First and second law analysis and operational mode optimization of the compression process for an advanced adiabatic compressed air energy storage based on the established comprehensive dynamic model

Compressed air energy storage (CAES) possesses great application potential. The dynamic characteristic of the compression process is meaningful for the parameter optimization and control design of the CAES system. A dynamic model of the compression process for an advanced adiabatic CAES (AA-CAES) sy...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 263; p. 125882
Main Authors Chen, Wei, Bai, Jianshu, Wang, Guohua, Xie, Ningning, Ma, Linrui, Wang, Yazhou, Zhang, Tong, Xue, Xiaodai
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Compressed air energy storage (CAES) possesses great application potential. The dynamic characteristic of the compression process is meaningful for the parameter optimization and control design of the CAES system. A dynamic model of the compression process for an advanced adiabatic CAES (AA-CAES) system is created on the basis of the principles of conservations of mass, momentum, and energy of an opening system. The reliabilities of the proposed model are verified from two aspects of the compressor model and air storage device model. Energy and exergy analysis indicates that the proposed model follows the first and second laws of thermodynamics. The exergy losses of each component are calculated for the whole dynamic process. Calculation results show that the exergy losses in the compressors are higher than those in the heat exchangers. A multi-objective optimization is conducted by Genetic Algorithm. The mass optimum solution can improve ηex and mair by 0.014% and 0.660%, respectively. Four operational modes are proposed and optimized to improve the compression efficiency. The thermal performances of the design condition and four operational modes are simulated and compared. The comparison results show that modes N2 and N1 are the better operational modes, with high efficiency and low power consumptions, respectively. •A complex dynamic model of compression process for CAES was established and tested.•The exergy losses in the compressors are higher than those in the heat exchangers.•Multi-optimization for parametric design was conducted by Genetic Algorithm method.•Modes of N1 and N2 are the better ones with high efficiencies and low consumptions.
AbstractList Compressed air energy storage (CAES) possesses great application potential. The dynamic characteristic of the compression process is meaningful for the parameter optimization and control design of the CAES system. A dynamic model of the compression process for an advanced adiabatic CAES (AA-CAES) system is created on the basis of the principles of conservations of mass, momentum, and energy of an opening system. The reliabilities of the proposed model are verified from two aspects of the compressor model and air storage device model. Energy and exergy analysis indicates that the proposed model follows the first and second laws of thermodynamics. The exergy losses of each component are calculated for the whole dynamic process. Calculation results show that the exergy losses in the compressors are higher than those in the heat exchangers. A multi-objective optimization is conducted by Genetic Algorithm. The mass optimum solution can improve ηex and mair by 0.014% and 0.660%, respectively. Four operational modes are proposed and optimized to improve the compression efficiency. The thermal performances of the design condition and four operational modes are simulated and compared. The comparison results show that modes N2 and N1 are the better operational modes, with high efficiency and low power consumptions, respectively. •A complex dynamic model of compression process for CAES was established and tested.•The exergy losses in the compressors are higher than those in the heat exchangers.•Multi-optimization for parametric design was conducted by Genetic Algorithm method.•Modes of N1 and N2 are the better ones with high efficiencies and low consumptions.
ArticleNumber 125882
Author Chen, Wei
Xue, Xiaodai
Ma, Linrui
Bai, Jianshu
Zhang, Tong
Wang, Yazhou
Wang, Guohua
Xie, Ningning
Author_xml – sequence: 1
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao, 266061, China
– sequence: 2
  givenname: Jianshu
  surname: Bai
  fullname: Bai, Jianshu
  organization: College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao, 266061, China
– sequence: 3
  givenname: Guohua
  surname: Wang
  fullname: Wang, Guohua
  organization: State Key Laboratory of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
– sequence: 4
  givenname: Ningning
  surname: Xie
  fullname: Xie, Ningning
  organization: Science and Technology Research Institute, China Three Gorges Corporation, Beijing, 100038, China
– sequence: 5
  givenname: Linrui
  surname: Ma
  fullname: Ma, Linrui
  organization: Qinghai Key Lab of Efficient Utilization of Clean Energy (Tus-Institute for Renewable Energy), Qinghai University, Xining, 810016, China
– sequence: 6
  givenname: Yazhou
  surname: Wang
  fullname: Wang, Yazhou
  organization: State Key Laboratory of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
– sequence: 7
  givenname: Tong
  surname: Zhang
  fullname: Zhang, Tong
  email: caes_zhangtong@163.com
  organization: State Key Laboratory of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
– sequence: 8
  givenname: Xiaodai
  surname: Xue
  fullname: Xue, Xiaodai
  email: xuexiaodai@tsinghua.edu.cn
  organization: State Key Laboratory of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
BookMark eNp9kUtOwzAQhr0oEm3hBix8gRS_kiYbJFRRQKrEBtaWH5PWVRJXdlQULsi1cBrEEm9m5vP8v8aeBZp1vgOE7ihZUUKL--MKOgj7YcUIYyvK8rJkMzQnvCBZLgS7RosYj4SQvKyqOfreuhB7rDqLIxifQqM-U6maIbp44f4EQfXOJ4ZbbyGB3rXu68Kwr3F_AGx8ewoQ44hOwZuU4tqHZICVPavOgE2JUzqpzF_3CF3A08Q49j6oPWCtxotkNBpD7JVuXDwkNMkO0EV3BmyHTrXJbJypuUFXtWoi3P7GJfrYPr1vXrLd2_Pr5nGXGU6KPtNC0FzzSnOobAG8sqURmjO15jVba0opyXVZassUz0Vt16lHsCKdWuRVwfkSicnXBB9jgFqegmtVGCQlclyAPMrpOXJcgJwWkGQPkwzSbGcHQUbjYPwVF8D00nr3v8EPpcCajw
CitedBy_id crossref_primary_10_1016_j_renene_2023_119728
crossref_primary_10_1016_j_energy_2023_128474
crossref_primary_10_1016_j_energy_2023_128594
crossref_primary_10_1016_j_energy_2023_129508
crossref_primary_10_1016_j_energy_2024_130878
Cites_doi 10.1016/j.energy.2022.123600
10.1016/j.apenergy.2022.119502
10.1016/j.energy.2017.07.055
10.1016/j.renene.2022.05.091
10.1016/j.apenergy.2022.119328
10.1016/j.rser.2022.112464
10.1016/j.egypro.2018.09.075
10.1016/j.est.2020.102000
10.1115/1.1473150
10.1016/j.apenergy.2014.03.013
10.1016/j.rser.2016.05.002
10.1016/j.energy.2021.122993
10.1016/j.renene.2022.05.156
10.1016/j.enconman.2020.112670
10.1016/j.apenergy.2020.116294
10.1504/IJEX.2022.120109
10.1016/j.compchemeng.2022.107657
10.1016/j.apenergy.2016.02.108
10.1016/j.apenergy.2019.114448
10.1016/j.jclepro.2019.06.098
10.1016/j.energy.2021.121133
10.1016/j.energy.2022.125351
10.1016/j.energy.2022.124305
10.1504/IJETP.2007.014736
10.1016/j.epsr.2022.108142
10.1016/j.renene.2022.04.086
10.1016/j.applthermaleng.2018.12.035
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.energy.2022.125882
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2022_125882
S0360544222027682
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AAXKI
AAYXX
ABFNM
ABXDB
ADMUD
AFJKZ
AHHHB
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
G8K
HVGLF
HZ~
R2-
RIG
SAC
SEW
WUQ
ID FETCH-LOGICAL-c306t-b4415b39b3e9d6e39d8c4b32a73f27b11105b88bd2a354fd76e3426666f459633
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Thu Sep 26 17:02:37 EDT 2024
Fri Feb 23 02:37:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords AA-CAES
First and second law analysis
Operational mode optimization
Dynamic modeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-b4415b39b3e9d6e39d8c4b32a73f27b11105b88bd2a354fd76e3426666f459633
ParticipantIDs crossref_primary_10_1016_j_energy_2022_125882
elsevier_sciencedirect_doi_10_1016_j_energy_2022_125882
PublicationCentury 2000
PublicationDate 2023-01-15
PublicationDateYYYYMMDD 2023-01-15
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Saira, Muhammad, Muhammad, Mustafa, Salman, Asif (bib1) 2022; 156
Magesh, Devi, Lakshmanan (bib9) 2022; 210
Kim, Song, Kim, Ro (bib46) 2002; 124
Olabi, Tabbi, Mohamad, Mohammad, Abdul (bib14) 2021; 34
Asmae (bib12) 2022; 192
Jiang, Zhu, Wang, Wei, Shang, Dai (bib15) 2022; 322
Wu, Bai, Wei, Chen, Mei (bib33) 2021; 233
Nicolas, Mostafa, Reza, Richard, Mathieu (bib35) 2021; 288
Morteza, Seyed (bib4) 2022; 49
Wolf, Francesco, Tuschy, Sebastian (bib21) 2021; 249
Guo, Xu, Zhu, Zhou, Chen (bib36) 2022; 244
Marcus, Daniel, Roland, Yan (bib23) 2016; 170
Simone, Aldo, Stefano, Andrea (bib39) 2021; 243
Li, Miao, Luo, Yin, Han, Wang (bib40) 2020; 261
Song, Peng, Fang, Han, Deng, Xu, Liang, Hou, Wu (bib37) 2020; 19
Rice, Li (bib25) 2021; 1
Perry (bib30) 2022; 1
Li, Liu, Li (bib8) 2022; 159
Farayi, Shoaib, Mohammad, Saber (bib18) 2021; 33
Renewables (bib7) 2015
Manojit, Basab (bib3) 2022; 193
Kan, Zeng, Meng, Wang, Xina, Yang, Tesren (bib11) 2021; 48
Guo, Xu, Zhang, Liang, Tang, Zhang, Zuo, Chen (bib44) 2019; 149
Gouda, Mustapha, Thibault, Fan, Luo (bib17) 2022; 254
Chen, Zhang, Yang, Xie, Ye (bib43) 2022; 261
Juan, Abdolrahim, Hamid, Bert, Wen, Yang (bib5) 2022; 321
Gayathri, Prasanna, Velraj, Wang (bib6) 2016; 62
Wolf, Budt (bib27) 2014; 125
Karakurt, Ozsari, Bashan (bib32) 2022; 37
Roos, Haselbacher (bib19) 2022; 163
Wu, Bai, Wei, Chen, Mei (bib31) 2021; 233
Luis, Nestor (bib16) 2022; 252
(bib24) 2014; 2
Mahmoud, Ramadan, Olabi, Pullen, Naher (bib13) 2020; 210
(bib26) 2011
Dong, Shi (bib10) 2019; 233
Gay (bib22) 1948; 2
Zhou, Zhang, Song, Feng (bib29) 2018; 152
Lukasz, Piotr, Krzysztof, Sotirios, Emmanuel, Wojciech (bib38) 2017; 138
Li, Chen, Xue, Guo, Wang, Xie, Mei (bib34) 2022; 248
Jakiel, Zunft, Nowi (bib28) 2007; 5
Shoaib, Mohammad, Farayi, Saber, Bach (bib20) 2021; 43
Zeeshan, Ugur (bib2) 2022; 194
Guo, Xu, Zhang, Liang, Wang, Chen (bib41) 2021; 283
Hamidreza, Wang, Michael (bib42) 2020; 276
Cui (bib45) 2008
Zeeshan (10.1016/j.energy.2022.125882_bib2) 2022; 194
Wolf (10.1016/j.energy.2022.125882_bib27) 2014; 125
Renewables (10.1016/j.energy.2022.125882_bib7) 2015
Dong (10.1016/j.energy.2022.125882_bib10) 2019; 233
Saira (10.1016/j.energy.2022.125882_bib1) 2022; 156
Manojit (10.1016/j.energy.2022.125882_bib3) 2022; 193
Morteza (10.1016/j.energy.2022.125882_bib4) 2022; 49
Magesh (10.1016/j.energy.2022.125882_bib9) 2022; 210
Guo (10.1016/j.energy.2022.125882_bib41) 2021; 283
Gay (10.1016/j.energy.2022.125882_bib22) 1948; 2
Juan (10.1016/j.energy.2022.125882_bib5) 2022; 321
Song (10.1016/j.energy.2022.125882_bib37) 2020; 19
Wu (10.1016/j.energy.2022.125882_bib33) 2021; 233
Simone (10.1016/j.energy.2022.125882_bib39) 2021; 243
Farayi (10.1016/j.energy.2022.125882_bib18) 2021; 33
Luis (10.1016/j.energy.2022.125882_bib16) 2022; 252
Li (10.1016/j.energy.2022.125882_bib40) 2020; 261
Gouda (10.1016/j.energy.2022.125882_bib17) 2022; 254
(10.1016/j.energy.2022.125882_bib26) 2011
Zhou (10.1016/j.energy.2022.125882_bib29) 2018; 152
Rice (10.1016/j.energy.2022.125882_bib25) 2021; 1
Asmae (10.1016/j.energy.2022.125882_bib12) 2022; 192
Jiang (10.1016/j.energy.2022.125882_bib15) 2022; 322
Wu (10.1016/j.energy.2022.125882_bib31) 2021; 233
Li (10.1016/j.energy.2022.125882_bib34) 2022; 248
(10.1016/j.energy.2022.125882_bib24) 2014; 2
Perry (10.1016/j.energy.2022.125882_bib30) 2022; 1
Olabi (10.1016/j.energy.2022.125882_bib14) 2021; 34
Li (10.1016/j.energy.2022.125882_bib8) 2022; 159
Mahmoud (10.1016/j.energy.2022.125882_bib13) 2020; 210
Cui (10.1016/j.energy.2022.125882_bib45) 2008
Gayathri (10.1016/j.energy.2022.125882_bib6) 2016; 62
Hamidreza (10.1016/j.energy.2022.125882_bib42) 2020; 276
Kan (10.1016/j.energy.2022.125882_bib11) 2021; 48
Wolf (10.1016/j.energy.2022.125882_bib21) 2021; 249
Karakurt (10.1016/j.energy.2022.125882_bib32) 2022; 37
Marcus (10.1016/j.energy.2022.125882_bib23) 2016; 170
Nicolas (10.1016/j.energy.2022.125882_bib35) 2021; 288
Shoaib (10.1016/j.energy.2022.125882_bib20) 2021; 43
Guo (10.1016/j.energy.2022.125882_bib36) 2022; 244
Chen (10.1016/j.energy.2022.125882_bib43) 2022; 261
Jakiel (10.1016/j.energy.2022.125882_bib28) 2007; 5
Guo (10.1016/j.energy.2022.125882_bib44) 2019; 149
Lukasz (10.1016/j.energy.2022.125882_bib38) 2017; 138
Roos (10.1016/j.energy.2022.125882_bib19) 2022; 163
Kim (10.1016/j.energy.2022.125882_bib46) 2002; 124
References_xml – volume: 49
  year: 2022
  ident: bib4
  article-title: Thermodynamic and economic analysis of a novel combination of theheliostat solar feld with compressed air energy storage (CAES); a case study at San Francisco, USA
  publication-title: J Energy Storage
  contributor:
    fullname: Seyed
– volume: 2
  start-page: 9
  year: 2014
  ident: bib24
  article-title: Storage-as-service model takes off in the US
  publication-title: J Energy Storage
– volume: 233
  start-page: 490
  year: 2019
  end-page: 500
  ident: bib10
  article-title: Regional differences study of renewable energy performance: a case of wind power in China
  publication-title: J Clean Prod
  contributor:
    fullname: Shi
– volume: 288
  year: 2021
  ident: bib35
  article-title: Analytical expression for the evaluation of multi-stage adiabatic-compressed air energy storage (A-CAES) systems cycle efficiency
  publication-title: Appl Energy
  contributor:
    fullname: Mathieu
– volume: 283
  year: 2021
  ident: bib41
  article-title: Dynamic characteristics and control of supercritical compressed air energy storage systems
  publication-title: Appl Energy
  contributor:
    fullname: Chen
– volume: 170
  start-page: 250
  year: 2016
  end-page: 268
  ident: bib23
  article-title: A review on compressed air energy storage: basic principles, past milestones and recent developments
  publication-title: Appl Energy
  contributor:
    fullname: Yan
– volume: 210
  year: 2020
  ident: bib13
  article-title: A review of mechanical energy storage systems combined with wind and solar applications
  publication-title: Energy Convers Manag
  contributor:
    fullname: Naher
– volume: 261
  year: 2020
  ident: bib40
  article-title: Dynamic modelling and techno-economic analysis of adiabatic compressed air energy storage for emergency back-up power in supporting microgrid
  publication-title: Appl Energy
  contributor:
    fullname: Wang
– volume: 48
  year: 2021
  ident: bib11
  article-title: The linkage between renewable energy potential and sustainable development: understanding solar energy variability and photovoltaic power potential in Tibet, China
  publication-title: Sustain Energy Technol Assessments
  contributor:
    fullname: Tesren
– volume: 1
  start-page: 204
  year: 2022
  end-page: 217
  ident: bib30
  article-title: Isothermal compressed air energy storage (i-CAES) system
  publication-title: Encyclopedia of Energy Storage
  contributor:
    fullname: Perry
– volume: 233
  year: 2021
  ident: bib31
  article-title: Optimal bidding and scheduling of AA-CAES based energy hub considering cascaded consumption of heat
  publication-title: Energy
  contributor:
    fullname: Mei
– volume: 243
  year: 2021
  ident: bib39
  article-title: Small-scale adiabatic compressed air energy storage: control strategy analysis via dynamic modelling
  publication-title: Energy Convers Manag
  contributor:
    fullname: Andrea
– volume: 210
  year: 2022
  ident: bib9
  article-title: Measurement and simulation of power quality issues in grid connected wind farms
  publication-title: Elec Power Syst Res
  contributor:
    fullname: Lakshmanan
– volume: 249
  year: 2021
  ident: bib21
  article-title: Coupled power plant and geostorage simulations of porous media compressed air energy storage (PM-CAES)
  publication-title: Energy Convers Manag
  contributor:
    fullname: Sebastian
– volume: 276
  year: 2020
  ident: bib42
  article-title: Dynamic analysis of a low-temperature adiabatic compressed air energy storage system
  publication-title: J Clean Prod
  contributor:
    fullname: Michael
– volume: 149
  start-page: 262
  year: 2019
  end-page: 274
  ident: bib44
  article-title: Off-design performance and an optimal operation strategy for the multistage compression process in adiabatic compressed air energy storage systems
  publication-title: Appl Therm Eng
  contributor:
    fullname: Chen
– volume: 159
  year: 2022
  ident: bib8
  article-title: Optimal design of a hybrid renewable energy system with grid connection and comparison of techno-economic performances with an off-grid system: a case study of West China
  publication-title: Comput Chem Eng
  contributor:
    fullname: Li
– year: 2011
  ident: bib26
  publication-title: Large energy storage systems handbook
– volume: 1
  start-page: 145
  year: 2021
  end-page: 152
  ident: bib25
  article-title: Optimal efficiency-power tradeoff for an air motor/compressor with volume varying heat transfer capability
  publication-title: ASME symposium on fluid power and motion control
  contributor:
    fullname: Li
– volume: 37
  start-page: 74
  year: 2022
  end-page: 86
  ident: bib32
  article-title: Exergetic performance analysis of high-pressure air systems on ships
  publication-title: Int J Exergy
  contributor:
    fullname: Bashan
– volume: 192
  start-page: 405
  year: 2022
  end-page: 419
  ident: bib12
  article-title: Financial and economic modeling of large-scale gravity energy storage system
  publication-title: Renew Energy
  contributor:
    fullname: Asmae
– volume: 254
  year: 2022
  ident: bib17
  article-title: Flow and heat transfer characteristics of air compression in a liquid piston for compressed air energy storage
  publication-title: Energy
  contributor:
    fullname: Luo
– volume: 43
  year: 2021
  ident: bib20
  article-title: Thermal modeling and triple objective optimization of a new compressed air energy storage system integrated with Rankine cycle, PEM fuel cell, and thermoelectric unit
  publication-title: Sustain Energy Technol Assessments
  contributor:
    fullname: Bach
– volume: 5
  start-page: 296
  year: 2007
  end-page: 306
  ident: bib28
  article-title: Adiabatic compressed air energy storage plants for efficient peak load power supply from wind energy: the European project AACAES
  publication-title: Int J Energy Technol Pol
  contributor:
    fullname: Nowi
– volume: 252
  year: 2022
  ident: bib16
  article-title: Optimal management of a mega pumped hydro storage system under stochastic hourly electricity prices in the Iberian Peninsula
  publication-title: Energy
  contributor:
    fullname: Nestor
– volume: 261
  year: 2022
  ident: bib43
  article-title: Dynamic simulation of a Re-compressed adiabatic compressed air energy storage (RA-CAES) system
  publication-title: Energy
  contributor:
    fullname: Ye
– year: 2008
  ident: bib45
  article-title: Study and application on real-time dynamic simulation model for heavy-duty gas turbine combined cycle power unit
  contributor:
    fullname: Cui
– volume: 248
  year: 2022
  ident: bib34
  article-title: Multi-mode optimal operation of advanced adiabatic compressed air energy storage: explore its value with condenser operation
  publication-title: Energy
  contributor:
    fullname: Mei
– volume: 62
  start-page: 895
  year: 2016
  end-page: 907
  ident: bib6
  article-title: A review on compressed air energy storage – a pathway for smart grid and polygeneration
  publication-title: Renew Sustain Energy Rev
  contributor:
    fullname: Wang
– volume: 125
  start-page: 158
  year: 2014
  end-page: 164
  ident: bib27
  article-title: LTA-CAES – a low-temperature approach to adiabatic compressed air energy storage
  publication-title: Appl Energy
  contributor:
    fullname: Budt
– volume: 194
  start-page: 805
  year: 2022
  end-page: 821
  ident: bib2
  article-title: Renewable, non-renewable energy consumption and income in top ten renewable energy-consuming countries: advanced Fourier based panel data approaches
  publication-title: Renew Energy
  contributor:
    fullname: Ugur
– volume: 156
  year: 2022
  ident: bib1
  article-title: An integrated future approach for the energy security of Pakistan: replacement of fossil fuels with syngas for better environment and socio-economic development
  publication-title: Renew Sustain Energy Rev
  contributor:
    fullname: Asif
– volume: 33
  year: 2021
  ident: bib18
  article-title: Thermodynamic modeling and comparative analysis of a compressed air energy storage system boosted with thermoelectric unit
  publication-title: J Energy Storage
  contributor:
    fullname: Saber
– volume: 233
  year: 2021
  ident: bib33
  article-title: Optimal bidding and scheduling of AA-CAES based energy hub considering cascaded consumption of heat
  publication-title: Energy
  contributor:
    fullname: Mei
– volume: 19
  year: 2020
  ident: bib37
  article-title: Thermodynamic analysis and algorithm optimization of a multi-stage compression adiabatic compressed air energy storage system
  publication-title: Therm Sci Eng Prog
  contributor:
    fullname: Wu
– volume: 193
  start-page: 895
  year: 2022
  end-page: 912
  ident: bib3
  article-title: Impact of demand flexibility and tiered resilience on solar photovoltaic adoption in humanitarian settlements
  publication-title: Renew Energy
  contributor:
    fullname: Basab
– volume: 322
  year: 2022
  ident: bib15
  article-title: A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries
  publication-title: Appl Energy
  contributor:
    fullname: Dai
– year: 2015
  ident: bib7
  article-title: Global status report
  contributor:
    fullname: Renewables
– volume: 152
  start-page: 162
  year: 2018
  end-page: 167
  ident: bib29
  article-title: Comparison analysis of different compressed air energy storage systems
  publication-title: Energy Proc
  contributor:
    fullname: Feng
– volume: 321
  year: 2022
  ident: bib5
  article-title: CFD assessment of wind energy potential for generic high-rise buildings in close proximity: impact of building arrangement and height
  publication-title: Appl Energy
  contributor:
    fullname: Yang
– volume: 34
  year: 2021
  ident: bib14
  article-title: Compressed air energy storage systems: components and operating parameters – a review
  publication-title: J Energy Storage
  contributor:
    fullname: Abdul
– volume: 2
  start-page: 896
  year: 1948
  ident: bib22
  publication-title: Means for storing fluids for power generation
  contributor:
    fullname: Gay
– volume: 244
  year: 2022
  ident: bib36
  article-title: Thermal-mechanical coefficient analysis of adiabatic compressor and expander in compressed air energy storage systems
  publication-title: Energy
  contributor:
    fullname: Chen
– volume: 163
  year: 2022
  ident: bib19
  article-title: Analytical modeling of advanced adiabatic compressed air energy storage: literature review and new models
  publication-title: Renew Sustain Energy Rev
  contributor:
    fullname: Haselbacher
– volume: 138
  start-page: 12
  year: 2017
  end-page: 18
  ident: bib38
  article-title: Energy and exergy analysis of adiabatic compressed air energy storage system
  publication-title: Energy
  contributor:
    fullname: Wojciech
– volume: 124
  start-page: 510
  year: 2002
  end-page: 516
  ident: bib46
  article-title: Dynamic simulation of full startup procedure of heavy-duty
  publication-title: J Eng Gas Turbines Power
  contributor:
    fullname: Ro
– volume: 248
  year: 2022
  ident: 10.1016/j.energy.2022.125882_bib34
  article-title: Multi-mode optimal operation of advanced adiabatic compressed air energy storage: explore its value with condenser operation
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123600
  contributor:
    fullname: Li
– volume: 2
  start-page: 896
  issue: 433
  year: 1948
  ident: 10.1016/j.energy.2022.125882_bib22
  publication-title: Means for storing fluids for power generation
  contributor:
    fullname: Gay
– volume: 322
  year: 2022
  ident: 10.1016/j.energy.2022.125882_bib15
  article-title: A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.119502
  contributor:
    fullname: Jiang
– volume: 138
  start-page: 12
  year: 2017
  ident: 10.1016/j.energy.2022.125882_bib38
  article-title: Energy and exergy analysis of adiabatic compressed air energy storage system
  publication-title: Energy
  doi: 10.1016/j.energy.2017.07.055
  contributor:
    fullname: Lukasz
– volume: 252
  year: 2022
  ident: 10.1016/j.energy.2022.125882_bib16
  article-title: Optimal management of a mega pumped hydro storage system under stochastic hourly electricity prices in the Iberian Peninsula
  publication-title: Energy
  contributor:
    fullname: Luis
– volume: 33
  year: 2021
  ident: 10.1016/j.energy.2022.125882_bib18
  article-title: Thermodynamic modeling and comparative analysis of a compressed air energy storage system boosted with thermoelectric unit
  publication-title: J Energy Storage
  contributor:
    fullname: Farayi
– volume: 193
  start-page: 895
  year: 2022
  ident: 10.1016/j.energy.2022.125882_bib3
  article-title: Impact of demand flexibility and tiered resilience on solar photovoltaic adoption in humanitarian settlements
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2022.05.091
  contributor:
    fullname: Manojit
– volume: 321
  year: 2022
  ident: 10.1016/j.energy.2022.125882_bib5
  article-title: CFD assessment of wind energy potential for generic high-rise buildings in close proximity: impact of building arrangement and height
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.119328
  contributor:
    fullname: Juan
– volume: 163
  year: 2022
  ident: 10.1016/j.energy.2022.125882_bib19
  article-title: Analytical modeling of advanced adiabatic compressed air energy storage: literature review and new models
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112464
  contributor:
    fullname: Roos
– volume: 19
  year: 2020
  ident: 10.1016/j.energy.2022.125882_bib37
  article-title: Thermodynamic analysis and algorithm optimization of a multi-stage compression adiabatic compressed air energy storage system
  publication-title: Therm Sci Eng Prog
  contributor:
    fullname: Song
– volume: 152
  start-page: 162
  year: 2018
  ident: 10.1016/j.energy.2022.125882_bib29
  article-title: Comparison analysis of different compressed air energy storage systems
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2018.09.075
  contributor:
    fullname: Zhou
– volume: 34
  year: 2021
  ident: 10.1016/j.energy.2022.125882_bib14
  article-title: Compressed air energy storage systems: components and operating parameters – a review
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2020.102000
  contributor:
    fullname: Olabi
– volume: 124
  start-page: 510
  year: 2002
  ident: 10.1016/j.energy.2022.125882_bib46
  article-title: Dynamic simulation of full startup procedure of heavy-duty
  publication-title: J Eng Gas Turbines Power
  doi: 10.1115/1.1473150
  contributor:
    fullname: Kim
– year: 2011
  ident: 10.1016/j.energy.2022.125882_bib26
– volume: 125
  start-page: 158
  year: 2014
  ident: 10.1016/j.energy.2022.125882_bib27
  article-title: LTA-CAES – a low-temperature approach to adiabatic compressed air energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.03.013
  contributor:
    fullname: Wolf
– volume: 62
  start-page: 895
  year: 2016
  ident: 10.1016/j.energy.2022.125882_bib6
  article-title: A review on compressed air energy storage – a pathway for smart grid and polygeneration
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.05.002
  contributor:
    fullname: Gayathri
– volume: 244
  year: 2022
  ident: 10.1016/j.energy.2022.125882_bib36
  article-title: Thermal-mechanical coefficient analysis of adiabatic compressor and expander in compressed air energy storage systems
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122993
  contributor:
    fullname: Guo
– volume: 194
  start-page: 805
  year: 2022
  ident: 10.1016/j.energy.2022.125882_bib2
  article-title: Renewable, non-renewable energy consumption and income in top ten renewable energy-consuming countries: advanced Fourier based panel data approaches
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2022.05.156
  contributor:
    fullname: Zeeshan
– volume: 210
  year: 2020
  ident: 10.1016/j.energy.2022.125882_bib13
  article-title: A review of mechanical energy storage systems combined with wind and solar applications
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.112670
  contributor:
    fullname: Mahmoud
– volume: 283
  year: 2021
  ident: 10.1016/j.energy.2022.125882_bib41
  article-title: Dynamic characteristics and control of supercritical compressed air energy storage systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.116294
  contributor:
    fullname: Guo
– volume: 276
  year: 2020
  ident: 10.1016/j.energy.2022.125882_bib42
  article-title: Dynamic analysis of a low-temperature adiabatic compressed air energy storage system
  publication-title: J Clean Prod
  contributor:
    fullname: Hamidreza
– volume: 37
  start-page: 74
  year: 2022
  ident: 10.1016/j.energy.2022.125882_bib32
  article-title: Exergetic performance analysis of high-pressure air systems on ships
  publication-title: Int J Exergy
  doi: 10.1504/IJEX.2022.120109
  contributor:
    fullname: Karakurt
– volume: 43
  year: 2021
  ident: 10.1016/j.energy.2022.125882_bib20
  article-title: Thermal modeling and triple objective optimization of a new compressed air energy storage system integrated with Rankine cycle, PEM fuel cell, and thermoelectric unit
  publication-title: Sustain Energy Technol Assessments
  contributor:
    fullname: Shoaib
– volume: 249
  year: 2021
  ident: 10.1016/j.energy.2022.125882_bib21
  article-title: Coupled power plant and geostorage simulations of porous media compressed air energy storage (PM-CAES)
  publication-title: Energy Convers Manag
  contributor:
    fullname: Wolf
– volume: 159
  year: 2022
  ident: 10.1016/j.energy.2022.125882_bib8
  article-title: Optimal design of a hybrid renewable energy system with grid connection and comparison of techno-economic performances with an off-grid system: a case study of West China
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2022.107657
  contributor:
    fullname: Li
– volume: 288
  year: 2021
  ident: 10.1016/j.energy.2022.125882_bib35
  article-title: Analytical expression for the evaluation of multi-stage adiabatic-compressed air energy storage (A-CAES) systems cycle efficiency
  publication-title: Appl Energy
  contributor:
    fullname: Nicolas
– volume: 170
  start-page: 250
  year: 2016
  ident: 10.1016/j.energy.2022.125882_bib23
  article-title: A review on compressed air energy storage: basic principles, past milestones and recent developments
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.02.108
  contributor:
    fullname: Marcus
– volume: 243
  year: 2021
  ident: 10.1016/j.energy.2022.125882_bib39
  article-title: Small-scale adiabatic compressed air energy storage: control strategy analysis via dynamic modelling
  publication-title: Energy Convers Manag
  contributor:
    fullname: Simone
– volume: 261
  year: 2020
  ident: 10.1016/j.energy.2022.125882_bib40
  article-title: Dynamic modelling and techno-economic analysis of adiabatic compressed air energy storage for emergency back-up power in supporting microgrid
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114448
  contributor:
    fullname: Li
– volume: 233
  start-page: 490
  year: 2019
  ident: 10.1016/j.energy.2022.125882_bib10
  article-title: Regional differences study of renewable energy performance: a case of wind power in China
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.06.098
  contributor:
    fullname: Dong
– volume: 156
  year: 2022
  ident: 10.1016/j.energy.2022.125882_bib1
  article-title: An integrated future approach for the energy security of Pakistan: replacement of fossil fuels with syngas for better environment and socio-economic development
  publication-title: Renew Sustain Energy Rev
  contributor:
    fullname: Saira
– volume: 233
  year: 2021
  ident: 10.1016/j.energy.2022.125882_bib31
  article-title: Optimal bidding and scheduling of AA-CAES based energy hub considering cascaded consumption of heat
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121133
  contributor:
    fullname: Wu
– volume: 261
  year: 2022
  ident: 10.1016/j.energy.2022.125882_bib43
  article-title: Dynamic simulation of a Re-compressed adiabatic compressed air energy storage (RA-CAES) system
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125351
  contributor:
    fullname: Chen
– volume: 254
  year: 2022
  ident: 10.1016/j.energy.2022.125882_bib17
  article-title: Flow and heat transfer characteristics of air compression in a liquid piston for compressed air energy storage
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124305
  contributor:
    fullname: Gouda
– volume: 2
  start-page: 9
  issue: 2
  year: 2014
  ident: 10.1016/j.energy.2022.125882_bib24
  article-title: Storage-as-service model takes off in the US
  publication-title: J Energy Storage
– volume: 1
  start-page: 145
  year: 2021
  ident: 10.1016/j.energy.2022.125882_bib25
  article-title: Optimal efficiency-power tradeoff for an air motor/compressor with volume varying heat transfer capability
  publication-title: ASME symposium on fluid power and motion control
  contributor:
    fullname: Rice
– year: 2015
  ident: 10.1016/j.energy.2022.125882_bib7
  contributor:
    fullname: Renewables
– volume: 5
  start-page: 296
  issue: 3
  year: 2007
  ident: 10.1016/j.energy.2022.125882_bib28
  article-title: Adiabatic compressed air energy storage plants for efficient peak load power supply from wind energy: the European project AACAES
  publication-title: Int J Energy Technol Pol
  doi: 10.1504/IJETP.2007.014736
  contributor:
    fullname: Jakiel
– volume: 210
  year: 2022
  ident: 10.1016/j.energy.2022.125882_bib9
  article-title: Measurement and simulation of power quality issues in grid connected wind farms
  publication-title: Elec Power Syst Res
  doi: 10.1016/j.epsr.2022.108142
  contributor:
    fullname: Magesh
– volume: 48
  year: 2021
  ident: 10.1016/j.energy.2022.125882_bib11
  article-title: The linkage between renewable energy potential and sustainable development: understanding solar energy variability and photovoltaic power potential in Tibet, China
  publication-title: Sustain Energy Technol Assessments
  contributor:
    fullname: Kan
– volume: 192
  start-page: 405
  year: 2022
  ident: 10.1016/j.energy.2022.125882_bib12
  article-title: Financial and economic modeling of large-scale gravity energy storage system
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2022.04.086
  contributor:
    fullname: Asmae
– volume: 49
  year: 2022
  ident: 10.1016/j.energy.2022.125882_bib4
  article-title: Thermodynamic and economic analysis of a novel combination of theheliostat solar feld with compressed air energy storage (CAES); a case study at San Francisco, USA
  publication-title: J Energy Storage
  contributor:
    fullname: Morteza
– volume: 1
  start-page: 204
  year: 2022
  ident: 10.1016/j.energy.2022.125882_bib30
  article-title: Isothermal compressed air energy storage (i-CAES) system
  publication-title: Encyclopedia of Energy Storage
  contributor:
    fullname: Perry
– volume: 149
  start-page: 262
  year: 2019
  ident: 10.1016/j.energy.2022.125882_bib44
  article-title: Off-design performance and an optimal operation strategy for the multistage compression process in adiabatic compressed air energy storage systems
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2018.12.035
  contributor:
    fullname: Guo
– year: 2008
  ident: 10.1016/j.energy.2022.125882_bib45
  contributor:
    fullname: Cui
– volume: 233
  year: 2021
  ident: 10.1016/j.energy.2022.125882_bib33
  article-title: Optimal bidding and scheduling of AA-CAES based energy hub considering cascaded consumption of heat
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121133
  contributor:
    fullname: Wu
SSID ssj0005899
Score 2.4898307
Snippet Compressed air energy storage (CAES) possesses great application potential. The dynamic characteristic of the compression process is meaningful for the...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 125882
SubjectTerms AA-CAES
Dynamic modeling
First and second law analysis
Operational mode optimization
Title First and second law analysis and operational mode optimization of the compression process for an advanced adiabatic compressed air energy storage based on the established comprehensive dynamic model
URI https://dx.doi.org/10.1016/j.energy.2022.125882
Volume 263
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGGBBPMVbN7Ca0thOnBEhqkJFBx6CLYprRwRBWrVFiIW_x9_iLnZ4SIiBKcrp7MSxcy99d8fYgS5kktpUcW2E5HLojrjpCMULqVwRCdVxBcUhLwZx70ae36m7FjtpcmEIVhlkv5fptbQOlHb4mu1xWbavUPaivUEhDHStYk1yWKL6wzN9-PYN5qHrHpLEzIm7SZ-rMV6uzq9DLzGKDlHTax39rp6-qZzuMlsKtiIc-9dZYS1XrbKFJpV4uso2Tr_S1JAx_KfTNfbeLdGqg7yyMCWP18Jj_oK3vgBJTR-N3SQEAoHa4SBhVj6FrEwYFYCWIRDg3ANlKxj7lAJAKxcngAY8AFTcwFDd109uIpYT8MsGgl-i0ALSl_jYqp4YdVHu8fg2DLv3SHqwr1WOq6vf6XGd3XRPr096PLRs4EP0PWbckHtmRGqES23sRGr1UBoR5YkoosSgYD1SRmtjo1woWdgEechGiGM8HCgLxAabq0aV22SAto1NhDApziJdp0iVjqmapaEahipPtxhvdiob-8ocWQNZe8j8EjPa2czv7BZLmu3MfpywDJXHnyO3_z1yhy1Se3oK2XTULpubTZ7dHhoxM7Nfn9J9Nn981u8N6Nq_vO1_AJmM98s
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDLAgnuLNDaymNLYTZ0QVVYGWBZDYorh2RBCkVVuEWPh7_C3uYoeHhBgYY50dO3buvjt9d2bsSBcySW2quDZCcjl0J9y0heKFVK6IhGq7guKQg6u4dysv7tTdHOs0uTBEqwy63-v0WluHllb4mq1xWbauUfci3qAQBrpWsUY9vCAJH-OhPn77xvPQ9SWSJM1JvMmfq0lerk6wQzcxio7R1Gsd_W6fvtmc7gpbDmARTv18Vtmcq9bYYpNLPF1jm2dfeWooGH7U6Tp775YI6yCvLEzJ5bXwmL_go69AUrePxm4SIoFA9-Fgw6x8CmmZMCoAoSEQ49wzZSsY-5wCQJiLA0DDHgCqbmCo8OunNDWWE_DLBuJfotYCMpj42qoeGI1R7gn5NnS791R6sK9Vjqur5_S4wW67ZzedHg93NvAhOh8zbsg_MyI1wqU2diK1eiiNiPJEFFFiULOeKKO1sVEulCxsgjIEEuIYTwcqA7HJ5qtR5bYYILixiRAmxVGkaxep0jGVszRUxFDl6TbjzU5lY1-aI2s4aw-ZX2JGO5v5nd1mSbOd2Y8jlqH1-LPnzr97HrLF3s2gn_XPry532RLdVU_xm7baY_OzybPbR0QzMwf1if0Amrz3wQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First+and+second+law+analysis+and+operational+mode+optimization+of+the+compression+process+for+an+advanced+adiabatic+compressed+air+energy+storage+based+on+the+established+comprehensive+dynamic+model&rft.jtitle=Energy+%28Oxford%29&rft.au=Chen%2C+Wei&rft.au=Bai%2C+Jianshu&rft.au=Wang%2C+Guohua&rft.au=Xie%2C+Ningning&rft.date=2023-01-15&rft.issn=0360-5442&rft.volume=263&rft.spage=125882&rft_id=info:doi/10.1016%2Fj.energy.2022.125882&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2022_125882
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon