First and second law analysis and operational mode optimization of the compression process for an advanced adiabatic compressed air energy storage based on the established comprehensive dynamic model
Compressed air energy storage (CAES) possesses great application potential. The dynamic characteristic of the compression process is meaningful for the parameter optimization and control design of the CAES system. A dynamic model of the compression process for an advanced adiabatic CAES (AA-CAES) sy...
Saved in:
Published in | Energy (Oxford) Vol. 263; p. 125882 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Compressed air energy storage (CAES) possesses great application potential. The dynamic characteristic of the compression process is meaningful for the parameter optimization and control design of the CAES system. A dynamic model of the compression process for an advanced adiabatic CAES (AA-CAES) system is created on the basis of the principles of conservations of mass, momentum, and energy of an opening system. The reliabilities of the proposed model are verified from two aspects of the compressor model and air storage device model. Energy and exergy analysis indicates that the proposed model follows the first and second laws of thermodynamics. The exergy losses of each component are calculated for the whole dynamic process. Calculation results show that the exergy losses in the compressors are higher than those in the heat exchangers. A multi-objective optimization is conducted by Genetic Algorithm. The mass optimum solution can improve ηex and mair by 0.014% and 0.660%, respectively. Four operational modes are proposed and optimized to improve the compression efficiency. The thermal performances of the design condition and four operational modes are simulated and compared. The comparison results show that modes N2 and N1 are the better operational modes, with high efficiency and low power consumptions, respectively.
•A complex dynamic model of compression process for CAES was established and tested.•The exergy losses in the compressors are higher than those in the heat exchangers.•Multi-optimization for parametric design was conducted by Genetic Algorithm method.•Modes of N1 and N2 are the better ones with high efficiencies and low consumptions. |
---|---|
AbstractList | Compressed air energy storage (CAES) possesses great application potential. The dynamic characteristic of the compression process is meaningful for the parameter optimization and control design of the CAES system. A dynamic model of the compression process for an advanced adiabatic CAES (AA-CAES) system is created on the basis of the principles of conservations of mass, momentum, and energy of an opening system. The reliabilities of the proposed model are verified from two aspects of the compressor model and air storage device model. Energy and exergy analysis indicates that the proposed model follows the first and second laws of thermodynamics. The exergy losses of each component are calculated for the whole dynamic process. Calculation results show that the exergy losses in the compressors are higher than those in the heat exchangers. A multi-objective optimization is conducted by Genetic Algorithm. The mass optimum solution can improve ηex and mair by 0.014% and 0.660%, respectively. Four operational modes are proposed and optimized to improve the compression efficiency. The thermal performances of the design condition and four operational modes are simulated and compared. The comparison results show that modes N2 and N1 are the better operational modes, with high efficiency and low power consumptions, respectively.
•A complex dynamic model of compression process for CAES was established and tested.•The exergy losses in the compressors are higher than those in the heat exchangers.•Multi-optimization for parametric design was conducted by Genetic Algorithm method.•Modes of N1 and N2 are the better ones with high efficiencies and low consumptions. |
ArticleNumber | 125882 |
Author | Chen, Wei Xue, Xiaodai Ma, Linrui Bai, Jianshu Zhang, Tong Wang, Yazhou Wang, Guohua Xie, Ningning |
Author_xml | – sequence: 1 givenname: Wei surname: Chen fullname: Chen, Wei organization: College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao, 266061, China – sequence: 2 givenname: Jianshu surname: Bai fullname: Bai, Jianshu organization: College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao, 266061, China – sequence: 3 givenname: Guohua surname: Wang fullname: Wang, Guohua organization: State Key Laboratory of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China – sequence: 4 givenname: Ningning surname: Xie fullname: Xie, Ningning organization: Science and Technology Research Institute, China Three Gorges Corporation, Beijing, 100038, China – sequence: 5 givenname: Linrui surname: Ma fullname: Ma, Linrui organization: Qinghai Key Lab of Efficient Utilization of Clean Energy (Tus-Institute for Renewable Energy), Qinghai University, Xining, 810016, China – sequence: 6 givenname: Yazhou surname: Wang fullname: Wang, Yazhou organization: State Key Laboratory of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China – sequence: 7 givenname: Tong surname: Zhang fullname: Zhang, Tong email: caes_zhangtong@163.com organization: State Key Laboratory of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China – sequence: 8 givenname: Xiaodai surname: Xue fullname: Xue, Xiaodai email: xuexiaodai@tsinghua.edu.cn organization: State Key Laboratory of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China |
BookMark | eNp9kUtOwzAQhr0oEm3hBix8gRS_kiYbJFRRQKrEBtaWH5PWVRJXdlQULsi1cBrEEm9m5vP8v8aeBZp1vgOE7ihZUUKL--MKOgj7YcUIYyvK8rJkMzQnvCBZLgS7RosYj4SQvKyqOfreuhB7rDqLIxifQqM-U6maIbp44f4EQfXOJ4ZbbyGB3rXu68Kwr3F_AGx8ewoQ44hOwZuU4tqHZICVPavOgE2JUzqpzF_3CF3A08Q49j6oPWCtxotkNBpD7JVuXDwkNMkO0EV3BmyHTrXJbJypuUFXtWoi3P7GJfrYPr1vXrLd2_Pr5nGXGU6KPtNC0FzzSnOobAG8sqURmjO15jVba0opyXVZassUz0Vt16lHsCKdWuRVwfkSicnXBB9jgFqegmtVGCQlclyAPMrpOXJcgJwWkGQPkwzSbGcHQUbjYPwVF8D00nr3v8EPpcCajw |
CitedBy_id | crossref_primary_10_1016_j_renene_2023_119728 crossref_primary_10_1016_j_energy_2023_128474 crossref_primary_10_1016_j_energy_2023_128594 crossref_primary_10_1016_j_energy_2023_129508 crossref_primary_10_1016_j_energy_2024_130878 |
Cites_doi | 10.1016/j.energy.2022.123600 10.1016/j.apenergy.2022.119502 10.1016/j.energy.2017.07.055 10.1016/j.renene.2022.05.091 10.1016/j.apenergy.2022.119328 10.1016/j.rser.2022.112464 10.1016/j.egypro.2018.09.075 10.1016/j.est.2020.102000 10.1115/1.1473150 10.1016/j.apenergy.2014.03.013 10.1016/j.rser.2016.05.002 10.1016/j.energy.2021.122993 10.1016/j.renene.2022.05.156 10.1016/j.enconman.2020.112670 10.1016/j.apenergy.2020.116294 10.1504/IJEX.2022.120109 10.1016/j.compchemeng.2022.107657 10.1016/j.apenergy.2016.02.108 10.1016/j.apenergy.2019.114448 10.1016/j.jclepro.2019.06.098 10.1016/j.energy.2021.121133 10.1016/j.energy.2022.125351 10.1016/j.energy.2022.124305 10.1504/IJETP.2007.014736 10.1016/j.epsr.2022.108142 10.1016/j.renene.2022.04.086 10.1016/j.applthermaleng.2018.12.035 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.energy.2022.125882 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
ExternalDocumentID | 10_1016_j_energy_2022_125882 S0360544222027682 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AAXKI AAYXX ABFNM ABXDB ADMUD AFJKZ AHHHB AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 G8K HVGLF HZ~ R2- RIG SAC SEW WUQ |
ID | FETCH-LOGICAL-c306t-b4415b39b3e9d6e39d8c4b32a73f27b11105b88bd2a354fd76e3426666f459633 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 |
IngestDate | Thu Sep 26 17:02:37 EDT 2024 Fri Feb 23 02:37:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | AA-CAES First and second law analysis Operational mode optimization Dynamic modeling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-b4415b39b3e9d6e39d8c4b32a73f27b11105b88bd2a354fd76e3426666f459633 |
ParticipantIDs | crossref_primary_10_1016_j_energy_2022_125882 elsevier_sciencedirect_doi_10_1016_j_energy_2022_125882 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-15 |
PublicationDateYYYYMMDD | 2023-01-15 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Saira, Muhammad, Muhammad, Mustafa, Salman, Asif (bib1) 2022; 156 Magesh, Devi, Lakshmanan (bib9) 2022; 210 Kim, Song, Kim, Ro (bib46) 2002; 124 Olabi, Tabbi, Mohamad, Mohammad, Abdul (bib14) 2021; 34 Asmae (bib12) 2022; 192 Jiang, Zhu, Wang, Wei, Shang, Dai (bib15) 2022; 322 Wu, Bai, Wei, Chen, Mei (bib33) 2021; 233 Nicolas, Mostafa, Reza, Richard, Mathieu (bib35) 2021; 288 Morteza, Seyed (bib4) 2022; 49 Wolf, Francesco, Tuschy, Sebastian (bib21) 2021; 249 Guo, Xu, Zhu, Zhou, Chen (bib36) 2022; 244 Marcus, Daniel, Roland, Yan (bib23) 2016; 170 Simone, Aldo, Stefano, Andrea (bib39) 2021; 243 Li, Miao, Luo, Yin, Han, Wang (bib40) 2020; 261 Song, Peng, Fang, Han, Deng, Xu, Liang, Hou, Wu (bib37) 2020; 19 Rice, Li (bib25) 2021; 1 Perry (bib30) 2022; 1 Li, Liu, Li (bib8) 2022; 159 Farayi, Shoaib, Mohammad, Saber (bib18) 2021; 33 Renewables (bib7) 2015 Manojit, Basab (bib3) 2022; 193 Kan, Zeng, Meng, Wang, Xina, Yang, Tesren (bib11) 2021; 48 Guo, Xu, Zhang, Liang, Tang, Zhang, Zuo, Chen (bib44) 2019; 149 Gouda, Mustapha, Thibault, Fan, Luo (bib17) 2022; 254 Chen, Zhang, Yang, Xie, Ye (bib43) 2022; 261 Juan, Abdolrahim, Hamid, Bert, Wen, Yang (bib5) 2022; 321 Gayathri, Prasanna, Velraj, Wang (bib6) 2016; 62 Wolf, Budt (bib27) 2014; 125 Karakurt, Ozsari, Bashan (bib32) 2022; 37 Roos, Haselbacher (bib19) 2022; 163 Wu, Bai, Wei, Chen, Mei (bib31) 2021; 233 Luis, Nestor (bib16) 2022; 252 (bib24) 2014; 2 Mahmoud, Ramadan, Olabi, Pullen, Naher (bib13) 2020; 210 (bib26) 2011 Dong, Shi (bib10) 2019; 233 Gay (bib22) 1948; 2 Zhou, Zhang, Song, Feng (bib29) 2018; 152 Lukasz, Piotr, Krzysztof, Sotirios, Emmanuel, Wojciech (bib38) 2017; 138 Li, Chen, Xue, Guo, Wang, Xie, Mei (bib34) 2022; 248 Jakiel, Zunft, Nowi (bib28) 2007; 5 Shoaib, Mohammad, Farayi, Saber, Bach (bib20) 2021; 43 Zeeshan, Ugur (bib2) 2022; 194 Guo, Xu, Zhang, Liang, Wang, Chen (bib41) 2021; 283 Hamidreza, Wang, Michael (bib42) 2020; 276 Cui (bib45) 2008 Zeeshan (10.1016/j.energy.2022.125882_bib2) 2022; 194 Wolf (10.1016/j.energy.2022.125882_bib27) 2014; 125 Renewables (10.1016/j.energy.2022.125882_bib7) 2015 Dong (10.1016/j.energy.2022.125882_bib10) 2019; 233 Saira (10.1016/j.energy.2022.125882_bib1) 2022; 156 Manojit (10.1016/j.energy.2022.125882_bib3) 2022; 193 Morteza (10.1016/j.energy.2022.125882_bib4) 2022; 49 Magesh (10.1016/j.energy.2022.125882_bib9) 2022; 210 Guo (10.1016/j.energy.2022.125882_bib41) 2021; 283 Gay (10.1016/j.energy.2022.125882_bib22) 1948; 2 Juan (10.1016/j.energy.2022.125882_bib5) 2022; 321 Song (10.1016/j.energy.2022.125882_bib37) 2020; 19 Wu (10.1016/j.energy.2022.125882_bib33) 2021; 233 Simone (10.1016/j.energy.2022.125882_bib39) 2021; 243 Farayi (10.1016/j.energy.2022.125882_bib18) 2021; 33 Luis (10.1016/j.energy.2022.125882_bib16) 2022; 252 Li (10.1016/j.energy.2022.125882_bib40) 2020; 261 Gouda (10.1016/j.energy.2022.125882_bib17) 2022; 254 (10.1016/j.energy.2022.125882_bib26) 2011 Zhou (10.1016/j.energy.2022.125882_bib29) 2018; 152 Rice (10.1016/j.energy.2022.125882_bib25) 2021; 1 Asmae (10.1016/j.energy.2022.125882_bib12) 2022; 192 Jiang (10.1016/j.energy.2022.125882_bib15) 2022; 322 Wu (10.1016/j.energy.2022.125882_bib31) 2021; 233 Li (10.1016/j.energy.2022.125882_bib34) 2022; 248 (10.1016/j.energy.2022.125882_bib24) 2014; 2 Perry (10.1016/j.energy.2022.125882_bib30) 2022; 1 Olabi (10.1016/j.energy.2022.125882_bib14) 2021; 34 Li (10.1016/j.energy.2022.125882_bib8) 2022; 159 Mahmoud (10.1016/j.energy.2022.125882_bib13) 2020; 210 Cui (10.1016/j.energy.2022.125882_bib45) 2008 Gayathri (10.1016/j.energy.2022.125882_bib6) 2016; 62 Hamidreza (10.1016/j.energy.2022.125882_bib42) 2020; 276 Kan (10.1016/j.energy.2022.125882_bib11) 2021; 48 Wolf (10.1016/j.energy.2022.125882_bib21) 2021; 249 Karakurt (10.1016/j.energy.2022.125882_bib32) 2022; 37 Marcus (10.1016/j.energy.2022.125882_bib23) 2016; 170 Nicolas (10.1016/j.energy.2022.125882_bib35) 2021; 288 Shoaib (10.1016/j.energy.2022.125882_bib20) 2021; 43 Guo (10.1016/j.energy.2022.125882_bib36) 2022; 244 Chen (10.1016/j.energy.2022.125882_bib43) 2022; 261 Jakiel (10.1016/j.energy.2022.125882_bib28) 2007; 5 Guo (10.1016/j.energy.2022.125882_bib44) 2019; 149 Lukasz (10.1016/j.energy.2022.125882_bib38) 2017; 138 Roos (10.1016/j.energy.2022.125882_bib19) 2022; 163 Kim (10.1016/j.energy.2022.125882_bib46) 2002; 124 |
References_xml | – volume: 49 year: 2022 ident: bib4 article-title: Thermodynamic and economic analysis of a novel combination of theheliostat solar feld with compressed air energy storage (CAES); a case study at San Francisco, USA publication-title: J Energy Storage contributor: fullname: Seyed – volume: 2 start-page: 9 year: 2014 ident: bib24 article-title: Storage-as-service model takes off in the US publication-title: J Energy Storage – volume: 233 start-page: 490 year: 2019 end-page: 500 ident: bib10 article-title: Regional differences study of renewable energy performance: a case of wind power in China publication-title: J Clean Prod contributor: fullname: Shi – volume: 288 year: 2021 ident: bib35 article-title: Analytical expression for the evaluation of multi-stage adiabatic-compressed air energy storage (A-CAES) systems cycle efficiency publication-title: Appl Energy contributor: fullname: Mathieu – volume: 283 year: 2021 ident: bib41 article-title: Dynamic characteristics and control of supercritical compressed air energy storage systems publication-title: Appl Energy contributor: fullname: Chen – volume: 170 start-page: 250 year: 2016 end-page: 268 ident: bib23 article-title: A review on compressed air energy storage: basic principles, past milestones and recent developments publication-title: Appl Energy contributor: fullname: Yan – volume: 210 year: 2020 ident: bib13 article-title: A review of mechanical energy storage systems combined with wind and solar applications publication-title: Energy Convers Manag contributor: fullname: Naher – volume: 261 year: 2020 ident: bib40 article-title: Dynamic modelling and techno-economic analysis of adiabatic compressed air energy storage for emergency back-up power in supporting microgrid publication-title: Appl Energy contributor: fullname: Wang – volume: 48 year: 2021 ident: bib11 article-title: The linkage between renewable energy potential and sustainable development: understanding solar energy variability and photovoltaic power potential in Tibet, China publication-title: Sustain Energy Technol Assessments contributor: fullname: Tesren – volume: 1 start-page: 204 year: 2022 end-page: 217 ident: bib30 article-title: Isothermal compressed air energy storage (i-CAES) system publication-title: Encyclopedia of Energy Storage contributor: fullname: Perry – volume: 233 year: 2021 ident: bib31 article-title: Optimal bidding and scheduling of AA-CAES based energy hub considering cascaded consumption of heat publication-title: Energy contributor: fullname: Mei – volume: 243 year: 2021 ident: bib39 article-title: Small-scale adiabatic compressed air energy storage: control strategy analysis via dynamic modelling publication-title: Energy Convers Manag contributor: fullname: Andrea – volume: 210 year: 2022 ident: bib9 article-title: Measurement and simulation of power quality issues in grid connected wind farms publication-title: Elec Power Syst Res contributor: fullname: Lakshmanan – volume: 249 year: 2021 ident: bib21 article-title: Coupled power plant and geostorage simulations of porous media compressed air energy storage (PM-CAES) publication-title: Energy Convers Manag contributor: fullname: Sebastian – volume: 276 year: 2020 ident: bib42 article-title: Dynamic analysis of a low-temperature adiabatic compressed air energy storage system publication-title: J Clean Prod contributor: fullname: Michael – volume: 149 start-page: 262 year: 2019 end-page: 274 ident: bib44 article-title: Off-design performance and an optimal operation strategy for the multistage compression process in adiabatic compressed air energy storage systems publication-title: Appl Therm Eng contributor: fullname: Chen – volume: 159 year: 2022 ident: bib8 article-title: Optimal design of a hybrid renewable energy system with grid connection and comparison of techno-economic performances with an off-grid system: a case study of West China publication-title: Comput Chem Eng contributor: fullname: Li – year: 2011 ident: bib26 publication-title: Large energy storage systems handbook – volume: 1 start-page: 145 year: 2021 end-page: 152 ident: bib25 article-title: Optimal efficiency-power tradeoff for an air motor/compressor with volume varying heat transfer capability publication-title: ASME symposium on fluid power and motion control contributor: fullname: Li – volume: 37 start-page: 74 year: 2022 end-page: 86 ident: bib32 article-title: Exergetic performance analysis of high-pressure air systems on ships publication-title: Int J Exergy contributor: fullname: Bashan – volume: 192 start-page: 405 year: 2022 end-page: 419 ident: bib12 article-title: Financial and economic modeling of large-scale gravity energy storage system publication-title: Renew Energy contributor: fullname: Asmae – volume: 254 year: 2022 ident: bib17 article-title: Flow and heat transfer characteristics of air compression in a liquid piston for compressed air energy storage publication-title: Energy contributor: fullname: Luo – volume: 43 year: 2021 ident: bib20 article-title: Thermal modeling and triple objective optimization of a new compressed air energy storage system integrated with Rankine cycle, PEM fuel cell, and thermoelectric unit publication-title: Sustain Energy Technol Assessments contributor: fullname: Bach – volume: 5 start-page: 296 year: 2007 end-page: 306 ident: bib28 article-title: Adiabatic compressed air energy storage plants for efficient peak load power supply from wind energy: the European project AACAES publication-title: Int J Energy Technol Pol contributor: fullname: Nowi – volume: 252 year: 2022 ident: bib16 article-title: Optimal management of a mega pumped hydro storage system under stochastic hourly electricity prices in the Iberian Peninsula publication-title: Energy contributor: fullname: Nestor – volume: 261 year: 2022 ident: bib43 article-title: Dynamic simulation of a Re-compressed adiabatic compressed air energy storage (RA-CAES) system publication-title: Energy contributor: fullname: Ye – year: 2008 ident: bib45 article-title: Study and application on real-time dynamic simulation model for heavy-duty gas turbine combined cycle power unit contributor: fullname: Cui – volume: 248 year: 2022 ident: bib34 article-title: Multi-mode optimal operation of advanced adiabatic compressed air energy storage: explore its value with condenser operation publication-title: Energy contributor: fullname: Mei – volume: 62 start-page: 895 year: 2016 end-page: 907 ident: bib6 article-title: A review on compressed air energy storage – a pathway for smart grid and polygeneration publication-title: Renew Sustain Energy Rev contributor: fullname: Wang – volume: 125 start-page: 158 year: 2014 end-page: 164 ident: bib27 article-title: LTA-CAES – a low-temperature approach to adiabatic compressed air energy storage publication-title: Appl Energy contributor: fullname: Budt – volume: 194 start-page: 805 year: 2022 end-page: 821 ident: bib2 article-title: Renewable, non-renewable energy consumption and income in top ten renewable energy-consuming countries: advanced Fourier based panel data approaches publication-title: Renew Energy contributor: fullname: Ugur – volume: 156 year: 2022 ident: bib1 article-title: An integrated future approach for the energy security of Pakistan: replacement of fossil fuels with syngas for better environment and socio-economic development publication-title: Renew Sustain Energy Rev contributor: fullname: Asif – volume: 33 year: 2021 ident: bib18 article-title: Thermodynamic modeling and comparative analysis of a compressed air energy storage system boosted with thermoelectric unit publication-title: J Energy Storage contributor: fullname: Saber – volume: 233 year: 2021 ident: bib33 article-title: Optimal bidding and scheduling of AA-CAES based energy hub considering cascaded consumption of heat publication-title: Energy contributor: fullname: Mei – volume: 19 year: 2020 ident: bib37 article-title: Thermodynamic analysis and algorithm optimization of a multi-stage compression adiabatic compressed air energy storage system publication-title: Therm Sci Eng Prog contributor: fullname: Wu – volume: 193 start-page: 895 year: 2022 end-page: 912 ident: bib3 article-title: Impact of demand flexibility and tiered resilience on solar photovoltaic adoption in humanitarian settlements publication-title: Renew Energy contributor: fullname: Basab – volume: 322 year: 2022 ident: bib15 article-title: A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries publication-title: Appl Energy contributor: fullname: Dai – year: 2015 ident: bib7 article-title: Global status report contributor: fullname: Renewables – volume: 152 start-page: 162 year: 2018 end-page: 167 ident: bib29 article-title: Comparison analysis of different compressed air energy storage systems publication-title: Energy Proc contributor: fullname: Feng – volume: 321 year: 2022 ident: bib5 article-title: CFD assessment of wind energy potential for generic high-rise buildings in close proximity: impact of building arrangement and height publication-title: Appl Energy contributor: fullname: Yang – volume: 34 year: 2021 ident: bib14 article-title: Compressed air energy storage systems: components and operating parameters – a review publication-title: J Energy Storage contributor: fullname: Abdul – volume: 2 start-page: 896 year: 1948 ident: bib22 publication-title: Means for storing fluids for power generation contributor: fullname: Gay – volume: 244 year: 2022 ident: bib36 article-title: Thermal-mechanical coefficient analysis of adiabatic compressor and expander in compressed air energy storage systems publication-title: Energy contributor: fullname: Chen – volume: 163 year: 2022 ident: bib19 article-title: Analytical modeling of advanced adiabatic compressed air energy storage: literature review and new models publication-title: Renew Sustain Energy Rev contributor: fullname: Haselbacher – volume: 138 start-page: 12 year: 2017 end-page: 18 ident: bib38 article-title: Energy and exergy analysis of adiabatic compressed air energy storage system publication-title: Energy contributor: fullname: Wojciech – volume: 124 start-page: 510 year: 2002 end-page: 516 ident: bib46 article-title: Dynamic simulation of full startup procedure of heavy-duty publication-title: J Eng Gas Turbines Power contributor: fullname: Ro – volume: 248 year: 2022 ident: 10.1016/j.energy.2022.125882_bib34 article-title: Multi-mode optimal operation of advanced adiabatic compressed air energy storage: explore its value with condenser operation publication-title: Energy doi: 10.1016/j.energy.2022.123600 contributor: fullname: Li – volume: 2 start-page: 896 issue: 433 year: 1948 ident: 10.1016/j.energy.2022.125882_bib22 publication-title: Means for storing fluids for power generation contributor: fullname: Gay – volume: 322 year: 2022 ident: 10.1016/j.energy.2022.125882_bib15 article-title: A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.119502 contributor: fullname: Jiang – volume: 138 start-page: 12 year: 2017 ident: 10.1016/j.energy.2022.125882_bib38 article-title: Energy and exergy analysis of adiabatic compressed air energy storage system publication-title: Energy doi: 10.1016/j.energy.2017.07.055 contributor: fullname: Lukasz – volume: 252 year: 2022 ident: 10.1016/j.energy.2022.125882_bib16 article-title: Optimal management of a mega pumped hydro storage system under stochastic hourly electricity prices in the Iberian Peninsula publication-title: Energy contributor: fullname: Luis – volume: 33 year: 2021 ident: 10.1016/j.energy.2022.125882_bib18 article-title: Thermodynamic modeling and comparative analysis of a compressed air energy storage system boosted with thermoelectric unit publication-title: J Energy Storage contributor: fullname: Farayi – volume: 193 start-page: 895 year: 2022 ident: 10.1016/j.energy.2022.125882_bib3 article-title: Impact of demand flexibility and tiered resilience on solar photovoltaic adoption in humanitarian settlements publication-title: Renew Energy doi: 10.1016/j.renene.2022.05.091 contributor: fullname: Manojit – volume: 321 year: 2022 ident: 10.1016/j.energy.2022.125882_bib5 article-title: CFD assessment of wind energy potential for generic high-rise buildings in close proximity: impact of building arrangement and height publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.119328 contributor: fullname: Juan – volume: 163 year: 2022 ident: 10.1016/j.energy.2022.125882_bib19 article-title: Analytical modeling of advanced adiabatic compressed air energy storage: literature review and new models publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2022.112464 contributor: fullname: Roos – volume: 19 year: 2020 ident: 10.1016/j.energy.2022.125882_bib37 article-title: Thermodynamic analysis and algorithm optimization of a multi-stage compression adiabatic compressed air energy storage system publication-title: Therm Sci Eng Prog contributor: fullname: Song – volume: 152 start-page: 162 year: 2018 ident: 10.1016/j.energy.2022.125882_bib29 article-title: Comparison analysis of different compressed air energy storage systems publication-title: Energy Proc doi: 10.1016/j.egypro.2018.09.075 contributor: fullname: Zhou – volume: 34 year: 2021 ident: 10.1016/j.energy.2022.125882_bib14 article-title: Compressed air energy storage systems: components and operating parameters – a review publication-title: J Energy Storage doi: 10.1016/j.est.2020.102000 contributor: fullname: Olabi – volume: 124 start-page: 510 year: 2002 ident: 10.1016/j.energy.2022.125882_bib46 article-title: Dynamic simulation of full startup procedure of heavy-duty publication-title: J Eng Gas Turbines Power doi: 10.1115/1.1473150 contributor: fullname: Kim – year: 2011 ident: 10.1016/j.energy.2022.125882_bib26 – volume: 125 start-page: 158 year: 2014 ident: 10.1016/j.energy.2022.125882_bib27 article-title: LTA-CAES – a low-temperature approach to adiabatic compressed air energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.03.013 contributor: fullname: Wolf – volume: 62 start-page: 895 year: 2016 ident: 10.1016/j.energy.2022.125882_bib6 article-title: A review on compressed air energy storage – a pathway for smart grid and polygeneration publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.05.002 contributor: fullname: Gayathri – volume: 244 year: 2022 ident: 10.1016/j.energy.2022.125882_bib36 article-title: Thermal-mechanical coefficient analysis of adiabatic compressor and expander in compressed air energy storage systems publication-title: Energy doi: 10.1016/j.energy.2021.122993 contributor: fullname: Guo – volume: 194 start-page: 805 year: 2022 ident: 10.1016/j.energy.2022.125882_bib2 article-title: Renewable, non-renewable energy consumption and income in top ten renewable energy-consuming countries: advanced Fourier based panel data approaches publication-title: Renew Energy doi: 10.1016/j.renene.2022.05.156 contributor: fullname: Zeeshan – volume: 210 year: 2020 ident: 10.1016/j.energy.2022.125882_bib13 article-title: A review of mechanical energy storage systems combined with wind and solar applications publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.112670 contributor: fullname: Mahmoud – volume: 283 year: 2021 ident: 10.1016/j.energy.2022.125882_bib41 article-title: Dynamic characteristics and control of supercritical compressed air energy storage systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.116294 contributor: fullname: Guo – volume: 276 year: 2020 ident: 10.1016/j.energy.2022.125882_bib42 article-title: Dynamic analysis of a low-temperature adiabatic compressed air energy storage system publication-title: J Clean Prod contributor: fullname: Hamidreza – volume: 37 start-page: 74 year: 2022 ident: 10.1016/j.energy.2022.125882_bib32 article-title: Exergetic performance analysis of high-pressure air systems on ships publication-title: Int J Exergy doi: 10.1504/IJEX.2022.120109 contributor: fullname: Karakurt – volume: 43 year: 2021 ident: 10.1016/j.energy.2022.125882_bib20 article-title: Thermal modeling and triple objective optimization of a new compressed air energy storage system integrated with Rankine cycle, PEM fuel cell, and thermoelectric unit publication-title: Sustain Energy Technol Assessments contributor: fullname: Shoaib – volume: 249 year: 2021 ident: 10.1016/j.energy.2022.125882_bib21 article-title: Coupled power plant and geostorage simulations of porous media compressed air energy storage (PM-CAES) publication-title: Energy Convers Manag contributor: fullname: Wolf – volume: 159 year: 2022 ident: 10.1016/j.energy.2022.125882_bib8 article-title: Optimal design of a hybrid renewable energy system with grid connection and comparison of techno-economic performances with an off-grid system: a case study of West China publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2022.107657 contributor: fullname: Li – volume: 288 year: 2021 ident: 10.1016/j.energy.2022.125882_bib35 article-title: Analytical expression for the evaluation of multi-stage adiabatic-compressed air energy storage (A-CAES) systems cycle efficiency publication-title: Appl Energy contributor: fullname: Nicolas – volume: 170 start-page: 250 year: 2016 ident: 10.1016/j.energy.2022.125882_bib23 article-title: A review on compressed air energy storage: basic principles, past milestones and recent developments publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.02.108 contributor: fullname: Marcus – volume: 243 year: 2021 ident: 10.1016/j.energy.2022.125882_bib39 article-title: Small-scale adiabatic compressed air energy storage: control strategy analysis via dynamic modelling publication-title: Energy Convers Manag contributor: fullname: Simone – volume: 261 year: 2020 ident: 10.1016/j.energy.2022.125882_bib40 article-title: Dynamic modelling and techno-economic analysis of adiabatic compressed air energy storage for emergency back-up power in supporting microgrid publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114448 contributor: fullname: Li – volume: 233 start-page: 490 year: 2019 ident: 10.1016/j.energy.2022.125882_bib10 article-title: Regional differences study of renewable energy performance: a case of wind power in China publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.06.098 contributor: fullname: Dong – volume: 156 year: 2022 ident: 10.1016/j.energy.2022.125882_bib1 article-title: An integrated future approach for the energy security of Pakistan: replacement of fossil fuels with syngas for better environment and socio-economic development publication-title: Renew Sustain Energy Rev contributor: fullname: Saira – volume: 233 year: 2021 ident: 10.1016/j.energy.2022.125882_bib31 article-title: Optimal bidding and scheduling of AA-CAES based energy hub considering cascaded consumption of heat publication-title: Energy doi: 10.1016/j.energy.2021.121133 contributor: fullname: Wu – volume: 261 year: 2022 ident: 10.1016/j.energy.2022.125882_bib43 article-title: Dynamic simulation of a Re-compressed adiabatic compressed air energy storage (RA-CAES) system publication-title: Energy doi: 10.1016/j.energy.2022.125351 contributor: fullname: Chen – volume: 254 year: 2022 ident: 10.1016/j.energy.2022.125882_bib17 article-title: Flow and heat transfer characteristics of air compression in a liquid piston for compressed air energy storage publication-title: Energy doi: 10.1016/j.energy.2022.124305 contributor: fullname: Gouda – volume: 2 start-page: 9 issue: 2 year: 2014 ident: 10.1016/j.energy.2022.125882_bib24 article-title: Storage-as-service model takes off in the US publication-title: J Energy Storage – volume: 1 start-page: 145 year: 2021 ident: 10.1016/j.energy.2022.125882_bib25 article-title: Optimal efficiency-power tradeoff for an air motor/compressor with volume varying heat transfer capability publication-title: ASME symposium on fluid power and motion control contributor: fullname: Rice – year: 2015 ident: 10.1016/j.energy.2022.125882_bib7 contributor: fullname: Renewables – volume: 5 start-page: 296 issue: 3 year: 2007 ident: 10.1016/j.energy.2022.125882_bib28 article-title: Adiabatic compressed air energy storage plants for efficient peak load power supply from wind energy: the European project AACAES publication-title: Int J Energy Technol Pol doi: 10.1504/IJETP.2007.014736 contributor: fullname: Jakiel – volume: 210 year: 2022 ident: 10.1016/j.energy.2022.125882_bib9 article-title: Measurement and simulation of power quality issues in grid connected wind farms publication-title: Elec Power Syst Res doi: 10.1016/j.epsr.2022.108142 contributor: fullname: Magesh – volume: 48 year: 2021 ident: 10.1016/j.energy.2022.125882_bib11 article-title: The linkage between renewable energy potential and sustainable development: understanding solar energy variability and photovoltaic power potential in Tibet, China publication-title: Sustain Energy Technol Assessments contributor: fullname: Kan – volume: 192 start-page: 405 year: 2022 ident: 10.1016/j.energy.2022.125882_bib12 article-title: Financial and economic modeling of large-scale gravity energy storage system publication-title: Renew Energy doi: 10.1016/j.renene.2022.04.086 contributor: fullname: Asmae – volume: 49 year: 2022 ident: 10.1016/j.energy.2022.125882_bib4 article-title: Thermodynamic and economic analysis of a novel combination of theheliostat solar feld with compressed air energy storage (CAES); a case study at San Francisco, USA publication-title: J Energy Storage contributor: fullname: Morteza – volume: 1 start-page: 204 year: 2022 ident: 10.1016/j.energy.2022.125882_bib30 article-title: Isothermal compressed air energy storage (i-CAES) system publication-title: Encyclopedia of Energy Storage contributor: fullname: Perry – volume: 149 start-page: 262 year: 2019 ident: 10.1016/j.energy.2022.125882_bib44 article-title: Off-design performance and an optimal operation strategy for the multistage compression process in adiabatic compressed air energy storage systems publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2018.12.035 contributor: fullname: Guo – year: 2008 ident: 10.1016/j.energy.2022.125882_bib45 contributor: fullname: Cui – volume: 233 year: 2021 ident: 10.1016/j.energy.2022.125882_bib33 article-title: Optimal bidding and scheduling of AA-CAES based energy hub considering cascaded consumption of heat publication-title: Energy doi: 10.1016/j.energy.2021.121133 contributor: fullname: Wu |
SSID | ssj0005899 |
Score | 2.4898307 |
Snippet | Compressed air energy storage (CAES) possesses great application potential. The dynamic characteristic of the compression process is meaningful for the... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 125882 |
SubjectTerms | AA-CAES Dynamic modeling First and second law analysis Operational mode optimization |
Title | First and second law analysis and operational mode optimization of the compression process for an advanced adiabatic compressed air energy storage based on the established comprehensive dynamic model |
URI | https://dx.doi.org/10.1016/j.energy.2022.125882 |
Volume | 263 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGGBBPMVbN7Ca0thOnBEhqkJFBx6CLYprRwRBWrVFiIW_x9_iLnZ4SIiBKcrp7MSxcy99d8fYgS5kktpUcW2E5HLojrjpCMULqVwRCdVxBcUhLwZx70ae36m7FjtpcmEIVhlkv5fptbQOlHb4mu1xWbavUPaivUEhDHStYk1yWKL6wzN9-PYN5qHrHpLEzIm7SZ-rMV6uzq9DLzGKDlHTax39rp6-qZzuMlsKtiIc-9dZYS1XrbKFJpV4uso2Tr_S1JAx_KfTNfbeLdGqg7yyMCWP18Jj_oK3vgBJTR-N3SQEAoHa4SBhVj6FrEwYFYCWIRDg3ANlKxj7lAJAKxcngAY8AFTcwFDd109uIpYT8MsGgl-i0ALSl_jYqp4YdVHu8fg2DLv3SHqwr1WOq6vf6XGd3XRPr096PLRs4EP0PWbckHtmRGqES23sRGr1UBoR5YkoosSgYD1SRmtjo1woWdgEechGiGM8HCgLxAabq0aV22SAto1NhDApziJdp0iVjqmapaEahipPtxhvdiob-8ocWQNZe8j8EjPa2czv7BZLmu3MfpywDJXHnyO3_z1yhy1Se3oK2XTULpubTZ7dHhoxM7Nfn9J9Nn981u8N6Nq_vO1_AJmM98s |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDLAgnuLNDaymNLYTZ0QVVYGWBZDYorh2RBCkVVuEWPh7_C3uYoeHhBgYY50dO3buvjt9d2bsSBcySW2quDZCcjl0J9y0heKFVK6IhGq7guKQg6u4dysv7tTdHOs0uTBEqwy63-v0WluHllb4mq1xWbauUfci3qAQBrpWsUY9vCAJH-OhPn77xvPQ9SWSJM1JvMmfq0lerk6wQzcxio7R1Gsd_W6fvtmc7gpbDmARTv18Vtmcq9bYYpNLPF1jm2dfeWooGH7U6Tp775YI6yCvLEzJ5bXwmL_go69AUrePxm4SIoFA9-Fgw6x8CmmZMCoAoSEQ49wzZSsY-5wCQJiLA0DDHgCqbmCo8OunNDWWE_DLBuJfotYCMpj42qoeGI1R7gn5NnS791R6sK9Vjqur5_S4wW67ZzedHg93NvAhOh8zbsg_MyI1wqU2diK1eiiNiPJEFFFiULOeKKO1sVEulCxsgjIEEuIYTwcqA7HJ5qtR5bYYILixiRAmxVGkaxep0jGVszRUxFDl6TbjzU5lY1-aI2s4aw-ZX2JGO5v5nd1mSbOd2Y8jlqH1-LPnzr97HrLF3s2gn_XPry532RLdVU_xm7baY_OzybPbR0QzMwf1if0Amrz3wQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First+and+second+law+analysis+and+operational+mode+optimization+of+the+compression+process+for+an+advanced+adiabatic+compressed+air+energy+storage+based+on+the+established+comprehensive+dynamic+model&rft.jtitle=Energy+%28Oxford%29&rft.au=Chen%2C+Wei&rft.au=Bai%2C+Jianshu&rft.au=Wang%2C+Guohua&rft.au=Xie%2C+Ningning&rft.date=2023-01-15&rft.issn=0360-5442&rft.volume=263&rft.spage=125882&rft_id=info:doi/10.1016%2Fj.energy.2022.125882&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2022_125882 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |