Multimodal and multicontrast image fusion via deep generative models

•Deep learning architecture for neuroimaging reconstruction.•Efficient convolutional neural networks based on separable convolutions.•Multimodality learning and interpretability of latent embeddings.•Clustering individuals phenotypes with structural multimodal brain features. Recently, it has become...

Full description

Saved in:
Bibliographic Details
Published inInformation fusion Vol. 88; pp. 146 - 160
Main Authors Dimitri, Giovanna Maria, Spasov, Simeon, Duggento, Andrea, Passamonti, Luca, Lió, Pietro, Toschi, Nicola
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Deep learning architecture for neuroimaging reconstruction.•Efficient convolutional neural networks based on separable convolutions.•Multimodality learning and interpretability of latent embeddings.•Clustering individuals phenotypes with structural multimodal brain features. Recently, it has become progressively more evident that classic diagnostic labels are unable to accurately and reliably describe the complexity and variability of several clinical phenotypes. This is particularly true for a broad range of neuropsychiatric illnesses such as depression and anxiety disorders or behavioural phenotypes such as aggression and antisocial personality. Patient heterogeneity can be better described and conceptualized by grouping individuals into novel categories, which are based on empirically-derived sections of intersecting continua that span both across and beyond traditional categorical borders. In this context, neuroimaging data (i.e. the set of images which result from functional/metabolic (e.g. functional magnetic resonance imaging, functional near-infrared spectroscopy, or positron emission tomography) and structural (e.g. computed tomography, T1-, T2- PD- or diffusion weighted magnetic resonance imaging) carry a wealth of spatiotemporally resolved information about each patient's brain. However, they are usually heavily collapsed a priori through procedures which are not learned as part of model training, and consequently not optimized for the downstream prediction task. This is due to the fact that every individual participant usually comes with multiple whole-brain 3D imaging modalities often accompanied by a deep genotypic and phenotypic characterization, hence posing formidable computational challenges. In this paper we design and validate a deep learning architecture based on generative models rooted in a modular approach and separable convolutional blocks (which result in a 20-fold decrease in parameter utilization) in order to a) fuse multiple 3D neuroimaging modalities on a voxel-wise level, b) efficiently convert them into informative latent embeddings through heavy dimensionality reduction, c) maintain good generalizability and minimal information loss. As proof of concept, we test our architecture on the well characterized Human Connectome Project database (n = 974 healthy subjects), demonstrating that our latent embeddings can be clustered into easily separable subject strata which, in turn, map to different phenotypical information (including organic, neuropsychological, personality variables) which was not included in the embedding creation process. The ability to extract meaningful and separable phenotypic information from brain images alone can aid in creating multi-dimensional biomarkers able to chart spatio-temporal trajectories which may correspond to different pathophysiological mechanisms unidentifiable to traditional data analysis approaches. In turn, this may be of aid in predicting disease evolution as well as drug response, hence supporting mechanistic disease understanding and also empowering clinical trials. [Display omitted]
AbstractList •Deep learning architecture for neuroimaging reconstruction.•Efficient convolutional neural networks based on separable convolutions.•Multimodality learning and interpretability of latent embeddings.•Clustering individuals phenotypes with structural multimodal brain features. Recently, it has become progressively more evident that classic diagnostic labels are unable to accurately and reliably describe the complexity and variability of several clinical phenotypes. This is particularly true for a broad range of neuropsychiatric illnesses such as depression and anxiety disorders or behavioural phenotypes such as aggression and antisocial personality. Patient heterogeneity can be better described and conceptualized by grouping individuals into novel categories, which are based on empirically-derived sections of intersecting continua that span both across and beyond traditional categorical borders. In this context, neuroimaging data (i.e. the set of images which result from functional/metabolic (e.g. functional magnetic resonance imaging, functional near-infrared spectroscopy, or positron emission tomography) and structural (e.g. computed tomography, T1-, T2- PD- or diffusion weighted magnetic resonance imaging) carry a wealth of spatiotemporally resolved information about each patient's brain. However, they are usually heavily collapsed a priori through procedures which are not learned as part of model training, and consequently not optimized for the downstream prediction task. This is due to the fact that every individual participant usually comes with multiple whole-brain 3D imaging modalities often accompanied by a deep genotypic and phenotypic characterization, hence posing formidable computational challenges. In this paper we design and validate a deep learning architecture based on generative models rooted in a modular approach and separable convolutional blocks (which result in a 20-fold decrease in parameter utilization) in order to a) fuse multiple 3D neuroimaging modalities on a voxel-wise level, b) efficiently convert them into informative latent embeddings through heavy dimensionality reduction, c) maintain good generalizability and minimal information loss. As proof of concept, we test our architecture on the well characterized Human Connectome Project database (n = 974 healthy subjects), demonstrating that our latent embeddings can be clustered into easily separable subject strata which, in turn, map to different phenotypical information (including organic, neuropsychological, personality variables) which was not included in the embedding creation process. The ability to extract meaningful and separable phenotypic information from brain images alone can aid in creating multi-dimensional biomarkers able to chart spatio-temporal trajectories which may correspond to different pathophysiological mechanisms unidentifiable to traditional data analysis approaches. In turn, this may be of aid in predicting disease evolution as well as drug response, hence supporting mechanistic disease understanding and also empowering clinical trials. [Display omitted]
