primary_10_1007_s00500_023_07827_4 crossref_primary_10_1108_HFF_09_2022_0554 crossref_primary_10_1177_14613484231177654 crossref_primary_10_3934_mbe_2023356 crossref_primary_10_3934_math_20231383 crossref_primary_10_1016_j_chaos_2024_115549 crossref_primary_10_1016_j_padiff_2024_100806 crossref_primary_10_2478_ama_2024_0016 crossref_primary_10_1016_j_matcom_2024_12_026 crossref_primary_10_1007_s11082_023_05309_3 crossref_primary_10_1007_s11082_023_05742_4 crossref_primary_10_2298_TSCI2403143Y crossref_primary_10_1098_rspa_2023_0567 crossref_primary_10_2298_TSCI2403983S crossref_primary_10_2298_TSCI2403135Y crossref_primary_10_1016_j_matcom_2023_07_002 crossref_primary_10_2478_ama_2023_0040 crossref_primary_10_2298_TSCI2403975Q crossref_primary_10_1177_14613484221131245 crossref_primary_10_1108_HFF_08_2022_0499 crossref_primary_10_1016_j_jelechem_2023_117699 crossref_primary_10_1007_s40435_023_01358_4 crossref_primary_10_1007_s42417_022_00697_4 crossref_primary_10_1016_j_kjs_2023_05_011 crossref_primary_10_1142_S021798492450341X crossref_primary_10_1177_14613484221138560 crossref_primary_10_1142_S0217979224502928 crossref_primary_10_1007_s00419_022_02269_0 crossref_primary_10_1177_14613484231185490 crossref_primary_10_1016_j_aej_2024_10_086 crossref_primary_10_1016_j_chaos_2023_113481 crossref_primary_10_1142_S0217984923501695 crossref_primary_10_1021_acs_jpcb_4c02673 crossref_primary_10_1142_S0217984924504621 crossref_primary_10_2298_TSCI2403171Z crossref_primary_10_1177_14613484221142182 crossref_primary_10_3389_fphy_2023_1238901 crossref_primary_10_3389_fphy_2023_1246884 crossref_primary_10_1016_j_csite_2023_102961 crossref_primary_10_1016_j_ijnonlinmec_2024_104923 crossref_primary_10_1515_phys_2022_0214 crossref_primary_10_1177_14613484221148049 crossref_primary_10_3390_fractalfract6110623 crossref_primary_10_51537_chaos_1164683 |
Cites_doi | 10.1177/1461348420914457 10.1016/j.matcom.2021.08.014 10.1177/14613484211059264 10.2298/TSCI200421016T 10.2298/TSCI2203427Z 10.1177/1461348419844145 10.1016/j.physleta.2007.02.049 10.1631/jzus.A0820651 10.1016/j.camwa.2009.03.050 10.1177/1461348418800554 10.1016/j.jelechem.2021.115388 10.1177/1461348420917565 10.1177/1461348419829372 10.1142/S0218348X22500463 10.1177/1461348418817868 10.1177/14613484211026407 10.1002/zamm.202100187 10.1142/S0218348X21500304 10.1177/14613484211051837 10.1016/j.matcom.2020.08.001 10.1177/1461348420984041 10.1177/1461348421992608 10.1177/1461348420972820 10.12677/JISP.2018.74023 10.1002/jmri.24709 10.1007/s42417-022-00446-7 10.1177/1461348420926331 10.1109/TSMC.2020.2997852 10.1142/S0218348X21502467 10.1177/1461348418817869 10.1007/s11071-016-2986-8 10.1109/ACCESS.2018.2843392 10.1155/2015/932905 10.1177/14613484211044613 10.1177/14613484221104647 10.2298/TSCI180108204F 10.1016/j.aej.2016.04.036 10.3390/axioms10030191 10.1177/1461348418816266 10.1177/1461348418821204 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matcom.2022.08.005 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EndPage | 258 |
ExternalDocumentID | 10_1016_j_matcom_2022_08_005 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO AAYWO AAYXX ABAOU ABEFU ABFNM ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADGUI ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APLSM APXCP ARUGR AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SME SPC SPCBC SSB SSD SSH SST SSW SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- |
ID | FETCH-LOGICAL-c306t-b558b6aae82f09ea68d27ef8457b41d20f1a31941477a65240c51f7ce5ff1ef63 |
ISSN | 0378-4754 |
IngestDate | Thu Apr 24 23:07:27 EDT 2025 Tue Jul 01 03:39:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c306t-b558b6aae82f09ea68d27ef8457b41d20f1a31941477a65240c51f7ce5ff1ef63 |
ORCID | 0000-0002-1636-0559 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1016_j_matcom_2022_08_005 crossref_primary_10_1016_j_matcom_2022_08_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-00 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-00 |
PublicationDecade | 2020 |
PublicationTitle | Mathematics and computers in simulation |
PublicationYear | 2023 |
References | Wu (10.1016/j.matcom.2022.08.005_b47) 2018; 7 He (10.1016/j.matcom.2022.08.005_b17) 2021; 895 Hu (10.1016/j.matcom.2022.08.005_b21) 2019 Ma (10.1016/j.matcom.2022.08.005_b29) 2022 Wang (10.1016/j.matcom.2022.08.005_b43) 2015; 41 Suleman (10.1016/j.matcom.2022.08.005_b35) 2015 He (10.1016/j.matcom.2022.08.005_b14) 2022; 41 Tian (10.1016/j.matcom.2022.08.005_b39) 2021; 25 Dan (10.1016/j.matcom.2022.08.005_b2) 2021; 25 He (10.1016/j.matcom.2022.08.005_b12) 2021; 10 Feng (10.1016/j.matcom.2022.08.005_b5) 2021; 40 Belendez (10.1016/j.matcom.2022.08.005_b1) 2016; 86 Filobello-Nino (10.1016/j.matcom.2022.08.005_b6) 2020; 24 Li (10.1016/j.matcom.2022.08.005_b24) 2019; 38 Wang (10.1016/j.matcom.2022.08.005_b40) 2009; 58 Liu (10.1016/j.matcom.2022.08.005_b27) 2021; 40 Razzak (10.1016/j.matcom.2022.08.005_b32) 2016; 55 Popov (10.1016/j.matcom.2022.08.005_b31) 2021; 19 Suleman (10.1016/j.matcom.2022.08.005_b34) 2019; 38 Wang (10.1016/j.matcom.2022.08.005_b42) 2007; 367 Ganji (10.1016/j.matcom.2022.08.005_b8) 2009; 10 Ghaleb (10.1016/j.matcom.2022.08.005_b9) 2021; 180 He (10.1016/j.matcom.2022.08.005_b16) 2022; 30 Wang (10.1016/j.matcom.2022.08.005_b46) 2020; 52 Han (10.1016/j.matcom.2022.08.005_b10) 2021; 29 He (10.1016/j.matcom.2022.08.005_b11) 2019; 38 Li (10.1016/j.matcom.2022.08.005_b25) 2019; 38 Wang (10.1016/j.matcom.2022.08.005_b41) 2021; 419 Hoang (10.1016/j.matcom.2022.08.005_b20) 2021; 19 Kuang (10.1016/j.matcom.2022.08.005_b23) 2019; 38 Zhang (10.1016/j.matcom.2022.08.005_b49) 2022; 41 Yu (10.1016/j.matcom.2022.08.005_b48) 2021 Tian (10.1016/j.matcom.2022.08.005_b37) 2021; 29 Zhang (10.1016/j.matcom.2022.08.005_b50) 2022; 26 Ganji (10.1016/j.matcom.2022.08.005_b7) 2012; 50 He (10.1016/j.matcom.2022.08.005_b19) 2022; 41 Wang (10.1016/j.matcom.2022.08.005_b45) 2021; 41 Shen (10.1016/j.matcom.2022.08.005_b33) 2021; 40 Nawaz (10.1016/j.matcom.2022.08.005_b30) 2019; 38 Tian (10.1016/j.matcom.2022.08.005_b38) 2021; 40 He (10.1016/j.matcom.2022.08.005_b13) 2022 He (10.1016/j.matcom.2022.08.005_b15) 2022; 20 Ma (10.1016/j.matcom.2022.08.005_b28) 2022 El-Dib (10.1016/j.matcom.2022.08.005_b3) 2021 Ji (10.1016/j.matcom.2022.08.005_b22) 2021; 40 Li (10.1016/j.matcom.2022.08.005_b26) 2022; 10 Wang (10.1016/j.matcom.2022.08.005_b44) 2018; 6 Zhou (10.1016/j.matcom.2022.08.005_b51) 2022; 192 He (10.1016/j.matcom.2022.08.005_b18) 2022; 20 Tao (10.1016/j.matcom.2022.08.005_b36) 2019; 38 Elias-Zuniga (10.1016/j.matcom.2022.08.005_b4) 2020; 39 |
