Epidermal electronics for respiration monitoring via thermo-sensitive measuring

The depth and rate of human respiration reveal important and diverse sets of physiological information for evaluating human health. Here, we introduce an ultrathin, skin-integrated respiration sensor based on the thermal convection effect. The device features a filamentary fractal design of the gold...

Full description

Saved in:
Bibliographic Details
Published inMaterials today physics Vol. 13; p. 100199
Main Authors Liu, Y., Zhao, L., Avila, R., Yiu, C., Wong, T., Chan, Y., Yao, K., Li, D., Zhang, Y., Li, W., Xie, Z., Yu, X.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The depth and rate of human respiration reveal important and diverse sets of physiological information for evaluating human health. Here, we introduce an ultrathin, skin-integrated respiration sensor based on the thermal convection effect. The device features a filamentary fractal design of the gold heating electrode, a mini sensor (0.6 mm × 0.3 mm × 0.23 mm) with high thermal sensitivity and an ultrasoft encapsulation package to enhance the overall flexibility and biaxial stretchability of the system. Adjusting the input power of the heating electrode, i.e., increasing the temperature difference between the thermal sensor and environment, can further improve the sensitivity of the respiration sensor. The real-time monitoring respiration sensor can competently distinguish various breathing patterns (sitting, frightening, sleeping, meditating, and gasping) through breath rate/depth of detection subjects. In addition, the respiration sensor can effectively capture, in real time, the respiration of a volunteer while exercising, resting, or sleeping for prolonged periods of time. The combination of advanced mechanics, high sensitivity, and good stability make this respiration sensor a great candidate for potential use in real-time monitoring of human health. [Display omitted] •Respiration sensors are realized in a thin, flexible, and skin-like format.•A combination of thermal convection effect and thermal actuation is used for high-performance respiration sensing.•The real-time monitoring respiration sensor can competently distinguish various breathing patterns.
AbstractList The depth and rate of human respiration reveal important and diverse sets of physiological information for evaluating human health. Here, we introduce an ultrathin, skin-integrated respiration sensor based on the thermal convection effect. The device features a filamentary fractal design of the gold heating electrode, a mini sensor (0.6 mm × 0.3 mm × 0.23 mm) with high thermal sensitivity and an ultrasoft encapsulation package to enhance the overall flexibility and biaxial stretchability of the system. Adjusting the input power of the heating electrode, i.e., increasing the temperature difference between the thermal sensor and environment, can further improve the sensitivity of the respiration sensor. The real-time monitoring respiration sensor can competently distinguish various breathing patterns (sitting, frightening, sleeping, meditating, and gasping) through breath rate/depth of detection subjects. In addition, the respiration sensor can effectively capture, in real time, the respiration of a volunteer while exercising, resting, or sleeping for prolonged periods of time. The combination of advanced mechanics, high sensitivity, and good stability make this respiration sensor a great candidate for potential use in real-time monitoring of human health. [Display omitted] •Respiration sensors are realized in a thin, flexible, and skin-like format.•A combination of thermal convection effect and thermal actuation is used for high-performance respiration sensing.•The real-time monitoring respiration sensor can competently distinguish various breathing patterns.
ArticleNumber 100199
Author Wong, T.
Yu, X.
Chan, Y.
Li, W.
Avila, R.
Li, D.
Yiu, C.
Xie, Z.
Liu, Y.
Zhao, L.
Yao, K.
Zhang, Y.
Author_xml – sequence: 1
  givenname: Y.
  orcidid: 0000-0003-0522-3724
  surname: Liu
  fullname: Liu, Y.
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China
– sequence: 2
  givenname: L.
  surname: Zhao
  fullname: Zhao, L.
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China
– sequence: 3
  givenname: R.
  orcidid: 0000-0003-1525-3660
  surname: Avila
  fullname: Avila, R.
  organization: Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
– sequence: 4
  givenname: C.
  orcidid: 0000-0003-3841-5327
  surname: Yiu
  fullname: Yiu, C.
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China
– sequence: 5
  givenname: T.
  surname: Wong
  fullname: Wong, T.
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China
– sequence: 6
  givenname: Y.
  surname: Chan
  fullname: Chan, Y.
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China
– sequence: 7
  givenname: K.
  orcidid: 0000-0001-8744-8892
  surname: Yao
  fullname: Yao, K.
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China
– sequence: 8
  givenname: D.
  surname: Li
  fullname: Li, D.
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China
– sequence: 9
  givenname: Y.
  surname: Zhang
  fullname: Zhang, Y.
  email: yt.zhang@cityu.edu.hk
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China
– sequence: 10
  givenname: W.
  surname: Li
  fullname: Li, W.
  email: wenjli@cityu.edu.hk
  organization: Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China
– sequence: 11
  givenname: Z.
  orcidid: 0000-0003-1320-817X
  surname: Xie
  fullname: Xie, Z.
  email: zxie@dlut.edu.cn
  organization: State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, 116024, People's Republic of China
– sequence: 12
  givenname: X.
  orcidid: 0000-0003-0522-1171
  surname: Yu
  fullname: Yu, X.
  email: xingeyu@cityu.edu.hk
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China
BookMark eNqFkE1Lw0AQhhepYK39Bx72D6TuV9KuB0FK_YBCL3pexs3EbkmyYXct9N-bGA_iQU8zzPAM8z6XZNL6Fgm55mzBGS9uDosmdftTXAgmhhHjWp-RqciVyHKh5eRHf0HmMR4YY0IXomBiSnabzpUYGqgp1mhT8K2zkVY-0ICxcwGS8y1t-nHywbXv9OiApn2P-CxiG11yR6QNQvwY1lfkvII64vy7zsjrw-Zl_ZRtd4_P6_ttZiUrUvbGZS61FSVfaoYgVgoqXknV_wWigGWpEAAKUWlgSkGu-n9RaKVXICuZF3JG1HjXBh9jwMp0wTUQToYzM3gxBzN6MYMXM3rpsdtfmHXpK2IK4Or_4LsRxj7Y0WEw0TpsLZYu9OpM6d3fBz4Bms6Egg
CitedBy_id crossref_primary_10_1002_adfm_202313790
crossref_primary_10_1002_adma_202303513
crossref_primary_10_1109_JSEN_2021_3088466
crossref_primary_10_1021_acs_chemrev_3c00502
crossref_primary_10_1016_j_mtphys_2021_100602
crossref_primary_10_1038_s41378_022_00363_5
crossref_primary_10_1002_admt_202101496
crossref_primary_10_1109_JSEN_2024_3454066
crossref_primary_10_1002_admt_202200092
crossref_primary_10_1126_sciadv_abg2507
crossref_primary_10_1021_acsami_1c22457
crossref_primary_10_1109_JBHI_2021_3059883
crossref_primary_10_1021_acssensors_2c01628
crossref_primary_10_1088_1361_6463_ac6af4
crossref_primary_10_1038_s43246_024_00480_w
crossref_primary_10_16984_saufenbilder_1203409
crossref_primary_10_7498_aps_69_20200664
crossref_primary_10_1021_acsami_2c17756
crossref_primary_10_3390_bios11110435
crossref_primary_10_1109_RBME_2020_2992838
crossref_primary_10_1021_acsami_2c03056
crossref_primary_10_3390_s21082828
crossref_primary_10_1063_5_0140900
crossref_primary_10_1109_JSEN_2020_3040995
crossref_primary_10_1002_flm2_10
crossref_primary_10_1021_acsnano_1c09792
crossref_primary_10_1007_s42979_020_00335_4
crossref_primary_10_1109_TED_2021_3111845
crossref_primary_10_1002_admt_202200571
crossref_primary_10_1007_s40820_023_01029_1
crossref_primary_10_1002_mop_70012
crossref_primary_10_1038_s41378_021_00301_x
crossref_primary_10_1016_j_bios_2023_115773
crossref_primary_10_1039_D3NR04774A
crossref_primary_10_1109_OJNANO_2020_3019425
crossref_primary_10_1002_adfm_202103559
crossref_primary_10_1002_admt_202302010
crossref_primary_10_1002_wnan_70006
crossref_primary_10_1039_D3TC04143C
crossref_primary_10_1021_acsami_4c06263
crossref_primary_10_1002_sstr_202200034
crossref_primary_10_3390_s21175787
crossref_primary_10_1002_adfm_202204686
crossref_primary_10_3390_mi13101743
crossref_primary_10_1039_D3CP02330C
crossref_primary_10_1016_j_matchemphys_2021_125160
crossref_primary_10_36548_jei_2022_3_008
crossref_primary_10_1177_15280837211041771
crossref_primary_10_1002_adsr_202300159
crossref_primary_10_1002_eom2_12123
crossref_primary_10_1038_s42256_022_00543_y
crossref_primary_10_1088_2516_1091_ac2eae
crossref_primary_10_1016_j_nanoen_2020_105017
crossref_primary_10_3390_coatings10080711
crossref_primary_10_1109_JSEN_2022_3215072
crossref_primary_10_3390_mi14050910
crossref_primary_10_1002_adfm_202111269
crossref_primary_10_37188_lam_2021_004
Cites_doi 10.1002/adma.201904765
10.1038/nmat4599
10.1002/adfm.201805924
10.1126/science.aau0780
10.1038/s41928-018-0175-0
10.1039/c2lc40628d
10.1002/adma.201807101
10.1016/j.snb.2019.126973
10.1016/j.bios.2018.05.038
10.1016/j.nanoen.2019.01.063
10.1016/j.sna.2010.08.012
10.1002/admt.201900744
10.1021/acsami.9b04304
10.1038/s41928-018-0116-y
10.1038/s41928-019-0304-4
10.1016/j.nanoen.2019.01.042
10.1038/s41586-019-1687-0
10.1088/1361-6528/ab2d5d
10.1021/acsami.8b18904
10.1016/j.mtphys.2018.02.002
10.1114/1.1481053
10.1021/acsanm.9b00033
10.1097/MD.0000000000007239
10.1038/s41551-019-0347-x
10.1002/adma.201405400
10.1016/j.snb.2018.03.043
10.1111/j.1551-2916.2009.02990.x
10.1038/s41551-018-0201-6
10.1002/adma.201403807
10.1016/j.eml.2016.05.015
10.3390/s91209533
10.1002/aelm.201901174
10.1002/adfm.201808247
10.1016/j.nanoen.2017.05.056
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mtphys.2020.100199
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2542-5293
ExternalDocumentID 10_1016_j_mtphys_2020_100199
S2542529320300237
GroupedDBID AABXZ
AACTN
AAEDW
AAHCO
AAIAV
AAKOC
AALRI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AXJTR
BELTK
BKOJK
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
HX~
KOM
ROL
SPC
SPCBC
SSM
SSQ
SSR
SSZ
T5K
~G-
0R~
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-b13539c2d1790ea284af1f34296a26a7d4eaaa62f9a044a54962e29498a3f3563
IEDL.DBID AIKHN
ISSN 2542-5293
IngestDate Thu Apr 24 23:00:17 EDT 2025
Tue Jul 01 00:42:59 EDT 2025
Fri Feb 23 02:47:31 EST 2024
IsPeerReviewed false
IsScholarly true
Keywords Thermo-sensitivity
Stretchable electronics
Wearable electronics
Respiration sensor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-b13539c2d1790ea284af1f34296a26a7d4eaaa62f9a044a54962e29498a3f3563
ORCID 0000-0003-3841-5327
0000-0001-8744-8892
0000-0003-0522-1171
0000-0003-1525-3660
0000-0003-0522-3724
0000-0003-1320-817X
ParticipantIDs crossref_primary_10_1016_j_mtphys_2020_100199
crossref_citationtrail_10_1016_j_mtphys_2020_100199
elsevier_sciencedirect_doi_10_1016_j_mtphys_2020_100199
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle Materials today physics
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jeong, Hagman, Hjort, Jobs, Sundqvist, Wu (bib8) 2012; 12
Yu, Zeng, Zhou (bib15) 2015; 27
Liu, Wang, Zhao (bib12) 2020; 6
Hong, Jeong, Cho, Lu, Kim (bib2) 2019; 29
Wu, Zhang, Vorobyev (bib21) 2018; 4
Zhang, Cao, Li, Wu, Zong (bib23) 2018; 265
Liu, Zhu, Que (bib34) 2009; 9
Yang, Mun, Kwon, Park, Bao, Park (bib7) 2019; 31
Gao, Ooka, Oh (bib38) 2019
Liu, Zhao, Wang (bib6) 2019; 4
Liu, Xu, Avila (bib9) 2019; 30
Feteira (bib37) 2009; 92
Yu, Marks, Facchetti (bib16) 2016; 15
Huang, Hao, Li (bib19) 2018; 1
Yu, Xie, Yu (bib20) 2019; 575
Gutruf, Krishnamurthi, Vázquez-Guardado (bib10) 2018; 1
Sim, Chen, Li (bib14) 2019; 2
Dagdeviren, Joe, Tuzman (bib1) 2016; 9
Wang, Jiang, Tai (bib33) 2019; 63
Roy, Ghosh, Sultana (bib29) 2019; 2
Huang, Liu, Zhao, Ren, Guo (bib17) 2019; 29
Yu, Yuk, Parada (bib13) 2019; 31
Dai, Zhao, Lin (bib25) 2019; 11
Yu, Wang, Ning (bib5) 2018; 2
Xie, Avila, Huang, Rogers (bib3) 2019
Xue, Yang, Wang (bib28) 2017; 38
Zhang, Zhang, Hu (bib31) 2019; 59
Lee, Cha, Kim, Choi, Sun (bib32) 2018; 9
Tian, Zimmerman, Akhtar (bib18) 2019; 3
Li, Tian, Su, Wang, Wang, Zhang (bib24) 2019; 299
Pang, Jian, Tu (bib27) 2018; 116
Pang, Koo, Nguyen (bib11) 2015; 27
Chung, Kim, Lee (bib4) 2019; 363
Peng, Mietus, Liu (bib22) 2002; 30
Huang, Li, Wang, Lai, Xue, Gao (bib26) 2019; 11
Cubukcu, Zernickel, Buerklin, Urban (bib35) 2010; 163
Wang, Tai, Liu (bib30) 2019; 58
Choi, Min, Park, Cho, Yoon, Yoon (bib36) 2017; 96
Dagdeviren (10.1016/j.mtphys.2020.100199_bib1) 2016; 9
Wang (10.1016/j.mtphys.2020.100199_bib33) 2019; 63
Sim (10.1016/j.mtphys.2020.100199_bib14) 2019; 2
Lee (10.1016/j.mtphys.2020.100199_bib32) 2018; 9
Zhang (10.1016/j.mtphys.2020.100199_bib23) 2018; 265
Liu (10.1016/j.mtphys.2020.100199_bib9) 2019; 30
Huang (10.1016/j.mtphys.2020.100199_bib17) 2019; 29
Gao (10.1016/j.mtphys.2020.100199_bib38) 2019
Yang (10.1016/j.mtphys.2020.100199_bib7) 2019; 31
Hong (10.1016/j.mtphys.2020.100199_bib2) 2019; 29
Chung (10.1016/j.mtphys.2020.100199_bib4) 2019; 363
Pang (10.1016/j.mtphys.2020.100199_bib11) 2015; 27
Yu (10.1016/j.mtphys.2020.100199_bib15) 2015; 27
Peng (10.1016/j.mtphys.2020.100199_bib22) 2002; 30
Roy (10.1016/j.mtphys.2020.100199_bib29) 2019; 2
Xue (10.1016/j.mtphys.2020.100199_bib28) 2017; 38
Cubukcu (10.1016/j.mtphys.2020.100199_bib35) 2010; 163
Yu (10.1016/j.mtphys.2020.100199_bib13) 2019; 31
Dai (10.1016/j.mtphys.2020.100199_bib25) 2019; 11
Tian (10.1016/j.mtphys.2020.100199_bib18) 2019; 3
Liu (10.1016/j.mtphys.2020.100199_bib6) 2019; 4
Liu (10.1016/j.mtphys.2020.100199_bib12) 2020; 6
Feteira (10.1016/j.mtphys.2020.100199_bib37) 2009; 92
Jeong (10.1016/j.mtphys.2020.100199_bib8) 2012; 12
Huang (10.1016/j.mtphys.2020.100199_bib19) 2018; 1
Yu (10.1016/j.mtphys.2020.100199_bib16) 2016; 15
Wu (10.1016/j.mtphys.2020.100199_bib21) 2018; 4
Wang (10.1016/j.mtphys.2020.100199_bib30) 2019; 58
Yu (10.1016/j.mtphys.2020.100199_bib5) 2018; 2
Yu (10.1016/j.mtphys.2020.100199_bib20) 2019; 575
Huang (10.1016/j.mtphys.2020.100199_bib26) 2019; 11
Liu (10.1016/j.mtphys.2020.100199_bib34) 2009; 9
Choi (10.1016/j.mtphys.2020.100199_bib36) 2017; 96
Zhang (10.1016/j.mtphys.2020.100199_bib31) 2019; 59
Li (10.1016/j.mtphys.2020.100199_bib24) 2019; 299
Pang (10.1016/j.mtphys.2020.100199_bib27) 2018; 116
Xie (10.1016/j.mtphys.2020.100199_bib3) 2019
Gutruf (10.1016/j.mtphys.2020.100199_bib10) 2018; 1
References_xml – volume: 265
  start-page: 529
  year: 2018
  end-page: 538
  ident: bib23
  article-title: Humidity-sensing performance of layer-by-layer self-assembled tungsten disulfide/tin dioxide nanocomposite
  publication-title: Sensor. Actuator. B Chem.
– volume: 2
  start-page: 2013
  year: 2019
  end-page: 2025
  ident: bib29
  article-title: A self-powered wearable pressure sensor and pyroelectric breathing sensor based on GO interfaced PVDF nanofibers
  publication-title: ACS Appl. Nano Mater.
– volume: 9
  start-page: 269
  year: 2016
  end-page: 281
  ident: bib1
  article-title: Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation
  publication-title: Extreme mech. lett.
– volume: 116
  start-page: 123
  year: 2018
  end-page: 129
  ident: bib27
  article-title: Wearable humidity sensor based on porous graphene network for respiration monitoring
  publication-title: Biosens. Bioelectron.
– volume: 30
  start-page: 683
  year: 2002
  end-page: 692
  ident: bib22
  article-title: Quantifying fractal dynamics of human respiration: age and gender effects
  publication-title: Ann. Biomed. Eng.
– volume: 15
  start-page: 383
  year: 2016
  ident: bib16
  article-title: Metal oxides for optoelectronic applications
  publication-title: Nat. Mater.
– volume: 38
  start-page: 147
  year: 2017
  end-page: 154
  ident: bib28
  article-title: A wearable pyroelectric nanogenerator and self-powered breathing sensor
  publication-title: Nanomater. Energy
– volume: 9
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib32
  article-title: Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators
  publication-title: Nat. Commun.
– volume: 92
  start-page: 967
  year: 2009
  end-page: 983
  ident: bib37
  article-title: Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective
  publication-title: J. Am. Ceram. Soc.
– volume: 363
  year: 2019
  ident: bib4
  article-title: Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care
  publication-title: Science
– volume: 27
  start-page: 2390
  year: 2015
  end-page: 2399
  ident: bib15
  article-title: Ultra-Flexible,“Invisible” thin-film transistors enabled by amorphous metal oxide/polymer channel layer blends
  publication-title: Adv. Mater.
– volume: 163
  start-page: 449
  year: 2010
  end-page: 456
  ident: bib35
  article-title: A 2D thermal flow sensor with sub-mW power consumption
  publication-title: Sensor Actuator Phys.
– volume: 31
  start-page: 1904765
  year: 2019
  ident: bib7
  article-title: Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics
  publication-title: Adv. Mater.
– volume: 299
  start-page: 126973
  year: 2019
  ident: bib24
  article-title: High sensitivity portable capacitive humidity sensor based on In2O3 nanocubes-decorated GO nanosheets and its wearable application in respiration detection
  publication-title: Sensor. Actuator. B Chem.
– volume: 6
  year: 2020
  ident: bib12
  article-title: Thin, skin-integrated, stretchable triboelectric nanogenerators for tactile sensing
  publication-title: Adv. Electron. Mater.
– volume: 4
  start-page: 1900744
  year: 2019
  ident: bib6
  article-title: Skin-integrated graphene-embedded lead zirconate titanate rubber for energy harvesting and mechanical sensing
  publication-title: Adv. Mater. Technol.
– volume: 11
  start-page: 6483
  year: 2019
  end-page: 6490
  ident: bib25
  article-title: Ultrafast response polyelectrolyte humidity sensor for respiration monitoring
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 1902767
  year: 2019
  ident: bib3
  article-title: Flexible and stretchable antennas for biointegrated electronics
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1805924
  year: 2019
  ident: bib17
  article-title: Flexible electronics: stretchable electrodes and their future
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 28
  year: 2018
  end-page: 35
  ident: bib21
  article-title: Seamless modulus gradient structures for highly resilient, stretchable system integration
  publication-title: Mater. Today Phys.
– volume: 3
  start-page: 194
  year: 2019
  ident: bib18
  article-title: Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring
  publication-title: Nat. Biomed. Eng.
– volume: 11
  year: 2019
  ident: bib26
  article-title: A superhydrophilic, underwater superoleophobic and highly stretchable humidity and chemical vapor sensor for human breath detection
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 165
  year: 2018
  ident: bib5
  article-title: Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing
  publication-title: Nat. Biomed. Eng.
– volume: 2
  start-page: 471
  year: 2019
  end-page: 479
  ident: bib14
  article-title: Three-dimensional curvy electronics created using conformal additive stamp printing
  publication-title: Nat. Electron.
– start-page: 106168
  year: 2019
  ident: bib38
  article-title: Formulation of Human Body Heat Transfer Coefficient under Various Ambient Temperature, Air Speed and Direction Based on Experiments and CFD
– volume: 63
  start-page: 2211
  year: 2019
  end-page: 2855
  ident: bib33
  article-title: An integrated flexible self-powered wearable respiration sensor
  publication-title: Nanomater. Energy
– volume: 96
  year: 2017
  ident: bib36
  article-title: Comparison of the temperature and humidity in the anesthetic breathing circuit among different anesthetic workstations: updated guidelines for reporting parallel group randomized trials
  publication-title: Medicine
– volume: 29
  start-page: 1808247
  year: 2019
  ident: bib2
  article-title: Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics
  publication-title: Adv. Funct. Mater.
– volume: 575
  start-page: 473
  year: 2019
  end-page: 479
  ident: bib20
  article-title: Skin-integrated wireless haptic interfaces for virtual and augmented reality
  publication-title: Nature
– volume: 30
  start-page: 414001
  year: 2019
  ident: bib9
  article-title: 3D printed microstructures for flexible electronic devices
  publication-title: Nanotechnology
– volume: 1
  start-page: 473
  year: 2018
  ident: bib19
  article-title: Three-dimensional integrated stretchable electronics
  publication-title: Nat. Electron.
– volume: 9
  start-page: 9533
  year: 2009
  end-page: 9543
  ident: bib34
  article-title: A flexible flow sensor system and its characteristics for fluid mechanics measurements
  publication-title: Sensors
– volume: 27
  start-page: 634
  year: 2015
  end-page: 640
  ident: bib11
  article-title: Highly skin-conformal microhairy sensor for pulse signal amplification
  publication-title: Adv. Mater.
– volume: 58
  start-page: 312
  year: 2019
  end-page: 321
  ident: bib30
  article-title: A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring
  publication-title: Nanomater. Energy
– volume: 12
  start-page: 4657
  year: 2012
  end-page: 4664
  ident: bib8
  article-title: Liquid alloy printing of microfluidic stretchable electronics
  publication-title: Lab Chip
– volume: 1
  start-page: 652
  year: 2018
  ident: bib10
  article-title: Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research
  publication-title: Nat. Electron.
– volume: 59
  start-page: 75
  year: 2019
  end-page: 83
  ident: bib31
  article-title: Waist-wearable wireless respiration sensor based on triboelectric effect
  publication-title: Nanomater. Energy
– volume: 31
  start-page: 1807101
  year: 2019
  ident: bib13
  article-title: Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes
  publication-title: Adv. Mater.
– volume: 31
  start-page: 1904765
  issue: 48
  year: 2019
  ident: 10.1016/j.mtphys.2020.100199_bib7
  article-title: Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904765
– volume: 15
  start-page: 383
  issue: 4
  year: 2016
  ident: 10.1016/j.mtphys.2020.100199_bib16
  article-title: Metal oxides for optoelectronic applications
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4599
– volume: 29
  start-page: 1805924
  issue: 6
  year: 2019
  ident: 10.1016/j.mtphys.2020.100199_bib17
  article-title: Flexible electronics: stretchable electrodes and their future
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805924
– volume: 363
  issue: 6430
  year: 2019
  ident: 10.1016/j.mtphys.2020.100199_bib4
  article-title: Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care
  publication-title: Science
  doi: 10.1126/science.aau0780
– volume: 1
  start-page: 652
  issue: 12
  year: 2018
  ident: 10.1016/j.mtphys.2020.100199_bib10
  article-title: Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0175-0
– volume: 12
  start-page: 4657
  issue: 22
  year: 2012
  ident: 10.1016/j.mtphys.2020.100199_bib8
  article-title: Liquid alloy printing of microfluidic stretchable electronics
  publication-title: Lab Chip
  doi: 10.1039/c2lc40628d
– volume: 31
  start-page: 1807101
  issue: 7
  year: 2019
  ident: 10.1016/j.mtphys.2020.100199_bib13
  article-title: Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807101
– volume: 299
  start-page: 126973
  year: 2019
  ident: 10.1016/j.mtphys.2020.100199_bib24
  article-title: High sensitivity portable capacitive humidity sensor based on In2O3 nanocubes-decorated GO nanosheets and its wearable application in respiration detection
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2019.126973
– start-page: 106168
  year: 2019
  ident: 10.1016/j.mtphys.2020.100199_bib38
– volume: 116
  start-page: 123
  year: 2018
  ident: 10.1016/j.mtphys.2020.100199_bib27
  article-title: Wearable humidity sensor based on porous graphene network for respiration monitoring
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.05.038
– volume: 59
  start-page: 75
  year: 2019
  ident: 10.1016/j.mtphys.2020.100199_bib31
  article-title: Waist-wearable wireless respiration sensor based on triboelectric effect
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2019.01.063
– volume: 163
  start-page: 449
  issue: 2
  year: 2010
  ident: 10.1016/j.mtphys.2020.100199_bib35
  article-title: A 2D thermal flow sensor with sub-mW power consumption
  publication-title: Sensor Actuator Phys.
  doi: 10.1016/j.sna.2010.08.012
– volume: 4
  start-page: 1900744
  issue: 12
  year: 2019
  ident: 10.1016/j.mtphys.2020.100199_bib6
  article-title: Skin-integrated graphene-embedded lead zirconate titanate rubber for energy harvesting and mechanical sensing
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201900744
– volume: 11
  issue: 27
  year: 2019
  ident: 10.1016/j.mtphys.2020.100199_bib26
  article-title: A superhydrophilic, underwater superoleophobic and highly stretchable humidity and chemical vapor sensor for human breath detection
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04304
– volume: 1
  start-page: 473
  issue: 8
  year: 2018
  ident: 10.1016/j.mtphys.2020.100199_bib19
  article-title: Three-dimensional integrated stretchable electronics
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0116-y
– volume: 2
  start-page: 471
  issue: 10
  year: 2019
  ident: 10.1016/j.mtphys.2020.100199_bib14
  article-title: Three-dimensional curvy electronics created using conformal additive stamp printing
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0304-4
– volume: 58
  start-page: 312
  year: 2019
  ident: 10.1016/j.mtphys.2020.100199_bib30
  article-title: A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2019.01.042
– volume: 575
  start-page: 473
  issue: 7783
  year: 2019
  ident: 10.1016/j.mtphys.2020.100199_bib20
  article-title: Skin-integrated wireless haptic interfaces for virtual and augmented reality
  publication-title: Nature
  doi: 10.1038/s41586-019-1687-0
– start-page: 1902767
  year: 2019
  ident: 10.1016/j.mtphys.2020.100199_bib3
  article-title: Flexible and stretchable antennas for biointegrated electronics
  publication-title: Adv. Mater.
– volume: 30
  start-page: 414001
  issue: 41
  year: 2019
  ident: 10.1016/j.mtphys.2020.100199_bib9
  article-title: 3D printed microstructures for flexible electronic devices
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab2d5d
– volume: 11
  start-page: 6483
  issue: 6
  year: 2019
  ident: 10.1016/j.mtphys.2020.100199_bib25
  article-title: Ultrafast response polyelectrolyte humidity sensor for respiration monitoring
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b18904
– volume: 4
  start-page: 28
  year: 2018
  ident: 10.1016/j.mtphys.2020.100199_bib21
  article-title: Seamless modulus gradient structures for highly resilient, stretchable system integration
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2018.02.002
– volume: 30
  start-page: 683
  issue: 5
  year: 2002
  ident: 10.1016/j.mtphys.2020.100199_bib22
  article-title: Quantifying fractal dynamics of human respiration: age and gender effects
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1481053
– volume: 2
  start-page: 2013
  issue: 4
  year: 2019
  ident: 10.1016/j.mtphys.2020.100199_bib29
  article-title: A self-powered wearable pressure sensor and pyroelectric breathing sensor based on GO interfaced PVDF nanofibers
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b00033
– volume: 96
  issue: 25
  year: 2017
  ident: 10.1016/j.mtphys.2020.100199_bib36
  article-title: Comparison of the temperature and humidity in the anesthetic breathing circuit among different anesthetic workstations: updated guidelines for reporting parallel group randomized trials
  publication-title: Medicine
  doi: 10.1097/MD.0000000000007239
– volume: 3
  start-page: 194
  issue: 3
  year: 2019
  ident: 10.1016/j.mtphys.2020.100199_bib18
  article-title: Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-019-0347-x
– volume: 27
  start-page: 2390
  issue: 14
  year: 2015
  ident: 10.1016/j.mtphys.2020.100199_bib15
  article-title: Ultra-Flexible,“Invisible” thin-film transistors enabled by amorphous metal oxide/polymer channel layer blends
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405400
– volume: 265
  start-page: 529
  year: 2018
  ident: 10.1016/j.mtphys.2020.100199_bib23
  article-title: Humidity-sensing performance of layer-by-layer self-assembled tungsten disulfide/tin dioxide nanocomposite
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2018.03.043
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.mtphys.2020.100199_bib32
  article-title: Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators
  publication-title: Nat. Commun.
– volume: 92
  start-page: 967
  issue: 5
  year: 2009
  ident: 10.1016/j.mtphys.2020.100199_bib37
  article-title: Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2009.02990.x
– volume: 63
  start-page: 2211
  year: 2019
  ident: 10.1016/j.mtphys.2020.100199_bib33
  article-title: An integrated flexible self-powered wearable respiration sensor
  publication-title: Nanomater. Energy
– volume: 2
  start-page: 165
  issue: 3
  year: 2018
  ident: 10.1016/j.mtphys.2020.100199_bib5
  article-title: Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0201-6
– volume: 27
  start-page: 634
  issue: 4
  year: 2015
  ident: 10.1016/j.mtphys.2020.100199_bib11
  article-title: Highly skin-conformal microhairy sensor for pulse signal amplification
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201403807
– volume: 9
  start-page: 269
  year: 2016
  ident: 10.1016/j.mtphys.2020.100199_bib1
  article-title: Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation
  publication-title: Extreme mech. lett.
  doi: 10.1016/j.eml.2016.05.015
– volume: 9
  start-page: 9533
  issue: 12
  year: 2009
  ident: 10.1016/j.mtphys.2020.100199_bib34
  article-title: A flexible flow sensor system and its characteristics for fluid mechanics measurements
  publication-title: Sensors
  doi: 10.3390/s91209533
– volume: 6
  issue: 1
  year: 2020
  ident: 10.1016/j.mtphys.2020.100199_bib12
  article-title: Thin, skin-integrated, stretchable triboelectric nanogenerators for tactile sensing
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201901174
– volume: 29
  start-page: 1808247
  issue: 19
  year: 2019
  ident: 10.1016/j.mtphys.2020.100199_bib2
  article-title: Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808247
– volume: 38
  start-page: 147
  year: 2017
  ident: 10.1016/j.mtphys.2020.100199_bib28
  article-title: A wearable pyroelectric nanogenerator and self-powered breathing sensor
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2017.05.056
SSID ssj0002962602
Score 2.42864
Snippet The depth and rate of human respiration reveal important and diverse sets of physiological information for evaluating human health. Here, we introduce an...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100199
SubjectTerms Respiration sensor
Stretchable electronics
Thermo-sensitivity
Wearable electronics
Title Epidermal electronics for respiration monitoring via thermo-sensitive measuring
URI https://dx.doi.org/10.1016/j.mtphys.2020.100199
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zu3gRRcX5RQ5ew7qkTdvjGBtTcR50sFtImwQm6zZc9e_3vTadCqLgsW0elB8vv_eRl_cIuYkC14-tESzWuWOhtBlLgCxZbpw0HA-eqjlkD1M5mYV382jeIsPmLgyWVXrurzm9Ymv_pufR7G0Wi94ThDY8AmvFQU_B8sR7pMNFKkG1O4Pb-8l0l2rhKXrteJ6AIgxlmkt0VaVXUWIWAWJFXrckqvrA_mCkvhie8SE58B4jHdQ_dURadnVMHkc42RVIdUk_B9lsKXig9NUfngPgtKh2LKbu6PtCU3T2ijXbYtE60hwtqgwhfD4hs_HoeThhfjYCy8HJL1mG8yrSnBvssGU1GBnt-k6AdZGaSx2b0GqtJXepDsJQQxQoueVpmCZaOBFJcUraq_XKnhGaGMOTIMNObhCLuTAxceRgcZAlsQ76tktEA4bKfeNwnF-xVE2F2IuqIVQIoaoh7BK2k9rUjTP-WB83OKtvCqCA23-VPP-35AXZx6e68uuStMvXN3sFPkaZXXsd-gCGSNBj
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe9CLKCq-3YPXpekm2STHUlpS-_BgC70tm2QXKn3RRn-_M8mmKoiC12wGwsfmm8fOfkPIo--YVqAzlwUqNcwTOmEhkCVLMyMyjgdPxRyy0VjEU-9p5s9qpFPdhcG2Ssv9JacXbG2fNC2azc183nyB1Ib74K047FPwPMEBaaA6lV8njXZ_EI_3pRYeYdSO5wlowtCmukRXdHotc6wiQK7IS0miQgf2Byf1xfH0TsixjRhpu_yoU1LTqzPy3MXJrkCqC_o5yGZHIQKlW3t4DoDTZfHHYumOvs8VxWBvuWY7bFpHmqPLokIIy-dk2utOOjGzsxFYCkF-zhKcVxGlPEOFLa3AySjTMi54F6G4UEHmaaWU4CZSjucpyAIF1zzyolC5xvWFe0Hqq_VKXxIaZhkPnQSV3CAXM16YBb6Bl50kDJTT0lfErcCQqRUOx_kVC1l1iL3KEkKJEMoSwivC9labUjjjj_eDCmf5bQNI4PZfLa__bflADuPJaCiH_fHghhzhStkFdkvq-fZN30G8kSf3dj99AGI500k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epidermal+electronics+for+respiration+monitoring+via+thermo-sensitive+measuring&rft.jtitle=Materials+today+physics&rft.au=Liu%2C+Y.&rft.au=Zhao%2C+L.&rft.au=Avila%2C+R.&rft.au=Yiu%2C+C.&rft.date=2020-06-01&rft.issn=2542-5293&rft.eissn=2542-5293&rft.volume=13&rft.spage=100199&rft_id=info:doi/10.1016%2Fj.mtphys.2020.100199&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mtphys_2020_100199
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-5293&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-5293&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-5293&client=summon