Author Lió, Pietro
Dimitri, Giovanna Maria
Toschi, Nicola
Passamonti, Luca
Duggento, Andrea
Spasov, Simeon
Author_xml – sequence: 1
  givenname: Giovanna Maria
  orcidid: 0000-0002-2728-4272
  surname: Dimitri
  fullname: Dimitri, Giovanna Maria
  email: giovanna.dimitri@unisi.it
  organization: University of Cambridge, Cambridge, Department of Computer Science and Technology, William Gates Building, 15 JJ Thomson Avenue, Cambridge, CB3 0FD, United Kingdom
– sequence: 2
  givenname: Simeon
  surname: Spasov
  fullname: Spasov, Simeon
  email: simeon.spsv@gmail.com
  organization: University of Cambridge, Cambridge, Department of Computer Science and Technology, William Gates Building, 15 JJ Thomson Avenue, Cambridge, CB3 0FD, United Kingdom
– sequence: 3
  givenname: Andrea
  surname: Duggento
  fullname: Duggento, Andrea
  organization: Department of Biomedicine and Prevention, University of Rome "Tor Vergata”, Via Montpellier 1, Roma, RM, 00133, Italy
– sequence: 4
  givenname: Luca
  orcidid: 0000-0002-7937-0615
  surname: Passamonti
  fullname: Passamonti, Luca
  organization: Department of Clinical Neurosciences, University of Cambridge, Herschel Smith Building, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, United Kingdom
– sequence: 5
  givenname: Pietro
  orcidid: 0000-0002-0540-5053
  surname: Lió
  fullname: Lió, Pietro
  organization: University of Cambridge, Cambridge, Department of Computer Science and Technology, William Gates Building, 15 JJ Thomson Avenue, Cambridge, CB3 0FD, United Kingdom
– sequence: 6
  givenname: Nicola
  surname: Toschi
  fullname: Toschi, Nicola
  organization: Department of Biomedicine and Prevention, University of Rome "Tor Vergata”, Via Montpellier 1, Roma, RM, 00133, Italy
BookMark eNqFkM1KAzEUhYMo2FbfwEVeYMb8TabjQpD6CxU3ug6Z5KakTDMlSQu-val15UJX91443-GeM0WnYQyA0BUlNSVUXq9rH5zbpZoRxmrS1oS2J2hC5y2rJCfNadkbKSvW8OYcTVNak6IgnE7Q_etuyH4zWj1gHSzeHE4zhhx1ythv9ApwcfZjwHuvsQXY4hUEiDr7PeACwpAu0JnTQ4LLnzlDH48P74vnavn29LK4W1aGE5mrXlg37wiDTvRCNkYLTYFabrqeaUIp8LYB2TFNpRO6b4TtNdGOF9HcGN7zGbo5-po4phTBKeNzeeT7XT8oStShD7VWxz7UoQ9FWlXSFlj8grex5Iuf_2G3R6zkhL2HqJLxEAxYH8FkZUf_t8EX-ZaANw
CitedBy_id crossref_primary_10_3390_app13010267
crossref_primary_10_1007_s10462_023_10531_2
crossref_primary_10_1016_j_inffus_2022_10_033
crossref_primary_10_1016_j_inffus_2023_102069
crossref_primary_10_1080_09540261_2024_2405174
crossref_primary_10_3233_IDT_220285
crossref_primary_10_1016_j_inffus_2023_02_004
crossref_primary_10_1038_s41598_024_51329_8
crossref_primary_10_1007_s11042_024_18659_1
crossref_primary_10_1016_j_dsp_2024_104462
crossref_primary_10_3390_app13010412
crossref_primary_10_1016_j_neucom_2023_126947
crossref_primary_10_3390_info14020079
crossref_primary_10_1038_s41598_023_33160_9
crossref_primary_10_3390_rs16050781
crossref_primary_10_1016_j_heliyon_2024_e31648
crossref_primary_10_3390_computers11110163
crossref_primary_10_1016_j_cviu_2023_103708
crossref_primary_10_1049_ccs2_12076
crossref_primary_10_3390_jmse10101503
crossref_primary_10_1016_j_eswa_2024_124780
crossref_primary_10_1038_s41598_023_37569_0
crossref_primary_10_1007_s00779_024_01824_6
crossref_primary_10_3389_fpsyt_2024_1346059
Cites_doi 10.1212/WNL.0000000000002923
10.1109/CVPR.2016.90
10.1016/0377-0427(87)90125-7
10.1016/j.biocel.2013.08.014
10.3390/s21144699
10.1109/TIP.2020.2977573
10.1016/j.neuroimage.2015.09.018
10.1109/CVPR.2017.195
10.1371/journal.pmed.1001779
10.1158/1078-0432.CCR-16-2415
10.1016/j.media.2020.101944
10.1038/s42256-020-00270-2
10.3389/fnins.2019.01449
10.1016/j.zemedi.2018.11.002
10.1002/mrm.27178
10.1016/j.neurobiolaging.2010.04.025
10.1109/TPAMI.2021.3059968
10.1002/mp.14006
10.1016/j.media.2017.07.006
10.1109/JSTSP.2020.3001737
10.1016/j.media.2018.11.010
10.1016/j.media.2016.05.004
10.1016/j.neuroimage.2013.05.041
10.1016/j.neuroimage.2017.07.059
10.1016/j.neuroimage.2013.05.057
10.1002/mrm.24736
10.7554/eLife.44443
10.1007/s12021-013-9204-3
10.1016/j.neuroimage.2020.116807
10.3390/app9030404
10.1016/j.neurobiolaging.2019.08.032
10.1002/mrm.28148
10.3389/fncom.2019.00031
10.1109/TMI.2019.2897538
10.1016/j.neuroimage.2011.09.015
10.1016/j.jalz.2005.06.003
10.1007/978-3-319-24574-4_28
10.1109/TKDE.2010.144
10.1371/annotation/0c88e0d5-dade-4376-8ee1-49ed4ff238e2
10.1038/nature14539
10.1016/j.neuroimage.2019.01.031
10.1126/science.1136800
10.1002/nbm.4540
10.1016/0893-6080(89)90014-2
10.1111/j.2517-6161.1995.tb02031.x
10.1007/BF00332918
10.1016/j.jbi.2018.07.004
10.1016/j.neuroimage.2010.09.025
10.1016/j.neuroimage.2012.03.072
10.1109/ISBI.2018.8363576
10.1007/978-3-319-66179-7_48
10.1016/j.neuroimage.2013.04.127
10.1016/j.inffus.2021.06.001
10.1007/s00401-010-0744-4
10.1186/1471-2105-10-99
10.1016/j.pneurobio.2011.09.005
10.1109/CVPR.2018.00907
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.inffus.2022.07.017
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6305
EndPage 160
ExternalDocumentID 10_1016_j_inffus_2022_07_017
S1566253522000720
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-b4df8902e94b465ca4a1e1d3c9b2a011e375e692a16f4ab54dba0af31e18cc3b3
IEDL.DBID .~1
ISSN 1566-2535
IngestDate Tue Jul 01 04:14:40 EDT 2025
Thu Apr 24 23:09:46 EDT 2025
Fri Feb 23 02:39:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Precision medicine
Separable Convolutions
Latent embeddings
Multimodal neuroimaging
Deep autoencoder
Phenotype stratification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-b4df8902e94b465ca4a1e1d3c9b2a011e375e692a16f4ab54dba0af31e18cc3b3
ORCID 0000-0002-7937-0615
0000-0002-2728-4272
0000-0002-0540-5053
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_inffus_2022_07_017
crossref_primary_10_1016_j_inffus_2022_07_017
elsevier_sciencedirect_doi_10_1016_j_inffus_2022_07_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Information fusion
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Adler (bib0001) 2010; 120
Do (bib0020) 2020; 47
Guan (bib0025) 2010; 23
Lasko (bib0037) 2013; 8
Jenkinson (bib0032) 2012; 62
Dar (bib0017) 2020; 84
Jack (bib0031) 2016; 87
Sotiropoulos (bib0058) 2013; 80
Zhang (bib0073) 2012; 61
Nie D., et al. Medicalimage synthesis with context-aware generative adversarial networks,Medical image computing and computer-assisted intervention: MIC-CAI.International conference on medical image computing andcomputer-assisted intervention 10435. 2017. p. 417–25.
A.G. Howard, et al., Mobilenets: efficient convolutional neural networks for mobile vision applications (1704–04861, 2017).
Vincent (bib0051) 2010; 11
Benou (bib0006) 2017; 42
Bermudez (bib0011) 2018; 10574
Falvo (bib0021) 2021
Toschi (bib0062) 2019; 83
Chaudhari (bib0013) 2018; 80
Rabinovici (bib0052) 2017; 3
Sudlow (bib0060) 2015; 12
Clevert (bib0019) 2015
Young (bib0070) 2017; 18
Frey (bib0009) 2007
Gamberger (bib78) 2016; 15.1
Yang (bib0069) 2020; 10
Brescia (bib0010) 2021; 21
Cole (bib0015) 2017; 163
Balakrishnan (bib0003) 2019; 38
Falvo (bib0022) 2019
Kolařík (bib0036) 2019; 9
Shin (bib0026) 2018
Yurt (bib0071) 2021; 70
Zemedikun (bib80) 2018; 93
Benjamini, Hochberg (bib0005) 1995; 57
Van Essen (bib0063) 2013; 80
Baldi, Hornik (bib0004) 1989; 2
Mwangi (bib0048) 2014; 12
Srivastava (bib0050) 2014
Avants (bib76) 2011
LeCun, Bengio, Hinton (bib0038) 2015; 521
Lundervold, Lundervold (bib0043) 2019; 29
Caruyer (bib0012) 2013; 69
Ramon-Julvez (bib0053) 2020
Bernal (bib0018) 2018
Bourlard, Kamp (bib0008) 1988; 59
Vos (bib0007) 2019; 52
Saha (bib0057) 2020
Nettiksimmons (bib77) 2010; 31.8
Liu (bib0040) 2021
Mueller (bib0047) 2005; 1
Dar (bib0016) 2020; 14
He, K., et al. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778).
Minaee (bib0046) 2021
Spasov (bib0059) 2019; 189
Taylor (bib0061) 2017; 144
Rousseeuw (bib0055) 1987; 20
Ioffe, Szegedy (bib0056) 2015
Lopez (bib0042) 2018; 85
Chollet, F., Xception: deep learning with depthwise separable convolutions, In Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. p. 1251–1258.
Havaei (bib0027) 2017; 35
Kingma, Ba (bib0035) 2014
Hoffman (bib81) 2017; 86
Wang (bib0065) 2013; 45
Yurt (bib0072) 2022; 78
Wu (bib0067) 2017; 23
Jennings (bib0033) 2011; 95
Wayne (bib0066) 1990
Liu (bib0039) 2021; 3
Zoph, B., et al. Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. p. 8697–8710.
Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015.
Vlasblom (bib0064) 2009; 10
Alashwal (bib0002) 2019; 13
Llera (bib0041) 2019; 8
Escudero (bib79) 2012
Zhang (bib0074) 2019; 9
Lundervold, Lundervold (bib0044) 2019; 29
Ma (bib0045) 2020; 29
Kao (bib0034) 2020; 13
Frid-Adar M., et al., Synthetic data augmentation using GAN for improved liver lesion clas-sification. In: Proc. IEEE 15th int. symp. biomedical imaging (ISBI2018). 2018. p. 289–93.
Glasser (bib0024) 2013; 80
Xu, Ma (bib0068) 2021
Guan (10.1016/j.inffus.2022.07.017_bib0025) 2010; 23
Liu (10.1016/j.inffus.2022.07.017_bib0039) 2021; 3
Vlasblom (10.1016/j.inffus.2022.07.017_bib0064) 2009; 10
Avants (10.1016/j.inffus.2022.07.017_bib76) 2011
Liu (10.1016/j.inffus.2022.07.017_bib0040) 2021
Hoffman (10.1016/j.inffus.2022.07.017_bib81) 2017; 86
Jenkinson (10.1016/j.inffus.2022.07.017_bib0032) 2012; 62
Taylor (10.1016/j.inffus.2022.07.017_bib0061) 2017; 144
10.1016/j.inffus.2022.07.017_bib0028
Bernal (10.1016/j.inffus.2022.07.017_bib0018) 2018
10.1016/j.inffus.2022.07.017_bib0029
10.1016/j.inffus.2022.07.017_bib0023
Lundervold (10.1016/j.inffus.2022.07.017_bib0044) 2019; 29
Falvo (10.1016/j.inffus.2022.07.017_bib0022) 2019
Dar (10.1016/j.inffus.2022.07.017_bib0017) 2020; 84
Adler (10.1016/j.inffus.2022.07.017_bib0001) 2010; 120
Benou (10.1016/j.inffus.2022.07.017_bib0006) 2017; 42
Kao (10.1016/j.inffus.2022.07.017_bib0034) 2020; 13
Yurt (10.1016/j.inffus.2022.07.017_bib0071) 2021; 70
Jennings (10.1016/j.inffus.2022.07.017_bib0033) 2011; 95
Jack (10.1016/j.inffus.2022.07.017_bib0031) 2016; 87
Escudero (10.1016/j.inffus.2022.07.017_bib79) 2012
Ramon-Julvez (10.1016/j.inffus.2022.07.017_bib0053) 2020
Srivastava (10.1016/j.inffus.2022.07.017_bib0050) 2014
Zhang (10.1016/j.inffus.2022.07.017_bib0073) 2012; 61
Rousseeuw (10.1016/j.inffus.2022.07.017_bib0055) 1987; 20
Ma (10.1016/j.inffus.2022.07.017_bib0045) 2020; 29
Bourlard (10.1016/j.inffus.2022.07.017_bib0008) 1988; 59
Llera (10.1016/j.inffus.2022.07.017_bib0041) 2019; 8
Clevert (10.1016/j.inffus.2022.07.017_bib0019) 2015
Van Essen (10.1016/j.inffus.2022.07.017_bib0063) 2013; 80
Saha (10.1016/j.inffus.2022.07.017_bib0057) 2020
Havaei (10.1016/j.inffus.2022.07.017_bib0027) 2017; 35
10.1016/j.inffus.2022.07.017_bib0075
Toschi (10.1016/j.inffus.2022.07.017_bib0062) 2019; 83
Mwangi (10.1016/j.inffus.2022.07.017_bib0048) 2014; 12
Nettiksimmons (10.1016/j.inffus.2022.07.017_bib77) 2010; 31.8
Frey (10.1016/j.inffus.2022.07.017_bib0009) 2007
Brescia (10.1016/j.inffus.2022.07.017_bib0010) 2021; 21
Baldi (10.1016/j.inffus.2022.07.017_bib0004) 1989; 2
Vos (10.1016/j.inffus.2022.07.017_bib0007) 2019; 52
Wang (10.1016/j.inffus.2022.07.017_bib0065) 2013; 45
Spasov (10.1016/j.inffus.2022.07.017_bib0059) 2019; 189
Balakrishnan (10.1016/j.inffus.2022.07.017_bib0003) 2019; 38
Kolařík (10.1016/j.inffus.2022.07.017_bib0036) 2019; 9
Benjamini (10.1016/j.inffus.2022.07.017_bib0005) 1995; 57
Young (10.1016/j.inffus.2022.07.017_bib0070) 2017; 18
Chaudhari (10.1016/j.inffus.2022.07.017_bib0013) 2018; 80
Dar (10.1016/j.inffus.2022.07.017_bib0016) 2020; 14
Shin (10.1016/j.inffus.2022.07.017_bib0026) 2018
Zemedikun (10.1016/j.inffus.2022.07.017_bib80) 2018; 93
Mueller (10.1016/j.inffus.2022.07.017_bib0047) 2005; 1
10.1016/j.inffus.2022.07.017_bib0049
Sudlow (10.1016/j.inffus.2022.07.017_bib0060) 2015; 12
Yurt (10.1016/j.inffus.2022.07.017_bib0072) 2022; 78
Minaee (10.1016/j.inffus.2022.07.017_bib0046) 2021
Lasko (10.1016/j.inffus.2022.07.017_bib0037) 2013; 8
Vincent (10.1016/j.inffus.2022.07.017_bib0051) 2010; 11
Bermudez (10.1016/j.inffus.2022.07.017_bib0011) 2018; 10574
Falvo (10.1016/j.inffus.2022.07.017_bib0021) 2021
Cole (10.1016/j.inffus.2022.07.017_bib0015) 2017; 163
Kingma (10.1016/j.inffus.2022.07.017_bib0035) 2014
Glasser (10.1016/j.inffus.2022.07.017_bib0024) 2013; 80
Lopez (10.1016/j.inffus.2022.07.017_bib0042) 2018; 85
Wu (10.1016/j.inffus.2022.07.017_bib0067) 2017; 23
Caruyer (10.1016/j.inffus.2022.07.017_bib0012) 2013; 69
Zhang (10.1016/j.inffus.2022.07.017_bib0074) 2019; 9
Alashwal (10.1016/j.inffus.2022.07.017_bib0002) 2019; 13
Rabinovici (10.1016/j.inffus.2022.07.017_bib0052) 2017; 3
Xu (10.1016/j.inffus.2022.07.017_bib0068) 2021
Gamberger (10.1016/j.inffus.2022.07.017_bib78) 2016; 15.1
Sotiropoulos (10.1016/j.inffus.2022.07.017_bib0058) 2013; 80
Do (10.1016/j.inffus.2022.07.017_bib0020) 2020; 47
Wayne (10.1016/j.inffus.2022.07.017_bib0066) 1990
Yang (10.1016/j.inffus.2022.07.017_bib0069) 2020; 10
Ioffe (10.1016/j.inffus.2022.07.017_bib0056) 2015
10.1016/j.inffus.2022.07.017_bib0014
10.1016/j.inffus.2022.07.017_bib0054
LeCun (10.1016/j.inffus.2022.07.017_bib0038) 2015; 521
Lundervold (10.1016/j.inffus.2022.07.017_bib0043) 2019; 29
References_xml – start-page: 1
  year: 2019
  end-page: 6
  ident: bib0022
  article-title: A multimodal dense u-net for accelerating multiple sclerosis mri
  publication-title: 2019 IEEE 29th International Workshop On Machine Learning For Signal Processing (MLSP)
– volume: 120
  start-page: 827
  year: 2010
  ident: bib0001
  article-title: Heterogeneous neuropathological findings in Parkinson’s disease with mild cognitive impairment
  publication-title: Acta Neuropathol.
– volume: 12
  year: 2015
  ident: bib0060
  article-title: Uk biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLoS Med.
– volume: 83
  start-page: 42
  year: 2019
  end-page: 53
  ident: bib0062
  article-title: Biomarker-guided clustering of Alzheimer’s disease clinical syndromes
  publication-title: Neurobiology of Aging
– volume: 189
  start-page: 276
  year: 2019
  end-page: 287
  ident: bib0059
  article-title: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease
  publication-title: Neuroimage
– year: 2007
  ident: bib0009
  article-title: Clustering by passing messages between data points
  publication-title: Science
– volume: 1
  start-page: 55
  year: 2005
  end-page: 66
  ident: bib0047
  article-title: Ways toward an early diagnosis in Alzheimer's disease: the Alzheimer's disease neuroimaging initiative (ADNI)
  publication-title: Alzheimer's & Dementia
– year: 2018
  ident: bib0026
  publication-title: Medical image synthesis for data augmentation and anonymization using generative adversarial networks,
– volume: 29
  start-page: 102
  year: 2019
  end-page: 127
  ident: bib0044
  article-title: An overview of deep learning in medical imaging focusing on MRI
  publication-title: Zeitschrift für Medizinische Physik
– volume: 61
  start-page: 1000
  year: 2012
  end-page: 1016
  ident: bib0073
  article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain
  publication-title: Neuroimage
– reference: Nie D., et al. Medicalimage synthesis with context-aware generative adversarial networks,Medical image computing and computer-assisted intervention: MIC-CAI.International conference on medical image computing andcomputer-assisted intervention 10435. 2017. p. 417–25.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0038
  article-title: Deep learning
  publication-title: Nature
– volume: 9
  start-page: 404
  year: 2019
  ident: bib0036
  article-title: Optimized high resolution 3d dense-u-net network for brain and spine segmentation
  publication-title: Appl. Sci.
– volume: 93
  year: 2018
  ident: bib80
  article-title: Patterns of multimorbidity in middle-aged and older adults: an analysis of the UK Biobank data
  publication-title: Mayo Clinic Proceedings Elsevier
– start-page: 1120
  year: 2020
  end-page: 1124
  ident: bib0053
  publication-title: April. Analysis of the influence of diffeomorphic normalization in the prediction of stable VS progressive MCI conversion with convolutional neural networks
– volume: 29
  start-page: 4980
  year: 2020
  end-page: 4995
  ident: bib0045
  article-title: DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion
  publication-title: IEEE Trans. Image Processing
– volume: 23
  start-page: 3334
  year: 2017
  end-page: 3342
  ident: bib0067
  article-title: Unsupervised clustering of quantitative image phenotypes reveals breast cancer subtypes with distinct prognoses and molecular pathways
  publication-title: Clin. Cancer Res.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib0074
  article-title: Data-driven subtyping of Parkinson’s disease using longitudinal clinical records: a cohort study
  publication-title: Sci. Rep.
– volume: 144
  start-page: 262
  year: 2017
  end-page: 269
  ident: bib0061
  article-title: The Cambridge centre for ageing and neuroscience (CAM-can) data repository: structural and functional mri, meg, and cognitive data from a cross-sectional adult lifespan sample
  publication-title: Neuroimage
– volume: 70
  year: 2021
  ident: bib0071
  article-title: Mustgan: multi-stream generative adversarial networks for MR image synthesis
  publication-title: Medical Image Analysis
– volume: 163
  start-page: 115
  year: 2017
  end-page: 124
  ident: bib0015
  article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
  publication-title: Neuroimage
– volume: 80
  start-page: 125
  year: 2013
  end-page: 143
  ident: bib0058
  article-title: Advances in diffusion MRI acquisition and processing in the human connectome project
  publication-title: Neuroimage
– volume: 78
  year: 2022
  ident: bib0072
  article-title: Progressively volumetrized deep generative models for data-efficient contextual learning of MR image recovery
  publication-title: Medical Image Analysis
– reference: A.G. Howard, et al., Mobilenets: efficient convolutional neural networks for mobile vision applications (1704–04861, 2017).
– start-page: e4540
  year: 2021
  ident: bib0040
  article-title: Optimizing multicontrast MRI reconstruction with shareable feature aggregation and selection
  publication-title: NMR Biomed.
– volume: 3
  start-page: 83
  year: 2017
  end-page: 91
  ident: bib0052
  article-title: Multiple comorbid neuropathologies in the setting of Alzheimer’s disease neuropathology and implications for drug development
  publication-title: Alzheimer’s & Dementia: Translational Research & Clinical Interventions
– volume: 8
  year: 2019
  ident: bib0041
  article-title: Inter-individual differences in human brain structure and morphology link to variation in demographics and behavior
  publication-title: Elife
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: bib0055
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
– reference: Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015.
– year: 2014
  ident: bib0035
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv preprint arXiv:1412.6980.
– year: 2015
  ident: bib0019
  article-title: Fast and accurate deep network learning by exponential linear units (ELUs)
  publication-title: CoRR
– volume: 95
  start-page: 629
  year: 2011
  end-page: 635
  ident: bib0033
  article-title: The parkinson progression marker initiative (ppmi)
  publication-title: Progress in neurobiology
– volume: 31.8
  start-page: 1419
  year: 2010
  end-page: 1428
  ident: bib77
  article-title: Subtypes based on cerebrospinal fluid and magnetic resonance imaging markers in normal elderly predict cognitive decline
  publication-title: Neurobiology of aging
– year: 2021
  ident: bib0068
  article-title: EMFusion: an unsupervised enhanced medical image fusion network
  publication-title: Inf. Fusion
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: bib0051
  article-title: Stacked denoising autoencoders: learning useful representations in a deep net-work with a local denoising criterion
  publication-title: J. Mach. Learn. Res. (JMLR)
– year: 2021
  ident: bib0046
  article-title: Image segmentation using deep learning. A survey
  publication-title: IEEE transactions on pattern analysis and machine intelligence
– volume: 69
  start-page: 1534
  year: 2013
  end-page: 1540
  ident: bib0012
  article-title: Design of multishell sampling schemes with uniform coverage in diffusion MRI
  publication-title: Magnetic resonance in medicine
– volume: 21
  start-page: 4699
  year: 2021
  ident: bib0010
  article-title: Automated multistep parameter identification of spmsms in large-scale applications using cloud computing resources
  publication-title: Sensors
– volume: 85
  start-page: 30
  year: 2018
  end-page: 39
  ident: bib0042
  article-title: An unsupervised machine learning method for discovering patient clusters based on genetic signatures
  publication-title: J. Biomed. Inform.
– volume: 86
  year: 2017
  ident: bib81
  article-title: Data-driven classification of patients with primary progressive aphasia
  publication-title: Brain and language
– volume: 45
  start-page: 2574
  year: 2013
  end-page: 2579
  ident: bib0065
  article-title: Dissecting cancer heterogeneity–an unsupervised classification approach
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 8
  start-page: 6
  year: 2013
  ident: bib0037
  article-title: Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
  publication-title: PLoS ONE
– volume: 14
  start-page: 1072
  year: 2020
  end-page: 1087
  ident: bib0016
  article-title: Prior-guided image reconstruction for accelerated multi-contrast MRI via generative adversarial networks
  publication-title: IEEE Journal of Selected Topics in Signal Processing
– volume: 13
  year: 2019
  ident: bib0002
  article-title: The application of unsupervised clustering methods to Alzheimer's disease
  publication-title: Front. Comput. Neurosci.
– volume: 47
  start-page: 983
  year: 2020
  end-page: 997
  ident: bib0020
  article-title: Reconstruction of multicontrast MR images through deep learning
  publication-title: Medical Physics
– volume: 10
  start-page: 99
  year: 2009
  ident: bib0064
  article-title: Markov clustering versus affinity propagation for the partitioning of protein interaction graphs
  publication-title: BMC Bioinformatics
– year: 2020
  ident: bib0057
  article-title: Predicting motor outcome in preterm infants from very early brain diffusion MRI using a deep learning convolutional neural network (CNN) model
  publication-title: Neuroimage
– volume: 10
  start-page: 1
  year: 2020
  end-page: 18
  ident: bib0069
  article-title: MRI cross-Modality image-to-image translation
  publication-title: Sci. Rep.
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: bib0032
  article-title: Fsl
  publication-title: Neuroimage
– volume: 3
  start-page: 60
  year: 2021
  end-page: 67
  ident: bib0039
  article-title: Learning MRI artefact removal with unpaired data
  publication-title: Nature Machine Intelligence
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bib0024
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
– volume: 35
  start-page: 18
  year: 2017
  end-page: 31
  ident: bib0027
  article-title: Brain tumor segmentation with deep neural networks
  publication-title: Medical Image Analysis
– volume: 12
  start-page: 229
  year: 2014
  end-page: 244
  ident: bib0048
  article-title: A review of feature reduction techniques in neuroimaging
  publication-title: Neuroinformatics
– reference: Chollet, F., Xception: deep learning with depthwise separable convolutions, In Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. p. 1251–1258.
– reference: Zoph, B., et al. Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. p. 8697–8710.
– volume: 2
  start-page: 53
  year: 1989
  end-page: 58
  ident: bib0004
  article-title: Neural networks and principal component analysis: learning from examples without local minima
  publication-title: Neural Networks
– start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib0050
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res. (JMLR)
– start-page: 423
  year: 2021
  end-page: 431
  ident: bib0021
  article-title: A multimodal deep network for the reconstruction of T2W MR images
  publication-title: Progresses in Artificial Intelligence and Neural Systems
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib0063
  article-title: The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
– volume: 13
  start-page: 1449
  year: 2020
  ident: bib0034
  article-title: Improving patch-based convolutional neural networks for MRI brain tumor segmentation by leveraging location information
  publication-title: Frontiers in Neuroscience
– year: 2018
  ident: bib0018
  article-title: Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review
  publication-title: Artificial intelligence in medicine
– volume: 29
  start-page: 102
  year: 2019
  end-page: 127
  ident: bib0043
  article-title: An overview of deep learning in medical imaging focusing on MRI
  publication-title: Zeitschrift für Medizinische Physik
– start-page: 164
  year: 2012
  end-page: 168
  ident: bib79
  article-title: Machine learning-based method for personalized and cost-effective detection of Alzheimer’s disease
  publication-title: IEEE transactions on biomedical engineering
– volume: 42
  start-page: 145
  year: 2017
  end-page: 159
  ident: bib0006
  article-title: Ensemble of expert deep neural networks for spatiotemporal denoising of contrast-enhanced MRI sequences
  publication-title: Med. Image Anal.
– volume: 52
  start-page: 128
  year: 2019
  end-page: 143
  ident: bib0007
  article-title: Hessam Sokooti, Marius Staring, Ivana Išgum, A deep learning framework for unsupervised affine and deformable image registration
  publication-title: Med. Image Anal.
– volume: 23
  start-page: 627
  year: 2010
  end-page: 637
  ident: bib0025
  article-title: Text clustering with seeds affinity propagation
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2011
  ident: bib76
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration."
  publication-title: Neuroimage 54.3
– volume: 80
  start-page: 2139
  year: 2018
  end-page: 2154
  ident: bib0013
  article-title: Super-resolution musculoskeletal MRI using deep learning
  publication-title: Magnetic resonance in medicine
– reference: He, K., et al. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778).
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: bib0005
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. Royal Statistical Soc. series B (Methodological)
– volume: 38
  start-page: 1788
  year: 2019
  end-page: 1800
  ident: bib0003
  article-title: Voxelmorph: a learning framework for deformable medical image registration
  publication-title: IEEE Trans. Med. Imaging
– volume: 84
  start-page: 663
  year: 2020
  end-page: 685
  ident: bib0017
  article-title: A transfer-learning approach for accelerated MRI using deep neural networks
  publication-title: Magnetic resonance in medicine
– volume: 15.1
  start-page: 21
  year: 2016
  end-page: 34
  ident: bib78
  article-title: Homogeneous clusters of Alzheimer’s disease patient population
  publication-title: Biomedical Engineering Online
– volume: 87
  start-page: 539
  year: 2016
  end-page: 547
  ident: bib0031
  article-title: A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers
  publication-title: Neurology
– volume: 10574
  year: 2018
  ident: bib0011
  article-title: Learning implicit brain MRI manifolds with deep learning
  publication-title: Medical Imaging 2018: Image Processing.
– reference: Frid-Adar M., et al., Synthetic data augmentation using GAN for improved liver lesion clas-sification. In: Proc. IEEE 15th int. symp. biomedical imaging (ISBI2018). 2018. p. 289–93.
– start-page: 448
  year: 2015
  end-page: 456
  ident: bib0056
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift. 2015 International Conference on Machine Learning
  publication-title: (ICML)
– start-page: 226
  year: 1990
  end-page: 234
  ident: bib0066
  article-title: Kruskal–Wallis one-way analysis of variance by ranks
  publication-title: Appl. Nonparametric Statistics
– volume: 18
  start-page: 5
  year: 2017
  end-page: 17
  ident: bib0070
  article-title: Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma
  publication-title: BMC Bioinformatics
– volume: 59
  start-page: 291
  year: 1988
  end-page: 294
  ident: bib0008
  article-title: Auto-association by multilayer perceptrons and singular value decomposition
  publication-title: Biol. Cybern.
– volume: 87
  start-page: 539
  issue: 5
  year: 2016
  ident: 10.1016/j.inffus.2022.07.017_bib0031
  article-title: A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000002923
– year: 2014
  ident: 10.1016/j.inffus.2022.07.017_bib0035
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv preprint arXiv:1412.6980.
– ident: 10.1016/j.inffus.2022.07.017_bib0028
  doi: 10.1109/CVPR.2016.90
– volume: 20
  start-page: 53
  year: 1987
  ident: 10.1016/j.inffus.2022.07.017_bib0055
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– volume: 45
  start-page: 2574
  issue: 11
  year: 2013
  ident: 10.1016/j.inffus.2022.07.017_bib0065
  article-title: Dissecting cancer heterogeneity–an unsupervised classification approach
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2013.08.014
– volume: 21
  start-page: 4699
  issue: 14
  year: 2021
  ident: 10.1016/j.inffus.2022.07.017_bib0010
  article-title: Automated multistep parameter identification of spmsms in large-scale applications using cloud computing resources
  publication-title: Sensors
  doi: 10.3390/s21144699
– volume: 78
  issue: 102429
  year: 2022
  ident: 10.1016/j.inffus.2022.07.017_bib0072
  article-title: Progressively volumetrized deep generative models for data-efficient contextual learning of MR image recovery
  publication-title: Medical Image Analysis
– volume: 29
  start-page: 4980
  year: 2020
  ident: 10.1016/j.inffus.2022.07.017_bib0045
  article-title: DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion
  publication-title: IEEE Trans. Image Processing
  doi: 10.1109/TIP.2020.2977573
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.inffus.2022.07.017_bib0051
  article-title: Stacked denoising autoencoders: learning useful representations in a deep net-work with a local denoising criterion
  publication-title: J. Mach. Learn. Res. (JMLR)
– volume: 144
  start-page: 262
  year: 2017
  ident: 10.1016/j.inffus.2022.07.017_bib0061
  article-title: The Cambridge centre for ageing and neuroscience (CAM-can) data repository: structural and functional mri, meg, and cognitive data from a cross-sectional adult lifespan sample
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.09.018
– ident: 10.1016/j.inffus.2022.07.017_bib0014
  doi: 10.1109/CVPR.2017.195
– volume: 10574
  year: 2018
  ident: 10.1016/j.inffus.2022.07.017_bib0011
  article-title: Learning implicit brain MRI manifolds with deep learning
  publication-title: Medical Imaging 2018: Image Processing.
– volume: 12
  issue: 3
  year: 2015
  ident: 10.1016/j.inffus.2022.07.017_bib0060
  article-title: Uk biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1001779
– start-page: 448
  year: 2015
  ident: 10.1016/j.inffus.2022.07.017_bib0056
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift. 2015 International Conference on Machine Learning
  publication-title: (ICML)
– volume: 23
  start-page: 3334
  issue: 13
  year: 2017
  ident: 10.1016/j.inffus.2022.07.017_bib0067
  article-title: Unsupervised clustering of quantitative image phenotypes reveals breast cancer subtypes with distinct prognoses and molecular pathways
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-2415
– volume: 70
  year: 2021
  ident: 10.1016/j.inffus.2022.07.017_bib0071
  article-title: Mustgan: multi-stream generative adversarial networks for MR image synthesis
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2020.101944
– start-page: 1
  year: 2019
  ident: 10.1016/j.inffus.2022.07.017_bib0022
  article-title: A multimodal dense u-net for accelerating multiple sclerosis mri
– year: 2018
  ident: 10.1016/j.inffus.2022.07.017_bib0026
– volume: 3
  start-page: 60
  issue: 1
  year: 2021
  ident: 10.1016/j.inffus.2022.07.017_bib0039
  article-title: Learning MRI artefact removal with unpaired data
  publication-title: Nature Machine Intelligence
  doi: 10.1038/s42256-020-00270-2
– start-page: 423
  year: 2021
  ident: 10.1016/j.inffus.2022.07.017_bib0021
  article-title: A multimodal deep network for the reconstruction of T2W MR images
– volume: 13
  start-page: 1449
  year: 2020
  ident: 10.1016/j.inffus.2022.07.017_bib0034
  article-title: Improving patch-based convolutional neural networks for MRI brain tumor segmentation by leveraging location information
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2019.01449
– volume: 29
  start-page: 102
  issue: 2
  year: 2019
  ident: 10.1016/j.inffus.2022.07.017_bib0044
  article-title: An overview of deep learning in medical imaging focusing on MRI
  publication-title: Zeitschrift für Medizinische Physik
  doi: 10.1016/j.zemedi.2018.11.002
– volume: 80
  start-page: 2139
  year: 2018
  ident: 10.1016/j.inffus.2022.07.017_bib0013
  article-title: Super-resolution musculoskeletal MRI using deep learning
  publication-title: Magnetic resonance in medicine
  doi: 10.1002/mrm.27178
– volume: 31.8
  start-page: 1419
  year: 2010
  ident: 10.1016/j.inffus.2022.07.017_bib77
  article-title: Subtypes based on cerebrospinal fluid and magnetic resonance imaging markers in normal elderly predict cognitive decline
  publication-title: Neurobiology of aging
  doi: 10.1016/j.neurobiolaging.2010.04.025
– year: 2021
  ident: 10.1016/j.inffus.2022.07.017_bib0046
  article-title: Image segmentation using deep learning. A survey
  publication-title: IEEE transactions on pattern analysis and machine intelligence
  doi: 10.1109/TPAMI.2021.3059968
– volume: 47
  start-page: 983
  issue: 3
  year: 2020
  ident: 10.1016/j.inffus.2022.07.017_bib0020
  article-title: Reconstruction of multicontrast MR images through deep learning
  publication-title: Medical Physics
  doi: 10.1002/mp.14006
– volume: 3
  start-page: 83
  issue: 1
  year: 2017
  ident: 10.1016/j.inffus.2022.07.017_bib0052
  article-title: Multiple comorbid neuropathologies in the setting of Alzheimer’s disease neuropathology and implications for drug development
  publication-title: Alzheimer’s & Dementia: Translational Research & Clinical Interventions
– volume: 42
  start-page: 145
  year: 2017
  ident: 10.1016/j.inffus.2022.07.017_bib0006
  article-title: Ensemble of expert deep neural networks for spatiotemporal denoising of contrast-enhanced MRI sequences
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.006
– volume: 14
  start-page: 1072
  issue: 6
  year: 2020
  ident: 10.1016/j.inffus.2022.07.017_bib0016
  article-title: Prior-guided image reconstruction for accelerated multi-contrast MRI via generative adversarial networks
  publication-title: IEEE Journal of Selected Topics in Signal Processing
  doi: 10.1109/JSTSP.2020.3001737
– start-page: 226
  year: 1990
  ident: 10.1016/j.inffus.2022.07.017_bib0066
  article-title: Kruskal–Wallis one-way analysis of variance by ranks
  publication-title: Appl. Nonparametric Statistics
– volume: 52
  start-page: 128
  year: 2019
  ident: 10.1016/j.inffus.2022.07.017_bib0007
  article-title: Hessam Sokooti, Marius Staring, Ivana Išgum, A deep learning framework for unsupervised affine and deformable image registration
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.11.010
– volume: 35
  start-page: 18
  year: 2017
  ident: 10.1016/j.inffus.2022.07.017_bib0027
  article-title: Brain tumor segmentation with deep neural networks
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2016.05.004
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.inffus.2022.07.017_bib0063
  article-title: The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 163
  start-page: 115
  year: 2017
  ident: 10.1016/j.inffus.2022.07.017_bib0015
  article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.059
– volume: 18
  start-page: 5
  issue: 11
  year: 2017
  ident: 10.1016/j.inffus.2022.07.017_bib0070
  article-title: Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma
  publication-title: BMC Bioinformatics
– volume: 80
  start-page: 125
  year: 2013
  ident: 10.1016/j.inffus.2022.07.017_bib0058
  article-title: Advances in diffusion MRI acquisition and processing in the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.057
– volume: 69
  start-page: 1534
  issue: 6
  year: 2013
  ident: 10.1016/j.inffus.2022.07.017_bib0012
  article-title: Design of multishell sampling schemes with uniform coverage in diffusion MRI
  publication-title: Magnetic resonance in medicine
  doi: 10.1002/mrm.24736
– volume: 8
  year: 2019
  ident: 10.1016/j.inffus.2022.07.017_bib0041
  article-title: Inter-individual differences in human brain structure and morphology link to variation in demographics and behavior
  publication-title: Elife
  doi: 10.7554/eLife.44443
– volume: 12
  start-page: 229
  issue: 2
  year: 2014
  ident: 10.1016/j.inffus.2022.07.017_bib0048
  article-title: A review of feature reduction techniques in neuroimaging
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-013-9204-3
– year: 2020
  ident: 10.1016/j.inffus.2022.07.017_bib0057
  article-title: Predicting motor outcome in preterm infants from very early brain diffusion MRI using a deep learning convolutional neural network (CNN) model
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116807
– volume: 9
  start-page: 404
  issue: 3
  year: 2019
  ident: 10.1016/j.inffus.2022.07.017_bib0036
  article-title: Optimized high resolution 3d dense-u-net network for brain and spine segmentation
  publication-title: Appl. Sci.
  doi: 10.3390/app9030404
– volume: 83
  start-page: 42
  year: 2019
  ident: 10.1016/j.inffus.2022.07.017_bib0062
  article-title: Biomarker-guided clustering of Alzheimer’s disease clinical syndromes
  publication-title: Neurobiology of Aging
  doi: 10.1016/j.neurobiolaging.2019.08.032
– volume: 15.1
  start-page: 21
  year: 2016
  ident: 10.1016/j.inffus.2022.07.017_bib78
  article-title: Homogeneous clusters of Alzheimer’s disease patient population
  publication-title: Biomedical Engineering Online
– volume: 84
  start-page: 663
  issue: 2
  year: 2020
  ident: 10.1016/j.inffus.2022.07.017_bib0017
  article-title: A transfer-learning approach for accelerated MRI using deep neural networks
  publication-title: Magnetic resonance in medicine
  doi: 10.1002/mrm.28148
– volume: 13
  year: 2019
  ident: 10.1016/j.inffus.2022.07.017_bib0002
  article-title: The application of unsupervised clustering methods to Alzheimer's disease
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2019.00031
– volume: 38
  start-page: 1788
  issue: 8
  year: 2019
  ident: 10.1016/j.inffus.2022.07.017_bib0003
  article-title: Voxelmorph: a learning framework for deformable medical image registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2897538
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.inffus.2022.07.017_bib0074
  article-title: Data-driven subtyping of Parkinson’s disease using longitudinal clinical records: a cohort study
  publication-title: Sci. Rep.
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  ident: 10.1016/j.inffus.2022.07.017_bib0032
  article-title: Fsl
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 1
  start-page: 55
  issue: 1
  year: 2005
  ident: 10.1016/j.inffus.2022.07.017_bib0047
  article-title: Ways toward an early diagnosis in Alzheimer's disease: the Alzheimer's disease neuroimaging initiative (ADNI)
  publication-title: Alzheimer's & Dementia
  doi: 10.1016/j.jalz.2005.06.003
– volume: 29
  start-page: 102
  issue: 2
  year: 2019
  ident: 10.1016/j.inffus.2022.07.017_bib0043
  article-title: An overview of deep learning in medical imaging focusing on MRI
  publication-title: Zeitschrift für Medizinische Physik
  doi: 10.1016/j.zemedi.2018.11.002
– year: 2018
  ident: 10.1016/j.inffus.2022.07.017_bib0018
  article-title: Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review
  publication-title: Artificial intelligence in medicine
– ident: 10.1016/j.inffus.2022.07.017_bib0054
  doi: 10.1007/978-3-319-24574-4_28
– volume: 23
  start-page: 627
  issue: 4
  year: 2010
  ident: 10.1016/j.inffus.2022.07.017_bib0025
  article-title: Text clustering with seeds affinity propagation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2010.144
– volume: 8
  start-page: 6
  year: 2013
  ident: 10.1016/j.inffus.2022.07.017_bib0037
  article-title: Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
  publication-title: PLoS ONE
  doi: 10.1371/annotation/0c88e0d5-dade-4376-8ee1-49ed4ff238e2
– start-page: 1929
  year: 2014
  ident: 10.1016/j.inffus.2022.07.017_bib0050
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res. (JMLR)
– volume: 86
  issue: 93
  year: 2017
  ident: 10.1016/j.inffus.2022.07.017_bib81
  article-title: Data-driven classification of patients with primary progressive aphasia
  publication-title: Brain and language
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.inffus.2022.07.017_bib0038
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 189
  start-page: 276
  year: 2019
  ident: 10.1016/j.inffus.2022.07.017_bib0059
  article-title: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.01.031
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.inffus.2022.07.017_bib0069
  article-title: MRI cross-Modality image-to-image translation
  publication-title: Sci. Rep.
– year: 2007
  ident: 10.1016/j.inffus.2022.07.017_bib0009
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
– start-page: e4540
  year: 2021
  ident: 10.1016/j.inffus.2022.07.017_bib0040
  article-title: Optimizing multicontrast MRI reconstruction with shareable feature aggregation and selection
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.4540
– start-page: 164
  year: 2012
  ident: 10.1016/j.inffus.2022.07.017_bib79
  article-title: Machine learning-based method for personalized and cost-effective detection of Alzheimer’s disease
  publication-title: IEEE transactions on biomedical engineering
– volume: 2
  start-page: 53
  issue: 1
  year: 1989
  ident: 10.1016/j.inffus.2022.07.017_bib0004
  article-title: Neural networks and principal component analysis: learning from examples without local minima
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90014-2
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  ident: 10.1016/j.inffus.2022.07.017_bib0005
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. Royal Statistical Soc. series B (Methodological)
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 59
  start-page: 291
  issue: 4–5
  year: 1988
  ident: 10.1016/j.inffus.2022.07.017_bib0008
  article-title: Auto-association by multilayer perceptrons and singular value decomposition
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00332918
– volume: 85
  start-page: 30
  year: 2018
  ident: 10.1016/j.inffus.2022.07.017_bib0042
  article-title: An unsupervised machine learning method for discovering patient clusters based on genetic signatures
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.07.004
– year: 2011
  ident: 10.1016/j.inffus.2022.07.017_bib76
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration."
  publication-title: Neuroimage 54.3
  doi: 10.1016/j.neuroimage.2010.09.025
– volume: 61
  start-page: 1000
  issue: 4
  year: 2012
  ident: 10.1016/j.inffus.2022.07.017_bib0073
  article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.072
– year: 2015
  ident: 10.1016/j.inffus.2022.07.017_bib0019
  article-title: Fast and accurate deep network learning by exponential linear units (ELUs)
  publication-title: CoRR
– ident: 10.1016/j.inffus.2022.07.017_bib0023
  doi: 10.1109/ISBI.2018.8363576
– ident: 10.1016/j.inffus.2022.07.017_bib0029
– ident: 10.1016/j.inffus.2022.07.017_bib0049
  doi: 10.1007/978-3-319-66179-7_48
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.inffus.2022.07.017_bib0024
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– start-page: 1120
  year: 2020
  ident: 10.1016/j.inffus.2022.07.017_bib0053
– year: 2021
  ident: 10.1016/j.inffus.2022.07.017_bib0068
  article-title: EMFusion: an unsupervised enhanced medical image fusion network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.06.001
– volume: 120
  start-page: 827
  issue: 6
  year: 2010
  ident: 10.1016/j.inffus.2022.07.017_bib0001
  article-title: Heterogeneous neuropathological findings in Parkinson’s disease with mild cognitive impairment
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-010-0744-4
– volume: 10
  start-page: 99
  issue: 1
  year: 2009
  ident: 10.1016/j.inffus.2022.07.017_bib0064
  article-title: Markov clustering versus affinity propagation for the partitioning of protein interaction graphs
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-99
– volume: 95
  start-page: 629
  issue: 4
  year: 2011
  ident: 10.1016/j.inffus.2022.07.017_bib0033
  article-title: The parkinson progression marker initiative (ppmi)
  publication-title: Progress in neurobiology
  doi: 10.1016/j.pneurobio.2011.09.005
– volume: 93
  issue: 7
  year: 2018
  ident: 10.1016/j.inffus.2022.07.017_bib80
  article-title: Patterns of multimorbidity in middle-aged and older adults: an analysis of the UK Biobank data
  publication-title: Mayo Clinic Proceedings Elsevier
– ident: 10.1016/j.inffus.2022.07.017_bib0075
  doi: 10.1109/CVPR.2018.00907
SSID ssj0017031
Score 2.4695516
Snippet •Deep learning architecture for neuroimaging reconstruction.•Efficient convolutional neural networks based on separable convolutions.•Multimodality learning...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 146
SubjectTerms Deep autoencoder
Latent embeddings
Multimodal neuroimaging
Phenotype stratification
Precision medicine
Separable Convolutions
Title Multimodal and multicontrast image fusion via deep generative models
URI https://dx.doi.org/10.1016/j.inffus.2022.07.017
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KvehBXLEuZQ5ex2aZyXIs1VKXFlELvQ2zRSo2LTb16G933iQpCqLgKSS8IeGbyTcv5HvfQ-g8A2bUsSI2-9aE2lVCUi9KiVBaaRomjEkoFB6OosGY3kzYpIF6dS0MyCor7i853bF1daVTodlZTKedR_jyCMCdBKpN4gC-2ymNYZVffKxlHj74szvP1CgiEF2XzzmNl53EbAWm3UHgLDxd27IftqcvW05_B21XuSLulo-zixom30Nbw7XR6nIfXboC2tlc2ziRa-z0gU5-LpYFns4sW2B7bws-fp8KrI1Z4GfnNA00h10fnOUBGvevnnoDUjVGIMpm-AWRVGfwf9CkVNKIKUGFb3wdqlQGwr6wJoyZidJA-FFGhWRUS-GJLLRBiVKhDA9RM5_n5ghhm-2FxhO-UklAY5alidQJlSzRzE-M9FoorPHgqnINh-YVr7yWh73wEkUOKHIv5hbFFiLrUYvSNeOP-LiGmn-bfW6J_deRx_8eeYI24ayUppyiZvG2Mmc2wShk262gNtro9h7u7uF4fTsYfQIFTtJ8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWq9gAcEKsoqw9crSaxneVYFaqULhdaqTfLW1ARTSua8v3YTlKBhEDimswo0cvkeSzPvAHgPrPMqCKJTPatEDFRghIvTBCXSiqCY0qFbRQeT8J0Rp7mdN4AvboXxpZVVtxfcrpj6-pKp0Kzs14sOs925xFYdRLbbRIFZt_esupUtAla3cEwnewOE6xEu5NNDUNkHeoOOlfmZb5jtrW63UHgVDzd5LIfVqgvq07_CBxW6SLslm90DBo6PwEH453W6uYUPLge2uVKGTueK-hKBF0FOt8UcLE0hAHNsw3-8GPBodJ6DV-c2LRlOuhG4WzOwKz_OO2lqJqNgKRJ8gskiMrsEaFOiCAhlZxwX_sKy0QE3PyzGkdUh0nA_TAjXFCiBPd4ho1RLCUW-Bw081WuLwA0CR_WHveljAMDX5bEQsVE0FhRP9bCawNc48FkJRxu51e8sbpC7JWVKDKLIvMiZlBsA7TzWpfCGX_YRzXU7FsAMMPtv3pe_tvzDuyl0_GIjQaT4RXYt3fKSpVr0Czet_rG5BuFuK3i6ROuatOY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+and+multicontrast+image+fusion+via+deep+generative+models&rft.jtitle=Information+fusion&rft.au=Dimitri%2C+Giovanna+Maria&rft.au=Spasov%2C+Simeon&rft.au=Duggento%2C+Andrea&rft.au=Passamonti%2C+Luca&rft.date=2022-12-01&rft.issn=1566-2535&rft.volume=88&rft.spage=146&rft.epage=160&rft_id=info:doi/10.1016%2Fj.inffus.2022.07.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_inffus_2022_07_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon