BrainPrint: EEG biometric identification based on analyzing brain connectivity graphs
•The topological features of brain connectivity graphs can be effectively used for EEG biometric identification.•Seven connectivity metrics including a new one defined on the algorithmic complexity of signals, and twelve graph features are evaluated for network estimation and feature extraction.•The...
Saved in:
Published in | Pattern recognition Vol. 105; p. 107381 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The topological features of brain connectivity graphs can be effectively used for EEG biometric identification.•Seven connectivity metrics including a new one defined on the algorithmic complexity of signals, and twelve graph features are evaluated for network estimation and feature extraction.•The study also analyzes the impact of EEG frequency bands and regions on biometric recognition performance and discusses the intra-subject variation issue of EEG biometrics.
Research on brain biometrics using electroencephalographic (EEG) signals has received increasing attentions in recent years. In particular, it has been recognized that the brain functional connectivity reflects individual variability. However, many questions need to be answered before we can properly use distinctive characteristics of brain connectivity for biometric applications. This paper proposes a graph-based method for EEG biometric identification. It consists of a network estimation module to generate brain connectivity networks and a graph analysis module to generate topological features based on brain networks. Specifically, we investigate seven different connectivity metrics for the network estimation module, each of which is characterized by a certain signal interaction mechanism, defining a peculiar subjective brain network. A new connectivity metric is proposed based on the algorithmic complexity of EEG signals from a information-theoretic perspective. Meanwhile, six nodal features and six global features are proposed and studied for the graph analysis module. A comprehensive evaluation is carried out to assess the impact of different connectivity metrics, graph features, and EEG frequency bands on biometric identification performance. The results demonstrate that the graph-based method proposed in this study is effective in improving the recognition rate and inter-state stability of EEG-based biometric identification systems. Our findings about the network patterns and graph features bring a further understanding of distinctiveness of humans’ EEG functional connectivity and provide useful guidance for the design of graph-based EEG biometric systems. |
---|---|
AbstractList | •The topological features of brain connectivity graphs can be effectively used for EEG biometric identification.•Seven connectivity metrics including a new one defined on the algorithmic complexity of signals, and twelve graph features are evaluated for network estimation and feature extraction.•The study also analyzes the impact of EEG frequency bands and regions on biometric recognition performance and discusses the intra-subject variation issue of EEG biometrics.
Research on brain biometrics using electroencephalographic (EEG) signals has received increasing attentions in recent years. In particular, it has been recognized that the brain functional connectivity reflects individual variability. However, many questions need to be answered before we can properly use distinctive characteristics of brain connectivity for biometric applications. This paper proposes a graph-based method for EEG biometric identification. It consists of a network estimation module to generate brain connectivity networks and a graph analysis module to generate topological features based on brain networks. Specifically, we investigate seven different connectivity metrics for the network estimation module, each of which is characterized by a certain signal interaction mechanism, defining a peculiar subjective brain network. A new connectivity metric is proposed based on the algorithmic complexity of EEG signals from a information-theoretic perspective. Meanwhile, six nodal features and six global features are proposed and studied for the graph analysis module. A comprehensive evaluation is carried out to assess the impact of different connectivity metrics, graph features, and EEG frequency bands on biometric identification performance. The results demonstrate that the graph-based method proposed in this study is effective in improving the recognition rate and inter-state stability of EEG-based biometric identification systems. Our findings about the network patterns and graph features bring a further understanding of distinctiveness of humans’ EEG functional connectivity and provide useful guidance for the design of graph-based EEG biometric systems. |
ArticleNumber | 107381 |
Author | Abbass, Hussein A. Hu, Jiankun Wang, Min |
Author_xml | – sequence: 1 givenname: Min orcidid: 0000-0002-1580-6387 surname: Wang fullname: Wang, Min email: maggie.wang1@adfa.edu.au – sequence: 2 givenname: Jiankun orcidid: 0000-0003-0230-1432 surname: Hu fullname: Hu, Jiankun email: j.hu@adfa.edu.au – sequence: 3 givenname: Hussein A. orcidid: 0000-0002-8837-0748 surname: Abbass fullname: Abbass, Hussein A. email: h.abbass@adfa.edu.au |
BookMark | eNqFkMFKAzEQhoNUsK2-gYe8wNZks7vZ9iBoqVUo6MGeQ5Kd1ClttiShUJ_eXevJg55mmOH74f9GZOBbD4TccjbhjFd328lBJ9tuJjnL-5MUNb8gQ15LkZW8yAdkyJjgmciZuCKjGLeMcdk9hmT9GDT6t4A-zehisaQG2z2kgJZiAz6hQ6sTtp4aHaGh3aK93p0-0W-o6VlqW-_BJjxiOtFN0IePeE0und5FuPmZY7J-WrzPn7PV6_Jl_rDKrGBVykxRlZoVvJ6a3IGoARojbaGlzks3rUTjtGPSARPApeamKYwtrcklTC1zpRFjUpxzbWhjDODUIeBeh5PiTPVq1Fad1ahejTqr6bDZL8xi-m6Zuka7_-D7MwxdsSNCUNEieAsNhk6Dalr8O-ALlM2GKg |
CitedBy_id | crossref_primary_10_1016_j_bspc_2022_103664 crossref_primary_10_1109_ACCESS_2024_3355977 crossref_primary_10_1016_j_compbiomed_2023_107604 crossref_primary_10_1016_j_future_2022_12_019 crossref_primary_10_1016_j_patrec_2022_08_009 crossref_primary_10_1109_TIM_2025_3527610 crossref_primary_10_1089_brain_2024_0042 crossref_primary_10_1109_TCYB_2021_3049583 crossref_primary_10_58496_ADSA_024_002 crossref_primary_10_1007_s00521_020_05439_9 crossref_primary_10_1142_S0219477524500512 crossref_primary_10_1016_j_patcog_2021_108202 crossref_primary_10_1016_j_engappai_2024_109347 crossref_primary_10_1109_JBHI_2023_3315974 crossref_primary_10_1016_j_bspc_2022_103790 crossref_primary_10_3390_axioms12010074 crossref_primary_10_1016_j_compbiomed_2022_105654 crossref_primary_10_1109_TIFS_2022_3204222 crossref_primary_10_1155_2021_5229576 crossref_primary_10_1109_TCDS_2023_3314155 crossref_primary_10_2139_ssrn_4349266 crossref_primary_10_1016_j_patcog_2022_108789 crossref_primary_10_1049_bme2_12097 crossref_primary_10_1109_TDSC_2022_3218782 crossref_primary_10_1002_hbm_26747 crossref_primary_10_1007_s00500_023_08253_2 crossref_primary_10_3390_s22145111 crossref_primary_10_3390_s22197154 crossref_primary_10_1007_s10489_022_04366_7 crossref_primary_10_1109_TIFS_2024_3369405 crossref_primary_10_1016_j_neuroimage_2022_119666 crossref_primary_10_1007_s00521_022_07795_0 crossref_primary_10_1016_j_cose_2023_103488 crossref_primary_10_3390_signals5030033 crossref_primary_10_1016_j_dsp_2025_105042 crossref_primary_10_1109_TCDS_2024_3370635 crossref_primary_10_3389_fnins_2022_813293 crossref_primary_10_1109_LSENS_2024_3522981 crossref_primary_10_1109_ACCESS_2024_3522682 crossref_primary_10_3390_biology12030486 crossref_primary_10_1109_TIM_2023_3327490 crossref_primary_10_3389_fninf_2022_844667 crossref_primary_10_3389_frobt_2022_745958 crossref_primary_10_1016_j_patrec_2021_04_003 crossref_primary_10_1038_s41598_022_18502_3 crossref_primary_10_3390_math12131971 crossref_primary_10_1016_j_patcog_2023_109794 crossref_primary_10_1155_ijta_3946740 crossref_primary_10_1016_j_asoc_2024_111461 crossref_primary_10_1016_j_eswa_2022_117386 crossref_primary_10_3390_s24030920 crossref_primary_10_1007_s00521_025_10977_1 crossref_primary_10_38032_jea_2022_04_001 crossref_primary_10_1109_TIM_2024_3406836 crossref_primary_10_1109_TNSRE_2021_3139095 crossref_primary_10_37391_ijeer_100410 crossref_primary_10_18559_ebr_2024_1_1019 crossref_primary_10_1016_j_patcog_2023_109915 |
Cites_doi | 10.1109/LSP.2014.2367091 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C 10.1016/j.patrec.2019.03.025 10.1093/brain/121.8.1513 10.1109/TEVC.2005.846902 10.1137/S003614450342480 10.1103/PhysRevE.71.065103 10.1038/30918 10.1002/hbm.20346 10.1103/PhysRevLett.87.198701 10.1109/TBME.2014.2317881 10.1016/j.neuroimage.2009.10.003 10.1109/TIFS.2014.2308640 10.1109/TBME.2012.2199490 10.1161/01.CIR.101.23.e215 10.1016/j.bbr.2011.01.017 10.1109/TBME.2004.827072 10.1038/nn.4135 10.1103/PhysRevLett.81.3291 10.1109/TNNLS.2015.2476656 10.1103/PhysRevE.69.066138 10.1016/j.neuroimage.2015.07.048 10.1073/pnas.0601602103 10.1109/TIFS.2017.2699944 10.1088/1741-2560/11/3/035013 10.1016/j.neuron.2012.12.028 10.1038/nrn3000 10.1109/TIFS.2019.2916403 10.1007/s11910-001-0060-4 10.1016/j.snb.2015.02.025 10.1016/S1388-2457(00)00533-2 10.1016/j.patcog.2018.12.001 10.1371/journal.pone.0010232 10.1016/j.patcog.2011.04.034 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2020.107381 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
ExternalDocumentID | 10_1016_j_patcog_2020_107381 S0031320320301849 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-b465a04189b2fe38eedb7c4a7a25f963dfaf07fe03e17a1bd4bc5cb27e9c0f5b3 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Tue Jul 01 02:36:31 EDT 2025 Thu Apr 24 22:59:19 EDT 2025 Fri Feb 23 02:50:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Person identification EEG biometrics Brain functional connectivity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-b465a04189b2fe38eedb7c4a7a25f963dfaf07fe03e17a1bd4bc5cb27e9c0f5b3 |
ORCID | 0000-0002-1580-6387 0000-0003-0230-1432 0000-0002-8837-0748 |
ParticipantIDs | crossref_primary_10_1016_j_patcog_2020_107381 crossref_citationtrail_10_1016_j_patcog_2020_107381 elsevier_sciencedirect_doi_10_1016_j_patcog_2020_107381 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Schalk, McFarland, Hinterberger, Birbaumer, Wolpaw (bib0032) 2004; 51 Yan, Zhang (bib0039) 2015; 212 Winkler, Brandl, Horn, Waldburger, Allefeld, Tangermann (bib0033) 2014; 11 Watts, Strogatz (bib0029) 1998; 393 Wang, Abbass, Hu (bib0008) 2016 Stam, Nolte, Daffertshofer (bib0019) 2007; 28 Campisi, La Rocca (bib0005) 2014; 9 Rubinov, Sporns (bib0023) 2010; 52 Chayer, Freedman (bib0035) 2001; 1 Riera, Soria-Frisch, Caparrini, Grau, Ruffini (bib0012) 2008; 2008 Min, Suk, Ahn, Lee, Lee (bib0013) 2017; 12 Fraschini, Hillebrand, Demuru, Didaci, Marcialis (bib0014) 2015; 22 Wang, Hu, Abbass (bib0034) 2019; 15 Wang, El-Fiqi, Hu, Abbass (bib0006) 2019; 14 Sinclair, Hansell, Blokland, Martin, Thompson, Breakspear, de Zubicaray, Wright, McMahon (bib0037) 2015; 121 Platt, Riedel (bib0010) 2011; 221 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (bib0031) 2000; 101 La Rocca, Campisi, Vegso, Cserti, Kozmann, Babiloni, Fallani (bib0009) 2014; 61 Lohmann, Margulies, Horstmann, Pleger, Lepsien, Goldhahn, Schloegl, Stumvoll, Villringer, Turner (bib0025) 2010; 5 Latora, Marchiori (bib0030) 2001; 87 Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib0003) 2015; 18 El-Fiqi, Wang, Salimi, Kasmarik, Barlow, Abbass (bib0007) 2018 Kong, Fan, Wang, Jiang, Peng, Zhang (bib0015) 2017 Teo, Abbass (bib0022) 2005; 9 Lachaux, Rodriguez, Martinerie, Varela (bib0018) 1999; 8 Zhang, Zhang, Chen, Liu, Zhu, Lee, Shen (bib0001) 2019; 88 Weule (bib0020) 1998; 81 Sun, Hong, Tong (bib0017) 2012; 59 Kraskov, Stögbauer, Grassberger (bib0021) 2004; 69 Zhang, Zhou, Jin, Zhao, Wang, Cichocki (bib0040) 2015; 27 Page, Brin, Motwani, Winograd (bib0024) 1999 Ferree, Luu, Russell, Tucker (bib0011) 2001; 112 Newman (bib0027) 2003; 45 Gerloff, Richard, Hadley, Schulman, Honda, Hallett (bib0036) 1998; 121 Daly, Nasuto, Warwick (bib0038) 2012; 45 Kanai, Rees (bib0002) 2011; 12 Fraschini, Pani, Didaci, Marcialis (bib0016) 2019; 125 Newman (bib0028) 2006; 103 Mueller, Wang, Fox, Yeo, Sepulcre, Sabuncu, Shafee, Lu, Liu (bib0004) 2013; 77 Onnela, Saramäki, Kertész, Kaski (bib0026) 2005; 71 Daly (10.1016/j.patcog.2020.107381_bib0038) 2012; 45 Sun (10.1016/j.patcog.2020.107381_bib0017) 2012; 59 Riera (10.1016/j.patcog.2020.107381_bib0012) 2008; 2008 Zhang (10.1016/j.patcog.2020.107381_bib0001) 2019; 88 Zhang (10.1016/j.patcog.2020.107381_bib0040) 2015; 27 Campisi (10.1016/j.patcog.2020.107381_bib0005) 2014; 9 Wang (10.1016/j.patcog.2020.107381_bib0008) 2016 El-Fiqi (10.1016/j.patcog.2020.107381_bib0007) 2018 Lachaux (10.1016/j.patcog.2020.107381_bib0018) 1999; 8 Fraschini (10.1016/j.patcog.2020.107381_bib0016) 2019; 125 Chayer (10.1016/j.patcog.2020.107381_bib0035) 2001; 1 Yan (10.1016/j.patcog.2020.107381_bib0039) 2015; 212 Wang (10.1016/j.patcog.2020.107381_bib0034) 2019; 15 Kanai (10.1016/j.patcog.2020.107381_bib0002) 2011; 12 Weule (10.1016/j.patcog.2020.107381_bib0020) 1998; 81 Ferree (10.1016/j.patcog.2020.107381_bib0011) 2001; 112 Sinclair (10.1016/j.patcog.2020.107381_bib0037) 2015; 121 Onnela (10.1016/j.patcog.2020.107381_bib0026) 2005; 71 Watts (10.1016/j.patcog.2020.107381_bib0029) 1998; 393 Kong (10.1016/j.patcog.2020.107381_bib0015) 2017 Latora (10.1016/j.patcog.2020.107381_bib0030) 2001; 87 Schalk (10.1016/j.patcog.2020.107381_bib0032) 2004; 51 Winkler (10.1016/j.patcog.2020.107381_bib0033) 2014; 11 Platt (10.1016/j.patcog.2020.107381_bib0010) 2011; 221 Stam (10.1016/j.patcog.2020.107381_bib0019) 2007; 28 Page (10.1016/j.patcog.2020.107381_bib0024) 1999 Finn (10.1016/j.patcog.2020.107381_bib0003) 2015; 18 Newman (10.1016/j.patcog.2020.107381_bib0027) 2003; 45 Rubinov (10.1016/j.patcog.2020.107381_bib0023) 2010; 52 Min (10.1016/j.patcog.2020.107381_bib0013) 2017; 12 Kraskov (10.1016/j.patcog.2020.107381_bib0021) 2004; 69 Mueller (10.1016/j.patcog.2020.107381_bib0004) 2013; 77 La Rocca (10.1016/j.patcog.2020.107381_bib0009) 2014; 61 Lohmann (10.1016/j.patcog.2020.107381_bib0025) 2010; 5 Teo (10.1016/j.patcog.2020.107381_bib0022) 2005; 9 Gerloff (10.1016/j.patcog.2020.107381_bib0036) 1998; 121 Newman (10.1016/j.patcog.2020.107381_bib0028) 2006; 103 Goldberger (10.1016/j.patcog.2020.107381_bib0031) 2000; 101 Fraschini (10.1016/j.patcog.2020.107381_bib0014) 2015; 22 Wang (10.1016/j.patcog.2020.107381_bib0006) 2019; 14 |
References_xml | – volume: 12 start-page: 231 year: 2011 ident: bib0002 article-title: The structural basis of inter-individual differences in human behaviour and cognition publication-title: Nat. Rev. Neurosci. – start-page: 1062 year: 2018 end-page: 1069 ident: bib0007 article-title: Convolution neural networks for person identification and verification using steady state visual evoked potential publication-title: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC) – volume: 15 start-page: 19 year: 2019 end-page: 26 ident: bib0034 article-title: Stable EEG biometrics using convolutional neural networks and functional connectivity publication-title: Aust. J. Intell. Inf. Process. Syst. – volume: 14 start-page: 3259 year: 2019 end-page: 3272 ident: bib0006 article-title: Convolutional neural networks using dynamic functional connectivity for EEG-based person identification in diverse human states publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 212 start-page: 353 year: 2015 end-page: 363 ident: bib0039 article-title: Feature selection and analysis on correlated gas sensor data with recursive feature elimination publication-title: Sens. Actuators B – volume: 28 start-page: 1178 year: 2007 end-page: 1193 ident: bib0019 article-title: Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources publication-title: Hum. Brain Mapp. – volume: 221 start-page: 499 year: 2011 end-page: 504 ident: bib0010 article-title: The cholinergic system, EEG and sleep publication-title: Behav. Brain Res. – volume: 12 start-page: 2159 year: 2017 end-page: 2167 ident: bib0013 article-title: Individual identification using cognitive electroencephalographic neurodynamics publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 125 start-page: 49 year: 2019 end-page: 54 ident: bib0016 article-title: Robustness of functional connectivity metrics for eeg-based personal identification over task-induced intra-class and inter-class variations publication-title: Pattern Recognit. Lett. – volume: 71 start-page: 065103 year: 2005 ident: bib0026 article-title: Intensity and coherence of motifs in weighted complex networks publication-title: Phys. Rev. E – volume: 45 start-page: 2123 year: 2012 end-page: 2136 ident: bib0038 article-title: Brain computer interface control via functional connectivity dynamics publication-title: Pattern Recognit. – start-page: 368 year: 2016 end-page: 375 ident: bib0008 article-title: Continuous authentication using EEG and face images for trusted autonomous systems publication-title: Privacy, Security and Trust (PST), 2016 14th Annual Conference on – volume: 59 start-page: 2254 year: 2012 end-page: 2263 ident: bib0017 article-title: Phase synchronization analysis of EEG signals: an evaluation based on surrogate tests publication-title: IEEE Trans. Biomed. Eng. – volume: 45 start-page: 167 year: 2003 end-page: 256 ident: bib0027 article-title: The structure and function of complex networks publication-title: SIAM Rev. – volume: 9 start-page: 337 year: 2005 end-page: 360 ident: bib0022 article-title: Multiobjectivity and complexity in embodied cognition publication-title: IEEE Trans. Evol. Comput. – volume: 22 start-page: 666 year: 2015 end-page: 670 ident: bib0014 article-title: An EEG-based biometric system using eigenvector centrality in resting state brain networks publication-title: IEEE Signal Process. Lett. – start-page: 709 year: 2017 end-page: 717 ident: bib0015 article-title: Task-free brainprint recognition based on degree of brain networks publication-title: International Conference on Neural Information Processing – volume: 87 start-page: 198701 year: 2001 ident: bib0030 article-title: Efficient behavior of small-world networks publication-title: Phys. Rev. Lett. – volume: 9 start-page: 782 year: 2014 end-page: 800 ident: bib0005 article-title: Brain waves for automatic biometric-based user recognition publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 77 start-page: 586 year: 2013 end-page: 595 ident: bib0004 article-title: Individual variability in functional connectivity architecture of the human brain publication-title: Neuron – volume: 69 start-page: 066138 year: 2004 ident: bib0021 article-title: Estimating mutual information publication-title: Phys. Rev. E – volume: 88 start-page: 421 year: 2019 end-page: 430 ident: bib0001 article-title: Strength and similarity guided group-level brain functional network construction for MCI diagnosis publication-title: Pattern Recognit. – volume: 121 start-page: 1513 year: 1998 end-page: 1531 ident: bib0036 article-title: Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. publication-title: Brain – volume: 103 start-page: 8577 year: 2006 end-page: 8582 ident: bib0028 article-title: Modularity and community structure in networks publication-title: Proc. Natl. Acad. Sci. – volume: 52 start-page: 1059 year: 2010 end-page: 1069 ident: bib0023 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage – volume: 51 start-page: 1034 year: 2004 end-page: 1043 ident: bib0032 article-title: BCI2000: a general-purpose brain-computer interface (BCI) system publication-title: IEEE Trans. Biomed. Eng. – volume: 11 start-page: 35013 year: 2014 ident: bib0033 article-title: Robust artifactual independent component classification for BCI practitioners publication-title: J. Neural Eng. – volume: 1 start-page: 547 year: 2001 end-page: 552 ident: bib0035 article-title: Frontal lobe functions publication-title: Curr. Neurol Neurosci. Rep. – volume: 8 start-page: 194 year: 1999 end-page: 208 ident: bib0018 article-title: Measuring phase synchrony in brain signals publication-title: Hum. Brain Mapp. – volume: 393 start-page: 440 year: 1998 ident: bib0029 article-title: Collective dynamics of small-world networks publication-title: Nature – volume: 27 start-page: 2256 year: 2015 end-page: 2267 ident: bib0040 article-title: Sparse bayesian classification of EEG for brain-computer interface publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 112 start-page: 536 year: 2001 end-page: 544 ident: bib0011 article-title: Scalp electrode impedance, infection risk, and eeg data quality publication-title: Clin. Neurophysiol. – volume: 5 start-page: e10232 year: 2010 ident: bib0025 article-title: Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain publication-title: PLoS One – volume: 121 start-page: 243 year: 2015 end-page: 252 ident: bib0037 article-title: Heritability of the network architecture of intrinsic brain functional connectivity publication-title: Neuroimage – year: 1999 ident: bib0024 article-title: The PageRank citation ranking: Bringing order to the web. publication-title: Technical Report – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: bib0031 article-title: Physiobank, physiotoolkit, and physionet publication-title: Circulation – volume: 2008 start-page: 18 year: 2008 ident: bib0012 article-title: Unobtrusive biometric system based on electroencephalogram analysis publication-title: EURASIP J. Adv. Signal Process. – volume: 18 start-page: 1664 year: 2015 ident: bib0003 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. – volume: 61 start-page: 2406 year: 2014 end-page: 2412 ident: bib0009 article-title: Human brain distinctiveness based on EEG spectral coherence connectivity publication-title: IEEE Trans. Biomed. Eng. – volume: 81 start-page: 3291 year: 1998 end-page: 3294 ident: bib0020 article-title: Detection of n: m phase locking from noisy data: application to magnetoencephalography publication-title: Phys. Rev. Lett. – volume: 22 start-page: 666 issue: 6 year: 2015 ident: 10.1016/j.patcog.2020.107381_bib0014 article-title: An EEG-based biometric system using eigenvector centrality in resting state brain networks publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2014.2367091 – volume: 15 start-page: 19 issue: 3 year: 2019 ident: 10.1016/j.patcog.2020.107381_bib0034 article-title: Stable EEG biometrics using convolutional neural networks and functional connectivity publication-title: Aust. J. Intell. Inf. Process. Syst. – volume: 8 start-page: 194 issue: 4 year: 1999 ident: 10.1016/j.patcog.2020.107381_bib0018 article-title: Measuring phase synchrony in brain signals publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C – volume: 125 start-page: 49 issue: 1 year: 2019 ident: 10.1016/j.patcog.2020.107381_bib0016 article-title: Robustness of functional connectivity metrics for eeg-based personal identification over task-induced intra-class and inter-class variations publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.03.025 – volume: 121 start-page: 1513 issue: 8 year: 1998 ident: 10.1016/j.patcog.2020.107381_bib0036 article-title: Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. publication-title: Brain doi: 10.1093/brain/121.8.1513 – volume: 9 start-page: 337 issue: 4 year: 2005 ident: 10.1016/j.patcog.2020.107381_bib0022 article-title: Multiobjectivity and complexity in embodied cognition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.846902 – volume: 45 start-page: 167 issue: 2 year: 2003 ident: 10.1016/j.patcog.2020.107381_bib0027 article-title: The structure and function of complex networks publication-title: SIAM Rev. doi: 10.1137/S003614450342480 – volume: 71 start-page: 065103 issue: 6 year: 2005 ident: 10.1016/j.patcog.2020.107381_bib0026 article-title: Intensity and coherence of motifs in weighted complex networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.71.065103 – year: 1999 ident: 10.1016/j.patcog.2020.107381_bib0024 article-title: The PageRank citation ranking: Bringing order to the web. – volume: 393 start-page: 440 issue: 6684 year: 1998 ident: 10.1016/j.patcog.2020.107381_bib0029 article-title: Collective dynamics of small-world networks publication-title: Nature doi: 10.1038/30918 – volume: 28 start-page: 1178 issue: 11 year: 2007 ident: 10.1016/j.patcog.2020.107381_bib0019 article-title: Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20346 – volume: 87 start-page: 198701 issue: 19 year: 2001 ident: 10.1016/j.patcog.2020.107381_bib0030 article-title: Efficient behavior of small-world networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.198701 – volume: 61 start-page: 2406 issue: 9 year: 2014 ident: 10.1016/j.patcog.2020.107381_bib0009 article-title: Human brain distinctiveness based on EEG spectral coherence connectivity publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2317881 – volume: 52 start-page: 1059 issue: 3 year: 2010 ident: 10.1016/j.patcog.2020.107381_bib0023 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 9 start-page: 782 issue: 5 year: 2014 ident: 10.1016/j.patcog.2020.107381_bib0005 article-title: Brain waves for automatic biometric-based user recognition publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2014.2308640 – volume: 59 start-page: 2254 issue: 8 year: 2012 ident: 10.1016/j.patcog.2020.107381_bib0017 article-title: Phase synchronization analysis of EEG signals: an evaluation based on surrogate tests publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2199490 – volume: 101 start-page: e215 issue: 23 year: 2000 ident: 10.1016/j.patcog.2020.107381_bib0031 article-title: Physiobank, physiotoolkit, and physionet publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – start-page: 368 year: 2016 ident: 10.1016/j.patcog.2020.107381_bib0008 article-title: Continuous authentication using EEG and face images for trusted autonomous systems – volume: 221 start-page: 499 issue: 2 year: 2011 ident: 10.1016/j.patcog.2020.107381_bib0010 article-title: The cholinergic system, EEG and sleep publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2011.01.017 – volume: 51 start-page: 1034 issue: 6 year: 2004 ident: 10.1016/j.patcog.2020.107381_bib0032 article-title: BCI2000: a general-purpose brain-computer interface (BCI) system publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827072 – volume: 18 start-page: 1664 issue: 11 year: 2015 ident: 10.1016/j.patcog.2020.107381_bib0003 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4135 – volume: 81 start-page: 3291 issue: 15 year: 1998 ident: 10.1016/j.patcog.2020.107381_bib0020 article-title: Detection of n: m phase locking from noisy data: application to magnetoencephalography publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.3291 – volume: 27 start-page: 2256 issue: 11 year: 2015 ident: 10.1016/j.patcog.2020.107381_bib0040 article-title: Sparse bayesian classification of EEG for brain-computer interface publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2476656 – volume: 2008 start-page: 18 year: 2008 ident: 10.1016/j.patcog.2020.107381_bib0012 article-title: Unobtrusive biometric system based on electroencephalogram analysis publication-title: EURASIP J. Adv. Signal Process. – volume: 69 start-page: 066138 issue: 6 year: 2004 ident: 10.1016/j.patcog.2020.107381_bib0021 article-title: Estimating mutual information publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.69.066138 – volume: 121 start-page: 243 year: 2015 ident: 10.1016/j.patcog.2020.107381_bib0037 article-title: Heritability of the network architecture of intrinsic brain functional connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.048 – volume: 103 start-page: 8577 issue: 23 year: 2006 ident: 10.1016/j.patcog.2020.107381_bib0028 article-title: Modularity and community structure in networks publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0601602103 – volume: 12 start-page: 2159 issue: 9 year: 2017 ident: 10.1016/j.patcog.2020.107381_bib0013 article-title: Individual identification using cognitive electroencephalographic neurodynamics publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2017.2699944 – volume: 11 start-page: 35013 issue: 3 year: 2014 ident: 10.1016/j.patcog.2020.107381_bib0033 article-title: Robust artifactual independent component classification for BCI practitioners publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/3/035013 – volume: 77 start-page: 586 issue: 3 year: 2013 ident: 10.1016/j.patcog.2020.107381_bib0004 article-title: Individual variability in functional connectivity architecture of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2012.12.028 – volume: 12 start-page: 231 issue: 4 year: 2011 ident: 10.1016/j.patcog.2020.107381_bib0002 article-title: The structural basis of inter-individual differences in human behaviour and cognition publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3000 – volume: 14 start-page: 3259 issue: 12 year: 2019 ident: 10.1016/j.patcog.2020.107381_bib0006 article-title: Convolutional neural networks using dynamic functional connectivity for EEG-based person identification in diverse human states publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2019.2916403 – volume: 1 start-page: 547 issue: 6 year: 2001 ident: 10.1016/j.patcog.2020.107381_bib0035 article-title: Frontal lobe functions publication-title: Curr. Neurol Neurosci. Rep. doi: 10.1007/s11910-001-0060-4 – volume: 212 start-page: 353 year: 2015 ident: 10.1016/j.patcog.2020.107381_bib0039 article-title: Feature selection and analysis on correlated gas sensor data with recursive feature elimination publication-title: Sens. Actuators B doi: 10.1016/j.snb.2015.02.025 – volume: 112 start-page: 536 issue: 3 year: 2001 ident: 10.1016/j.patcog.2020.107381_bib0011 article-title: Scalp electrode impedance, infection risk, and eeg data quality publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(00)00533-2 – volume: 88 start-page: 421 year: 2019 ident: 10.1016/j.patcog.2020.107381_bib0001 article-title: Strength and similarity guided group-level brain functional network construction for MCI diagnosis publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.12.001 – volume: 5 start-page: e10232 issue: 4 year: 2010 ident: 10.1016/j.patcog.2020.107381_bib0025 article-title: Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain publication-title: PLoS One doi: 10.1371/journal.pone.0010232 – volume: 45 start-page: 2123 issue: 6 year: 2012 ident: 10.1016/j.patcog.2020.107381_bib0038 article-title: Brain computer interface control via functional connectivity dynamics publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.04.034 – start-page: 1062 year: 2018 ident: 10.1016/j.patcog.2020.107381_bib0007 article-title: Convolution neural networks for person identification and verification using steady state visual evoked potential – start-page: 709 year: 2017 ident: 10.1016/j.patcog.2020.107381_bib0015 article-title: Task-free brainprint recognition based on degree of brain networks |
SSID | ssj0017142 |
Score | 2.5667093 |
Snippet | •The topological features of brain connectivity graphs can be effectively used for EEG biometric identification.•Seven connectivity metrics including a new one... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107381 |
SubjectTerms | Brain functional connectivity EEG biometrics Person identification |
Title | BrainPrint: EEG biometric identification based on analyzing brain connectivity graphs |
URI | https://dx.doi.org/10.1016/j.patcog.2020.107381 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YE1NA8ndthK1VJAVAxU6hbZjo2KUFqVsDDw2_HZTgUSAoktiXxRdD7fQ_nuPoTOVWp_JrGARSk3BUqeBUznKmCxZrnSGde2v-J-ko2n5HaWzlpo0PTCAKzS-37n06239k96Xpu95XwOPb4wdhAIwI2RMgJNfIRQsPKLjzXMA_i93cTwJApgadM-ZzFeS-PuFk-mSozhEU1Y9HN4-hJyRjtoy-eKuO8-Zxe1VLWHthseBuyP5T6aXgHPw8NqXtWXeDi8xranHkbv43np0UB2AzDErBKbCw6zSN5N2MICZLEEvIt0TBLYDrF-PUDT0fBxMA48XUIgTd5fB4JkKQ9JxHIRa5UwE_0ElYRTHqfanLNScx1SrcJERZRHoiRCplLEVOUy1KlIDlG7WlTqCOGUUU64ifWmGiGSEWFebCozyalikHJ0UNJoqZB-ljhQWrwUDWjsuXC6LUC3hdNtBwVrqaWbpfHHetpsQPHNJgrj7n-VPP635AnahDuHIjtF7Xr1ps5M2lGLrrWrLtro39yNJ596f9ei |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD6yheTixwwZVoUBbMbRSN8t2bRSE0qqEhYHfjs9JKpAQSGyR44uis30P-bv7EDrXsbtMYh4LYmETlDTxmEm1x0LDUm0SYVx9xWCY9MbkfhJPGqhT18IArLKy_aVNd9a6GmlX2mzPswxqfKHtIBCA203KSLqCVok9vkBjcPGxxHkAwXfZMjwKPJhb1885kNfc2rvZk00TQxiiEQt-9k9ffM7NFtqogkV8Vf7PNmrofAdt1kQMuDqXu2h8DUQPj4ssLy5xt3uLXVE99N7H2bSCA7kVwOC0ptg-CGhG8m79FpYgixUAXlRJJYFdF-vXPTS-6Y46Pa_iS_CUDfwLT5IkFj4JWCpDoyNm3Z-kiggqwtjYgzY1wvjUaD_SARWBnBKpYiVDqlPlm1hG-6iZz3J9gHDMqCDCOnubjhDFiLQftqmZElQziDlaKKq1xFXVTBw4LV54jRp75qVuOeiWl7ptIW8pNS-bafwxn9YLwL9tCm7t_a-Sh_-WPENrvdGgz_t3w4cjtA5vSkjZMWoWizd9YmOQQp66PfYJiyfZMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BrainPrint%3A+EEG+biometric+identification+based+on+analyzing+brain+connectivity+graphs&rft.jtitle=Pattern+recognition&rft.au=Wang%2C+Min&rft.au=Hu%2C+Jiankun&rft.au=Abbass%2C+Hussein+A.&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=105&rft_id=info:doi/10.1016%2Fj.patcog.2020.107381&rft.externalDocID=S0031320320301849 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |