Multimodal and multicontrast image fusion via deep generative models
•Deep learning architecture for neuroimaging reconstruction.•Efficient convolutional neural networks based on separable convolutions.•Multimodality learning and interpretability of latent embeddings.•Clustering individuals phenotypes with structural multimodal brain features. Recently, it has become...
Saved in:
Published in | Information fusion Vol. 88; pp. 146 - 160 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Deep learning architecture for neuroimaging reconstruction.•Efficient convolutional neural networks based on separable convolutions.•Multimodality learning and interpretability of latent embeddings.•Clustering individuals phenotypes with structural multimodal brain features.
Recently, it has become progressively more evident that classic diagnostic labels are unable to accurately and reliably describe the complexity and variability of several clinical phenotypes. This is particularly true for a broad range of neuropsychiatric illnesses such as depression and anxiety disorders or behavioural phenotypes such as aggression and antisocial personality. Patient heterogeneity can be better described and conceptualized by grouping individuals into novel categories, which are based on empirically-derived sections of intersecting continua that span both across and beyond traditional categorical borders. In this context, neuroimaging data (i.e. the set of images which result from functional/metabolic (e.g. functional magnetic resonance imaging, functional near-infrared spectroscopy, or positron emission tomography) and structural (e.g. computed tomography, T1-, T2- PD- or diffusion weighted magnetic resonance imaging) carry a wealth of spatiotemporally resolved information about each patient's brain. However, they are usually heavily collapsed a priori through procedures which are not learned as part of model training, and consequently not optimized for the downstream prediction task. This is due to the fact that every individual participant usually comes with multiple whole-brain 3D imaging modalities often accompanied by a deep genotypic and phenotypic characterization, hence posing formidable computational challenges.
In this paper we design and validate a deep learning architecture based on generative models rooted in a modular approach and separable convolutional blocks (which result in a 20-fold decrease in parameter utilization) in order to a) fuse multiple 3D neuroimaging modalities on a voxel-wise level, b) efficiently convert them into informative latent embeddings through heavy dimensionality reduction, c) maintain good generalizability and minimal information loss. As proof of concept, we test our architecture on the well characterized Human Connectome Project database (n = 974 healthy subjects), demonstrating that our latent embeddings can be clustered into easily separable subject strata which, in turn, map to different phenotypical information (including organic, neuropsychological, personality variables) which was not included in the embedding creation process.
The ability to extract meaningful and separable phenotypic information from brain images alone can aid in creating multi-dimensional biomarkers able to chart spatio-temporal trajectories which may correspond to different pathophysiological mechanisms unidentifiable to traditional data analysis approaches. In turn, this may be of aid in predicting disease evolution as well as drug response, hence supporting mechanistic disease understanding and also empowering clinical trials.
[Display omitted] |
---|---|
AbstractList | •Deep learning architecture for neuroimaging reconstruction.•Efficient convolutional neural networks based on separable convolutions.•Multimodality learning and interpretability of latent embeddings.•Clustering individuals phenotypes with structural multimodal brain features.
Recently, it has become progressively more evident that classic diagnostic labels are unable to accurately and reliably describe the complexity and variability of several clinical phenotypes. This is particularly true for a broad range of neuropsychiatric illnesses such as depression and anxiety disorders or behavioural phenotypes such as aggression and antisocial personality. Patient heterogeneity can be better described and conceptualized by grouping individuals into novel categories, which are based on empirically-derived sections of intersecting continua that span both across and beyond traditional categorical borders. In this context, neuroimaging data (i.e. the set of images which result from functional/metabolic (e.g. functional magnetic resonance imaging, functional near-infrared spectroscopy, or positron emission tomography) and structural (e.g. computed tomography, T1-, T2- PD- or diffusion weighted magnetic resonance imaging) carry a wealth of spatiotemporally resolved information about each patient's brain. However, they are usually heavily collapsed a priori through procedures which are not learned as part of model training, and consequently not optimized for the downstream prediction task. This is due to the fact that every individual participant usually comes with multiple whole-brain 3D imaging modalities often accompanied by a deep genotypic and phenotypic characterization, hence posing formidable computational challenges.
In this paper we design and validate a deep learning architecture based on generative models rooted in a modular approach and separable convolutional blocks (which result in a 20-fold decrease in parameter utilization) in order to a) fuse multiple 3D neuroimaging modalities on a voxel-wise level, b) efficiently convert them into informative latent embeddings through heavy dimensionality reduction, c) maintain good generalizability and minimal information loss. As proof of concept, we test our architecture on the well characterized Human Connectome Project database (n = 974 healthy subjects), demonstrating that our latent embeddings can be clustered into easily separable subject strata which, in turn, map to different phenotypical information (including organic, neuropsychological, personality variables) which was not included in the embedding creation process.
The ability to extract meaningful and separable phenotypic information from brain images alone can aid in creating multi-dimensional biomarkers able to chart spatio-temporal trajectories which may correspond to different pathophysiological mechanisms unidentifiable to traditional data analysis approaches. In turn, this may be of aid in predicting disease evolution as well as drug response, hence supporting mechanistic disease understanding and also empowering clinical trials.
[Display omitted] |
Author | Lió, Pietro Dimitri, Giovanna Maria Toschi, Nicola Passamonti, Luca Duggento, Andrea Spasov, Simeon |
Author_xml | – sequence: 1 givenname: Giovanna Maria orcidid: 0000-0002-2728-4272 surname: Dimitri fullname: Dimitri, Giovanna Maria email: giovanna.dimitri@unisi.it organization: University of Cambridge, Cambridge, Department of Computer Science and Technology, William Gates Building, 15 JJ Thomson Avenue, Cambridge, CB3 0FD, United Kingdom – sequence: 2 givenname: Simeon surname: Spasov fullname: Spasov, Simeon email: simeon.spsv@gmail.com organization: University of Cambridge, Cambridge, Department of Computer Science and Technology, William Gates Building, 15 JJ Thomson Avenue, Cambridge, CB3 0FD, United Kingdom – sequence: 3 givenname: Andrea surname: Duggento fullname: Duggento, Andrea organization: Department of Biomedicine and Prevention, University of Rome "Tor Vergata”, Via Montpellier 1, Roma, RM, 00133, Italy – sequence: 4 givenname: Luca orcidid: 0000-0002-7937-0615 surname: Passamonti fullname: Passamonti, Luca organization: Department of Clinical Neurosciences, University of Cambridge, Herschel Smith Building, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, United Kingdom – sequence: 5 givenname: Pietro orcidid: 0000-0002-0540-5053 surname: Lió fullname: Lió, Pietro organization: University of Cambridge, Cambridge, Department of Computer Science and Technology, William Gates Building, 15 JJ Thomson Avenue, Cambridge, CB3 0FD, United Kingdom – sequence: 6 givenname: Nicola surname: Toschi fullname: Toschi, Nicola organization: Department of Biomedicine and Prevention, University of Rome "Tor Vergata”, Via Montpellier 1, Roma, RM, 00133, Italy |
BookMark | eNqFkM1KAzEUhYMo2FbfwEVeYMb8TabjQpD6CxU3ug6Z5KakTDMlSQu-val15UJX91443-GeM0WnYQyA0BUlNSVUXq9rH5zbpZoRxmrS1oS2J2hC5y2rJCfNadkbKSvW8OYcTVNak6IgnE7Q_etuyH4zWj1gHSzeHE4zhhx1ythv9ApwcfZjwHuvsQXY4hUEiDr7PeACwpAu0JnTQ4LLnzlDH48P74vnavn29LK4W1aGE5mrXlg37wiDTvRCNkYLTYFabrqeaUIp8LYB2TFNpRO6b4TtNdGOF9HcGN7zGbo5-po4phTBKeNzeeT7XT8oStShD7VWxz7UoQ9FWlXSFlj8grex5Iuf_2G3R6zkhL2HqJLxEAxYH8FkZUf_t8EX-ZaANw |
CitedBy_id | crossref_primary_10_3390_app13010267 crossref_primary_10_1007_s10462_023_10531_2 crossref_primary_10_1016_j_inffus_2022_10_033 crossref_primary_10_1016_j_inffus_2023_102069 crossref_primary_10_1080_09540261_2024_2405174 crossref_primary_10_3233_IDT_220285 crossref_primary_10_1016_j_inffus_2023_02_004 crossref_primary_10_1038_s41598_024_51329_8 crossref_primary_10_1007_s11042_024_18659_1 crossref_primary_10_1016_j_dsp_2024_104462 crossref_primary_10_3390_app13010412 crossref_primary_10_1016_j_neucom_2023_126947 crossref_primary_10_3390_info14020079 crossref_primary_10_1038_s41598_023_33160_9 crossref_primary_10_3390_rs16050781 crossref_primary_10_1016_j_heliyon_2024_e31648 crossref_primary_10_3390_computers11110163 crossref_primary_10_1016_j_cviu_2023_103708 crossref_primary_10_1049_ccs2_12076 crossref_primary_10_3390_jmse10101503 crossref_primary_10_1016_j_eswa_2024_124780 crossref_primary_10_1038_s41598_023_37569_0 crossref_primary_10_1007_s00779_024_01824_6 crossref_primary_10_3389_fpsyt_2024_1346059 |
Cites_doi | 10.1212/WNL.0000000000002923 10.1109/CVPR.2016.90 10.1016/0377-0427(87)90125-7 10.1016/j.biocel.2013.08.014 10.3390/s21144699 10.1109/TIP.2020.2977573 10.1016/j.neuroimage.2015.09.018 10.1109/CVPR.2017.195 10.1371/journal.pmed.1001779 10.1158/1078-0432.CCR-16-2415 10.1016/j.media.2020.101944 10.1038/s42256-020-00270-2 10.3389/fnins.2019.01449 10.1016/j.zemedi.2018.11.002 10.1002/mrm.27178 10.1016/j.neurobiolaging.2010.04.025 10.1109/TPAMI.2021.3059968 10.1002/mp.14006 10.1016/j.media.2017.07.006 10.1109/JSTSP.2020.3001737 10.1016/j.media.2018.11.010 10.1016/j.media.2016.05.004 10.1016/j.neuroimage.2013.05.041 10.1016/j.neuroimage.2017.07.059 10.1016/j.neuroimage.2013.05.057 10.1002/mrm.24736 10.7554/eLife.44443 10.1007/s12021-013-9204-3 10.1016/j.neuroimage.2020.116807 10.3390/app9030404 10.1016/j.neurobiolaging.2019.08.032 10.1002/mrm.28148 10.3389/fncom.2019.00031 10.1109/TMI.2019.2897538 10.1016/j.neuroimage.2011.09.015 10.1016/j.jalz.2005.06.003 10.1007/978-3-319-24574-4_28 10.1109/TKDE.2010.144 10.1371/annotation/0c88e0d5-dade-4376-8ee1-49ed4ff238e2 10.1038/nature14539 10.1016/j.neuroimage.2019.01.031 10.1126/science.1136800 10.1002/nbm.4540 10.1016/0893-6080(89)90014-2 10.1111/j.2517-6161.1995.tb02031.x 10.1007/BF00332918 10.1016/j.jbi.2018.07.004 10.1016/j.neuroimage.2010.09.025 10.1016/j.neuroimage.2012.03.072 10.1109/ISBI.2018.8363576 10.1007/978-3-319-66179-7_48 10.1016/j.neuroimage.2013.04.127 10.1016/j.inffus.2021.06.001 10.1007/s00401-010-0744-4 10.1186/1471-2105-10-99 10.1016/j.pneurobio.2011.09.005 10.1109/CVPR.2018.00907 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.inffus.2022.07.017 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1872-6305 |
EndPage | 160 |
ExternalDocumentID | 10_1016_j_inffus_2022_07_017 S1566253522000720 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K UHS ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-b4df8902e94b465ca4a1e1d3c9b2a011e375e692a16f4ab54dba0af31e18cc3b3 |
IEDL.DBID | .~1 |
ISSN | 1566-2535 |
IngestDate | Tue Jul 01 04:14:40 EDT 2025 Thu Apr 24 23:09:46 EDT 2025 Fri Feb 23 02:39:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Precision medicine Separable Convolutions Latent embeddings Multimodal neuroimaging Deep autoencoder Phenotype stratification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-b4df8902e94b465ca4a1e1d3c9b2a011e375e692a16f4ab54dba0af31e18cc3b3 |
ORCID | 0000-0002-7937-0615 0000-0002-2728-4272 0000-0002-0540-5053 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1016_j_inffus_2022_07_017 crossref_primary_10_1016_j_inffus_2022_07_017 elsevier_sciencedirect_doi_10_1016_j_inffus_2022_07_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationTitle | Information fusion |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Adler (bib0001) 2010; 120 Do (bib0020) 2020; 47 Guan (bib0025) 2010; 23 Lasko (bib0037) 2013; 8 Jenkinson (bib0032) 2012; 62 Dar (bib0017) 2020; 84 Jack (bib0031) 2016; 87 Sotiropoulos (bib0058) 2013; 80 Zhang (bib0073) 2012; 61 Nie D., et al. Medicalimage synthesis with context-aware generative adversarial networks,Medical image computing and computer-assisted intervention: MIC-CAI.International conference on medical image computing andcomputer-assisted intervention 10435. 2017. p. 417–25. A.G. Howard, et al., Mobilenets: efficient convolutional neural networks for mobile vision applications (1704–04861, 2017). Vincent (bib0051) 2010; 11 Benou (bib0006) 2017; 42 Bermudez (bib0011) 2018; 10574 Falvo (bib0021) 2021 Toschi (bib0062) 2019; 83 Chaudhari (bib0013) 2018; 80 Rabinovici (bib0052) 2017; 3 Sudlow (bib0060) 2015; 12 Clevert (bib0019) 2015 Young (bib0070) 2017; 18 Frey (bib0009) 2007 Gamberger (bib78) 2016; 15.1 Yang (bib0069) 2020; 10 Brescia (bib0010) 2021; 21 Cole (bib0015) 2017; 163 Balakrishnan (bib0003) 2019; 38 Falvo (bib0022) 2019 Kolařík (bib0036) 2019; 9 Shin (bib0026) 2018 Yurt (bib0071) 2021; 70 Zemedikun (bib80) 2018; 93 Benjamini, Hochberg (bib0005) 1995; 57 Van Essen (bib0063) 2013; 80 Baldi, Hornik (bib0004) 1989; 2 Mwangi (bib0048) 2014; 12 Srivastava (bib0050) 2014 Avants (bib76) 2011 LeCun, Bengio, Hinton (bib0038) 2015; 521 Lundervold, Lundervold (bib0043) 2019; 29 Caruyer (bib0012) 2013; 69 Ramon-Julvez (bib0053) 2020 Bernal (bib0018) 2018 Bourlard, Kamp (bib0008) 1988; 59 Vos (bib0007) 2019; 52 Saha (bib0057) 2020 Nettiksimmons (bib77) 2010; 31.8 Liu (bib0040) 2021 Mueller (bib0047) 2005; 1 Dar (bib0016) 2020; 14 He, K., et al. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778). Minaee (bib0046) 2021 Spasov (bib0059) 2019; 189 Taylor (bib0061) 2017; 144 Rousseeuw (bib0055) 1987; 20 Ioffe, Szegedy (bib0056) 2015 Lopez (bib0042) 2018; 85 Chollet, F., Xception: deep learning with depthwise separable convolutions, In Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. p. 1251–1258. Havaei (bib0027) 2017; 35 Kingma, Ba (bib0035) 2014 Hoffman (bib81) 2017; 86 Wang (bib0065) 2013; 45 Yurt (bib0072) 2022; 78 Wu (bib0067) 2017; 23 Jennings (bib0033) 2011; 95 Wayne (bib0066) 1990 Liu (bib0039) 2021; 3 Zoph, B., et al. Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. p. 8697–8710. Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015. Vlasblom (bib0064) 2009; 10 Alashwal (bib0002) 2019; 13 Llera (bib0041) 2019; 8 Escudero (bib79) 2012 Zhang (bib0074) 2019; 9 Lundervold, Lundervold (bib0044) 2019; 29 Ma (bib0045) 2020; 29 Kao (bib0034) 2020; 13 Frid-Adar M., et al., Synthetic data augmentation using GAN for improved liver lesion clas-sification. In: Proc. IEEE 15th int. symp. biomedical imaging (ISBI2018). 2018. p. 289–93. Glasser (bib0024) 2013; 80 Xu, Ma (bib0068) 2021 Guan (10.1016/j.inffus.2022.07.017_bib0025) 2010; 23 Liu (10.1016/j.inffus.2022.07.017_bib0039) 2021; 3 Vlasblom (10.1016/j.inffus.2022.07.017_bib0064) 2009; 10 Avants (10.1016/j.inffus.2022.07.017_bib76) 2011 Liu (10.1016/j.inffus.2022.07.017_bib0040) 2021 Hoffman (10.1016/j.inffus.2022.07.017_bib81) 2017; 86 Jenkinson (10.1016/j.inffus.2022.07.017_bib0032) 2012; 62 Taylor (10.1016/j.inffus.2022.07.017_bib0061) 2017; 144 10.1016/j.inffus.2022.07.017_bib0028 Bernal (10.1016/j.inffus.2022.07.017_bib0018) 2018 10.1016/j.inffus.2022.07.017_bib0029 10.1016/j.inffus.2022.07.017_bib0023 Lundervold (10.1016/j.inffus.2022.07.017_bib0044) 2019; 29 Falvo (10.1016/j.inffus.2022.07.017_bib0022) 2019 Dar (10.1016/j.inffus.2022.07.017_bib0017) 2020; 84 Adler (10.1016/j.inffus.2022.07.017_bib0001) 2010; 120 Benou (10.1016/j.inffus.2022.07.017_bib0006) 2017; 42 Kao (10.1016/j.inffus.2022.07.017_bib0034) 2020; 13 Yurt (10.1016/j.inffus.2022.07.017_bib0071) 2021; 70 Jennings (10.1016/j.inffus.2022.07.017_bib0033) 2011; 95 Jack (10.1016/j.inffus.2022.07.017_bib0031) 2016; 87 Escudero (10.1016/j.inffus.2022.07.017_bib79) 2012 Ramon-Julvez (10.1016/j.inffus.2022.07.017_bib0053) 2020 Srivastava (10.1016/j.inffus.2022.07.017_bib0050) 2014 Zhang (10.1016/j.inffus.2022.07.017_bib0073) 2012; 61 Rousseeuw (10.1016/j.inffus.2022.07.017_bib0055) 1987; 20 Ma (10.1016/j.inffus.2022.07.017_bib0045) 2020; 29 Bourlard (10.1016/j.inffus.2022.07.017_bib0008) 1988; 59 Llera (10.1016/j.inffus.2022.07.017_bib0041) 2019; 8 Clevert (10.1016/j.inffus.2022.07.017_bib0019) 2015 Van Essen (10.1016/j.inffus.2022.07.017_bib0063) 2013; 80 Saha (10.1016/j.inffus.2022.07.017_bib0057) 2020 Havaei (10.1016/j.inffus.2022.07.017_bib0027) 2017; 35 10.1016/j.inffus.2022.07.017_bib0075 Toschi (10.1016/j.inffus.2022.07.017_bib0062) 2019; 83 Mwangi (10.1016/j.inffus.2022.07.017_bib0048) 2014; 12 Nettiksimmons (10.1016/j.inffus.2022.07.017_bib77) 2010; 31.8 Frey (10.1016/j.inffus.2022.07.017_bib0009) 2007 Brescia (10.1016/j.inffus.2022.07.017_bib0010) 2021; 21 Baldi (10.1016/j.inffus.2022.07.017_bib0004) 1989; 2 Vos (10.1016/j.inffus.2022.07.017_bib0007) 2019; 52 Wang (10.1016/j.inffus.2022.07.017_bib0065) 2013; 45 Spasov (10.1016/j.inffus.2022.07.017_bib0059) 2019; 189 Balakrishnan (10.1016/j.inffus.2022.07.017_bib0003) 2019; 38 Kolařík (10.1016/j.inffus.2022.07.017_bib0036) 2019; 9 Benjamini (10.1016/j.inffus.2022.07.017_bib0005) 1995; 57 Young (10.1016/j.inffus.2022.07.017_bib0070) 2017; 18 Chaudhari (10.1016/j.inffus.2022.07.017_bib0013) 2018; 80 Dar (10.1016/j.inffus.2022.07.017_bib0016) 2020; 14 Shin (10.1016/j.inffus.2022.07.017_bib0026) 2018 Zemedikun (10.1016/j.inffus.2022.07.017_bib80) 2018; 93 Mueller (10.1016/j.inffus.2022.07.017_bib0047) 2005; 1 10.1016/j.inffus.2022.07.017_bib0049 Sudlow (10.1016/j.inffus.2022.07.017_bib0060) 2015; 12 Yurt (10.1016/j.inffus.2022.07.017_bib0072) 2022; 78 Minaee (10.1016/j.inffus.2022.07.017_bib0046) 2021 Lasko (10.1016/j.inffus.2022.07.017_bib0037) 2013; 8 Vincent (10.1016/j.inffus.2022.07.017_bib0051) 2010; 11 Bermudez (10.1016/j.inffus.2022.07.017_bib0011) 2018; 10574 Falvo (10.1016/j.inffus.2022.07.017_bib0021) 2021 Cole (10.1016/j.inffus.2022.07.017_bib0015) 2017; 163 Kingma (10.1016/j.inffus.2022.07.017_bib0035) 2014 Glasser (10.1016/j.inffus.2022.07.017_bib0024) 2013; 80 Lopez (10.1016/j.inffus.2022.07.017_bib0042) 2018; 85 Wu (10.1016/j.inffus.2022.07.017_bib0067) 2017; 23 Caruyer (10.1016/j.inffus.2022.07.017_bib0012) 2013; 69 Zhang (10.1016/j.inffus.2022.07.017_bib0074) 2019; 9 Alashwal (10.1016/j.inffus.2022.07.017_bib0002) 2019; 13 Rabinovici (10.1016/j.inffus.2022.07.017_bib0052) 2017; 3 Xu (10.1016/j.inffus.2022.07.017_bib0068) 2021 Gamberger (10.1016/j.inffus.2022.07.017_bib78) 2016; 15.1 Sotiropoulos (10.1016/j.inffus.2022.07.017_bib0058) 2013; 80 Do (10.1016/j.inffus.2022.07.017_bib0020) 2020; 47 Wayne (10.1016/j.inffus.2022.07.017_bib0066) 1990 Yang (10.1016/j.inffus.2022.07.017_bib0069) 2020; 10 Ioffe (10.1016/j.inffus.2022.07.017_bib0056) 2015 10.1016/j.inffus.2022.07.017_bib0014 10.1016/j.inffus.2022.07.017_bib0054 LeCun (10.1016/j.inffus.2022.07.017_bib0038) 2015; 521 Lundervold (10.1016/j.inffus.2022.07.017_bib0043) 2019; 29 |
References_xml | – start-page: 1 year: 2019 end-page: 6 ident: bib0022 article-title: A multimodal dense u-net for accelerating multiple sclerosis mri publication-title: 2019 IEEE 29th International Workshop On Machine Learning For Signal Processing (MLSP) – volume: 120 start-page: 827 year: 2010 ident: bib0001 article-title: Heterogeneous neuropathological findings in Parkinson’s disease with mild cognitive impairment publication-title: Acta Neuropathol. – volume: 12 year: 2015 ident: bib0060 article-title: Uk biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age publication-title: PLoS Med. – volume: 83 start-page: 42 year: 2019 end-page: 53 ident: bib0062 article-title: Biomarker-guided clustering of Alzheimer’s disease clinical syndromes publication-title: Neurobiology of Aging – volume: 189 start-page: 276 year: 2019 end-page: 287 ident: bib0059 article-title: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease publication-title: Neuroimage – year: 2007 ident: bib0009 article-title: Clustering by passing messages between data points publication-title: Science – volume: 1 start-page: 55 year: 2005 end-page: 66 ident: bib0047 article-title: Ways toward an early diagnosis in Alzheimer's disease: the Alzheimer's disease neuroimaging initiative (ADNI) publication-title: Alzheimer's & Dementia – year: 2018 ident: bib0026 publication-title: Medical image synthesis for data augmentation and anonymization using generative adversarial networks, – volume: 29 start-page: 102 year: 2019 end-page: 127 ident: bib0044 article-title: An overview of deep learning in medical imaging focusing on MRI publication-title: Zeitschrift für Medizinische Physik – volume: 61 start-page: 1000 year: 2012 end-page: 1016 ident: bib0073 article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain publication-title: Neuroimage – reference: Nie D., et al. Medicalimage synthesis with context-aware generative adversarial networks,Medical image computing and computer-assisted intervention: MIC-CAI.International conference on medical image computing andcomputer-assisted intervention 10435. 2017. p. 417–25. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0038 article-title: Deep learning publication-title: Nature – volume: 9 start-page: 404 year: 2019 ident: bib0036 article-title: Optimized high resolution 3d dense-u-net network for brain and spine segmentation publication-title: Appl. Sci. – volume: 93 year: 2018 ident: bib80 article-title: Patterns of multimorbidity in middle-aged and older adults: an analysis of the UK Biobank data publication-title: Mayo Clinic Proceedings Elsevier – start-page: 1120 year: 2020 end-page: 1124 ident: bib0053 publication-title: April. Analysis of the influence of diffeomorphic normalization in the prediction of stable VS progressive MCI conversion with convolutional neural networks – volume: 29 start-page: 4980 year: 2020 end-page: 4995 ident: bib0045 article-title: DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion publication-title: IEEE Trans. Image Processing – volume: 23 start-page: 3334 year: 2017 end-page: 3342 ident: bib0067 article-title: Unsupervised clustering of quantitative image phenotypes reveals breast cancer subtypes with distinct prognoses and molecular pathways publication-title: Clin. Cancer Res. – volume: 9 start-page: 1 year: 2019 end-page: 12 ident: bib0074 article-title: Data-driven subtyping of Parkinson’s disease using longitudinal clinical records: a cohort study publication-title: Sci. Rep. – volume: 144 start-page: 262 year: 2017 end-page: 269 ident: bib0061 article-title: The Cambridge centre for ageing and neuroscience (CAM-can) data repository: structural and functional mri, meg, and cognitive data from a cross-sectional adult lifespan sample publication-title: Neuroimage – volume: 70 year: 2021 ident: bib0071 article-title: Mustgan: multi-stream generative adversarial networks for MR image synthesis publication-title: Medical Image Analysis – volume: 163 start-page: 115 year: 2017 end-page: 124 ident: bib0015 article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker publication-title: Neuroimage – volume: 80 start-page: 125 year: 2013 end-page: 143 ident: bib0058 article-title: Advances in diffusion MRI acquisition and processing in the human connectome project publication-title: Neuroimage – volume: 78 year: 2022 ident: bib0072 article-title: Progressively volumetrized deep generative models for data-efficient contextual learning of MR image recovery publication-title: Medical Image Analysis – reference: A.G. Howard, et al., Mobilenets: efficient convolutional neural networks for mobile vision applications (1704–04861, 2017). – start-page: e4540 year: 2021 ident: bib0040 article-title: Optimizing multicontrast MRI reconstruction with shareable feature aggregation and selection publication-title: NMR Biomed. – volume: 3 start-page: 83 year: 2017 end-page: 91 ident: bib0052 article-title: Multiple comorbid neuropathologies in the setting of Alzheimer’s disease neuropathology and implications for drug development publication-title: Alzheimer’s & Dementia: Translational Research & Clinical Interventions – volume: 8 year: 2019 ident: bib0041 article-title: Inter-individual differences in human brain structure and morphology link to variation in demographics and behavior publication-title: Elife – volume: 20 start-page: 53 year: 1987 end-page: 65 ident: bib0055 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. – reference: Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015. – year: 2014 ident: bib0035 article-title: Adam: a method for stochastic optimization publication-title: arXiv preprint arXiv:1412.6980. – year: 2015 ident: bib0019 article-title: Fast and accurate deep network learning by exponential linear units (ELUs) publication-title: CoRR – volume: 95 start-page: 629 year: 2011 end-page: 635 ident: bib0033 article-title: The parkinson progression marker initiative (ppmi) publication-title: Progress in neurobiology – volume: 31.8 start-page: 1419 year: 2010 end-page: 1428 ident: bib77 article-title: Subtypes based on cerebrospinal fluid and magnetic resonance imaging markers in normal elderly predict cognitive decline publication-title: Neurobiology of aging – year: 2021 ident: bib0068 article-title: EMFusion: an unsupervised enhanced medical image fusion network publication-title: Inf. Fusion – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: bib0051 article-title: Stacked denoising autoencoders: learning useful representations in a deep net-work with a local denoising criterion publication-title: J. Mach. Learn. Res. (JMLR) – year: 2021 ident: bib0046 article-title: Image segmentation using deep learning. A survey publication-title: IEEE transactions on pattern analysis and machine intelligence – volume: 69 start-page: 1534 year: 2013 end-page: 1540 ident: bib0012 article-title: Design of multishell sampling schemes with uniform coverage in diffusion MRI publication-title: Magnetic resonance in medicine – volume: 21 start-page: 4699 year: 2021 ident: bib0010 article-title: Automated multistep parameter identification of spmsms in large-scale applications using cloud computing resources publication-title: Sensors – volume: 85 start-page: 30 year: 2018 end-page: 39 ident: bib0042 article-title: An unsupervised machine learning method for discovering patient clusters based on genetic signatures publication-title: J. Biomed. Inform. – volume: 86 year: 2017 ident: bib81 article-title: Data-driven classification of patients with primary progressive aphasia publication-title: Brain and language – volume: 45 start-page: 2574 year: 2013 end-page: 2579 ident: bib0065 article-title: Dissecting cancer heterogeneity–an unsupervised classification approach publication-title: Int. J. Biochem. Cell Biol. – volume: 8 start-page: 6 year: 2013 ident: bib0037 article-title: Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data publication-title: PLoS ONE – volume: 14 start-page: 1072 year: 2020 end-page: 1087 ident: bib0016 article-title: Prior-guided image reconstruction for accelerated multi-contrast MRI via generative adversarial networks publication-title: IEEE Journal of Selected Topics in Signal Processing – volume: 13 year: 2019 ident: bib0002 article-title: The application of unsupervised clustering methods to Alzheimer's disease publication-title: Front. Comput. Neurosci. – volume: 47 start-page: 983 year: 2020 end-page: 997 ident: bib0020 article-title: Reconstruction of multicontrast MR images through deep learning publication-title: Medical Physics – volume: 10 start-page: 99 year: 2009 ident: bib0064 article-title: Markov clustering versus affinity propagation for the partitioning of protein interaction graphs publication-title: BMC Bioinformatics – year: 2020 ident: bib0057 article-title: Predicting motor outcome in preterm infants from very early brain diffusion MRI using a deep learning convolutional neural network (CNN) model publication-title: Neuroimage – volume: 10 start-page: 1 year: 2020 end-page: 18 ident: bib0069 article-title: MRI cross-Modality image-to-image translation publication-title: Sci. Rep. – volume: 62 start-page: 782 year: 2012 end-page: 790 ident: bib0032 article-title: Fsl publication-title: Neuroimage – volume: 3 start-page: 60 year: 2021 end-page: 67 ident: bib0039 article-title: Learning MRI artefact removal with unpaired data publication-title: Nature Machine Intelligence – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bib0024 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: Neuroimage – volume: 35 start-page: 18 year: 2017 end-page: 31 ident: bib0027 article-title: Brain tumor segmentation with deep neural networks publication-title: Medical Image Analysis – volume: 12 start-page: 229 year: 2014 end-page: 244 ident: bib0048 article-title: A review of feature reduction techniques in neuroimaging publication-title: Neuroinformatics – reference: Chollet, F., Xception: deep learning with depthwise separable convolutions, In Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. p. 1251–1258. – reference: Zoph, B., et al. Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. p. 8697–8710. – volume: 2 start-page: 53 year: 1989 end-page: 58 ident: bib0004 article-title: Neural networks and principal component analysis: learning from examples without local minima publication-title: Neural Networks – start-page: 1929 year: 2014 end-page: 1958 ident: bib0050 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. (JMLR) – start-page: 423 year: 2021 end-page: 431 ident: bib0021 article-title: A multimodal deep network for the reconstruction of T2W MR images publication-title: Progresses in Artificial Intelligence and Neural Systems – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bib0063 article-title: The WU-Minn human connectome project: an overview publication-title: Neuroimage – volume: 13 start-page: 1449 year: 2020 ident: bib0034 article-title: Improving patch-based convolutional neural networks for MRI brain tumor segmentation by leveraging location information publication-title: Frontiers in Neuroscience – year: 2018 ident: bib0018 article-title: Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review publication-title: Artificial intelligence in medicine – volume: 29 start-page: 102 year: 2019 end-page: 127 ident: bib0043 article-title: An overview of deep learning in medical imaging focusing on MRI publication-title: Zeitschrift für Medizinische Physik – start-page: 164 year: 2012 end-page: 168 ident: bib79 article-title: Machine learning-based method for personalized and cost-effective detection of Alzheimer’s disease publication-title: IEEE transactions on biomedical engineering – volume: 42 start-page: 145 year: 2017 end-page: 159 ident: bib0006 article-title: Ensemble of expert deep neural networks for spatiotemporal denoising of contrast-enhanced MRI sequences publication-title: Med. Image Anal. – volume: 52 start-page: 128 year: 2019 end-page: 143 ident: bib0007 article-title: Hessam Sokooti, Marius Staring, Ivana Išgum, A deep learning framework for unsupervised affine and deformable image registration publication-title: Med. Image Anal. – volume: 23 start-page: 627 year: 2010 end-page: 637 ident: bib0025 article-title: Text clustering with seeds affinity propagation publication-title: IEEE Trans. Knowl. Data Eng. – year: 2011 ident: bib76 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration." publication-title: Neuroimage 54.3 – volume: 80 start-page: 2139 year: 2018 end-page: 2154 ident: bib0013 article-title: Super-resolution musculoskeletal MRI using deep learning publication-title: Magnetic resonance in medicine – reference: He, K., et al. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778). – volume: 57 start-page: 289 year: 1995 end-page: 300 ident: bib0005 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. Royal Statistical Soc. series B (Methodological) – volume: 38 start-page: 1788 year: 2019 end-page: 1800 ident: bib0003 article-title: Voxelmorph: a learning framework for deformable medical image registration publication-title: IEEE Trans. Med. Imaging – volume: 84 start-page: 663 year: 2020 end-page: 685 ident: bib0017 article-title: A transfer-learning approach for accelerated MRI using deep neural networks publication-title: Magnetic resonance in medicine – volume: 15.1 start-page: 21 year: 2016 end-page: 34 ident: bib78 article-title: Homogeneous clusters of Alzheimer’s disease patient population publication-title: Biomedical Engineering Online – volume: 87 start-page: 539 year: 2016 end-page: 547 ident: bib0031 article-title: A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers publication-title: Neurology – volume: 10574 year: 2018 ident: bib0011 article-title: Learning implicit brain MRI manifolds with deep learning publication-title: Medical Imaging 2018: Image Processing. – reference: Frid-Adar M., et al., Synthetic data augmentation using GAN for improved liver lesion clas-sification. In: Proc. IEEE 15th int. symp. biomedical imaging (ISBI2018). 2018. p. 289–93. – start-page: 448 year: 2015 end-page: 456 ident: bib0056 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift. 2015 International Conference on Machine Learning publication-title: (ICML) – start-page: 226 year: 1990 end-page: 234 ident: bib0066 article-title: Kruskal–Wallis one-way analysis of variance by ranks publication-title: Appl. Nonparametric Statistics – volume: 18 start-page: 5 year: 2017 end-page: 17 ident: bib0070 article-title: Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma publication-title: BMC Bioinformatics – volume: 59 start-page: 291 year: 1988 end-page: 294 ident: bib0008 article-title: Auto-association by multilayer perceptrons and singular value decomposition publication-title: Biol. Cybern. – volume: 87 start-page: 539 issue: 5 year: 2016 ident: 10.1016/j.inffus.2022.07.017_bib0031 article-title: A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers publication-title: Neurology doi: 10.1212/WNL.0000000000002923 – year: 2014 ident: 10.1016/j.inffus.2022.07.017_bib0035 article-title: Adam: a method for stochastic optimization publication-title: arXiv preprint arXiv:1412.6980. – ident: 10.1016/j.inffus.2022.07.017_bib0028 doi: 10.1109/CVPR.2016.90 – volume: 20 start-page: 53 year: 1987 ident: 10.1016/j.inffus.2022.07.017_bib0055 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(87)90125-7 – volume: 45 start-page: 2574 issue: 11 year: 2013 ident: 10.1016/j.inffus.2022.07.017_bib0065 article-title: Dissecting cancer heterogeneity–an unsupervised classification approach publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2013.08.014 – volume: 21 start-page: 4699 issue: 14 year: 2021 ident: 10.1016/j.inffus.2022.07.017_bib0010 article-title: Automated multistep parameter identification of spmsms in large-scale applications using cloud computing resources publication-title: Sensors doi: 10.3390/s21144699 – volume: 78 issue: 102429 year: 2022 ident: 10.1016/j.inffus.2022.07.017_bib0072 article-title: Progressively volumetrized deep generative models for data-efficient contextual learning of MR image recovery publication-title: Medical Image Analysis – volume: 29 start-page: 4980 year: 2020 ident: 10.1016/j.inffus.2022.07.017_bib0045 article-title: DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion publication-title: IEEE Trans. Image Processing doi: 10.1109/TIP.2020.2977573 – volume: 11 start-page: 3371 year: 2010 ident: 10.1016/j.inffus.2022.07.017_bib0051 article-title: Stacked denoising autoencoders: learning useful representations in a deep net-work with a local denoising criterion publication-title: J. Mach. Learn. Res. (JMLR) – volume: 144 start-page: 262 year: 2017 ident: 10.1016/j.inffus.2022.07.017_bib0061 article-title: The Cambridge centre for ageing and neuroscience (CAM-can) data repository: structural and functional mri, meg, and cognitive data from a cross-sectional adult lifespan sample publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.09.018 – ident: 10.1016/j.inffus.2022.07.017_bib0014 doi: 10.1109/CVPR.2017.195 – volume: 10574 year: 2018 ident: 10.1016/j.inffus.2022.07.017_bib0011 article-title: Learning implicit brain MRI manifolds with deep learning publication-title: Medical Imaging 2018: Image Processing. – volume: 12 issue: 3 year: 2015 ident: 10.1016/j.inffus.2022.07.017_bib0060 article-title: Uk biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age publication-title: PLoS Med. doi: 10.1371/journal.pmed.1001779 – start-page: 448 year: 2015 ident: 10.1016/j.inffus.2022.07.017_bib0056 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift. 2015 International Conference on Machine Learning publication-title: (ICML) – volume: 23 start-page: 3334 issue: 13 year: 2017 ident: 10.1016/j.inffus.2022.07.017_bib0067 article-title: Unsupervised clustering of quantitative image phenotypes reveals breast cancer subtypes with distinct prognoses and molecular pathways publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-16-2415 – volume: 70 year: 2021 ident: 10.1016/j.inffus.2022.07.017_bib0071 article-title: Mustgan: multi-stream generative adversarial networks for MR image synthesis publication-title: Medical Image Analysis doi: 10.1016/j.media.2020.101944 – start-page: 1 year: 2019 ident: 10.1016/j.inffus.2022.07.017_bib0022 article-title: A multimodal dense u-net for accelerating multiple sclerosis mri – year: 2018 ident: 10.1016/j.inffus.2022.07.017_bib0026 – volume: 3 start-page: 60 issue: 1 year: 2021 ident: 10.1016/j.inffus.2022.07.017_bib0039 article-title: Learning MRI artefact removal with unpaired data publication-title: Nature Machine Intelligence doi: 10.1038/s42256-020-00270-2 – start-page: 423 year: 2021 ident: 10.1016/j.inffus.2022.07.017_bib0021 article-title: A multimodal deep network for the reconstruction of T2W MR images – volume: 13 start-page: 1449 year: 2020 ident: 10.1016/j.inffus.2022.07.017_bib0034 article-title: Improving patch-based convolutional neural networks for MRI brain tumor segmentation by leveraging location information publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2019.01449 – volume: 29 start-page: 102 issue: 2 year: 2019 ident: 10.1016/j.inffus.2022.07.017_bib0044 article-title: An overview of deep learning in medical imaging focusing on MRI publication-title: Zeitschrift für Medizinische Physik doi: 10.1016/j.zemedi.2018.11.002 – volume: 80 start-page: 2139 year: 2018 ident: 10.1016/j.inffus.2022.07.017_bib0013 article-title: Super-resolution musculoskeletal MRI using deep learning publication-title: Magnetic resonance in medicine doi: 10.1002/mrm.27178 – volume: 31.8 start-page: 1419 year: 2010 ident: 10.1016/j.inffus.2022.07.017_bib77 article-title: Subtypes based on cerebrospinal fluid and magnetic resonance imaging markers in normal elderly predict cognitive decline publication-title: Neurobiology of aging doi: 10.1016/j.neurobiolaging.2010.04.025 – year: 2021 ident: 10.1016/j.inffus.2022.07.017_bib0046 article-title: Image segmentation using deep learning. A survey publication-title: IEEE transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.2021.3059968 – volume: 47 start-page: 983 issue: 3 year: 2020 ident: 10.1016/j.inffus.2022.07.017_bib0020 article-title: Reconstruction of multicontrast MR images through deep learning publication-title: Medical Physics doi: 10.1002/mp.14006 – volume: 3 start-page: 83 issue: 1 year: 2017 ident: 10.1016/j.inffus.2022.07.017_bib0052 article-title: Multiple comorbid neuropathologies in the setting of Alzheimer’s disease neuropathology and implications for drug development publication-title: Alzheimer’s & Dementia: Translational Research & Clinical Interventions – volume: 42 start-page: 145 year: 2017 ident: 10.1016/j.inffus.2022.07.017_bib0006 article-title: Ensemble of expert deep neural networks for spatiotemporal denoising of contrast-enhanced MRI sequences publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.006 – volume: 14 start-page: 1072 issue: 6 year: 2020 ident: 10.1016/j.inffus.2022.07.017_bib0016 article-title: Prior-guided image reconstruction for accelerated multi-contrast MRI via generative adversarial networks publication-title: IEEE Journal of Selected Topics in Signal Processing doi: 10.1109/JSTSP.2020.3001737 – start-page: 226 year: 1990 ident: 10.1016/j.inffus.2022.07.017_bib0066 article-title: Kruskal–Wallis one-way analysis of variance by ranks publication-title: Appl. Nonparametric Statistics – volume: 52 start-page: 128 year: 2019 ident: 10.1016/j.inffus.2022.07.017_bib0007 article-title: Hessam Sokooti, Marius Staring, Ivana Išgum, A deep learning framework for unsupervised affine and deformable image registration publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.11.010 – volume: 35 start-page: 18 year: 2017 ident: 10.1016/j.inffus.2022.07.017_bib0027 article-title: Brain tumor segmentation with deep neural networks publication-title: Medical Image Analysis doi: 10.1016/j.media.2016.05.004 – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.inffus.2022.07.017_bib0063 article-title: The WU-Minn human connectome project: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 163 start-page: 115 year: 2017 ident: 10.1016/j.inffus.2022.07.017_bib0015 article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.059 – volume: 18 start-page: 5 issue: 11 year: 2017 ident: 10.1016/j.inffus.2022.07.017_bib0070 article-title: Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma publication-title: BMC Bioinformatics – volume: 80 start-page: 125 year: 2013 ident: 10.1016/j.inffus.2022.07.017_bib0058 article-title: Advances in diffusion MRI acquisition and processing in the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.057 – volume: 69 start-page: 1534 issue: 6 year: 2013 ident: 10.1016/j.inffus.2022.07.017_bib0012 article-title: Design of multishell sampling schemes with uniform coverage in diffusion MRI publication-title: Magnetic resonance in medicine doi: 10.1002/mrm.24736 – volume: 8 year: 2019 ident: 10.1016/j.inffus.2022.07.017_bib0041 article-title: Inter-individual differences in human brain structure and morphology link to variation in demographics and behavior publication-title: Elife doi: 10.7554/eLife.44443 – volume: 12 start-page: 229 issue: 2 year: 2014 ident: 10.1016/j.inffus.2022.07.017_bib0048 article-title: A review of feature reduction techniques in neuroimaging publication-title: Neuroinformatics doi: 10.1007/s12021-013-9204-3 – year: 2020 ident: 10.1016/j.inffus.2022.07.017_bib0057 article-title: Predicting motor outcome in preterm infants from very early brain diffusion MRI using a deep learning convolutional neural network (CNN) model publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116807 – volume: 9 start-page: 404 issue: 3 year: 2019 ident: 10.1016/j.inffus.2022.07.017_bib0036 article-title: Optimized high resolution 3d dense-u-net network for brain and spine segmentation publication-title: Appl. Sci. doi: 10.3390/app9030404 – volume: 83 start-page: 42 year: 2019 ident: 10.1016/j.inffus.2022.07.017_bib0062 article-title: Biomarker-guided clustering of Alzheimer’s disease clinical syndromes publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2019.08.032 – volume: 15.1 start-page: 21 year: 2016 ident: 10.1016/j.inffus.2022.07.017_bib78 article-title: Homogeneous clusters of Alzheimer’s disease patient population publication-title: Biomedical Engineering Online – volume: 84 start-page: 663 issue: 2 year: 2020 ident: 10.1016/j.inffus.2022.07.017_bib0017 article-title: A transfer-learning approach for accelerated MRI using deep neural networks publication-title: Magnetic resonance in medicine doi: 10.1002/mrm.28148 – volume: 13 year: 2019 ident: 10.1016/j.inffus.2022.07.017_bib0002 article-title: The application of unsupervised clustering methods to Alzheimer's disease publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2019.00031 – volume: 38 start-page: 1788 issue: 8 year: 2019 ident: 10.1016/j.inffus.2022.07.017_bib0003 article-title: Voxelmorph: a learning framework for deformable medical image registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2897538 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.inffus.2022.07.017_bib0074 article-title: Data-driven subtyping of Parkinson’s disease using longitudinal clinical records: a cohort study publication-title: Sci. Rep. – volume: 62 start-page: 782 issue: 2 year: 2012 ident: 10.1016/j.inffus.2022.07.017_bib0032 article-title: Fsl publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 1 start-page: 55 issue: 1 year: 2005 ident: 10.1016/j.inffus.2022.07.017_bib0047 article-title: Ways toward an early diagnosis in Alzheimer's disease: the Alzheimer's disease neuroimaging initiative (ADNI) publication-title: Alzheimer's & Dementia doi: 10.1016/j.jalz.2005.06.003 – volume: 29 start-page: 102 issue: 2 year: 2019 ident: 10.1016/j.inffus.2022.07.017_bib0043 article-title: An overview of deep learning in medical imaging focusing on MRI publication-title: Zeitschrift für Medizinische Physik doi: 10.1016/j.zemedi.2018.11.002 – year: 2018 ident: 10.1016/j.inffus.2022.07.017_bib0018 article-title: Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review publication-title: Artificial intelligence in medicine – ident: 10.1016/j.inffus.2022.07.017_bib0054 doi: 10.1007/978-3-319-24574-4_28 – volume: 23 start-page: 627 issue: 4 year: 2010 ident: 10.1016/j.inffus.2022.07.017_bib0025 article-title: Text clustering with seeds affinity propagation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2010.144 – volume: 8 start-page: 6 year: 2013 ident: 10.1016/j.inffus.2022.07.017_bib0037 article-title: Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data publication-title: PLoS ONE doi: 10.1371/annotation/0c88e0d5-dade-4376-8ee1-49ed4ff238e2 – start-page: 1929 year: 2014 ident: 10.1016/j.inffus.2022.07.017_bib0050 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. (JMLR) – volume: 86 issue: 93 year: 2017 ident: 10.1016/j.inffus.2022.07.017_bib81 article-title: Data-driven classification of patients with primary progressive aphasia publication-title: Brain and language – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.inffus.2022.07.017_bib0038 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 189 start-page: 276 year: 2019 ident: 10.1016/j.inffus.2022.07.017_bib0059 article-title: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.01.031 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.inffus.2022.07.017_bib0069 article-title: MRI cross-Modality image-to-image translation publication-title: Sci. Rep. – year: 2007 ident: 10.1016/j.inffus.2022.07.017_bib0009 article-title: Clustering by passing messages between data points publication-title: Science doi: 10.1126/science.1136800 – start-page: e4540 year: 2021 ident: 10.1016/j.inffus.2022.07.017_bib0040 article-title: Optimizing multicontrast MRI reconstruction with shareable feature aggregation and selection publication-title: NMR Biomed. doi: 10.1002/nbm.4540 – start-page: 164 year: 2012 ident: 10.1016/j.inffus.2022.07.017_bib79 article-title: Machine learning-based method for personalized and cost-effective detection of Alzheimer’s disease publication-title: IEEE transactions on biomedical engineering – volume: 2 start-page: 53 issue: 1 year: 1989 ident: 10.1016/j.inffus.2022.07.017_bib0004 article-title: Neural networks and principal component analysis: learning from examples without local minima publication-title: Neural Networks doi: 10.1016/0893-6080(89)90014-2 – volume: 57 start-page: 289 issue: 1 year: 1995 ident: 10.1016/j.inffus.2022.07.017_bib0005 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. Royal Statistical Soc. series B (Methodological) doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 59 start-page: 291 issue: 4–5 year: 1988 ident: 10.1016/j.inffus.2022.07.017_bib0008 article-title: Auto-association by multilayer perceptrons and singular value decomposition publication-title: Biol. Cybern. doi: 10.1007/BF00332918 – volume: 85 start-page: 30 year: 2018 ident: 10.1016/j.inffus.2022.07.017_bib0042 article-title: An unsupervised machine learning method for discovering patient clusters based on genetic signatures publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2018.07.004 – year: 2011 ident: 10.1016/j.inffus.2022.07.017_bib76 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration." publication-title: Neuroimage 54.3 doi: 10.1016/j.neuroimage.2010.09.025 – volume: 61 start-page: 1000 issue: 4 year: 2012 ident: 10.1016/j.inffus.2022.07.017_bib0073 article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.072 – year: 2015 ident: 10.1016/j.inffus.2022.07.017_bib0019 article-title: Fast and accurate deep network learning by exponential linear units (ELUs) publication-title: CoRR – ident: 10.1016/j.inffus.2022.07.017_bib0023 doi: 10.1109/ISBI.2018.8363576 – ident: 10.1016/j.inffus.2022.07.017_bib0029 – ident: 10.1016/j.inffus.2022.07.017_bib0049 doi: 10.1007/978-3-319-66179-7_48 – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.inffus.2022.07.017_bib0024 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – start-page: 1120 year: 2020 ident: 10.1016/j.inffus.2022.07.017_bib0053 – year: 2021 ident: 10.1016/j.inffus.2022.07.017_bib0068 article-title: EMFusion: an unsupervised enhanced medical image fusion network publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.06.001 – volume: 120 start-page: 827 issue: 6 year: 2010 ident: 10.1016/j.inffus.2022.07.017_bib0001 article-title: Heterogeneous neuropathological findings in Parkinson’s disease with mild cognitive impairment publication-title: Acta Neuropathol. doi: 10.1007/s00401-010-0744-4 – volume: 10 start-page: 99 issue: 1 year: 2009 ident: 10.1016/j.inffus.2022.07.017_bib0064 article-title: Markov clustering versus affinity propagation for the partitioning of protein interaction graphs publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-99 – volume: 95 start-page: 629 issue: 4 year: 2011 ident: 10.1016/j.inffus.2022.07.017_bib0033 article-title: The parkinson progression marker initiative (ppmi) publication-title: Progress in neurobiology doi: 10.1016/j.pneurobio.2011.09.005 – volume: 93 issue: 7 year: 2018 ident: 10.1016/j.inffus.2022.07.017_bib80 article-title: Patterns of multimorbidity in middle-aged and older adults: an analysis of the UK Biobank data publication-title: Mayo Clinic Proceedings Elsevier – ident: 10.1016/j.inffus.2022.07.017_bib0075 doi: 10.1109/CVPR.2018.00907 |
SSID | ssj0017031 |
Score | 2.4695516 |
Snippet | •Deep learning architecture for neuroimaging reconstruction.•Efficient convolutional neural networks based on separable convolutions.•Multimodality learning... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 146 |
SubjectTerms | Deep autoencoder Latent embeddings Multimodal neuroimaging Phenotype stratification Precision medicine Separable Convolutions |
Title | Multimodal and multicontrast image fusion via deep generative models |
URI | https://dx.doi.org/10.1016/j.inffus.2022.07.017 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KvehBXLEuZQ5ex2aZyXIs1VKXFlELvQ2zRSo2LTb16G933iQpCqLgKSS8IeGbyTcv5HvfQ-g8A2bUsSI2-9aE2lVCUi9KiVBaaRomjEkoFB6OosGY3kzYpIF6dS0MyCor7i853bF1daVTodlZTKedR_jyCMCdBKpN4gC-2ymNYZVffKxlHj74szvP1CgiEF2XzzmNl53EbAWm3UHgLDxd27IftqcvW05_B21XuSLulo-zixom30Nbw7XR6nIfXboC2tlc2ziRa-z0gU5-LpYFns4sW2B7bws-fp8KrI1Z4GfnNA00h10fnOUBGvevnnoDUjVGIMpm-AWRVGfwf9CkVNKIKUGFb3wdqlQGwr6wJoyZidJA-FFGhWRUS-GJLLRBiVKhDA9RM5_n5ghhm-2FxhO-UklAY5alidQJlSzRzE-M9FoorPHgqnINh-YVr7yWh73wEkUOKHIv5hbFFiLrUYvSNeOP-LiGmn-bfW6J_deRx_8eeYI24ayUppyiZvG2Mmc2wShk262gNtro9h7u7uF4fTsYfQIFTtJ8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWq9gAcEKsoqw9crSaxneVYFaqULhdaqTfLW1ARTSua8v3YTlKBhEDimswo0cvkeSzPvAHgPrPMqCKJTPatEDFRghIvTBCXSiqCY0qFbRQeT8J0Rp7mdN4AvboXxpZVVtxfcrpj6-pKp0Kzs14sOs925xFYdRLbbRIFZt_esupUtAla3cEwnewOE6xEu5NNDUNkHeoOOlfmZb5jtrW63UHgVDzd5LIfVqgvq07_CBxW6SLslm90DBo6PwEH453W6uYUPLge2uVKGTueK-hKBF0FOt8UcLE0hAHNsw3-8GPBodJ6DV-c2LRlOuhG4WzOwKz_OO2lqJqNgKRJ8gskiMrsEaFOiCAhlZxwX_sKy0QE3PyzGkdUh0nA_TAjXFCiBPd4ho1RLCUW-Bw081WuLwA0CR_WHveljAMDX5bEQsVE0FhRP9bCawNc48FkJRxu51e8sbpC7JWVKDKLIvMiZlBsA7TzWpfCGX_YRzXU7FsAMMPtv3pe_tvzDuyl0_GIjQaT4RXYt3fKSpVr0Czet_rG5BuFuK3i6ROuatOY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+and+multicontrast+image+fusion+via+deep+generative+models&rft.jtitle=Information+fusion&rft.au=Dimitri%2C+Giovanna+Maria&rft.au=Spasov%2C+Simeon&rft.au=Duggento%2C+Andrea&rft.au=Passamonti%2C+Luca&rft.date=2022-12-01&rft.issn=1566-2535&rft.volume=88&rft.spage=146&rft.epage=160&rft_id=info:doi/10.1016%2Fj.inffus.2022.07.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_inffus_2022_07_017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon |