Binary neural networks: A survey
•We summarize the binary neural network methods and categorize them into the naive binarization and the optimized binarization.•The binary neural networks are mainly optimized using techniques including minimizing quantization error, improving the loss function, and reducing the gradient error.•We a...
Saved in:
Published in | Pattern recognition Vol. 105; p. 107281 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We summarize the binary neural network methods and categorize them into the naive binarization and the optimized binarization.•The binary neural networks are mainly optimized using techniques including minimizing quantization error, improving the loss function, and reducing the gradient error.•We also discuss the hardware-friendly methods and the useful tricks of training binary neural networks.•We present the common datasets and network structures of evaluation, and compare the performance on different tasks.•We conclude and point out the future research trends.
The binary neural network, largely saving the storage and computation, serves as a promising technique for deploying deep models on resource-limited devices. However, the binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network. To address these issues, a variety of algorithms have been proposed, and achieved satisfying progress in recent years. In this paper, we present a comprehensive survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error. We also investigate other practical aspects of binary neural networks such as the hardware-friendly design and the training tricks. Then, we give the evaluation and discussions on different tasks, including image classification, object detection and semantic segmentation. Finally, the challenges that may be faced in future research are prospected. |
---|---|
AbstractList | •We summarize the binary neural network methods and categorize them into the naive binarization and the optimized binarization.•The binary neural networks are mainly optimized using techniques including minimizing quantization error, improving the loss function, and reducing the gradient error.•We also discuss the hardware-friendly methods and the useful tricks of training binary neural networks.•We present the common datasets and network structures of evaluation, and compare the performance on different tasks.•We conclude and point out the future research trends.
The binary neural network, largely saving the storage and computation, serves as a promising technique for deploying deep models on resource-limited devices. However, the binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network. To address these issues, a variety of algorithms have been proposed, and achieved satisfying progress in recent years. In this paper, we present a comprehensive survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error. We also investigate other practical aspects of binary neural networks such as the hardware-friendly design and the training tricks. Then, we give the evaluation and discussions on different tasks, including image classification, object detection and semantic segmentation. Finally, the challenges that may be faced in future research are prospected. |
ArticleNumber | 107281 |
Author | Qin, Haotong Sebe, Nicu Bai, Xiao Gong, Ruihao Liu, Xianglong Song, Jingkuan |
Author_xml | – sequence: 1 givenname: Haotong surname: Qin fullname: Qin, Haotong organization: State Key Lab of Software Development Environment, Beihang University, Beijing, China – sequence: 2 givenname: Ruihao surname: Gong fullname: Gong, Ruihao organization: State Key Lab of Software Development Environment, Beihang University, Beijing, China – sequence: 3 givenname: Xianglong orcidid: 0000-0001-8425-4195 surname: Liu fullname: Liu, Xianglong email: xlliu@nlsde.buaa.edu.cn organization: State Key Lab of Software Development Environment, Beihang University, Beijing, China – sequence: 4 givenname: Xiao surname: Bai fullname: Bai, Xiao organization: School of Computer Science and Engineering, Beijing Advanced Innovation Center for Big Data and Brain Computing, Jiangxi Research Institute, Beihang University, Beijing, China – sequence: 5 givenname: Jingkuan orcidid: 0000-0002-2549-8322 surname: Song fullname: Song, Jingkuan organization: Center for Future Media and School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 6 givenname: Nicu surname: Sebe fullname: Sebe, Nicu organization: Department of Information Engineering and Computer Science, University of Trento, Trento, Italy |
BookMark | eNqFj11LwzAYhYNMcJv-Ay_6B1rffHRJdyHM4RcMvNHrkKSppNZ0JNlk_96WeuWFXh04h-fAs0Az33uL0DWGAgNe3bTFXiXTvxcEyFhxIvAZmmPBaV5iRmZoDkBxTgnQC7SIsQXAfBjmKLtzXoVT5u0hqG6I9NWHj7jONlk8hKM9XaLzRnXRXv3kEr093L9un_Ldy-PzdrPLDYVVyjWBEkpGsWCgqpoxQnQFTKsGE65po4Upa2I4MG6s0KbSWnNVlUpXRBtR0iVaT78m9DEG20jjkkqu9yko10kMcnSVrZxc5egqJ9cBZr_gfXCfg9d_2O2E2UHs6GyQ0Tjrja1dsCbJund_H3wDeqVw0Q |
CitedBy_id | crossref_primary_10_1109_TPAMI_2023_3272925 crossref_primary_10_3390_electronics10222836 crossref_primary_10_1007_s10846_021_01336_y crossref_primary_10_1109_ACCESS_2025_3547627 crossref_primary_10_3389_frcmn_2022_878170 crossref_primary_10_4316_AECE_2021_03001 crossref_primary_10_1016_j_neucom_2021_07_045 crossref_primary_10_1109_TCAD_2022_3213612 crossref_primary_10_1016_j_smhl_2023_100382 crossref_primary_10_1007_s11280_021_00878_3 crossref_primary_10_1007_s13042_023_01825_6 crossref_primary_10_1016_j_patcog_2024_111061 crossref_primary_10_1016_j_physleta_2022_128008 crossref_primary_10_1016_j_heliyon_2023_e15098 crossref_primary_10_1103_PhysRevApplied_18_014039 crossref_primary_10_1109_TPDS_2022_3170501 crossref_primary_10_1109_TNNLS_2022_3225715 crossref_primary_10_3390_mi12101243 crossref_primary_10_1109_ACCESS_2023_3328622 crossref_primary_10_3390_s23229254 crossref_primary_10_1109_ACCESS_2022_3208091 crossref_primary_10_1016_j_patcog_2024_110788 crossref_primary_10_1109_JIOT_2021_3079164 crossref_primary_10_1007_s10462_023_10464_w crossref_primary_10_1007_s10915_022_02064_7 crossref_primary_10_1038_s41598_021_99191_2 crossref_primary_10_1007_s00138_023_01494_z crossref_primary_10_1109_TETC_2023_3237778 crossref_primary_10_1002_cpe_6276 crossref_primary_10_1109_TII_2021_3139902 crossref_primary_10_1016_j_patcog_2020_107584 crossref_primary_10_1016_j_patcog_2020_107585 crossref_primary_10_1109_LSENS_2023_3273733 crossref_primary_10_1002_lpor_202400936 crossref_primary_10_1007_s10489_020_02125_0 crossref_primary_10_1016_j_neucom_2024_128722 crossref_primary_10_3389_fnins_2022_918793 crossref_primary_10_1364_PRJ_472741 crossref_primary_10_3390_electronics10091025 crossref_primary_10_1016_j_displa_2022_102355 crossref_primary_10_1016_j_engappai_2023_106232 crossref_primary_10_2478_popets_2022_0025 crossref_primary_10_1016_j_chaos_2022_112429 crossref_primary_10_3390_app11199173 crossref_primary_10_1016_j_knosys_2023_111319 crossref_primary_10_1016_j_conbuildmat_2023_130704 crossref_primary_10_1109_TCSII_2023_3241163 crossref_primary_10_1002_cpe_6147 crossref_primary_10_1587_elex_19_20220399 crossref_primary_10_1109_TMM_2022_3233255 crossref_primary_10_1109_TCAD_2022_3197499 crossref_primary_10_1109_ACCESS_2021_3070627 crossref_primary_10_1109_TETC_2024_3365354 crossref_primary_10_1109_TII_2024_3414489 crossref_primary_10_1109_OJCOMS_2024_3425531 crossref_primary_10_1016_j_cviu_2022_103415 crossref_primary_10_1016_j_dcan_2022_10_010 crossref_primary_10_1038_s41467_024_51509_0 crossref_primary_10_1109_TIFS_2023_3274391 crossref_primary_10_1109_TCASAI_2024_3491673 crossref_primary_10_1109_TPAMI_2023_3334614 crossref_primary_10_1145_3631610 crossref_primary_10_3389_fnins_2023_1225871 crossref_primary_10_1038_s41598_024_80272_x crossref_primary_10_1109_ACCESS_2023_3347332 crossref_primary_10_1007_s42044_025_00242_y crossref_primary_10_1063_5_0072913 crossref_primary_10_1109_ACCESS_2022_3175574 crossref_primary_10_1109_TMAG_2023_3315283 crossref_primary_10_1109_TNNLS_2021_3104646 crossref_primary_10_3390_mi12070838 crossref_primary_10_1016_j_mejo_2021_105319 crossref_primary_10_1103_PhysRevApplied_21_054028 crossref_primary_10_1016_j_patcog_2020_107608 crossref_primary_10_1016_j_biosystems_2023_104902 crossref_primary_10_1109_TIP_2021_3127849 crossref_primary_10_1109_TCAD_2021_3075420 crossref_primary_10_1109_MCAS_2021_3071629 crossref_primary_10_1109_TII_2024_3396348 crossref_primary_10_1016_j_asr_2023_02_025 crossref_primary_10_1007_s11633_023_1434_8 crossref_primary_10_3390_s22228694 crossref_primary_10_1109_TCSII_2024_3392600 crossref_primary_10_1016_j_eneco_2022_106049 crossref_primary_10_1016_j_patcog_2020_107611 crossref_primary_10_1109_TCSI_2024_3395442 crossref_primary_10_1109_TVT_2024_3382893 crossref_primary_10_1016_j_future_2022_12_028 crossref_primary_10_1016_j_ijdrr_2024_104435 crossref_primary_10_1145_3527169 crossref_primary_10_1109_JLT_2022_3200827 crossref_primary_10_1088_2634_4386_ac781a crossref_primary_10_1109_ACCESS_2023_3258360 crossref_primary_10_1016_j_patcog_2020_107384 crossref_primary_10_1007_s11119_023_10073_1 crossref_primary_10_3390_electronics11233966 crossref_primary_10_1007_s00521_023_08718_3 crossref_primary_10_1016_j_memori_2023_100025 crossref_primary_10_1109_TGRS_2024_3417286 crossref_primary_10_1117_1_JEI_33_1_013013 crossref_primary_10_3390_app11136232 crossref_primary_10_1364_OL_451335 crossref_primary_10_3390_electronics13152904 crossref_primary_10_1109_JSTSP_2024_3467926 crossref_primary_10_1016_j_micpro_2021_104359 crossref_primary_10_1016_j_patcog_2023_109556 crossref_primary_10_1007_s11042_022_13043_3 crossref_primary_10_1109_TBCAS_2024_3389875 crossref_primary_10_1016_j_patcog_2022_109256 crossref_primary_10_3389_fenvs_2022_946729 crossref_primary_10_1007_s13369_022_06932_0 crossref_primary_10_1109_TCSVT_2022_3146240 crossref_primary_10_1109_TPAMI_2023_3328881 crossref_primary_10_1109_TPAMI_2024_3394390 crossref_primary_10_1177_17543371251324082 crossref_primary_10_1007_s10955_022_02893_8 crossref_primary_10_1016_j_cmpb_2022_106735 crossref_primary_10_1016_j_patcog_2023_109788 crossref_primary_10_1038_s41467_024_55220_y crossref_primary_10_1109_JBHI_2024_3352927 crossref_primary_10_1515_nanoph_2023_0824 crossref_primary_10_1109_TMC_2021_3109940 crossref_primary_10_1093_imaiai_iaad036 crossref_primary_10_3389_fnano_2021_654418 crossref_primary_10_1016_j_aej_2024_01_075 crossref_primary_10_1016_j_vlsi_2024_102337 crossref_primary_10_3390_app11136213 crossref_primary_10_1016_j_patcog_2022_109263 crossref_primary_10_1109_TIP_2022_3216776 crossref_primary_10_1016_j_patcog_2020_107647 crossref_primary_10_3390_math11092112 crossref_primary_10_4271_2022_01_0156 crossref_primary_10_1016_j_patcog_2024_110929 crossref_primary_10_1007_s00521_022_08034_2 crossref_primary_10_1007_s11432_023_3958_4 crossref_primary_10_1016_j_knosys_2022_108962 crossref_primary_10_1145_3581757 crossref_primary_10_1016_j_apgeog_2023_103113 crossref_primary_10_1016_j_vlsi_2022_04_003 crossref_primary_10_1109_TVLSI_2022_3163233 crossref_primary_10_1016_j_patrec_2021_01_015 crossref_primary_10_1016_j_patcog_2022_108861 crossref_primary_10_3390_electronics10243141 crossref_primary_10_1016_j_neucom_2023_127169 crossref_primary_10_1109_TPAMI_2022_3212615 crossref_primary_10_1364_OL_464214 crossref_primary_10_1016_j_displa_2021_102028 crossref_primary_10_1016_j_ijleo_2025_172299 crossref_primary_10_1016_j_neunet_2024_107117 crossref_primary_10_1016_j_procs_2023_08_125 crossref_primary_10_3389_fnins_2023_1233037 crossref_primary_10_1109_TETCI_2023_3251404 crossref_primary_10_1109_JPHOT_2022_3163793 crossref_primary_10_1109_TNANO_2023_3336910 crossref_primary_10_1109_TNNLS_2022_3160939 crossref_primary_10_3390_s21175745 crossref_primary_10_1145_3604802 crossref_primary_10_1109_COMST_2023_3344351 crossref_primary_10_1109_JMASS_2020_3034205 crossref_primary_10_26599_TST_2021_9010084 crossref_primary_10_1109_TCSVT_2024_3398691 crossref_primary_10_1109_TMTT_2023_3293054 crossref_primary_10_3390_app142110025 crossref_primary_10_1002_isaf_1532 crossref_primary_10_1016_j_patcog_2023_109512 crossref_primary_10_1145_3472612 crossref_primary_10_1016_j_patcog_2021_108102 crossref_primary_10_1109_MGRS_2023_3321258 crossref_primary_10_1109_JEDS_2021_3123632 crossref_primary_10_3390_info11110501 crossref_primary_10_3390_electronics13091624 crossref_primary_10_1109_JIOT_2022_3179016 crossref_primary_10_1109_TSG_2023_3286490 crossref_primary_10_1109_ACCESS_2023_3281737 crossref_primary_10_1080_02331934_2023_2239852 crossref_primary_10_1109_TAI_2022_3229280 crossref_primary_10_1109_LSP_2022_3187318 crossref_primary_10_1109_TCSI_2021_3115787 crossref_primary_10_1016_j_eswa_2022_117931 crossref_primary_10_1016_j_eij_2025_100610 crossref_primary_10_1021_acs_jpclett_4c00284 crossref_primary_10_1109_TG_2021_3066245 crossref_primary_10_1088_1674_1056_ac5886 crossref_primary_10_1007_s10489_024_05444_8 crossref_primary_10_1016_j_device_2024_100546 crossref_primary_10_3389_frai_2024_1368569 crossref_primary_10_1109_MIS_2023_3241431 crossref_primary_10_3390_app11156790 crossref_primary_10_1016_j_ins_2024_121668 crossref_primary_10_1109_TCSII_2023_3290230 crossref_primary_10_3390_electronics10161943 crossref_primary_10_1038_s41467_024_44766_6 crossref_primary_10_1002_aelm_202400061 crossref_primary_10_1021_acsaelm_3c00698 crossref_primary_10_1109_JIOT_2023_3321299 crossref_primary_10_1007_s00521_021_06830_w crossref_primary_10_1109_TCSI_2022_3178474 crossref_primary_10_1016_j_patcog_2020_107427 crossref_primary_10_1109_MNANO_2025_3533937 crossref_primary_10_1109_TGRS_2025_3529696 crossref_primary_10_1109_JIOT_2023_3341307 crossref_primary_10_1109_MDAT_2020_3031857 crossref_primary_10_1109_TWC_2023_3297790 crossref_primary_10_1145_3703447 crossref_primary_10_1016_j_patcog_2024_111086 crossref_primary_10_1109_TIFS_2024_3484936 crossref_primary_10_1145_3623402 crossref_primary_10_46300_9106_2021_15_52 crossref_primary_10_1109_TIP_2023_3328565 crossref_primary_10_1016_j_patcog_2024_110444 crossref_primary_10_1016_j_eswa_2024_124599 crossref_primary_10_3390_e23080933 crossref_primary_10_3724_SP_J_1089_2022_18920 crossref_primary_10_1109_ACCESS_2022_3157893 crossref_primary_10_1109_TIFS_2024_3356164 crossref_primary_10_1088_1755_1315_539_1_012102 crossref_primary_10_1109_TIE_2022_3146573 crossref_primary_10_1109_TDSC_2023_3271956 crossref_primary_10_1002_lpor_202200723 crossref_primary_10_1109_TCSI_2024_3397925 crossref_primary_10_1016_j_jvcir_2021_103289 crossref_primary_10_1038_s41598_024_56575_4 crossref_primary_10_1145_3626100 crossref_primary_10_1016_j_dcan_2024_11_013 |
Cites_doi | 10.1016/j.patcog.2018.04.004 10.1109/JSSC.2016.2616357 10.1016/j.patcog.2019.07.002 10.1145/3123266.3129393 10.1109/CVPR42600.2020.00204 10.1016/j.patcog.2016.07.001 10.1007/s40687-018-0177-6 10.1016/j.neucom.2017.09.046 10.1109/5.726791 10.5772/intechopen.79562 10.1145/3020078.3021744 10.1007/978-3-319-10602-1_48 10.1016/j.patcog.2016.08.032 10.1162/neco.1990.2.2.226 10.1109/JETCAS.2019.2910232 10.1007/s11263-009-0275-4 10.1016/j.patcog.2019.107037 10.1049/trit.2018.1026 10.1016/j.patcog.2017.08.029 10.1145/3289602.3293990 10.1016/j.patcog.2017.10.007 10.1145/3020078.3021741 10.1016/j.patcog.2016.07.026 10.1038/nature14539 10.1007/s11265-017-1255-5 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2020.107281 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
ExternalDocumentID | 10_1016_j_patcog_2020_107281 S0031320320300856 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-b20505431840a9d4422b904baf127b3fb8c5d2c7047ce8bc9bbb7a95ab92bc853 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Tue Jul 01 02:36:31 EDT 2025 Thu Apr 24 23:12:37 EDT 2025 Fri Feb 23 02:50:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Model acceleration Binary neural network Network quantization Model compression |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-b20505431840a9d4422b904baf127b3fb8c5d2c7047ce8bc9bbb7a95ab92bc853 |
ORCID | 0000-0002-2549-8322 0000-0001-8425-4195 |
ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2020_107281 crossref_primary_10_1016_j_patcog_2020_107281 elsevier_sciencedirect_doi_10_1016_j_patcog_2020_107281 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yu, Liu, Liu, Yang, Zhang (bib0022) 2019; abs/1909.04839 Lebedev, Ganin, Rakhuba, Oseledets, Lempitsky (bib0043) 2015 Cheng, Yu, Feris, Kumar, Choudhary, Chang (bib0025) 2015 Li, Wang, Liang, Qin, Yan, Fan (bib0065) 2019 Denton, Zaremba, Bruna, LeCun, Fergus (bib0042) 2014 Darabi, Belbahri, Courbariaux, Nia (bib0090) 2018; abs/1812.11800 Nogueira, Penatti, dos Santos (bib0004) 2017; 61 Zhang, Yang, Ye, Hua (bib0061) 2018 Cheng, Wang, Zhou, Zhang (bib0015) 2017; abs/1710.09282 Srinivas, Babu (bib0027) 2015 Pang, Chen, Shi, Feng, Ouyang, Lin (bib0008) 2019 Rastegari, Ordonez, Redmon, Farhadi (bib0058) 2016 Hubara, Courbariaux, Soudry, El-Yaniv, Bengio (bib0057) 2016 Mishra, Nurvitadhi, Cook, Marr (bib0075) 2018 Ren, He, Girshick, Sun (bib0003) 2015 Gong, Liu, Jiang, Li, Hu, Lin, Yu, Yan (bib0063) 2019 Nakahara, Fujii, Sato (bib0117) 2017 Liu, Ding, Xia, Zhang, Gu, Liu, Ji, Doermann (bib0088) 2019 Nakahara, Yonekawa, Sasao, Iwamoto, Motomura (bib0115) 2016 Bulat, Tzimiropoulos, Kossaifi, Pantic (bib0095) 2019; abs/1904.05868 Ding, Chen, Huo (bib0056) 2019; 96 Vanhoucke, Senior, Mao (bib0034) 2011 Zhou, Ni, Zhou, Wen, Wu, Zou (bib0060) 2016; abs/1606.06160 Deng, Dong, Socher, Li, Li, Li (bib0118) 2009 Ge (bib0036) 2018 Chen, Zhang, Wang (bib0053) 2018 Liu, Wu, Luo, Yang, Liu, Cheng (bib0062) 2018 Choi, Wang, Venkataramani, Chuang, Srinivasan, Gopalakrishnan (bib0074) 2018; abs/1805.06085 Jacob, Kligys, Chen, Zhu, Tang, Howard, Adam, Kalenichenko (bib0131) 2018 Fraser, Umuroglu, Gambardella, Blott, Leong, Jahre, Vissers (bib0116) 2017 Lin, Goyal, Girshick, He, Dollar (bib0129) 2017; PP Polino, Pascanu, Alistarh (bib0081) 2018 Chen, Krishna, Emer, Sze (bib0020) 2017; 52 Qin, Gong, Liu, Shen, Wei, Yu, Song (bib0096) 2020 Lecun, Bottou, Bengio, Haffner (bib0107) 1998; 86 Chen, Emer, Sze (bib0018) 2016; PP Zhuang, Shen, Tan, Liu, Reid (bib0122) 2019 Mishra, Marr (bib0082) 2018 Faraone, Fraser, Blott, Leong (bib0077) 2018 Cai, He, Sun, Vasconcelos (bib0089) 2017 Yonekawa, Nakahara (bib0119) 2017 R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava, R. Gupta, Z. Zhang, Accelerating binarized convolutional neural networks with software-programmable fpgas, in: Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. Blott, Preusser, Fraser, Gambardella, Obrien, Umuroglu, Leeser, Vissers (bib0108) 2018; 11 Li, Liu, Zhang, Wang (bib0014) 2020; 98 Guo, Ma, Chen, Li, Xie, Wang (bib0112) 2018 Sun, Yin, Wang, Xu, Wu, Gu (bib0064) 2018; 3 Ma, Zhang, Zheng, Sun (bib0050) 2018 Zhu, Dong, Su (bib0067) 2019 Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (bib0047) 2017; abs/1704.04861 Courbariaux, Bengio, David (bib0059) 2015 Cao, Ma, Xiao, Zhang, Liu, Zhang, Nie, Yang (bib0123) 2019 Sandler, Howard, Zhu, Zhmoginov, Chen (bib0048) 2018 Liang, Yin, Liu, Luk, Wei (bib0100) 2018; 275 Girshick (bib0007) 2015 Wu, Leng, Wang, Hu, Cheng (bib0033) 2016 Netzer, Wang, Coates, Bissacco, Wu, Ng (bib0111) 2011 Zhao, He, Cheng, Hu (bib0037) 2018 Hinton, Vinyals, Dean (bib0051) 2015; abs/1503.02531 Ge, Luo, Zhao, Jin, Zhang (bib0031) 2017 Chen, Yang, Emer, Sze (bib0016) 2019; 9 Lopes, de Aguiar, Souza, Oliveira-Santos (bib0010) 2017; 61 Han, Pool, Tran, Dally (bib0026) 2015 Y. Umuroglu, N.J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, K. Vissers, Finn: a framework for fast, scalable binarized neural network inference, in: Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. Krizhevsky, Sutskever, Hinton (bib0011) 2012 Bai, Wang, Liberty (bib0092) 2019 Zhang, Liu, Liu, Xu, Yu, Ma, Li (bib0021) 2019; abs/1909.06978 Hu, Li, Wang, Zhang, Cheng (bib0038) 2018 Ge, Li, Ye, Luo (bib0009) 2017 Ding, Chin, Liu, Marculescu (bib0085) 2019 Leng, Dou, Li, Zhu, Jin (bib0121) 2017 Wen, Zhang, Xu, Yang, Han (bib0046) 2018; 81 Krishnamoorthi (bib0130) 2018; abs/1806.08342 Li, De, Xu, Studer, Samet, Goldstein (bib0098) 2017 Shen, Liu, Han, Gong, Wang, Xu (bib0078) 2020 Chen, Liu, Shi, Xu, Xu (bib0080) 2018 Hu, Wang, Cheng (bib0073) 2018 He, Zhang, Ren, Sun (bib0028) 2016 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0002) 2015 Sze, Chen, Einer, Suleiman, Zhang (bib0017) 2017 Wu, Wang, Gao, Li (bib0013) 2018; 73 Lin, Gan, Han (bib0066) 2019 Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollr, Zitnick (bib0127) 2014 Jokic, Emery, Benini (bib0110) 2018 Ghasemzadeh, Samragh, Koushanfar (bib0109) 2018 Lin, Zhao, Pan (bib0071) 2017 Bulat, Tzimiropoulos (bib0076) 2019; abs/1909.13863 Martinez, Yang, Bulat, Tzimiropoulos (bib0079) 2020 Han, Mao, Dally (bib0029) 2016 Hou, Yao, Kwok (bib0083) 2017 Lahoud, Achanta, Márquez-Neila, Süsstrunk (bib0094) 2019; abs/1902.00730 Yim, Joo, Bae, Kim (bib0054) 2017 Redmon, Farhadi (bib0099) 2018; abs/1804.02767 Izui, Pentland (bib0024) 1990; 2 Zhou, Redkar, Huang (bib0114) 2017 Kim, Smaragdis (bib0069) 2016; abs/1601.06071 Wu, Wu, Gong, Lv, Chen, Liang, Hu, Liu, Yan (bib0040) 2020 Bethge, Bornstein, Loy, Yang, Meinel (bib0105) 2018; abs/1812.01965 Liu, Liu, Zhang, Yu, Liu, He (bib0023) 2019; abs/1909.09034 Bengio, Léonard, Courville (bib0068) 2013; abs/1308.3432 C. Fu, S. Zhu, H. Su, C.-E. Lee, J. Zhao, Towards fast and energy-efficient binarized neural network inference on fpga, in: Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. H. Yang, M. Fritzsche, C. Bartz, C. Meinel, Bmxnet: an open-source binary neural network implementation based on mxnet, in: Proceedings of the 2017 ACM on Multimedia Conference. Liu, Fieguth, Guo, Wang, Pietikäinen (bib0005) 2017; 62 F. Zhu, R. Gong, F. Yu, X. Liu, Y. Wang, Z. Li, X. Yang, J. Yan, Towards unified int8 training for convolutional neural network, 2019. Deng, Liu, Li, Tao (bib0006) 2018; 77 Yang, Shen, Xing, Tian, Li, Deng, Huang, Hua (bib0093) 2019 Simonyan, Zisserman (bib0012) 2015 Alizadeh, Fernndez-Marqus, Lane, Gal (bib0124) 2019 Jaderberg, Vedaldi, Zisserman (bib0044) 2014 Wang, Lu, Tao, Zhou, Tian (bib0086) 2019 Gupta, Agrawal, Gopalakrishnan, Narayanan (bib0035) 2015 Zhang, Zhou, Lin, Sun (bib0049) 2018 Chen, Krishna, Emer, Sze (bib0019) 2016 Krizhevsky (bib0113) 2012 Zhou, Yao, Guo, Xu, Chen (bib0084) 2017 Wang, Hu, Zhang, Zhang, Liu, Cheng (bib0072) 2018 Zhuang, Shen, Tan, Liu, Reid (bib0125) 2018 Zagoruyko, Komodakis (bib0055) 2017 Xu, Cheung (bib0097) 2019; abs/1909.11366 Ren, He, Girshick, Jian (bib0128) 2015 Kung, Zhang, van der Wal, Chai, Mukhopadhyay (bib0120) 2018 Xu, Hsu, Huang (bib0052) 2018 He, Zhang, Sun (bib0030) 2017 Chen, Wang, Pan (bib0039) 2019 Everingham, Van Gool, Williams, Winn, Zisserman (bib0126) 2010; 88 Lebedev, Lempitsky (bib0045) 2016 Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bib0132) 2016 Li, Ni, Zhang, Yang, Gao (bib0070) 2017 Xu, Dong, Li, Su (bib0087) 2019 Gong, Liu, Yang, Bourdev (bib0032) 2014; abs/1412.6115 Yin, Zhang, Lyu, Osher, Qi, Xin (bib0091) 2019; 6 Zhang, Pan, Yao, Zhao, Mei (bib0106) 2019 Lecun, Bengio, Hinton (bib0001) 2015; 521 Yu (10.1016/j.patcog.2020.107281_bib0022) 2019; abs/1909.04839 Alizadeh (10.1016/j.patcog.2020.107281_bib0124) 2019 Wang (10.1016/j.patcog.2020.107281_bib0072) 2018 Liu (10.1016/j.patcog.2020.107281_bib0132) 2016 Cai (10.1016/j.patcog.2020.107281_bib0089) 2017 Polino (10.1016/j.patcog.2020.107281_bib0081) 2018 Nogueira (10.1016/j.patcog.2020.107281_bib0004) 2017; 61 Zhang (10.1016/j.patcog.2020.107281_bib0061) 2018 Simonyan (10.1016/j.patcog.2020.107281_bib0012) 2015 Bethge (10.1016/j.patcog.2020.107281_bib0105) 2018; abs/1812.01965 Jacob (10.1016/j.patcog.2020.107281_bib0131) 2018 Zagoruyko (10.1016/j.patcog.2020.107281_bib0055) 2017 Zhuang (10.1016/j.patcog.2020.107281_bib0125) 2018 Li (10.1016/j.patcog.2020.107281_bib0014) 2020; 98 Srinivas (10.1016/j.patcog.2020.107281_bib0027) 2015 Zhuang (10.1016/j.patcog.2020.107281_bib0122) 2019 Jaderberg (10.1016/j.patcog.2020.107281_bib0044) 2014 Xu (10.1016/j.patcog.2020.107281_bib0097) 2019; abs/1909.11366 Gong (10.1016/j.patcog.2020.107281_bib0063) 2019 Ghasemzadeh (10.1016/j.patcog.2020.107281_bib0109) 2018 Cao (10.1016/j.patcog.2020.107281_bib0123) 2019 Deng (10.1016/j.patcog.2020.107281_bib0006) 2018; 77 Darabi (10.1016/j.patcog.2020.107281_bib0090) 2018; abs/1812.11800 Nakahara (10.1016/j.patcog.2020.107281_bib0117) 2017 Jokic (10.1016/j.patcog.2020.107281_bib0110) 2018 Chen (10.1016/j.patcog.2020.107281_bib0019) 2016 Sze (10.1016/j.patcog.2020.107281_bib0017) 2017 Szegedy (10.1016/j.patcog.2020.107281_bib0002) 2015 10.1016/j.patcog.2020.107281_bib0041 Choi (10.1016/j.patcog.2020.107281_bib0074) 2018; abs/1805.06085 Courbariaux (10.1016/j.patcog.2020.107281_bib0059) 2015 Chen (10.1016/j.patcog.2020.107281_bib0039) 2019 Lecun (10.1016/j.patcog.2020.107281_bib0001) 2015; 521 Yim (10.1016/j.patcog.2020.107281_bib0054) 2017 Cheng (10.1016/j.patcog.2020.107281_bib0025) 2015 Shen (10.1016/j.patcog.2020.107281_bib0078) 2020 Bengio (10.1016/j.patcog.2020.107281_bib0068) 2013; abs/1308.3432 Liu (10.1016/j.patcog.2020.107281_bib0005) 2017; 62 Krizhevsky (10.1016/j.patcog.2020.107281_bib0011) 2012 Chen (10.1016/j.patcog.2020.107281_bib0053) 2018 Guo (10.1016/j.patcog.2020.107281_bib0112) 2018 Lecun (10.1016/j.patcog.2020.107281_bib0107) 1998; 86 Liu (10.1016/j.patcog.2020.107281_bib0062) 2018 Lebedev (10.1016/j.patcog.2020.107281_bib0045) 2016 Yin (10.1016/j.patcog.2020.107281_bib0091) 2019; 6 Zhou (10.1016/j.patcog.2020.107281_bib0084) 2017 Han (10.1016/j.patcog.2020.107281_bib0026) 2015 Redmon (10.1016/j.patcog.2020.107281_bib0099) 2018; abs/1804.02767 Lopes (10.1016/j.patcog.2020.107281_bib0010) 2017; 61 Bulat (10.1016/j.patcog.2020.107281_bib0076) 2019; abs/1909.13863 He (10.1016/j.patcog.2020.107281_bib0028) 2016 Hinton (10.1016/j.patcog.2020.107281_bib0051) 2015; abs/1503.02531 Leng (10.1016/j.patcog.2020.107281_bib0121) 2017 Lin (10.1016/j.patcog.2020.107281_bib0127) 2014 Xu (10.1016/j.patcog.2020.107281_bib0087) 2019 Xu (10.1016/j.patcog.2020.107281_bib0052) 2018 Wu (10.1016/j.patcog.2020.107281_bib0040) 2020 Lin (10.1016/j.patcog.2020.107281_bib0129) 2017; PP Denton (10.1016/j.patcog.2020.107281_bib0042) 2014 Zhang (10.1016/j.patcog.2020.107281_bib0049) 2018 Ren (10.1016/j.patcog.2020.107281_bib0128) 2015 Ma (10.1016/j.patcog.2020.107281_bib0050) 2018 Ding (10.1016/j.patcog.2020.107281_bib0056) 2019; 96 Hu (10.1016/j.patcog.2020.107281_bib0038) 2018 Faraone (10.1016/j.patcog.2020.107281_bib0077) 2018 Blott (10.1016/j.patcog.2020.107281_bib0108) 2018; 11 Hou (10.1016/j.patcog.2020.107281_bib0083) 2017 Deng (10.1016/j.patcog.2020.107281_bib0118) 2009 Kung (10.1016/j.patcog.2020.107281_bib0120) 2018 Hubara (10.1016/j.patcog.2020.107281_bib0057) 2016 Liang (10.1016/j.patcog.2020.107281_bib0100) 2018; 275 Everingham (10.1016/j.patcog.2020.107281_bib0126) 2010; 88 Mishra (10.1016/j.patcog.2020.107281_bib0075) 2018 Ge (10.1016/j.patcog.2020.107281_bib0009) 2017 Hu (10.1016/j.patcog.2020.107281_bib0073) 2018 Qin (10.1016/j.patcog.2020.107281_bib0096) 2020 Bulat (10.1016/j.patcog.2020.107281_bib0095) 2019; abs/1904.05868 Cheng (10.1016/j.patcog.2020.107281_bib0015) 2017; abs/1710.09282 Yang (10.1016/j.patcog.2020.107281_bib0093) 2019 Zhou (10.1016/j.patcog.2020.107281_bib0060) 2016; abs/1606.06160 Martinez (10.1016/j.patcog.2020.107281_bib0079) 2020 Izui (10.1016/j.patcog.2020.107281_bib0024) 1990; 2 Krishnamoorthi (10.1016/j.patcog.2020.107281_bib0130) 2018; abs/1806.08342 Liu (10.1016/j.patcog.2020.107281_bib0023) 2019; abs/1909.09034 Vanhoucke (10.1016/j.patcog.2020.107281_bib0034) 2011 Zhao (10.1016/j.patcog.2020.107281_bib0037) 2018 He (10.1016/j.patcog.2020.107281_bib0030) 2017 Pang (10.1016/j.patcog.2020.107281_bib0008) 2019 Kim (10.1016/j.patcog.2020.107281_bib0069) 2016; abs/1601.06071 Ge (10.1016/j.patcog.2020.107281_bib0031) 2017 Liu (10.1016/j.patcog.2020.107281_bib0088) 2019 Zhang (10.1016/j.patcog.2020.107281_bib0021) 2019; abs/1909.06978 Wen (10.1016/j.patcog.2020.107281_bib0046) 2018; 81 Rastegari (10.1016/j.patcog.2020.107281_bib0058) 2016 Han (10.1016/j.patcog.2020.107281_bib0029) 2016 Zhou (10.1016/j.patcog.2020.107281_bib0114) 2017 Li (10.1016/j.patcog.2020.107281_bib0098) 2017 Zhang (10.1016/j.patcog.2020.107281_bib0106) 2019 Sun (10.1016/j.patcog.2020.107281_bib0064) 2018; 3 Chen (10.1016/j.patcog.2020.107281_bib0020) 2017; 52 Ding (10.1016/j.patcog.2020.107281_bib0085) 2019 Netzer (10.1016/j.patcog.2020.107281_bib0111) 2011 Mishra (10.1016/j.patcog.2020.107281_bib0082) 2018 Chen (10.1016/j.patcog.2020.107281_sbref0018) 2016; PP Bai (10.1016/j.patcog.2020.107281_bib0092) 2019 Lin (10.1016/j.patcog.2020.107281_bib0071) 2017 Zhu (10.1016/j.patcog.2020.107281_bib0067) 2019 Nakahara (10.1016/j.patcog.2020.107281_bib0115) 2016 Krizhevsky (10.1016/j.patcog.2020.107281_bib0113) 2012 Howard (10.1016/j.patcog.2020.107281_bib0047) 2017; abs/1704.04861 Sandler (10.1016/j.patcog.2020.107281_bib0048) 2018 Wu (10.1016/j.patcog.2020.107281_bib0013) 2018; 73 Chen (10.1016/j.patcog.2020.107281_bib0080) 2018 Gupta (10.1016/j.patcog.2020.107281_bib0035) 2015 10.1016/j.patcog.2020.107281_bib0101 10.1016/j.patcog.2020.107281_bib0103 Yonekawa (10.1016/j.patcog.2020.107281_bib0119) 2017 10.1016/j.patcog.2020.107281_bib0102 Lebedev (10.1016/j.patcog.2020.107281_bib0043) 2015 Chen (10.1016/j.patcog.2020.107281_bib0016) 2019; 9 10.1016/j.patcog.2020.107281_bib0104 Ren (10.1016/j.patcog.2020.107281_bib0003) 2015 Lin (10.1016/j.patcog.2020.107281_bib0066) 2019 Gong (10.1016/j.patcog.2020.107281_bib0032) 2014; abs/1412.6115 Lahoud (10.1016/j.patcog.2020.107281_bib0094) 2019; abs/1902.00730 Ge (10.1016/j.patcog.2020.107281_bib0036) 2018 Girshick (10.1016/j.patcog.2020.107281_bib0007) 2015 Li (10.1016/j.patcog.2020.107281_bib0065) 2019 Li (10.1016/j.patcog.2020.107281_bib0070) 2017 Wang (10.1016/j.patcog.2020.107281_bib0086) 2019 Fraser (10.1016/j.patcog.2020.107281_bib0116) 2017 Wu (10.1016/j.patcog.2020.107281_bib0033) 2016 |
References_xml | – year: 2019 ident: bib0065 article-title: Fully quantized network for object detection publication-title: IEEE CVPR – year: 2016 ident: bib0132 article-title: SSD: single shot multibox detector publication-title: ECCV – start-page: 98 year: 2017 end-page: 105 ident: bib0119 article-title: On-chip memory based binarized convolutional deep neural network applying batch normalization free technique on an fpga publication-title: IEEE IPDPSW – volume: 77 start-page: 306 year: 2018 end-page: 315 ident: bib0006 article-title: Active multi-kernel domain adaptation for hyperspectral image classification publication-title: Pattern Recognit. – start-page: 1737 year: 2015 end-page: 1746 ident: bib0035 article-title: Deep learning with limited numerical precision publication-title: ICML – volume: abs/1710.09282 year: 2017 ident: bib0015 article-title: A survey of model compression and acceleration for deep neural networks publication-title: CoRR – volume: abs/1704.04861 year: 2017 ident: bib0047 article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications publication-title: CoRR – year: 2015 ident: bib0003 article-title: Faster r-cnn: towards real-time object detection with region proposal networks publication-title: NeurIPS – volume: abs/1805.06085 year: 2018 ident: bib0074 article-title: PACT: parameterized clipping activation for quantized neural networks publication-title: CoRR – year: 2019 ident: bib0087 article-title: A main/subsidiary network framework for simplifying binary neural networks publication-title: IEEE CVPR – start-page: 1 year: 2018 end-page: 7 ident: bib0110 article-title: Binaryeye: a 20 kfps streaming camera system on fpga with real-time on-device image recognition using binary neural networks publication-title: IEEE SIES – volume: abs/1909.09034 year: 2019 ident: bib0023 article-title: Training robust deep neural networks via adversarial noise propagation publication-title: CoRR – start-page: 667 year: 2017 end-page: 672 ident: bib0031 article-title: Compressing deep neural networks for efficient visual inference publication-title: IEEE ICME – volume: abs/1412.6115 year: 2014 ident: bib0032 article-title: Compressing deep convolutional networks using vector quantization publication-title: CoRR – year: 2019 ident: bib0123 article-title: Seernet: predicting convolutional neural network feature-map sparsity through low-bit quantization publication-title: IEEE CVPR – year: 2019 ident: bib0093 article-title: Quantization networks publication-title: IEEE CVPR – reference: C. Fu, S. Zhu, H. Su, C.-E. Lee, J. Zhao, Towards fast and energy-efficient binarized neural network inference on fpga, in: Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. – year: 2017 ident: bib0116 article-title: Scaling binarized neural networks on reconfigurable logic publication-title: PARMA-DITAM@HiPEAC – year: 2018 ident: bib0082 article-title: Apprentice: using knowledge distillation techniques to improve low-precision network accuracy publication-title: ICLR – year: 2009 ident: bib0118 article-title: Imagenet: a large-scale hierarchical image database publication-title: IEEE CVPR – year: 2018 ident: bib0075 article-title: WRPN: wide reduced-precision networks publication-title: ICLR – start-page: 116 year: 2018 end-page: 131 ident: bib0050 article-title: Shufflenet v2: practical guidelines for efficient cnn architecture design publication-title: ECCV – year: 2020 ident: bib0096 article-title: Forward and backward information retention for accurate binary neural networks publication-title: IEEE CVPR – start-page: 277 year: 2016 end-page: 280 ident: bib0115 article-title: A memory-based realization of a binarized deep convolutional neural network publication-title: IEEE FPT – reference: R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava, R. Gupta, Z. Zhang, Accelerating binarized convolutional neural networks with software-programmable fpgas, in: Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. – year: 2017 ident: bib0089 article-title: Deep learning with low precision by half-wave gaussian quantization publication-title: IEEE CVPR – volume: abs/1601.06071 year: 2016 ident: bib0069 article-title: Bitwise neural networks publication-title: CoRR – volume: abs/1902.00730 year: 2019 ident: bib0094 article-title: Self-binarizing networks publication-title: CoRR – year: 2019 ident: bib0063 article-title: Differentiable soft quantization: bridging full-precision and low-bit neural networks publication-title: IEEE ICCV – year: 2017 ident: bib0030 article-title: Channel pruning for accelerating very deep neural networks publication-title: IEEE ICCV – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: bib0107 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – year: 2018 ident: bib0120 article-title: Efficient object detection using embedded binarized neural networks publication-title: J. Signal Process. Syst. – year: 2019 ident: bib0086 article-title: Learning channel-wise interactions for binary convolutional neural networks publication-title: IEEE CVPR – year: 2019 ident: bib0106 article-title: dabnn: a super fast inference framework for binary neural networks on ARM devices publication-title: ACM MM – volume: PP start-page: 2999 year: 2017 end-page: 3007 ident: bib0129 article-title: Focal loss for dense object detection publication-title: IEEE Trans. Pattern Anal. Mach.Intell. – year: 2017 ident: bib0054 article-title: A gift from knowledge distillation: fast optimization, network minimization and transfer learning publication-title: IEEE CVPR – year: 2016 ident: bib0028 article-title: Deep residual learning for image recognition publication-title: IEEE CVPR – year: 2015 ident: bib0043 article-title: Speeding-up convolutional neural networks using fine-tuned cp-decomposition publication-title: ICLR – year: 2019 ident: bib0124 article-title: A systematic study of binary neural networks’ optimisation publication-title: ICLR – volume: abs/1503.02531 year: 2015 ident: bib0051 article-title: Distilling the knowledge in a neural network publication-title: CoRR – volume: abs/1909.11366 year: 2019 ident: bib0097 article-title: Accurate and compact convolutional neural networks with trained binarization publication-title: CoRR – year: 2016 ident: bib0033 article-title: Quantized convolutional neural networks for mobile devices publication-title: IEEE CVPR – year: 2017 ident: bib0055 article-title: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer publication-title: ICLR – volume: 2 start-page: 226 year: 1990 end-page: 238 ident: bib0024 article-title: Analysis of neural networks with redundancy publication-title: Neural Comput. – year: 2015 ident: bib0025 article-title: An exploration of parameter redundancy in deep networks with circulant projections publication-title: IEEE ICCV – volume: 61 start-page: 539 year: 2017 end-page: 556 ident: bib0004 article-title: Towards better exploiting convolutional neural networks for remote sensing scene classification publication-title: Pattern Recognit. – volume: abs/1909.13863 year: 2019 ident: bib0076 article-title: Xnor-net++: improved binary neural networks publication-title: CoRR – start-page: 2852 year: 2018 end-page: 2859 ident: bib0053 article-title: Darkrank: accelerating deep metric learning via cross sample similarities transfer publication-title: AAAI – year: 2018 ident: bib0131 article-title: Quantization and training of neural networks for efficient integer-arithmetic-only inference publication-title: IEEE CVPR – year: 2014 ident: bib0042 article-title: Exploiting linear structure within convolutional networks for efficient evaluation publication-title: NeurIPS – year: 2016 ident: bib0029 article-title: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding publication-title: ICLR – start-page: 281 year: 2017 end-page: 284 ident: bib0114 article-title: Deep learning binary neural network on an fpga publication-title: IEEE MWSCAS – year: 2017 ident: bib0017 article-title: Hardware for machine learning: challenges and opportunities publication-title: CICC – start-page: 740 year: 2014 end-page: 755 ident: bib0127 article-title: Microsoft coco: Common objects in context publication-title: Lect. Notes Comput. Sci. – year: 2018 ident: bib0036 article-title: Efficient Deep Learning in Network Compression and Acceleration publication-title: Digital Systems, Vahid Asadpour – volume: abs/1606.06160 year: 2016 ident: bib0060 article-title: Dorefa-net: training low bitwidth convolutional neural networks with low bitwidth gradients publication-title: CoRR – year: 2018 ident: bib0062 article-title: Bi-real net: enhancing the performance of 1-bit cnns with improved representational capability and advanced training algorithm publication-title: ECCV – reference: H. Yang, M. Fritzsche, C. Bartz, C. Meinel, Bmxnet: an open-source binary neural network implementation based on mxnet, in: Proceedings of the 2017 ACM on Multimedia Conference. – year: 2011 ident: bib0111 article-title: Reading digits in natural images with unsupervised feature learning publication-title: NeurIPS – volume: 81 start-page: 326 year: 2018 end-page: 340 ident: bib0046 article-title: Adaptive weighted nonnegative low-rank representation publication-title: Pattern Recognit. – year: 2015 ident: bib0007 article-title: Fast r-cnn publication-title: IEEE ICCV – year: 2014 ident: bib0044 article-title: Speeding up convolutional neural networks with low rank expansions publication-title: BMVC – year: 2016 ident: bib0045 article-title: Fast convnets using group-wise brain damage publication-title: IEEE CVPR – year: 2018 ident: bib0073 article-title: From hashing to cnns: training binary weight networks via hashing publication-title: AAAI – year: 2020 ident: bib0078 article-title: Balanced binary neural networks with gated residual publication-title: ICASSP – year: 2017 ident: bib0084 article-title: Incremental network quantization: towards lossless cnns with low-precision weights publication-title: ICLR – year: 2016 ident: bib0058 article-title: Xnor-net: imagenet classification using binary convolutional neural networks publication-title: ECCV – volume: 61 start-page: 610 year: 2017 end-page: 628 ident: bib0010 article-title: Facial expression recognition with convolutional neural networks: coping with few data and the training sample order publication-title: Pattern Recognit. – volume: 275 start-page: 1072 year: 2018 end-page: 1086 ident: bib0100 article-title: Fp-bnn: binarized neural network on fpga publication-title: Neurocomputing – year: 2011 ident: bib0034 article-title: Improving the speed of neural networks on cpus – year: 2015 ident: bib0128 article-title: Faster r-cnn: towards real-time object detection with region proposal networks publication-title: NeurIPS – start-page: 3918 year: 2019 end-page: 3928 ident: bib0039 article-title: Metaquant: learning to quantize by learning to penetrate non-differentiable quantization publication-title: NeurIPS – year: 2012 ident: bib0113 article-title: Learning multiple layers of features from tiny images publication-title: University of Toronto – year: 2018 ident: bib0052 article-title: Training shallow and thin networks for acceleration via knowledge distillation with conditional adversarial networks publication-title: ICLR – year: 2019 ident: bib0066 article-title: Defensive quantization: when efficiency meets robustness publication-title: ICLR – start-page: 51 year: 2018 end-page: 513 ident: bib0112 article-title: Fbna: a fully binarized neural network accelerator publication-title: IEEE FPL – year: 2019 ident: bib0008 article-title: Libra r-cnn: towards balanced learning for object detection publication-title: IEEE CVPR – year: 2019 ident: bib0088 article-title: Circulant binary convolutional networks: enhancing the performance of 1-bit dcnns with circulant back propagation publication-title: IEEE CVPR – volume: abs/1909.04839 year: 2019 ident: bib0022 article-title: Towards noise-robust neural networks via progressive adversarial training publication-title: CoRR – start-page: 57 year: 2018 end-page: 64 ident: bib0109 article-title: Rebnet: residual binarized neural network publication-title: IEEE FCCM – volume: 96 year: 2019 ident: bib0056 article-title: Compressing CNN-DBLSTM models for OCR with teacher-student learning and tucker decomposition publication-title: Pattern Recognit. – volume: PP year: 2016 ident: bib0018 article-title: Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional neural networks publication-title: IEEE Micro – start-page: 657 year: 2018 end-page: 673 ident: bib0038 article-title: Training binary weight networks via semi-binary decomposition publication-title: ECCV – year: 2019 ident: bib0067 article-title: Binary ensemble neural network: more bits per network or more networks per bit? publication-title: IEEE CVPR – start-page: 1 year: 2017 end-page: 4 ident: bib0117 article-title: A fully connected layer elimination for a binarizec convolutional neural network on an fpga publication-title: IEEE FPL – year: 2018 ident: bib0061 article-title: Lq-nets: learned quantization for highly accurate and compact deep neural networks publication-title: ECCV – year: 2017 ident: bib0009 article-title: Detecting masked faces in the wild with lle-cnns publication-title: IEEE CVPR – year: 2019 ident: bib0085 article-title: Regularizing activation distribution for training binarized deep networks publication-title: IEEE CVPR – year: 2019 ident: bib0092 article-title: Proxquant: quantized neural networks via proximal operators publication-title: ICLR – volume: 9 start-page: 292 year: 2019 end-page: 308 ident: bib0016 article-title: Eyeriss v2: a flexible accelerator for emerging deep neural networks on mobile devices publication-title: IEEE J. Emerg. Sel. Topics Circuits Syst. – year: 2017 ident: bib0121 article-title: Extremely low bit neural network: squeeze the last bit out with admm publication-title: AAAI – volume: abs/1812.11800 year: 2018 ident: bib0090 article-title: BNN+: improved binary network training publication-title: CoRR – year: 2016 ident: bib0019 article-title: Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks publication-title: ISSCC – year: 2020 ident: bib0040 article-title: Rotation consistent margin loss for efficient low-bit face recognition publication-title: CoRR – year: 2018 ident: bib0072 article-title: Two-step quantization for low-bit neural networks publication-title: IEEE CVPR – year: 2017 ident: bib0083 article-title: Loss-aware binarization of deep networks publication-title: ICLR – volume: 6 start-page: 14 year: 2019 ident: bib0091 article-title: Blended coarse gradient descent for full quantization of deep neural networks publication-title: Res. Math. Sci. – volume: 52 start-page: 127 year: 2017 end-page: 138 ident: bib0020 article-title: Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks publication-title: IEEE J. Solid-State Circuits – start-page: 1545 year: 2018 end-page: 1552 ident: bib0037 article-title: Bitstream: Efficient computing architecture for real-time low-power inference of binary neural networks on cpus publication-title: ACM MM – volume: abs/1812.01965 year: 2018 ident: bib0105 article-title: Training competitive binary neural networks from scratch publication-title: CoRR – volume: abs/1904.05868 year: 2019 ident: bib0095 article-title: Improved training of binary networks for human pose estimation and image recognition publication-title: CoRR – year: 2015 ident: bib0002 article-title: Going deeper with convolutions publication-title: IEEE CVPR – volume: abs/1308.3432 year: 2013 ident: bib0068 article-title: Estimating or propagating gradients through stochastic neurons for conditional computation publication-title: CoRR – volume: 73 start-page: 275 year: 2018 end-page: 288 ident: bib0013 article-title: Deep adaptive feature embedding with local sample distributions for person re-identification publication-title: Pattern Recognit. – volume: 3 start-page: 191 year: 2018 end-page: 197 ident: bib0064 article-title: Fast object detection based on binary deep convolution neural networks publication-title: CAAI Trans. Intell. Technol. – volume: 98 year: 2020 ident: bib0014 article-title: Spatio-temporal deformable 3d convnets with attention for action recognition publication-title: Pattern Recognit. – year: 2015 ident: bib0026 article-title: Learning both weights and connections for efficient neural network publication-title: NeurIPS – volume: 62 start-page: 135 year: 2017 end-page: 160 ident: bib0005 article-title: Local binary features for texture classification: taxonomy and experimental study publication-title: Pattern Recognit. – year: 2019 ident: bib0122 article-title: Structured binary neural networks for accurate image classification and semantic segmentation publication-title: IEEE CVPR – start-page: 2830 year: 2015 end-page: 2838 ident: bib0027 article-title: Data-free parameter pruning for deep neural networks publication-title: Comput. Sci. – year: 2017 ident: bib0071 article-title: Towards accurate binary convolutional neural network publication-title: NeurIPS – year: 2020 ident: bib0079 article-title: Training binary neural networks with real-to-binary convolutions publication-title: ICLR – reference: Y. Umuroglu, N.J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, K. Vissers, Finn: a framework for fast, scalable binarized neural network inference, in: Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. – year: 2018 ident: bib0125 article-title: Towards effective low-bitwidth convolutional neural networks publication-title: IEEE CVPR – year: 2018 ident: bib0080 article-title: Distilled binary neural network for monaural speech separation publication-title: IJCNN – volume: abs/1909.06978 year: 2019 ident: bib0021 article-title: Interpreting and improving adversarial robustness with neuron sensitivity publication-title: CoRR – volume: abs/1804.02767 year: 2018 ident: bib0099 article-title: Yolov3: an incremental improvement publication-title: CoRR – year: 2012 ident: bib0011 article-title: Imagenet classification with deep convolutional neural networks publication-title: NeurIPS – year: 2018 ident: bib0077 article-title: Syq: learning symmetric quantization for efficient deep neural networks publication-title: IEEE CVPR – year: 2015 ident: bib0012 article-title: Very deep convolutional networks for large-scale image recognition publication-title: ICLR – reference: F. Zhu, R. Gong, F. Yu, X. Liu, Y. Wang, Z. Li, X. Yang, J. Yan, Towards unified int8 training for convolutional neural network, 2019. – volume: 88 start-page: 303 year: 2010 end-page: 338 ident: bib0126 article-title: The pascal visual object classes (voc) challenge publication-title: Int. J. Comput. Vision – start-page: 6848 year: 2018 end-page: 6856 ident: bib0049 article-title: Shufflenet: an extremely efficient convolutional neural network for mobile devices publication-title: IEEE CVPR – volume: abs/1806.08342 year: 2018 ident: bib0130 article-title: Quantizing deep convolutional networks for efficient inference: a whitepaper publication-title: CoRR – year: 2018 ident: bib0048 article-title: Mobilenetv2: inverted residuals and linear bottlenecks publication-title: IEEE CVPR – year: 2017 ident: bib0070 article-title: Performance guaranteed network acceleration via high-order residual quantization publication-title: IEEE ICCV – volume: 11 start-page: 16 year: 2018 ident: bib0108 article-title: Finn-r: an end-to-end deep-learning framework for fast exploration of quantized neural networks publication-title: ACM TRETS – volume: 521 start-page: 436 year: 2015 ident: bib0001 article-title: Deep learning publication-title: Nature – year: 2016 ident: bib0057 article-title: Binarized neural networks publication-title: NeurIPS – year: 2018 ident: bib0081 article-title: Model compression via distillation and quantization publication-title: ICLR – year: 2017 ident: bib0098 article-title: Training quantized nets: a deeper understanding publication-title: NeurIPS – year: 2015 ident: bib0059 article-title: Binaryconnect: training deep neural networks with binary weights during propagations publication-title: NeurIPS – year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0062 article-title: Bi-real net: enhancing the performance of 1-bit cnns with improved representational capability and advanced training algorithm – year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0077 article-title: Syq: learning symmetric quantization for efficient deep neural networks – year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0086 article-title: Learning channel-wise interactions for binary convolutional neural networks – year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0071 article-title: Towards accurate binary convolutional neural network – year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0123 article-title: Seernet: predicting convolutional neural network feature-map sparsity through low-bit quantization – start-page: 667 year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0031 article-title: Compressing deep neural networks for efficient visual inference – volume: 11 start-page: 16 issue: 3 year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0108 article-title: Finn-r: an end-to-end deep-learning framework for fast exploration of quantized neural networks publication-title: ACM TRETS – volume: PP start-page: 2999 issue: 99 year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0129 article-title: Focal loss for dense object detection publication-title: IEEE Trans. Pattern Anal. Mach.Intell. – volume: abs/1904.05868 year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0095 article-title: Improved training of binary networks for human pose estimation and image recognition publication-title: CoRR – volume: 81 start-page: 326 year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0046 article-title: Adaptive weighted nonnegative low-rank representation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.04.004 – start-page: 657 year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0038 article-title: Training binary weight networks via semi-binary decomposition – volume: abs/1804.02767 year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0099 article-title: Yolov3: an incremental improvement publication-title: CoRR – volume: 52 start-page: 127 issue: 1 year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0020 article-title: Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2016.2616357 – start-page: 2830 year: 2015 ident: 10.1016/j.patcog.2020.107281_bib0027 article-title: Data-free parameter pruning for deep neural networks publication-title: Comput. Sci. – volume: abs/1704.04861 year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0047 article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications publication-title: CoRR – year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0085 article-title: Regularizing activation distribution for training binarized deep networks – year: 2015 ident: 10.1016/j.patcog.2020.107281_bib0007 article-title: Fast r-cnn – volume: abs/1412.6115 year: 2014 ident: 10.1016/j.patcog.2020.107281_bib0032 article-title: Compressing deep convolutional networks using vector quantization publication-title: CoRR – year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0092 article-title: Proxquant: quantized neural networks via proximal operators – year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0098 article-title: Training quantized nets: a deeper understanding – start-page: 6848 year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0049 article-title: Shufflenet: an extremely efficient convolutional neural network for mobile devices – volume: abs/1909.13863 year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0076 article-title: Xnor-net++: improved binary neural networks publication-title: CoRR – year: 2020 ident: 10.1016/j.patcog.2020.107281_bib0096 article-title: Forward and backward information retention for accurate binary neural networks publication-title: IEEE CVPR – volume: abs/1812.01965 year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0105 article-title: Training competitive binary neural networks from scratch publication-title: CoRR – year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0121 article-title: Extremely low bit neural network: squeeze the last bit out with admm – volume: 96 year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0056 article-title: Compressing CNN-DBLSTM models for OCR with teacher-student learning and tucker decomposition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.07.002 – year: 2015 ident: 10.1016/j.patcog.2020.107281_bib0002 article-title: Going deeper with convolutions – year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0061 article-title: Lq-nets: learned quantization for highly accurate and compact deep neural networks – ident: 10.1016/j.patcog.2020.107281_bib0104 doi: 10.1145/3123266.3129393 – year: 2020 ident: 10.1016/j.patcog.2020.107281_bib0079 article-title: Training binary neural networks with real-to-binary convolutions – ident: 10.1016/j.patcog.2020.107281_bib0041 doi: 10.1109/CVPR42600.2020.00204 – volume: PP issue: 99 year: 2016 ident: 10.1016/j.patcog.2020.107281_sbref0018 article-title: Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional neural networks publication-title: IEEE Micro – year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0081 article-title: Model compression via distillation and quantization – year: 2016 ident: 10.1016/j.patcog.2020.107281_bib0132 article-title: SSD: single shot multibox detector – volume: abs/1710.09282 year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0015 article-title: A survey of model compression and acceleration for deep neural networks publication-title: CoRR – year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0080 article-title: Distilled binary neural network for monaural speech separation publication-title: IJCNN – volume: 61 start-page: 539 year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0004 article-title: Towards better exploiting convolutional neural networks for remote sensing scene classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.07.001 – year: 2020 ident: 10.1016/j.patcog.2020.107281_bib0040 article-title: Rotation consistent margin loss for efficient low-bit face recognition publication-title: CoRR – volume: abs/1503.02531 year: 2015 ident: 10.1016/j.patcog.2020.107281_bib0051 article-title: Distilling the knowledge in a neural network publication-title: CoRR – year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0055 article-title: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer – year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0070 article-title: Performance guaranteed network acceleration via high-order residual quantization – year: 2014 ident: 10.1016/j.patcog.2020.107281_bib0044 article-title: Speeding up convolutional neural networks with low rank expansions – volume: abs/1812.11800 year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0090 article-title: BNN+: improved binary network training publication-title: CoRR – volume: 6 start-page: 14 issue: 1 year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0091 article-title: Blended coarse gradient descent for full quantization of deep neural networks publication-title: Res. Math. Sci. doi: 10.1007/s40687-018-0177-6 – year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0116 article-title: Scaling binarized neural networks on reconfigurable logic – volume: 275 start-page: 1072 year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0100 article-title: Fp-bnn: binarized neural network on fpga publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.09.046 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.patcog.2020.107281_bib0107 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – start-page: 277 year: 2016 ident: 10.1016/j.patcog.2020.107281_bib0115 article-title: A memory-based realization of a binarized deep convolutional neural network – volume: abs/1308.3432 year: 2013 ident: 10.1016/j.patcog.2020.107281_bib0068 article-title: Estimating or propagating gradients through stochastic neurons for conditional computation publication-title: CoRR – year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0089 article-title: Deep learning with low precision by half-wave gaussian quantization – year: 2011 ident: 10.1016/j.patcog.2020.107281_bib0034 – volume: abs/1909.11366 year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0097 article-title: Accurate and compact convolutional neural networks with trained binarization publication-title: CoRR – start-page: 1 year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0110 article-title: Binaryeye: a 20 kfps streaming camera system on fpga with real-time on-device image recognition using binary neural networks – start-page: 1737 year: 2015 ident: 10.1016/j.patcog.2020.107281_bib0035 article-title: Deep learning with limited numerical precision publication-title: ICML – year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0036 article-title: Efficient Deep Learning in Network Compression and Acceleration doi: 10.5772/intechopen.79562 – ident: 10.1016/j.patcog.2020.107281_bib0102 doi: 10.1145/3020078.3021744 – start-page: 2852 year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0053 article-title: Darkrank: accelerating deep metric learning via cross sample similarities transfer publication-title: AAAI – start-page: 740 year: 2014 ident: 10.1016/j.patcog.2020.107281_bib0127 article-title: Microsoft coco: Common objects in context publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-319-10602-1_48 – volume: 62 start-page: 135 year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0005 article-title: Local binary features for texture classification: taxonomy and experimental study publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.08.032 – year: 2015 ident: 10.1016/j.patcog.2020.107281_bib0012 article-title: Very deep convolutional networks for large-scale image recognition – year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0017 article-title: Hardware for machine learning: challenges and opportunities – year: 2015 ident: 10.1016/j.patcog.2020.107281_bib0025 article-title: An exploration of parameter redundancy in deep networks with circulant projections – year: 2016 ident: 10.1016/j.patcog.2020.107281_bib0029 article-title: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding – year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0067 article-title: Binary ensemble neural network: more bits per network or more networks per bit? – year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0083 article-title: Loss-aware binarization of deep networks – year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0106 article-title: dabnn: a super fast inference framework for binary neural networks on ARM devices – start-page: 51 year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0112 article-title: Fbna: a fully binarized neural network accelerator – year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0075 article-title: WRPN: wide reduced-precision networks – year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0066 article-title: Defensive quantization: when efficiency meets robustness – year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0063 article-title: Differentiable soft quantization: bridging full-precision and low-bit neural networks – volume: 2 start-page: 226 issue: 2 year: 1990 ident: 10.1016/j.patcog.2020.107281_bib0024 article-title: Analysis of neural networks with redundancy publication-title: Neural Comput. doi: 10.1162/neco.1990.2.2.226 – volume: 9 start-page: 292 issue: 2 year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0016 article-title: Eyeriss v2: a flexible accelerator for emerging deep neural networks on mobile devices publication-title: IEEE J. Emerg. Sel. Topics Circuits Syst. doi: 10.1109/JETCAS.2019.2910232 – year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0048 article-title: Mobilenetv2: inverted residuals and linear bottlenecks – year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0093 article-title: Quantization networks – volume: 88 start-page: 303 issue: 2 year: 2010 ident: 10.1016/j.patcog.2020.107281_bib0126 article-title: The pascal visual object classes (voc) challenge publication-title: Int. J. Comput. Vision doi: 10.1007/s11263-009-0275-4 – year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0065 article-title: Fully quantized network for object detection – year: 2016 ident: 10.1016/j.patcog.2020.107281_bib0033 article-title: Quantized convolutional neural networks for mobile devices – volume: abs/1805.06085 year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0074 article-title: PACT: parameterized clipping activation for quantized neural networks publication-title: CoRR – year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0125 article-title: Towards effective low-bitwidth convolutional neural networks – year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0054 article-title: A gift from knowledge distillation: fast optimization, network minimization and transfer learning – year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0073 article-title: From hashing to cnns: training binary weight networks via hashing – volume: 98 year: 2020 ident: 10.1016/j.patcog.2020.107281_bib0014 article-title: Spatio-temporal deformable 3d convnets with attention for action recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107037 – volume: 3 start-page: 191 issue: 4 year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0064 article-title: Fast object detection based on binary deep convolution neural networks publication-title: CAAI Trans. Intell. Technol. doi: 10.1049/trit.2018.1026 – year: 2016 ident: 10.1016/j.patcog.2020.107281_bib0058 article-title: Xnor-net: imagenet classification using binary convolutional neural networks – volume: abs/1601.06071 year: 2016 ident: 10.1016/j.patcog.2020.107281_bib0069 article-title: Bitwise neural networks publication-title: CoRR – volume: 73 start-page: 275 year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0013 article-title: Deep adaptive feature embedding with local sample distributions for person re-identification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.08.029 – year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0072 article-title: Two-step quantization for low-bit neural networks – year: 2015 ident: 10.1016/j.patcog.2020.107281_bib0003 article-title: Faster r-cnn: towards real-time object detection with region proposal networks – volume: abs/1909.06978 year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0021 article-title: Interpreting and improving adversarial robustness with neuron sensitivity publication-title: CoRR – ident: 10.1016/j.patcog.2020.107281_bib0103 doi: 10.1145/3289602.3293990 – volume: 77 start-page: 306 year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0006 article-title: Active multi-kernel domain adaptation for hyperspectral image classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.10.007 – year: 2016 ident: 10.1016/j.patcog.2020.107281_bib0057 article-title: Binarized neural networks – year: 2016 ident: 10.1016/j.patcog.2020.107281_bib0028 article-title: Deep residual learning for image recognition – volume: abs/1902.00730 year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0094 article-title: Self-binarizing networks publication-title: CoRR – year: 2012 ident: 10.1016/j.patcog.2020.107281_bib0113 article-title: Learning multiple layers of features from tiny images publication-title: University of Toronto – start-page: 1545 year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0037 article-title: Bitstream: Efficient computing architecture for real-time low-power inference of binary neural networks on cpus – year: 2015 ident: 10.1016/j.patcog.2020.107281_bib0059 article-title: Binaryconnect: training deep neural networks with binary weights during propagations – year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0087 article-title: A main/subsidiary network framework for simplifying binary neural networks – year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0009 article-title: Detecting masked faces in the wild with lle-cnns – year: 2012 ident: 10.1016/j.patcog.2020.107281_bib0011 article-title: Imagenet classification with deep convolutional neural networks publication-title: NeurIPS – volume: abs/1806.08342 year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0130 article-title: Quantizing deep convolutional networks for efficient inference: a whitepaper publication-title: CoRR – start-page: 1 year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0117 article-title: A fully connected layer elimination for a binarizec convolutional neural network on an fpga – start-page: 281 year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0114 article-title: Deep learning binary neural network on an fpga publication-title: IEEE MWSCAS – year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0082 article-title: Apprentice: using knowledge distillation techniques to improve low-precision network accuracy – start-page: 116 year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0050 article-title: Shufflenet v2: practical guidelines for efficient cnn architecture design – year: 2009 ident: 10.1016/j.patcog.2020.107281_bib0118 article-title: Imagenet: a large-scale hierarchical image database – volume: abs/1909.09034 year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0023 article-title: Training robust deep neural networks via adversarial noise propagation publication-title: CoRR – ident: 10.1016/j.patcog.2020.107281_bib0101 doi: 10.1145/3020078.3021741 – volume: 61 start-page: 610 year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0010 article-title: Facial expression recognition with convolutional neural networks: coping with few data and the training sample order publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.07.026 – year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0084 article-title: Incremental network quantization: towards lossless cnns with low-precision weights – year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0088 article-title: Circulant binary convolutional networks: enhancing the performance of 1-bit dcnns with circulant back propagation – year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0131 article-title: Quantization and training of neural networks for efficient integer-arithmetic-only inference – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.patcog.2020.107281_bib0001 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 3918 year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0039 article-title: Metaquant: learning to quantize by learning to penetrate non-differentiable quantization – year: 2011 ident: 10.1016/j.patcog.2020.107281_bib0111 article-title: Reading digits in natural images with unsupervised feature learning – year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0030 article-title: Channel pruning for accelerating very deep neural networks – volume: abs/1909.04839 year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0022 article-title: Towards noise-robust neural networks via progressive adversarial training publication-title: CoRR – year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0120 article-title: Efficient object detection using embedded binarized neural networks publication-title: J. Signal Process. Syst. doi: 10.1007/s11265-017-1255-5 – year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0122 article-title: Structured binary neural networks for accurate image classification and semantic segmentation – year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0124 article-title: A systematic study of binary neural networks’ optimisation – year: 2019 ident: 10.1016/j.patcog.2020.107281_bib0008 article-title: Libra r-cnn: towards balanced learning for object detection – year: 2016 ident: 10.1016/j.patcog.2020.107281_bib0019 article-title: Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks – year: 2020 ident: 10.1016/j.patcog.2020.107281_bib0078 article-title: Balanced binary neural networks with gated residual – volume: abs/1606.06160 year: 2016 ident: 10.1016/j.patcog.2020.107281_bib0060 article-title: Dorefa-net: training low bitwidth convolutional neural networks with low bitwidth gradients publication-title: CoRR – year: 2014 ident: 10.1016/j.patcog.2020.107281_bib0042 article-title: Exploiting linear structure within convolutional networks for efficient evaluation – year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0052 article-title: Training shallow and thin networks for acceleration via knowledge distillation with conditional adversarial networks – start-page: 98 year: 2017 ident: 10.1016/j.patcog.2020.107281_bib0119 article-title: On-chip memory based binarized convolutional deep neural network applying batch normalization free technique on an fpga – year: 2015 ident: 10.1016/j.patcog.2020.107281_bib0026 article-title: Learning both weights and connections for efficient neural network – year: 2015 ident: 10.1016/j.patcog.2020.107281_bib0043 article-title: Speeding-up convolutional neural networks using fine-tuned cp-decomposition – start-page: 57 year: 2018 ident: 10.1016/j.patcog.2020.107281_bib0109 article-title: Rebnet: residual binarized neural network – year: 2015 ident: 10.1016/j.patcog.2020.107281_bib0128 article-title: Faster r-cnn: towards real-time object detection with region proposal networks – year: 2016 ident: 10.1016/j.patcog.2020.107281_bib0045 article-title: Fast convnets using group-wise brain damage |
SSID | ssj0017142 |
Score | 2.712768 |
Snippet | •We summarize the binary neural network methods and categorize them into the naive binarization and the optimized binarization.•The binary neural networks are... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107281 |
SubjectTerms | Binary neural network Deep learning Model acceleration Model compression Network quantization |
Title | Binary neural networks: A survey |
URI | https://dx.doi.org/10.1016/j.patcog.2020.107281 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6P0YPXuDZJl9TbHI6puJOD3UJf2shEurEPwYt_u3lNOxREwWMfedC-JO-D_t7vEXLJcqsESyMaZ_ibMbeCJhCH1F1KHhnGuylgofg46g7H4n4STxqkX_fCIKyy8v3ep5feupJ0Kmt25tMp9vgi7SAOAOeYOCDtthAST_nVxwbmgfO9PWM4jygurdvnSozX3Lm72bOrEhmKJFPRz-HpS8gZ7JGdKlcMev519kkjLw7Ibj2HIaiu5SEJbsqm2gC5Kd36wiO7l9dBL1iuF2_5-xEZD26f-kNaTT6gxqXwKwoMB8y52O7KrzTJhGAMklBAaiMmgVtQJs6YkaGQJldgEgCQaRKnkDAwLgIfk2YxK_ITEijFgWfKCSUIV0sk1jLLFCgbATfdsEV4_cHaVLTgOJ3iVdf4rxftzaTRTNqbqUXoRmvuaTH-WC9rW-pv26ud5_5V8_TfmmdkG588IOycNFeLdX7hMogVtMsj0iZbvbuH4egTA8vC1w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELUqOMCFHVHWHOAYmthO4iBxKEvV0uXUSr2FjOOgIpRWXUC98FP8IJ4sFUgIJKReHVuKx86bGeXNPELOqYoFp6FtOhH-ZlQxN31wLFN_lMyWlLkhYKLY7rj1Hn_oO_0S-ShqYZBWmWN_hukpWucjldyaldFggDW-2HYQBcAZBg5uzqxsqvmbztsm1407fcgXlNbuu7d1M5cWMKWOkacmUFRw085T5zehH3FOKfgWhzC2qQcsBiGdiErP4p5UAqQPAF7oOyH4FKRAqQiN-6tcwwXKJly-L3glKCietShntonvVtTrpaSykcbX4ZNOSykOeVTYP_vDLz6utkU28uDUqGb73yYlleyQzUL4wchxYJcYN2kVr4HNMPX8JKOST66MqjGZjV_VfI_0lmKPfbKSDBN1QAwhGLBI6EEPuE5e_DimMRUgYhuYdK0yYcWGA5n3IUc5jJegIJw9B5mZAjRTkJmpTMzFqlHWh-OP-V5hy-DbfQq0q_h15eG_V56RtXq33QpajU7ziKzjk4yNdkxWpuOZOtHhyxRO0-tikMdl389PlN_-bQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binary+neural+networks%3A+A+survey&rft.jtitle=Pattern+recognition&rft.au=Qin%2C+Haotong&rft.au=Gong%2C+Ruihao&rft.au=Liu%2C+Xianglong&rft.au=Bai%2C+Xiao&rft.date=2020-09-01&rft.issn=0031-3203&rft.volume=105&rft.spage=107281&rft_id=info:doi/10.1016%2Fj.patcog.2020.107281&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2020_107281 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |