Epidermal electronics for respiration monitoring via thermo-sensitive measuring
The depth and rate of human respiration reveal important and diverse sets of physiological information for evaluating human health. Here, we introduce an ultrathin, skin-integrated respiration sensor based on the thermal convection effect. The device features a filamentary fractal design of the gold...
Saved in:
Published in | Materials today physics Vol. 13; p. 100199 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The depth and rate of human respiration reveal important and diverse sets of physiological information for evaluating human health. Here, we introduce an ultrathin, skin-integrated respiration sensor based on the thermal convection effect. The device features a filamentary fractal design of the gold heating electrode, a mini sensor (0.6 mm × 0.3 mm × 0.23 mm) with high thermal sensitivity and an ultrasoft encapsulation package to enhance the overall flexibility and biaxial stretchability of the system. Adjusting the input power of the heating electrode, i.e., increasing the temperature difference between the thermal sensor and environment, can further improve the sensitivity of the respiration sensor. The real-time monitoring respiration sensor can competently distinguish various breathing patterns (sitting, frightening, sleeping, meditating, and gasping) through breath rate/depth of detection subjects. In addition, the respiration sensor can effectively capture, in real time, the respiration of a volunteer while exercising, resting, or sleeping for prolonged periods of time. The combination of advanced mechanics, high sensitivity, and good stability make this respiration sensor a great candidate for potential use in real-time monitoring of human health.
[Display omitted]
•Respiration sensors are realized in a thin, flexible, and skin-like format.•A combination of thermal convection effect and thermal actuation is used for high-performance respiration sensing.•The real-time monitoring respiration sensor can competently distinguish various breathing patterns. |
---|---|
AbstractList | The depth and rate of human respiration reveal important and diverse sets of physiological information for evaluating human health. Here, we introduce an ultrathin, skin-integrated respiration sensor based on the thermal convection effect. The device features a filamentary fractal design of the gold heating electrode, a mini sensor (0.6 mm × 0.3 mm × 0.23 mm) with high thermal sensitivity and an ultrasoft encapsulation package to enhance the overall flexibility and biaxial stretchability of the system. Adjusting the input power of the heating electrode, i.e., increasing the temperature difference between the thermal sensor and environment, can further improve the sensitivity of the respiration sensor. The real-time monitoring respiration sensor can competently distinguish various breathing patterns (sitting, frightening, sleeping, meditating, and gasping) through breath rate/depth of detection subjects. In addition, the respiration sensor can effectively capture, in real time, the respiration of a volunteer while exercising, resting, or sleeping for prolonged periods of time. The combination of advanced mechanics, high sensitivity, and good stability make this respiration sensor a great candidate for potential use in real-time monitoring of human health.
[Display omitted]
•Respiration sensors are realized in a thin, flexible, and skin-like format.•A combination of thermal convection effect and thermal actuation is used for high-performance respiration sensing.•The real-time monitoring respiration sensor can competently distinguish various breathing patterns. |
ArticleNumber | 100199 |
Author | Wong, T. Yu, X. Chan, Y. Li, W. Avila, R. Li, D. Yiu, C. Xie, Z. Liu, Y. Zhao, L. Yao, K. Zhang, Y. |
Author_xml | – sequence: 1 givenname: Y. orcidid: 0000-0003-0522-3724 surname: Liu fullname: Liu, Y. organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China – sequence: 2 givenname: L. surname: Zhao fullname: Zhao, L. organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China – sequence: 3 givenname: R. orcidid: 0000-0003-1525-3660 surname: Avila fullname: Avila, R. organization: Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA – sequence: 4 givenname: C. orcidid: 0000-0003-3841-5327 surname: Yiu fullname: Yiu, C. organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China – sequence: 5 givenname: T. surname: Wong fullname: Wong, T. organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China – sequence: 6 givenname: Y. surname: Chan fullname: Chan, Y. organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China – sequence: 7 givenname: K. orcidid: 0000-0001-8744-8892 surname: Yao fullname: Yao, K. organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China – sequence: 8 givenname: D. surname: Li fullname: Li, D. organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China – sequence: 9 givenname: Y. surname: Zhang fullname: Zhang, Y. email: yt.zhang@cityu.edu.hk organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China – sequence: 10 givenname: W. surname: Li fullname: Li, W. email: wenjli@cityu.edu.hk organization: Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China – sequence: 11 givenname: Z. orcidid: 0000-0003-1320-817X surname: Xie fullname: Xie, Z. email: zxie@dlut.edu.cn organization: State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, 116024, People's Republic of China – sequence: 12 givenname: X. orcidid: 0000-0003-0522-1171 surname: Yu fullname: Yu, X. email: xingeyu@cityu.edu.hk organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China |
BookMark | eNqFkE1Lw0AQhhepYK39Bx72D6TuV9KuB0FK_YBCL3pexs3EbkmyYXct9N-bGA_iQU8zzPAM8z6XZNL6Fgm55mzBGS9uDosmdftTXAgmhhHjWp-RqciVyHKh5eRHf0HmMR4YY0IXomBiSnabzpUYGqgp1mhT8K2zkVY-0ICxcwGS8y1t-nHywbXv9OiApn2P-CxiG11yR6QNQvwY1lfkvII64vy7zsjrw-Zl_ZRtd4_P6_ttZiUrUvbGZS61FSVfaoYgVgoqXknV_wWigGWpEAAKUWlgSkGu-n9RaKVXICuZF3JG1HjXBh9jwMp0wTUQToYzM3gxBzN6MYMXM3rpsdtfmHXpK2IK4Or_4LsRxj7Y0WEw0TpsLZYu9OpM6d3fBz4Bms6Egg |
CitedBy_id | crossref_primary_10_1002_adfm_202313790 crossref_primary_10_1002_adma_202303513 crossref_primary_10_1109_JSEN_2021_3088466 crossref_primary_10_1021_acs_chemrev_3c00502 crossref_primary_10_1016_j_mtphys_2021_100602 crossref_primary_10_1038_s41378_022_00363_5 crossref_primary_10_1002_admt_202101496 crossref_primary_10_1109_JSEN_2024_3454066 crossref_primary_10_1002_admt_202200092 crossref_primary_10_1126_sciadv_abg2507 crossref_primary_10_1021_acsami_1c22457 crossref_primary_10_1109_JBHI_2021_3059883 crossref_primary_10_1021_acssensors_2c01628 crossref_primary_10_1088_1361_6463_ac6af4 crossref_primary_10_1038_s43246_024_00480_w crossref_primary_10_16984_saufenbilder_1203409 crossref_primary_10_7498_aps_69_20200664 crossref_primary_10_1021_acsami_2c17756 crossref_primary_10_3390_bios11110435 crossref_primary_10_1109_RBME_2020_2992838 crossref_primary_10_1021_acsami_2c03056 crossref_primary_10_3390_s21082828 crossref_primary_10_1063_5_0140900 crossref_primary_10_1109_JSEN_2020_3040995 crossref_primary_10_1002_flm2_10 crossref_primary_10_1021_acsnano_1c09792 crossref_primary_10_1007_s42979_020_00335_4 crossref_primary_10_1109_TED_2021_3111845 crossref_primary_10_1002_admt_202200571 crossref_primary_10_1007_s40820_023_01029_1 crossref_primary_10_1002_mop_70012 crossref_primary_10_1038_s41378_021_00301_x crossref_primary_10_1016_j_bios_2023_115773 crossref_primary_10_1039_D3NR04774A crossref_primary_10_1109_OJNANO_2020_3019425 crossref_primary_10_1002_adfm_202103559 crossref_primary_10_1002_admt_202302010 crossref_primary_10_1002_wnan_70006 crossref_primary_10_1039_D3TC04143C crossref_primary_10_1021_acsami_4c06263 crossref_primary_10_1002_sstr_202200034 crossref_primary_10_3390_s21175787 crossref_primary_10_1002_adfm_202204686 crossref_primary_10_3390_mi13101743 crossref_primary_10_1039_D3CP02330C crossref_primary_10_1016_j_matchemphys_2021_125160 crossref_primary_10_36548_jei_2022_3_008 crossref_primary_10_1177_15280837211041771 crossref_primary_10_1002_adsr_202300159 crossref_primary_10_1002_eom2_12123 crossref_primary_10_1038_s42256_022_00543_y crossref_primary_10_1088_2516_1091_ac2eae crossref_primary_10_1016_j_nanoen_2020_105017 crossref_primary_10_3390_coatings10080711 crossref_primary_10_1109_JSEN_2022_3215072 crossref_primary_10_3390_mi14050910 crossref_primary_10_1002_adfm_202111269 crossref_primary_10_37188_lam_2021_004 |
Cites_doi | 10.1002/adma.201904765 10.1038/nmat4599 10.1002/adfm.201805924 10.1126/science.aau0780 10.1038/s41928-018-0175-0 10.1039/c2lc40628d 10.1002/adma.201807101 10.1016/j.snb.2019.126973 10.1016/j.bios.2018.05.038 10.1016/j.nanoen.2019.01.063 10.1016/j.sna.2010.08.012 10.1002/admt.201900744 10.1021/acsami.9b04304 10.1038/s41928-018-0116-y 10.1038/s41928-019-0304-4 10.1016/j.nanoen.2019.01.042 10.1038/s41586-019-1687-0 10.1088/1361-6528/ab2d5d 10.1021/acsami.8b18904 10.1016/j.mtphys.2018.02.002 10.1114/1.1481053 10.1021/acsanm.9b00033 10.1097/MD.0000000000007239 10.1038/s41551-019-0347-x 10.1002/adma.201405400 10.1016/j.snb.2018.03.043 10.1111/j.1551-2916.2009.02990.x 10.1038/s41551-018-0201-6 10.1002/adma.201403807 10.1016/j.eml.2016.05.015 10.3390/s91209533 10.1002/aelm.201901174 10.1002/adfm.201808247 10.1016/j.nanoen.2017.05.056 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mtphys.2020.100199 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2542-5293 |
ExternalDocumentID | 10_1016_j_mtphys_2020_100199 S2542529320300237 |
GroupedDBID | AABXZ AACTN AAEDW AAHCO AAIAV AAKOC AALRI AAXUO ABMAC ABNEU ABYKQ ACDAQ ACGFS ACRLP ADBBV AEBSH AEZYN AFKWA AFRZQ AFTJW AGUBO AIEXJ AIKHN AITUG AJBFU ALMA_UNASSIGNED_HOLDINGS AMRAJ AXJTR BELTK BKOJK EBS EFJIC EFLBG EJD FDB FIRID FYGXN HX~ KOM ROL SPC SPCBC SSM SSQ SSR SSZ T5K ~G- 0R~ AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-b13539c2d1790ea284af1f34296a26a7d4eaaa62f9a044a54962e29498a3f3563 |
IEDL.DBID | AIKHN |
ISSN | 2542-5293 |
IngestDate | Thu Apr 24 23:00:17 EDT 2025 Tue Jul 01 00:42:59 EDT 2025 Fri Feb 23 02:47:31 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Keywords | Thermo-sensitivity Stretchable electronics Wearable electronics Respiration sensor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-b13539c2d1790ea284af1f34296a26a7d4eaaa62f9a044a54962e29498a3f3563 |
ORCID | 0000-0003-3841-5327 0000-0001-8744-8892 0000-0003-0522-1171 0000-0003-1525-3660 0000-0003-0522-3724 0000-0003-1320-817X |
ParticipantIDs | crossref_primary_10_1016_j_mtphys_2020_100199 crossref_citationtrail_10_1016_j_mtphys_2020_100199 elsevier_sciencedirect_doi_10_1016_j_mtphys_2020_100199 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 2020-06-00 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationTitle | Materials today physics |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jeong, Hagman, Hjort, Jobs, Sundqvist, Wu (bib8) 2012; 12 Yu, Zeng, Zhou (bib15) 2015; 27 Liu, Wang, Zhao (bib12) 2020; 6 Hong, Jeong, Cho, Lu, Kim (bib2) 2019; 29 Wu, Zhang, Vorobyev (bib21) 2018; 4 Zhang, Cao, Li, Wu, Zong (bib23) 2018; 265 Liu, Zhu, Que (bib34) 2009; 9 Yang, Mun, Kwon, Park, Bao, Park (bib7) 2019; 31 Gao, Ooka, Oh (bib38) 2019 Liu, Zhao, Wang (bib6) 2019; 4 Liu, Xu, Avila (bib9) 2019; 30 Feteira (bib37) 2009; 92 Yu, Marks, Facchetti (bib16) 2016; 15 Huang, Hao, Li (bib19) 2018; 1 Yu, Xie, Yu (bib20) 2019; 575 Gutruf, Krishnamurthi, Vázquez-Guardado (bib10) 2018; 1 Sim, Chen, Li (bib14) 2019; 2 Dagdeviren, Joe, Tuzman (bib1) 2016; 9 Wang, Jiang, Tai (bib33) 2019; 63 Roy, Ghosh, Sultana (bib29) 2019; 2 Huang, Liu, Zhao, Ren, Guo (bib17) 2019; 29 Yu, Yuk, Parada (bib13) 2019; 31 Dai, Zhao, Lin (bib25) 2019; 11 Yu, Wang, Ning (bib5) 2018; 2 Xie, Avila, Huang, Rogers (bib3) 2019 Xue, Yang, Wang (bib28) 2017; 38 Zhang, Zhang, Hu (bib31) 2019; 59 Lee, Cha, Kim, Choi, Sun (bib32) 2018; 9 Tian, Zimmerman, Akhtar (bib18) 2019; 3 Li, Tian, Su, Wang, Wang, Zhang (bib24) 2019; 299 Pang, Jian, Tu (bib27) 2018; 116 Pang, Koo, Nguyen (bib11) 2015; 27 Chung, Kim, Lee (bib4) 2019; 363 Peng, Mietus, Liu (bib22) 2002; 30 Huang, Li, Wang, Lai, Xue, Gao (bib26) 2019; 11 Cubukcu, Zernickel, Buerklin, Urban (bib35) 2010; 163 Wang, Tai, Liu (bib30) 2019; 58 Choi, Min, Park, Cho, Yoon, Yoon (bib36) 2017; 96 Dagdeviren (10.1016/j.mtphys.2020.100199_bib1) 2016; 9 Wang (10.1016/j.mtphys.2020.100199_bib33) 2019; 63 Sim (10.1016/j.mtphys.2020.100199_bib14) 2019; 2 Lee (10.1016/j.mtphys.2020.100199_bib32) 2018; 9 Zhang (10.1016/j.mtphys.2020.100199_bib23) 2018; 265 Liu (10.1016/j.mtphys.2020.100199_bib9) 2019; 30 Huang (10.1016/j.mtphys.2020.100199_bib17) 2019; 29 Gao (10.1016/j.mtphys.2020.100199_bib38) 2019 Yang (10.1016/j.mtphys.2020.100199_bib7) 2019; 31 Hong (10.1016/j.mtphys.2020.100199_bib2) 2019; 29 Chung (10.1016/j.mtphys.2020.100199_bib4) 2019; 363 Pang (10.1016/j.mtphys.2020.100199_bib11) 2015; 27 Yu (10.1016/j.mtphys.2020.100199_bib15) 2015; 27 Peng (10.1016/j.mtphys.2020.100199_bib22) 2002; 30 Roy (10.1016/j.mtphys.2020.100199_bib29) 2019; 2 Xue (10.1016/j.mtphys.2020.100199_bib28) 2017; 38 Cubukcu (10.1016/j.mtphys.2020.100199_bib35) 2010; 163 Yu (10.1016/j.mtphys.2020.100199_bib13) 2019; 31 Dai (10.1016/j.mtphys.2020.100199_bib25) 2019; 11 Tian (10.1016/j.mtphys.2020.100199_bib18) 2019; 3 Liu (10.1016/j.mtphys.2020.100199_bib6) 2019; 4 Liu (10.1016/j.mtphys.2020.100199_bib12) 2020; 6 Feteira (10.1016/j.mtphys.2020.100199_bib37) 2009; 92 Jeong (10.1016/j.mtphys.2020.100199_bib8) 2012; 12 Huang (10.1016/j.mtphys.2020.100199_bib19) 2018; 1 Yu (10.1016/j.mtphys.2020.100199_bib16) 2016; 15 Wu (10.1016/j.mtphys.2020.100199_bib21) 2018; 4 Wang (10.1016/j.mtphys.2020.100199_bib30) 2019; 58 Yu (10.1016/j.mtphys.2020.100199_bib5) 2018; 2 Yu (10.1016/j.mtphys.2020.100199_bib20) 2019; 575 Huang (10.1016/j.mtphys.2020.100199_bib26) 2019; 11 Liu (10.1016/j.mtphys.2020.100199_bib34) 2009; 9 Choi (10.1016/j.mtphys.2020.100199_bib36) 2017; 96 Zhang (10.1016/j.mtphys.2020.100199_bib31) 2019; 59 Li (10.1016/j.mtphys.2020.100199_bib24) 2019; 299 Pang (10.1016/j.mtphys.2020.100199_bib27) 2018; 116 Xie (10.1016/j.mtphys.2020.100199_bib3) 2019 Gutruf (10.1016/j.mtphys.2020.100199_bib10) 2018; 1 |
References_xml | – volume: 265 start-page: 529 year: 2018 end-page: 538 ident: bib23 article-title: Humidity-sensing performance of layer-by-layer self-assembled tungsten disulfide/tin dioxide nanocomposite publication-title: Sensor. Actuator. B Chem. – volume: 2 start-page: 2013 year: 2019 end-page: 2025 ident: bib29 article-title: A self-powered wearable pressure sensor and pyroelectric breathing sensor based on GO interfaced PVDF nanofibers publication-title: ACS Appl. Nano Mater. – volume: 9 start-page: 269 year: 2016 end-page: 281 ident: bib1 article-title: Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation publication-title: Extreme mech. lett. – volume: 116 start-page: 123 year: 2018 end-page: 129 ident: bib27 article-title: Wearable humidity sensor based on porous graphene network for respiration monitoring publication-title: Biosens. Bioelectron. – volume: 30 start-page: 683 year: 2002 end-page: 692 ident: bib22 article-title: Quantifying fractal dynamics of human respiration: age and gender effects publication-title: Ann. Biomed. Eng. – volume: 15 start-page: 383 year: 2016 ident: bib16 article-title: Metal oxides for optoelectronic applications publication-title: Nat. Mater. – volume: 38 start-page: 147 year: 2017 end-page: 154 ident: bib28 article-title: A wearable pyroelectric nanogenerator and self-powered breathing sensor publication-title: Nanomater. Energy – volume: 9 start-page: 1 year: 2018 end-page: 8 ident: bib32 article-title: Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators publication-title: Nat. Commun. – volume: 92 start-page: 967 year: 2009 end-page: 983 ident: bib37 article-title: Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective publication-title: J. Am. Ceram. Soc. – volume: 363 year: 2019 ident: bib4 article-title: Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care publication-title: Science – volume: 27 start-page: 2390 year: 2015 end-page: 2399 ident: bib15 article-title: Ultra-Flexible,“Invisible” thin-film transistors enabled by amorphous metal oxide/polymer channel layer blends publication-title: Adv. Mater. – volume: 163 start-page: 449 year: 2010 end-page: 456 ident: bib35 article-title: A 2D thermal flow sensor with sub-mW power consumption publication-title: Sensor Actuator Phys. – volume: 31 start-page: 1904765 year: 2019 ident: bib7 article-title: Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics publication-title: Adv. Mater. – volume: 299 start-page: 126973 year: 2019 ident: bib24 article-title: High sensitivity portable capacitive humidity sensor based on In2O3 nanocubes-decorated GO nanosheets and its wearable application in respiration detection publication-title: Sensor. Actuator. B Chem. – volume: 6 year: 2020 ident: bib12 article-title: Thin, skin-integrated, stretchable triboelectric nanogenerators for tactile sensing publication-title: Adv. Electron. Mater. – volume: 4 start-page: 1900744 year: 2019 ident: bib6 article-title: Skin-integrated graphene-embedded lead zirconate titanate rubber for energy harvesting and mechanical sensing publication-title: Adv. Mater. Technol. – volume: 11 start-page: 6483 year: 2019 end-page: 6490 ident: bib25 article-title: Ultrafast response polyelectrolyte humidity sensor for respiration monitoring publication-title: ACS Appl. Mater. Interfaces – start-page: 1902767 year: 2019 ident: bib3 article-title: Flexible and stretchable antennas for biointegrated electronics publication-title: Adv. Mater. – volume: 29 start-page: 1805924 year: 2019 ident: bib17 article-title: Flexible electronics: stretchable electrodes and their future publication-title: Adv. Funct. Mater. – volume: 4 start-page: 28 year: 2018 end-page: 35 ident: bib21 article-title: Seamless modulus gradient structures for highly resilient, stretchable system integration publication-title: Mater. Today Phys. – volume: 3 start-page: 194 year: 2019 ident: bib18 article-title: Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring publication-title: Nat. Biomed. Eng. – volume: 11 year: 2019 ident: bib26 article-title: A superhydrophilic, underwater superoleophobic and highly stretchable humidity and chemical vapor sensor for human breath detection publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 165 year: 2018 ident: bib5 article-title: Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing publication-title: Nat. Biomed. Eng. – volume: 2 start-page: 471 year: 2019 end-page: 479 ident: bib14 article-title: Three-dimensional curvy electronics created using conformal additive stamp printing publication-title: Nat. Electron. – start-page: 106168 year: 2019 ident: bib38 article-title: Formulation of Human Body Heat Transfer Coefficient under Various Ambient Temperature, Air Speed and Direction Based on Experiments and CFD – volume: 63 start-page: 2211 year: 2019 end-page: 2855 ident: bib33 article-title: An integrated flexible self-powered wearable respiration sensor publication-title: Nanomater. Energy – volume: 96 year: 2017 ident: bib36 article-title: Comparison of the temperature and humidity in the anesthetic breathing circuit among different anesthetic workstations: updated guidelines for reporting parallel group randomized trials publication-title: Medicine – volume: 29 start-page: 1808247 year: 2019 ident: bib2 article-title: Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics publication-title: Adv. Funct. Mater. – volume: 575 start-page: 473 year: 2019 end-page: 479 ident: bib20 article-title: Skin-integrated wireless haptic interfaces for virtual and augmented reality publication-title: Nature – volume: 30 start-page: 414001 year: 2019 ident: bib9 article-title: 3D printed microstructures for flexible electronic devices publication-title: Nanotechnology – volume: 1 start-page: 473 year: 2018 ident: bib19 article-title: Three-dimensional integrated stretchable electronics publication-title: Nat. Electron. – volume: 9 start-page: 9533 year: 2009 end-page: 9543 ident: bib34 article-title: A flexible flow sensor system and its characteristics for fluid mechanics measurements publication-title: Sensors – volume: 27 start-page: 634 year: 2015 end-page: 640 ident: bib11 article-title: Highly skin-conformal microhairy sensor for pulse signal amplification publication-title: Adv. Mater. – volume: 58 start-page: 312 year: 2019 end-page: 321 ident: bib30 article-title: A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring publication-title: Nanomater. Energy – volume: 12 start-page: 4657 year: 2012 end-page: 4664 ident: bib8 article-title: Liquid alloy printing of microfluidic stretchable electronics publication-title: Lab Chip – volume: 1 start-page: 652 year: 2018 ident: bib10 article-title: Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research publication-title: Nat. Electron. – volume: 59 start-page: 75 year: 2019 end-page: 83 ident: bib31 article-title: Waist-wearable wireless respiration sensor based on triboelectric effect publication-title: Nanomater. Energy – volume: 31 start-page: 1807101 year: 2019 ident: bib13 article-title: Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes publication-title: Adv. Mater. – volume: 31 start-page: 1904765 issue: 48 year: 2019 ident: 10.1016/j.mtphys.2020.100199_bib7 article-title: Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics publication-title: Adv. Mater. doi: 10.1002/adma.201904765 – volume: 15 start-page: 383 issue: 4 year: 2016 ident: 10.1016/j.mtphys.2020.100199_bib16 article-title: Metal oxides for optoelectronic applications publication-title: Nat. Mater. doi: 10.1038/nmat4599 – volume: 29 start-page: 1805924 issue: 6 year: 2019 ident: 10.1016/j.mtphys.2020.100199_bib17 article-title: Flexible electronics: stretchable electrodes and their future publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805924 – volume: 363 issue: 6430 year: 2019 ident: 10.1016/j.mtphys.2020.100199_bib4 article-title: Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care publication-title: Science doi: 10.1126/science.aau0780 – volume: 1 start-page: 652 issue: 12 year: 2018 ident: 10.1016/j.mtphys.2020.100199_bib10 article-title: Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research publication-title: Nat. Electron. doi: 10.1038/s41928-018-0175-0 – volume: 12 start-page: 4657 issue: 22 year: 2012 ident: 10.1016/j.mtphys.2020.100199_bib8 article-title: Liquid alloy printing of microfluidic stretchable electronics publication-title: Lab Chip doi: 10.1039/c2lc40628d – volume: 31 start-page: 1807101 issue: 7 year: 2019 ident: 10.1016/j.mtphys.2020.100199_bib13 article-title: Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes publication-title: Adv. Mater. doi: 10.1002/adma.201807101 – volume: 299 start-page: 126973 year: 2019 ident: 10.1016/j.mtphys.2020.100199_bib24 article-title: High sensitivity portable capacitive humidity sensor based on In2O3 nanocubes-decorated GO nanosheets and its wearable application in respiration detection publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2019.126973 – start-page: 106168 year: 2019 ident: 10.1016/j.mtphys.2020.100199_bib38 – volume: 116 start-page: 123 year: 2018 ident: 10.1016/j.mtphys.2020.100199_bib27 article-title: Wearable humidity sensor based on porous graphene network for respiration monitoring publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.05.038 – volume: 59 start-page: 75 year: 2019 ident: 10.1016/j.mtphys.2020.100199_bib31 article-title: Waist-wearable wireless respiration sensor based on triboelectric effect publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2019.01.063 – volume: 163 start-page: 449 issue: 2 year: 2010 ident: 10.1016/j.mtphys.2020.100199_bib35 article-title: A 2D thermal flow sensor with sub-mW power consumption publication-title: Sensor Actuator Phys. doi: 10.1016/j.sna.2010.08.012 – volume: 4 start-page: 1900744 issue: 12 year: 2019 ident: 10.1016/j.mtphys.2020.100199_bib6 article-title: Skin-integrated graphene-embedded lead zirconate titanate rubber for energy harvesting and mechanical sensing publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201900744 – volume: 11 issue: 27 year: 2019 ident: 10.1016/j.mtphys.2020.100199_bib26 article-title: A superhydrophilic, underwater superoleophobic and highly stretchable humidity and chemical vapor sensor for human breath detection publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04304 – volume: 1 start-page: 473 issue: 8 year: 2018 ident: 10.1016/j.mtphys.2020.100199_bib19 article-title: Three-dimensional integrated stretchable electronics publication-title: Nat. Electron. doi: 10.1038/s41928-018-0116-y – volume: 2 start-page: 471 issue: 10 year: 2019 ident: 10.1016/j.mtphys.2020.100199_bib14 article-title: Three-dimensional curvy electronics created using conformal additive stamp printing publication-title: Nat. Electron. doi: 10.1038/s41928-019-0304-4 – volume: 58 start-page: 312 year: 2019 ident: 10.1016/j.mtphys.2020.100199_bib30 article-title: A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2019.01.042 – volume: 575 start-page: 473 issue: 7783 year: 2019 ident: 10.1016/j.mtphys.2020.100199_bib20 article-title: Skin-integrated wireless haptic interfaces for virtual and augmented reality publication-title: Nature doi: 10.1038/s41586-019-1687-0 – start-page: 1902767 year: 2019 ident: 10.1016/j.mtphys.2020.100199_bib3 article-title: Flexible and stretchable antennas for biointegrated electronics publication-title: Adv. Mater. – volume: 30 start-page: 414001 issue: 41 year: 2019 ident: 10.1016/j.mtphys.2020.100199_bib9 article-title: 3D printed microstructures for flexible electronic devices publication-title: Nanotechnology doi: 10.1088/1361-6528/ab2d5d – volume: 11 start-page: 6483 issue: 6 year: 2019 ident: 10.1016/j.mtphys.2020.100199_bib25 article-title: Ultrafast response polyelectrolyte humidity sensor for respiration monitoring publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b18904 – volume: 4 start-page: 28 year: 2018 ident: 10.1016/j.mtphys.2020.100199_bib21 article-title: Seamless modulus gradient structures for highly resilient, stretchable system integration publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2018.02.002 – volume: 30 start-page: 683 issue: 5 year: 2002 ident: 10.1016/j.mtphys.2020.100199_bib22 article-title: Quantifying fractal dynamics of human respiration: age and gender effects publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1481053 – volume: 2 start-page: 2013 issue: 4 year: 2019 ident: 10.1016/j.mtphys.2020.100199_bib29 article-title: A self-powered wearable pressure sensor and pyroelectric breathing sensor based on GO interfaced PVDF nanofibers publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b00033 – volume: 96 issue: 25 year: 2017 ident: 10.1016/j.mtphys.2020.100199_bib36 article-title: Comparison of the temperature and humidity in the anesthetic breathing circuit among different anesthetic workstations: updated guidelines for reporting parallel group randomized trials publication-title: Medicine doi: 10.1097/MD.0000000000007239 – volume: 3 start-page: 194 issue: 3 year: 2019 ident: 10.1016/j.mtphys.2020.100199_bib18 article-title: Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-019-0347-x – volume: 27 start-page: 2390 issue: 14 year: 2015 ident: 10.1016/j.mtphys.2020.100199_bib15 article-title: Ultra-Flexible,“Invisible” thin-film transistors enabled by amorphous metal oxide/polymer channel layer blends publication-title: Adv. Mater. doi: 10.1002/adma.201405400 – volume: 265 start-page: 529 year: 2018 ident: 10.1016/j.mtphys.2020.100199_bib23 article-title: Humidity-sensing performance of layer-by-layer self-assembled tungsten disulfide/tin dioxide nanocomposite publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2018.03.043 – volume: 9 start-page: 1 year: 2018 ident: 10.1016/j.mtphys.2020.100199_bib32 article-title: Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators publication-title: Nat. Commun. – volume: 92 start-page: 967 issue: 5 year: 2009 ident: 10.1016/j.mtphys.2020.100199_bib37 article-title: Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2009.02990.x – volume: 63 start-page: 2211 year: 2019 ident: 10.1016/j.mtphys.2020.100199_bib33 article-title: An integrated flexible self-powered wearable respiration sensor publication-title: Nanomater. Energy – volume: 2 start-page: 165 issue: 3 year: 2018 ident: 10.1016/j.mtphys.2020.100199_bib5 article-title: Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0201-6 – volume: 27 start-page: 634 issue: 4 year: 2015 ident: 10.1016/j.mtphys.2020.100199_bib11 article-title: Highly skin-conformal microhairy sensor for pulse signal amplification publication-title: Adv. Mater. doi: 10.1002/adma.201403807 – volume: 9 start-page: 269 year: 2016 ident: 10.1016/j.mtphys.2020.100199_bib1 article-title: Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation publication-title: Extreme mech. lett. doi: 10.1016/j.eml.2016.05.015 – volume: 9 start-page: 9533 issue: 12 year: 2009 ident: 10.1016/j.mtphys.2020.100199_bib34 article-title: A flexible flow sensor system and its characteristics for fluid mechanics measurements publication-title: Sensors doi: 10.3390/s91209533 – volume: 6 issue: 1 year: 2020 ident: 10.1016/j.mtphys.2020.100199_bib12 article-title: Thin, skin-integrated, stretchable triboelectric nanogenerators for tactile sensing publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201901174 – volume: 29 start-page: 1808247 issue: 19 year: 2019 ident: 10.1016/j.mtphys.2020.100199_bib2 article-title: Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808247 – volume: 38 start-page: 147 year: 2017 ident: 10.1016/j.mtphys.2020.100199_bib28 article-title: A wearable pyroelectric nanogenerator and self-powered breathing sensor publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2017.05.056 |
SSID | ssj0002962602 |
Score | 2.42864 |
Snippet | The depth and rate of human respiration reveal important and diverse sets of physiological information for evaluating human health. Here, we introduce an... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 100199 |
SubjectTerms | Respiration sensor Stretchable electronics Thermo-sensitivity Wearable electronics |
Title | Epidermal electronics for respiration monitoring via thermo-sensitive measuring |
URI | https://dx.doi.org/10.1016/j.mtphys.2020.100199 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zu3gRRcX5RQ5ew7qkTdvjGBtTcR50sFtImwQm6zZc9e_3vTadCqLgsW0elB8vv_eRl_cIuYkC14-tESzWuWOhtBlLgCxZbpw0HA-eqjlkD1M5mYV382jeIsPmLgyWVXrurzm9Ymv_pufR7G0Wi94ThDY8AmvFQU_B8sR7pMNFKkG1O4Pb-8l0l2rhKXrteJ6AIgxlmkt0VaVXUWIWAWJFXrckqvrA_mCkvhie8SE58B4jHdQ_dURadnVMHkc42RVIdUk_B9lsKXig9NUfngPgtKh2LKbu6PtCU3T2ijXbYtE60hwtqgwhfD4hs_HoeThhfjYCy8HJL1mG8yrSnBvssGU1GBnt-k6AdZGaSx2b0GqtJXepDsJQQxQoueVpmCZaOBFJcUraq_XKnhGaGMOTIMNObhCLuTAxceRgcZAlsQ76tktEA4bKfeNwnF-xVE2F2IuqIVQIoaoh7BK2k9rUjTP-WB83OKtvCqCA23-VPP-35AXZx6e68uuStMvXN3sFPkaZXXsd-gCGSNBj |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe9CLKCq-3YPXpekm2STHUlpS-_BgC70tm2QXKn3RRn-_M8mmKoiC12wGwsfmm8fOfkPIo--YVqAzlwUqNcwTOmEhkCVLMyMyjgdPxRyy0VjEU-9p5s9qpFPdhcG2Ssv9JacXbG2fNC2azc183nyB1Ib74K047FPwPMEBaaA6lV8njXZ_EI_3pRYeYdSO5wlowtCmukRXdHotc6wiQK7IS0miQgf2Byf1xfH0TsixjRhpu_yoU1LTqzPy3MXJrkCqC_o5yGZHIQKlW3t4DoDTZfHHYumOvs8VxWBvuWY7bFpHmqPLokIIy-dk2utOOjGzsxFYCkF-zhKcVxGlPEOFLa3AySjTMi54F6G4UEHmaaWU4CZSjucpyAIF1zzyolC5xvWFe0Hqq_VKXxIaZhkPnQSV3CAXM16YBb6Bl50kDJTT0lfErcCQqRUOx_kVC1l1iL3KEkKJEMoSwivC9labUjjjj_eDCmf5bQNI4PZfLa__bflADuPJaCiH_fHghhzhStkFdkvq-fZN30G8kSf3dj99AGI500k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epidermal+electronics+for+respiration+monitoring+via+thermo-sensitive+measuring&rft.jtitle=Materials+today+physics&rft.au=Liu%2C+Y.&rft.au=Zhao%2C+L.&rft.au=Avila%2C+R.&rft.au=Yiu%2C+C.&rft.date=2020-06-01&rft.issn=2542-5293&rft.eissn=2542-5293&rft.volume=13&rft.spage=100199&rft_id=info:doi/10.1016%2Fj.mtphys.2020.100199&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mtphys_2020_100199 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-5293&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-5293&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-5293&client=summon |