References_xml | – volume: 40 start-page: 675 issue: 2 year: 2021 ident: 10.1016/j.matcom.2022.08.005_b22 article-title: Li-He’s modified homotopy perturbation method coupled with the energy method for the dropping shock response of a tangent nonlinear packaging system publication-title: J. Low Freq. Noise Vib. Act. doi: 10.1177/1461348420914457 – year: 2021 ident: 10.1016/j.matcom.2022.08.005_b48 article-title: Morphological feature visualization of Alzheimer’s disease via multidirectional perception GAN publication-title: IEEE Trans. Neural Netw. Learn. – volume: 19 start-page: 105 issue: 1 year: 2021 ident: 10.1016/j.matcom.2022.08.005_b31 article-title: Friction under large-amplitude normal oscillations publication-title: Facta Univ.-Ser. Mech. – volume: 192 start-page: 1 year: 2022 ident: 10.1016/j.matcom.2022.08.005_b51 article-title: Chaos of the Rayleigh-Duffing oscillator with a non-smooth periodic perturbation and harmonic excitation publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2021.08.014 – volume: 41 start-page: 572 issue: 2 year: 2022 ident: 10.1016/j.matcom.2022.08.005_b14 article-title: A heuristic review on the homotopy perturbation method for non-conservative oscillators publication-title: J. Low Freq. Noise Vib. Act. doi: 10.1177/14613484211059264 – volume: 25 start-page: 1229 issue: 2 year: 2021 ident: 10.1016/j.matcom.2022.08.005_b39 article-title: Exact solutions of space–time fractional 2+1 dimensional breaking soliton equation publication-title: Therm. Sci. doi: 10.2298/TSCI200421016T – volume: 26 start-page: 2427 issue: 3B year: 2022 ident: 10.1016/j.matcom.2022.08.005_b50 article-title: Non-chaos-mediated mixed-mode oscillations in an extended Hindmarsh-Rose neuronal oscillator with time delay publication-title: Therm. Sci. doi: 10.2298/TSCI2203427Z – volume: 38 start-page: 1252 issue: 3–4 year: 2019 ident: 10.1016/j.matcom.2022.08.005_b11 article-title: The simpler, the better: Analytical methods for nonlinear oscillators and fractional oscillators publication-title: J. Low Freq. Noise Vib. Act. doi: 10.1177/1461348419844145 – volume: 367 start-page: 188 issue: 3 year: 2007 ident: 10.1016/j.matcom.2022.08.005_b42 article-title: Variational iteration method for solving integro-differential equations publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2007.02.049 – volume: 419 issue: 17 year: 2021 ident: 10.1016/j.matcom.2022.08.005_b41 article-title: Generalized variational principle and periodic wave solution to the modified equal width-Burgers equation in nonlinear dispersion media publication-title: Phys. Lett. A – volume: 10 start-page: 1263 issue: 9 year: 2009 ident: 10.1016/j.matcom.2022.08.005_b8 article-title: Solution of nonlinear cubic-quintic Duffing oscillators using He’s Energy Balance Method publication-title: J. Zhejiang Univ.-Sci. A doi: 10.1631/jzus.A0820651 – volume: 58 start-page: 2452 issue: 11 year: 2009 ident: 10.1016/j.matcom.2022.08.005_b40 article-title: A variational approach to nonlinear two-point boundary value problems publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2009.03.050 – volume: 38 start-page: 1399 year: 2019 ident: 10.1016/j.matcom.2022.08.005_b24 article-title: Homotopy perturbation method coupled with the enhanced perturbation method publication-title: J. Low Freq. Noise Vib. Act. doi: 10.1177/1461348418800554 – volume: 895 year: 2021 ident: 10.1016/j.matcom.2022.08.005_b17 article-title: Nonlinear instability of two streaming-superposed magnetic Reiner-Rivlin Fluids by He–Laplace method publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2021.115388 – volume: 40 start-page: 683 issue: 2 year: 2021 ident: 10.1016/j.matcom.2022.08.005_b33 article-title: A periodic solution of the fractional Sine–Gordon equation arising in architectural engineering publication-title: J. Low Freq. Noise Vib. Act. doi: 10.1177/1461348420917565 – volume: 38 start-page: 1013 year: 2019 ident: 10.1016/j.matcom.2022.08.005_b30 article-title: An effective modification of He’s variational approach to a nonlinear oscillator publication-title: J. Low Freq. Noise Vib. Act. doi: 10.1177/1461348419829372 – volume: 30 issue: 3 year: 2022 ident: 10.1016/j.matcom.2022.08.005_b16 article-title: A modified frequency-amplitude formulation for fractal vibration systems publication-title: Fractals doi: 10.1142/S0218348X22500463 – volume: 38 start-page: 984 issue: 3–4 year: 2019 ident: 10.1016/j.matcom.2022.08.005_b36 article-title: Variational iteration method with matrix Lagrange multiplier for nonlinear oscillators publication-title: J. Low Freq. Noise Vib. Act. doi: 10.1177/1461348418817868 – volume: 41 start-page: 244 issue: 1 year: 2022 ident: 10.1016/j.matcom.2022.08.005_b19 article-title: Hybrid Rayleigh -Van der Pol-Duffing Oscillator (HRVD): Stability analysis and controller publication-title: J. Low Freq. Noise Vib. Act. doi: 10.1177/14613484211026407 – year: 2021 ident: 10.1016/j.matcom.2022.08.005_b3 article-title: The frequency estimation for non-conservative nonlinear oscillation publication-title: ZAMM-Z. Angew. Math. Mech. doi: 10.1002/zamm.202100187 – volume: 29 issue: 2 year: 2021 ident: 10.1016/j.matcom.2022.08.005_b37 article-title: Fractal N/MEMS: from pull-in instability to pull-in stability publication-title: Fractals doi: 10.1142/S0218348X21500304 – volume: 41 start-page: 160 issue: 1 year: 2022 ident: 10.1016/j.matcom.2022.08.005_b49 article-title: A fast estimation of the frequency property of the microelectromechanical system oscillator publication-title: J. Low Freq. Noise Vib. Act. doi: 10.1177/14613484211051837 – volume: 180 start-page: 129 year: 2021 ident: 10.1016/j.matcom.2022.08.005_b9 article-title: Analytic approximate solutions of the cubic-quintic Duffing-van der Pol equation with two-external periodic forcing terms: Stability analysis publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2020.08.001 – volume: 40 start-page: 1380 issue: 3 year: 2021 ident: 10.1016/j.matcom.2022.08.005_b38 article-title: A fractal micro-electromechanical system and its pull-in stability publication-title: J. Low Freq. Noise Vib. Act. doi: 10.1177/1461348420984041 – volume: 40 start-page: 1671 issue: 4 year: 2021 ident: 10.1016/j.matcom.2022.08.005_b5 article-title: He’s frequency formula to fractal undamped Duffing equation publication-title: J. Low Freq. Noise Vib. Act. doi: 10.1177/1461348421992608 – year: 2022 ident: 10.1016/j.matcom.2022.08.005_b29 article-title: Simplified Hamiltonian-based frequency-amplitude formulation for nonlinear vibration system publication-title: Facta Univ.-Ser. Mech. – volume: 39 start-page: 1216 issue: 4 year: 2020 ident: 10.1016/j.matcom.2022.08.005_b4 article-title: He’s frequency-amplitude formulation for nonlinear oscillators using Jacobi elliptic functions publication-title: J. Low Freq. Noise Vib. Act. doi: 10.1177/1461348420972820 – volume: 7 start-page: 200 issue: 4 year: 2018 ident: 10.1016/j.matcom.2022.08.005_b47 article-title: 3D convolutional neural network for regional precipitation nowcasting publication-title: J. Image Signal Process. doi: 10.12677/JISP.2018.74023 – volume: 41 start-page: 1682 issue: 6 year: 2015 ident: 10.1016/j.matcom.2022.08.005_b43 article-title: Prediction of myelopathic level in cervical spondylotic myelopathy using diffusion tensor imaging publication-title: J. Magn. Reson. Imag. doi: 10.1002/jmri.24709 – volume: 10 start-page: 1291 issue: 4 year: 2022 ident: 10.1016/j.matcom.2022.08.005_b26 article-title: High accurate homo-heteroclinic solutions of certain strongly nonlinear oscillators based on generalized pade-lindstedt-poincare method publication-title: J. Vib. Eng. Technol. doi: 10.1007/s42417-022-00446-7 – volume: 25 start-page: 1261 issue: 2B year: 2021 ident: 10.1016/j.matcom.2022.08.005_b2 article-title: Using piecewise reproducing kernel method and Legendre polynomial for solving a class of the time variable fractional order advection-reaction–diffusion equation publication-title: Therm. Sci. – volume: 40 start-page: 672 issue: 2 year: 2021 ident: 10.1016/j.matcom.2022.08.005_b27 article-title: A short remark on He’s frequency formulation publication-title: J. Low Freq. Noise Vib. Act. doi: 10.1177/1461348420926331 – volume: 52 start-page: 426 issue: 1 year: 2020 ident: 10.1016/j.matcom.2022.08.005_b46 article-title: An ensemble-based densely-connected deep learning system for assessment of skeletal maturity publication-title: IEEE Trans. Syst. Man Cybern. A doi: 10.1109/TSMC.2020.2997852 – volume: 29 issue: 8 year: 2021 ident: 10.1016/j.matcom.2022.08.005_b10 article-title: Numerical solutions of space fractional variable-coefficient KdV-modified KdV equation by Fourier spectral method publication-title: Fractals doi: 10.1142/S0218348X21502467 – start-page: 1 year: 2022 ident: 10.1016/j.matcom.2022.08.005_b13 article-title: Controlling the kinematics of a spring-pendulum system using an energy harvesting device publication-title: J. Low Freq. Noise Vib. Act. – volume: 38 start-page: 1305 issue: 3–4 year: 2019 ident: 10.1016/j.matcom.2022.08.005_b25 article-title: He–Laplace method for nonlinear vibration in shallow water waves publication-title: J. Low Freq. Noise Vib. Act. doi: 10.1177/1461348418817869 – start-page: 1 year: 2019 ident: 10.1016/j.matcom.2022.08.005_b21 article-title: Cross-modality synthesis from MRI to PET using adversarial U-net with different normalization – volume: 86 start-page: 1687 issue: 3 year: 2016 ident: 10.1016/j.matcom.2022.08.005_b1 article-title: Exact solution for the unforced Duffing oscillator with cubic and quintic nonlinearities publication-title: Nonlinear Dynam. doi: 10.1007/s11071-016-2986-8 – volume: 6 start-page: 29979 year: 2018 ident: 10.1016/j.matcom.2022.08.005_b44 article-title: Skeletal maturity recognition using a fully automated system with convolutional neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2843392 – year: 2015 ident: 10.1016/j.matcom.2022.08.005_b35 article-title: Comparative solution of nonlinear quintic cubic oscillator using modified homotopy perturbation method publication-title: Adv. Math. Phys. doi: 10.1155/2015/932905 – volume: 19 start-page: 285 issue: 2 year: 2021 ident: 10.1016/j.matcom.2022.08.005_b20 article-title: A new C0 third-order shear deformation theory for the nonlinear free vibration analysis of stiffened functionally graded plates publication-title: Facta Univ.-Ser. Mech. – volume: 20 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.matcom.2022.08.005_b18 article-title: Forced nonlinear oscillator in a fractal space publication-title: Facta Univ.-Ser. Mech. – volume: 41 start-page: 216 issue: 1 year: 2021 ident: 10.1016/j.matcom.2022.08.005_b45 article-title: Gamma function method for the nonlinear cubic-quintic Duffing oscillators publication-title: J. Low Freq. Noise Vib. Act. doi: 10.1177/14613484211044613 – volume: 20 start-page: 211 issue: 2 year: 2022 ident: 10.1016/j.matcom.2022.08.005_b15 article-title: The carbon nanotube-embedded boundary layer theory for energy harvesting publication-title: Facta Univ. Ser.: Mech. Eng. – year: 2022 ident: 10.1016/j.matcom.2022.08.005_b28 article-title: Fractal variational principle for an optimal control problem publication-title: J. Low Freq. Noise Vib. Act. doi: 10.1177/14613484221104647 – volume: 24 start-page: 1105 issue: 2 year: 2020 ident: 10.1016/j.matcom.2022.08.005_b6 article-title: The study of heat transfer phenomena by using modified homotopy perturbation method coupled by Laplace transform publication-title: Therm. Sci. doi: 10.2298/TSCI180108204F – volume: 55 start-page: 2959 issue: 3 year: 2016 ident: 10.1016/j.matcom.2022.08.005_b32 article-title: An analytical approximate technique for solving cubic-quintic Duffing oscillator publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2016.04.036 – volume: 50 start-page: 215 issue: 1 year: 2012 ident: 10.1016/j.matcom.2022.08.005_b7 article-title: Motion of a rigid rod rocking back and forth and cubic-quitic Duffing oscillators publication-title: J. Theor. Appl. Mech.-Pol. – volume: 10 start-page: 191 issue: 3 year: 2021 ident: 10.1016/j.matcom.2022.08.005_b12 article-title: Periodic property and instability of a rotating pendulum system publication-title: Axioms doi: 10.3390/axioms10030191 – volume: 38 start-page: 1297 issue: 3–4 year: 2019 ident: 10.1016/j.matcom.2022.08.005_b34 article-title: He–Laplace method for general nonlinear periodic solitary solution of vibration equations publication-title: J. Low Freq. Noise Vib. Act. doi: 10.1177/1461348418816266 – volume: 38 start-page: 1075 issue: 3–4 year: 2019 ident: 10.1016/j.matcom.2022.08.005_b23 article-title: Homotopy perturbation method with an auxiliary term for the optimal design of a tangent nonlinear packaging system publication-title: J. Low Freq. Noise Vib. Act. doi: 10.1177/1461348418821204 |
SSID | ssj0007545 |
Score | 2.566396 |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 243 |
Title | Homotopy perturbation method for strongly nonlinear oscillators |
Volume | 204 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYQXLhsAzYNBsgHbpWrxLHj5DQhBKrKjxOV4BTZib0GsYLacoADf_ue7TiJxlQNLlEUJU7S7-X5-fV730PoKM-siLeKCc2FIczwimR5FMEXrzUtk8hwY1MDl1fpaMLGN_ymo4256pKlGpYv_6wr-QiqcAxwtVWy70C2HRQOwD7gC1tAGLb_hfHIUukeHp-t-DBMHcqD6ZtCO_7gwia6f90_D2ZeEUPOB1a8EqC3TXb6gellK9-6CKVurtuDo8su6t9Nl68udergr8noqTOvcS0ffP3PjFzULbPHcm09F-B8CtNRNTgetm5-6vOvt3JRz_sJCJoEznLrpxJhE3ReCzo4VRqxvlv0UkzNDEu9WPsb5-3zCHdDeFnL5IF7USevGvFusgp_0P81h7XMwkBauyv8KIUdpbCdNq3Q7QaFxYT1hsPXjggET-6IruE1QoGlYwG-fZZeANOLRK6_oE_NEgIfe3vYQmt6to0-h_YcuPHWO-hnMA_cNw_szQODeeBgHrg1D9wzj69ocnZ6fTIiTb8MAh9VuiSK80ylUuqMmijXMs0qKrTJGBeKxRWNTCzB47KYCSFTDrFcyWMjSs2NibVJk29oHe6nvyMM6wiZ5FXCIJpkJYukkqISmVGU5mWi012UhB-hKBsxedvT5L5YBcAuIu1Vj15MZeX5e-88_wfa7Ax0H60v50_6AGLGpTp0kP8B_7RuUg |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homotopy+perturbation+method+for+strongly+nonlinear+oscillators&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=He%2C+Ji-Huan&rft.au=Jiao%2C+Man-Li&rft.au=Gepreel%2C+Khaled+A.&rft.au=Khan%2C+Yasir&rft.date=2023-02-01&rft.issn=0378-4754&rft.volume=204&rft.spage=243&rft.epage=258&rft_id=info:doi/10.1016%2Fj.matcom.2022.08.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matcom_2022_08_005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon |