High-rate lithium-ion battery performance of a ternary sea urchin-shaped CoNiO2@NiP6Mo18/CNTs composites

Polyoxometalates (POMs) act as electron sponges, enhancing reversible electron transfer and ensuring structural protection of urchin-shaped CoNiO2 nanospheres via CNTs assistance. CoNiO2@NiP6Mo18/CNTs demonstrates superior energy storage properties as anodes for lithium-ion batteries (LIBs). [Displa...

Full description

Saved in:
Bibliographic Details
Published inJournal of energy chemistry Vol. 96; pp. 516 - 525
Main Authors Cui, Li-ping, Sun, Shuang, Yu, Kai, Zhang, Shu, Wang, Mei-lin, Chen, Jia-jia, Zhou, Bai-bin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polyoxometalates (POMs) act as electron sponges, enhancing reversible electron transfer and ensuring structural protection of urchin-shaped CoNiO2 nanospheres via CNTs assistance. CoNiO2@NiP6Mo18/CNTs demonstrates superior energy storage properties as anodes for lithium-ion batteries (LIBs). [Display omitted] Bimetallic oxides are attractive anode materials for lithium-ion batteries (LIBs) due to their large theoretical capacity. However, the low conductivity, short cycle life, and poor rate capability are the bottlenecks for their further applications. To overcome above issues, the basket-like polymolybdate (NiP6Mo18) and carbon nanotubes (CNTs) were uniformly embedded on the urchin-shaped CoNiO2 nanospheres to yield a ternary composites CoNiO2@NiP6Mo18/CNTs via electrostatic adsorption. The multi-level morphology of urchin spinules accelerates the diffusion rate of Li+; CNT improves the conductivity and enhances cycle stability of the material; and heteropoly acid contributes more redox activity centres. Thus, CoNiO2@NiP6Mo18/CNTs as an anode of LIBs exhibits a high initial capacity (1396.7 mA h g−1 at 0.1 A g−1), long-term cycling stability (750.2 mA h g−1 after 300 cycles), and rate performance (450.3 mA h g−1 at 2 A g−1), which are superior to reported metallic oxides anode of LIBs. The density functional theory (DFT) and kinetic mechanism suggest that CoNiO2@NiP6Mo18/CNTs delivers an outstanding pseudocapacitance and rapid Li+ diffusion behaviors, which is due to the rich surface area of the urchin-like CoNiO2 with the uniform embeddedness of NiP6Mo18 and CNTs. This study provides a new idea for optimizing the performance of bimetallic oxides and developing high-rate lithium-ion battery composites.
AbstractList Polyoxometalates (POMs) act as electron sponges, enhancing reversible electron transfer and ensuring structural protection of urchin-shaped CoNiO2 nanospheres via CNTs assistance. CoNiO2@NiP6Mo18/CNTs demonstrates superior energy storage properties as anodes for lithium-ion batteries (LIBs). [Display omitted] Bimetallic oxides are attractive anode materials for lithium-ion batteries (LIBs) due to their large theoretical capacity. However, the low conductivity, short cycle life, and poor rate capability are the bottlenecks for their further applications. To overcome above issues, the basket-like polymolybdate (NiP6Mo18) and carbon nanotubes (CNTs) were uniformly embedded on the urchin-shaped CoNiO2 nanospheres to yield a ternary composites CoNiO2@NiP6Mo18/CNTs via electrostatic adsorption. The multi-level morphology of urchin spinules accelerates the diffusion rate of Li+; CNT improves the conductivity and enhances cycle stability of the material; and heteropoly acid contributes more redox activity centres. Thus, CoNiO2@NiP6Mo18/CNTs as an anode of LIBs exhibits a high initial capacity (1396.7 mA h g−1 at 0.1 A g−1), long-term cycling stability (750.2 mA h g−1 after 300 cycles), and rate performance (450.3 mA h g−1 at 2 A g−1), which are superior to reported metallic oxides anode of LIBs. The density functional theory (DFT) and kinetic mechanism suggest that CoNiO2@NiP6Mo18/CNTs delivers an outstanding pseudocapacitance and rapid Li+ diffusion behaviors, which is due to the rich surface area of the urchin-like CoNiO2 with the uniform embeddedness of NiP6Mo18 and CNTs. This study provides a new idea for optimizing the performance of bimetallic oxides and developing high-rate lithium-ion battery composites.
Author Sun, Shuang
Zhou, Bai-bin
Cui, Li-ping
Wang, Mei-lin
Chen, Jia-jia
Zhang, Shu
Yu, Kai
Author_xml – sequence: 1
  givenname: Li-ping
  surname: Cui
  fullname: Cui, Li-ping
  organization: Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
– sequence: 2
  givenname: Shuang
  surname: Sun
  fullname: Sun, Shuang
  organization: Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
– sequence: 3
  givenname: Kai
  surname: Yu
  fullname: Yu, Kai
  email: hlyukai188@163.com
  organization: Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
– sequence: 4
  givenname: Shu
  surname: Zhang
  fullname: Zhang, Shu
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, Fujian, China
– sequence: 5
  givenname: Mei-lin
  surname: Wang
  fullname: Wang, Mei-lin
  organization: Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
– sequence: 6
  givenname: Jia-jia
  orcidid: 0000-0003-1044-7079
  surname: Chen
  fullname: Chen, Jia-jia
  email: JiaJia.Chen@xmu.edu.cn
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, Fujian, China
– sequence: 7
  givenname: Bai-bin
  surname: Zhou
  fullname: Zhou, Bai-bin
  email: zhou_bai_bin@163.com
  organization: Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
BookMark eNqFkM9KAzEQxnOoYK19Aw95gW2T7H8PohS1Qm091HOYzc66WbqbkqSCb2-WevKgw8DADN_HN78rMhnMgITccLbgjGfLbtGharFfCCaSBRs7npCpYGUaJWWaXZK5cx0LVSZclOmUtGv90UYWPNKD9q0-9ZE2A63Ae7Rf9Ii2MbaHQSE1DQUatgOEg0OgJ6taPUSuhSPWdGW2eifut_otezW8WK62e0eV6Y_GaY_umlw0cHA4_5kz8v70uF-to83u-WX1sIlUzDIfVQxVklU546UoICurPC45L1KM-Rg6KyCvRB5zCJ8VWCdMqAJiaECURZE3EM9IcvZV1jhnsZFHq_sQWXImR0iyk2dIcoQk2dhxkN3-kintwQcW3oI-_Ce-O4sxPPap0UqnNAZmtbaovKyN_tvgG3XjiJ0
CitedBy_id crossref_primary_10_1016_j_jechem_2025_01_011
crossref_primary_10_1016_j_cinorg_2025_100096
crossref_primary_10_1016_j_jechem_2024_09_061
crossref_primary_10_1016_j_molstruc_2024_139777
crossref_primary_10_1007_s42823_024_00816_z
crossref_primary_10_1039_D4TA08656B
Cites_doi 10.1002/chem.201701121
10.1021/jacs.1c10584
10.1016/j.jssc.2022.123578
10.1039/c3ta11549f
10.1021/acsami.2c06369
10.1021/jacs.1c10471
10.1039/C9QM00328B
10.1039/c3ee42101e
10.1039/D2TA03050K
10.1016/j.jhazmat.2021.126867
10.1007/s40195-022-01448-w
10.1016/j.jallcom.2020.158433
10.1039/D0QI01207F
10.1039/D0EE03407J
10.1016/j.snb.2023.133928
10.1039/C7TA05254E
10.1016/j.jechem.2023.09.012
10.1039/C4NJ00258J
10.1021/acsami.8b04009
10.1039/C8TA01062E
10.1016/j.energy.2016.07.128
10.1039/C8NJ04375B
10.1016/j.electacta.2018.03.142
10.1016/S1872-2067(19)63414-5
10.1021/ic302311q
10.1039/D0CC03516E
10.1016/j.jechem.2023.10.018
10.1016/j.jmst.2021.05.079
10.1016/j.jallcom.2020.155443
10.1039/C5DT01480H
10.1039/c3ta12713c
10.1039/C5SC04944J
10.1016/j.ijhydene.2021.04.190
10.1002/cplu.201800154
10.1016/j.jmst.2023.07.026
10.1016/j.scriptamat.2017.06.011
ContentType Journal Article
Copyright 2024 Science Press
Copyright_xml – notice: 2024 Science Press
DBID AAYXX
CITATION
DOI 10.1016/j.jechem.2024.04.043
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 525
ExternalDocumentID 10_1016_j_jechem_2024_04_043
S2095495624003383
GroupedDBID --M
-SB
-S~
.~1
0R~
1~.
2B.
2C0
4.4
457
4G.
5VR
5VS
5XC
7-5
8P~
92H
92I
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXDM
AAXUO
ABJNI
ABMAC
ABNUV
ABXDB
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CAJEB
CCEZO
CDRFL
CHBEP
EBS
EFJIC
EJD
ENUVR
FA0
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
KOM
M41
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSG
SSR
SSZ
T5K
TCJ
TGT
U1G
U5L
~G-
5XA
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
Q--
SSH
ID FETCH-LOGICAL-c306t-b0ec46b701928a69b7391185e31009468a7b2731a0438ed402c8a3afa29887fa3
IEDL.DBID .~1
ISSN 2095-4956
IngestDate Tue Jul 01 03:49:07 EDT 2025
Thu Apr 24 23:04:16 EDT 2025
Sat Jul 27 15:43:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Bi-metal oxides
Transition metal oxides
Polyoxometalates
Nanocomposite
LIBs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-b0ec46b701928a69b7391185e31009468a7b2731a0438ed402c8a3afa29887fa3
ORCID 0000-0003-1044-7079
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_jechem_2024_04_043
crossref_citationtrail_10_1016_j_jechem_2024_04_043
elsevier_sciencedirect_doi_10_1016_j_jechem_2024_04_043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Journal of energy chemistry
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liu, Wang, Wang, Xu, Yu, Dong, Zhang, Wang (b0045) 2017; 139
Liang, Fan, Chen, Zheng, Wang (b0020) 2021; 860
Cui, Dai, Zhang, Fan, Wang (b0245) 2022; 10
Cheng, Li, Zang, Chen (b0025) 2023; 6
Zhang, Lv, Yu, Wang, Wang, Sun, Zhou (b0155) 2015; 44
Zhao, Cui, Yu, Lv, Ma, Yang, Zhou (b0145) 2022; 14
Yu, Wan, Yu, Wang, Su, Wang, Wang, Zhou (b0140) 2013; 52
Zhu, Sheng, Li, Li, Liu, Yang, Sha, Zhu, Jiang (b0165) 2017; 5
Yang, Hao, Lin, Li, Luo, Lei, Han, Yuan, Liu, Ren, Chen (b0130) 2022; 34
Huang, Yuan, Lin, Lin, Li, Guo, Huang, Yan (b0215) 2023; 969
Zang, Chen, Long, Cronin, Miras (b0060) 2016; 7
Bayu, Yoshida, Karnjanakom, Zuo, Hao, Abudula, Guan (b0195) 2018; 83
Behbahani, Eshghi, Ghaedi, kheirmand (b0185) 2021; 46
Jiang, Wang, Li, Li, Yang, Yu, Dong (b0135) 2023; 390
Zhao, Jia, Wang, Wu, Jia, Zhou, Ji (b0190) 2023; 859
Han, Xu, Zhang, Du, Han, Zhou, Cui, Chen (b0015) 2019; 9
Liu, Zhao, Yu, Li, Ahmad, Sun (b0085) 2014; 38
Zhang, Zhang, Wang, Huang, Zhu, Wang, Dong, Li, Lan (b0010) 2018; 6
He, Cui, Yu, Lv, Ma, Tian, Zhou (b0160) 2022; 316
Fang, Liu, Han, Ma, Lv, Huang, Cheng, Tong, Wang (b0205) 2020; 56
Ren, Li, Wang, Gong, Gu, Gao, Sun, Zhou (b0240) 2022; 102
Huo, Zhang, Wu, Wang, Wang, Shao, Crittenden, Huo (b0170) 2022; 422
Zhao, Li, Li, Qiu, Mu, Ma, Zhao, Zhang, Zhang, Li, Tan (b0230) 2023; 33
Yan, Sun, Yue, Li, Qian (b0035) 2020; 836
Li, Zhang, Zhu, Cui, Yang, Chen (b0120) 2023; 145
Zhang, Chen, Wang, Li (b0180) 2016; 113
Fu, Peng, Zha, Zhu, Zhang, Wang (b0100) 2018; 271
Ni, Gu, Jiang, Xu, Wu, Wu, Liu, Xie, Wei, Diao (b0005) 2023; 62
Xu, Shi, Tong, Li (b0050) 2018; 30
Li, Cheah, Ko, Teh, Wee, Wong, Peng, Srinivasan (b0090) 2013; 1
Meng, Lv, Yu, Zhang, Wang, Zhou (b0150) 2018; 42
Tang, Jiang, Zhang, Lai, Cui, Xiao, Jiang, Ren, Qin, Guo (b0065) 2020; 354
Li, Xue, Mo, Yang, Li, Zhong (b0075) 2019; 40
Chen, Vilà-Nadal, Solé-Daura, Chisholm, Minato, Busche, Zhao, Kandasamy, Ganin, Smith, Colliard, Carbó, Poblet, Nyman, Cronin (b0110) 2022; 144
Sha, Yang, Chen, Zhu, Song, Jiang (b0125) 2018; 10
Zhang, Deng, Huang, Xu, Huang, Xu, Xu, Li, Hu, Lin (b0225) 2024; 88
Shimoyama, Ogiwara, Weng, Uchida (b0175) 2022; 144
Li, He, Li, Yu, Sun, Gao, Zhou (b0030) 2023; 611
Wang, Zhang, Guo, Zhao, Lia (b0080) 2013; 1
Cao, Gao, Wang, Wu, Zhu, Li, Ling, Liang, Chen (b0220) 2024; 173
Hu, Jia, Wang, Chen, He, Song (b0210) 2021; 8
Yuan, Zeng, Sui, Wang, Xu, Mao, Wen, Xiao, Wu, Yuan, Liu (b0250) 2023; 11
Zhang, Chen, Liu, Liu, Li, Yang, Li (b0095) 2020; 823
Wu, Pang, Lou (b0055) 2013; 6
Zhao, Li, Lv, Wang, Yi (b0200) 2023; 36
Yi, Qu, Lai, Han, Chang, Zhu (b0070) 2021; 19
Tian, Zhang, Yuan, Man, Sun, Bao, Wang, Zhou (b0235) 2024; 89
Hu, Diao, Luo, Song (b0105) 2017; 23
Horn, Singh, Alomari, Goberna-Ferrón, Benages-Vilau, Chodankar, Motta, Ostrikov, MacLeod, Sonar, Gomez-Romero, Dubal (b0115) 2021; 14
Wang, Su, Zhang, Wang, Chen, Liu, Liu (b0040) 2019; 3
Ren (10.1016/j.jechem.2024.04.043_b0240) 2022; 102
Zhao (10.1016/j.jechem.2024.04.043_b0145) 2022; 14
Behbahani (10.1016/j.jechem.2024.04.043_b0185) 2021; 46
Hu (10.1016/j.jechem.2024.04.043_b0210) 2021; 8
He (10.1016/j.jechem.2024.04.043_b0160) 2022; 316
Meng (10.1016/j.jechem.2024.04.043_b0150) 2018; 42
Chen (10.1016/j.jechem.2024.04.043_b0110) 2022; 144
Tian (10.1016/j.jechem.2024.04.043_b0235) 2024; 89
Liu (10.1016/j.jechem.2024.04.043_b0085) 2014; 38
Yu (10.1016/j.jechem.2024.04.043_b0140) 2013; 52
Li (10.1016/j.jechem.2024.04.043_b0075) 2019; 40
Han (10.1016/j.jechem.2024.04.043_b0015) 2019; 9
Zang (10.1016/j.jechem.2024.04.043_b0060) 2016; 7
Zhang (10.1016/j.jechem.2024.04.043_b0155) 2015; 44
Huang (10.1016/j.jechem.2024.04.043_b0215) 2023; 969
Shimoyama (10.1016/j.jechem.2024.04.043_b0175) 2022; 144
Jiang (10.1016/j.jechem.2024.04.043_b0135) 2023; 390
Yang (10.1016/j.jechem.2024.04.043_b0130) 2022; 34
Wang (10.1016/j.jechem.2024.04.043_b0080) 2013; 1
Ni (10.1016/j.jechem.2024.04.043_b0005) 2023; 62
Liang (10.1016/j.jechem.2024.04.043_b0020) 2021; 860
Wang (10.1016/j.jechem.2024.04.043_b0040) 2019; 3
Xu (10.1016/j.jechem.2024.04.043_b0050) 2018; 30
Zhang (10.1016/j.jechem.2024.04.043_b0225) 2024; 88
Zhang (10.1016/j.jechem.2024.04.043_b0010) 2018; 6
Cheng (10.1016/j.jechem.2024.04.043_b0025) 2023; 6
Li (10.1016/j.jechem.2024.04.043_b0090) 2013; 1
Fu (10.1016/j.jechem.2024.04.043_b0100) 2018; 271
Yi (10.1016/j.jechem.2024.04.043_b0070) 2021; 19
Wu (10.1016/j.jechem.2024.04.043_b0055) 2013; 6
Fang (10.1016/j.jechem.2024.04.043_b0205) 2020; 56
Zhang (10.1016/j.jechem.2024.04.043_b0095) 2020; 823
Huo (10.1016/j.jechem.2024.04.043_b0170) 2022; 422
Zhao (10.1016/j.jechem.2024.04.043_b0230) 2023; 33
Zhao (10.1016/j.jechem.2024.04.043_b0190) 2023; 859
Liu (10.1016/j.jechem.2024.04.043_b0045) 2017; 139
Zhang (10.1016/j.jechem.2024.04.043_b0180) 2016; 113
Tang (10.1016/j.jechem.2024.04.043_b0065) 2020; 354
Horn (10.1016/j.jechem.2024.04.043_b0115) 2021; 14
Hu (10.1016/j.jechem.2024.04.043_b0105) 2017; 23
Zhu (10.1016/j.jechem.2024.04.043_b0165) 2017; 5
Li (10.1016/j.jechem.2024.04.043_b0030) 2023; 611
Yuan (10.1016/j.jechem.2024.04.043_b0250) 2023; 11
Cui (10.1016/j.jechem.2024.04.043_b0245) 2022; 10
Zhao (10.1016/j.jechem.2024.04.043_b0200) 2023; 36
Sha (10.1016/j.jechem.2024.04.043_b0125) 2018; 10
Yan (10.1016/j.jechem.2024.04.043_b0035) 2020; 836
Bayu (10.1016/j.jechem.2024.04.043_b0195) 2018; 83
Cao (10.1016/j.jechem.2024.04.043_b0220) 2024; 173
Li (10.1016/j.jechem.2024.04.043_b0120) 2023; 145
References_xml – volume: 969
  year: 2023
  ident: b0215
  publication-title: J. Alloys Compd.
– volume: 1
  start-page: 10935
  year: 2013
  end-page: 10941
  ident: b0090
  publication-title: J. Mater. Chem. A
– volume: 422
  year: 2022
  ident: b0170
  publication-title: J. Hazard. Mater.
– volume: 42
  start-page: 19528
  year: 2018
  end-page: 19536
  ident: b0150
  publication-title: New J. Chem.
– volume: 36
  start-page: 158
  year: 2023
  end-page: 166
  ident: b0200
  publication-title: Acta Metall. Sin. (engl. Lett.)
– volume: 11
  year: 2023
  ident: b0250
  publication-title: J. Environ. Chem. Eng.
– volume: 6
  start-page: 8735
  year: 2018
  end-page: 8741
  ident: b0010
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 13290
  year: 2013
  end-page: 13300
  ident: b0080
  publication-title: J. Mater. Chem. A
– volume: 144
  start-page: 8951
  year: 2022
  end-page: 8960
  ident: b0110
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 352
  year: 2021
  end-page: 360
  ident: b0210
  publication-title: Inorg. Chem. Front.
– volume: 14
  start-page: 30099
  year: 2022
  end-page: 30111
  ident: b0145
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 1652
  year: 2021
  end-page: 1700
  ident: b0115
  publication-title: Energy Environ. Sci.
– volume: 30
  year: 2018
  ident: b0050
  publication-title: Adv. Sci.
– volume: 354
  year: 2020
  ident: b0065
  publication-title: Electrochim. Acta
– volume: 823
  year: 2020
  ident: b0095
  publication-title: J. Alloys Compd.
– volume: 3
  start-page: 1619
  year: 2019
  end-page: 1625
  ident: b0040
  publication-title: Mater. Chem. Front.
– volume: 390
  year: 2023
  ident: b0135
  publication-title: Sens. Actuators B Chem.
– volume: 102
  start-page: 186
  year: 2022
  end-page: 194
  ident: b0240
  publication-title: J. Mater. Sci. Technol.
– volume: 19
  year: 2021
  ident: b0070
  publication-title: Mater. Today Chem.
– volume: 173
  start-page: 181
  year: 2024
  end-page: 191
  ident: b0220
  publication-title: J. Mater. Sci. Technol.
– volume: 9
  year: 2019
  ident: b0015
  publication-title: Adv. Energy Mater.
– volume: 860
  year: 2021
  ident: b0020
  publication-title: J. Alloys Compd.
– volume: 6
  year: 2023
  ident: b0025
  publication-title: Energy Environ Mater.
– volume: 611
  year: 2023
  ident: b0030
  publication-title: Appl. Surf. Sci.
– volume: 23
  start-page: 8729
  year: 2017
  end-page: 8735
  ident: b0105
  publication-title: Chem. Eur. J.
– volume: 52
  start-page: 485
  year: 2013
  end-page: 498
  ident: b0140
  publication-title: Inorg. Chem.
– volume: 316
  year: 2022
  ident: b0160
  publication-title: J Solid State Chem.
– volume: 5
  start-page: 17920
  year: 2017
  end-page: 17925
  ident: b0165
  publication-title: J. Mater. Chem. A
– volume: 113
  start-page: 943
  year: 2016
  end-page: 948
  ident: b0180
  publication-title: Energy
– volume: 859
  year: 2023
  ident: b0190
  publication-title: Sci. Total Environ.
– volume: 88
  start-page: 112
  year: 2024
  end-page: 124
  ident: b0225
  publication-title: J. Energy Chem.
– volume: 62
  year: 2023
  ident: b0005
  publication-title: Angew. Chem. Int. Ed.
– volume: 271
  start-page: 137
  year: 2018
  end-page: 145
  ident: b0100
  publication-title: Electrochim. Acta
– volume: 38
  start-page: 3084
  year: 2014
  end-page: 3091
  ident: b0085
  publication-title: New J. Chem.
– volume: 6
  start-page: 3619
  year: 2013
  end-page: 3626
  ident: b0055
  publication-title: Energy Environ. Sci.
– volume: 836
  year: 2020
  ident: b0035
  publication-title: J. Alloys Compd.
– volume: 40
  start-page: 1576
  year: 2019
  end-page: 1584
  ident: b0075
  publication-title: Chinese J. Catal.
– volume: 33
  year: 2023
  ident: b0230
  publication-title: Adv. Funct. Mater.
– volume: 89
  start-page: 250
  year: 2024
  end-page: 258
  ident: b0235
  publication-title: J. Energy Chem.
– volume: 144
  start-page: 2980
  year: 2022
  end-page: 2986
  ident: b0175
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 16660
  year: 2018
  end-page: 16665
  ident: b0125
  publication-title: ACS Appl. Mater. Interfaces
– volume: 44
  start-page: 12839
  year: 2015
  end-page: 12851
  ident: b0155
  publication-title: Dalton Trans.
– volume: 139
  start-page: 30
  year: 2017
  end-page: 33
  ident: b0045
  publication-title: Scr. Mater.
– volume: 83
  start-page: 383
  year: 2018
  end-page: 389
  ident: b0195
  publication-title: ChemPlusChem
– volume: 145
  start-page: 24889
  year: 2023
  end-page: 24896
  ident: b0120
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 15474
  year: 2022
  end-page: 15484
  ident: b0245
  publication-title: J. Mater. Chem. A
– volume: 46
  start-page: 24977
  year: 2021
  end-page: 24990
  ident: b0185
  publication-title: Int. J. Hydrog. Energy
– volume: 7
  start-page: 3798
  year: 2016
  end-page: 3804
  ident: b0060
  publication-title: Chem. Sci.
– volume: 56
  start-page: 9158
  year: 2020
  end-page: 9161
  ident: b0205
  publication-title: Chem. Commun.
– volume: 34
  year: 2022
  ident: b0130
  publication-title: Adv. Mater.
– volume: 23
  start-page: 8729
  year: 2017
  ident: 10.1016/j.jechem.2024.04.043_b0105
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201701121
– volume: 144
  start-page: 8951
  year: 2022
  ident: 10.1016/j.jechem.2024.04.043_b0110
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c10584
– volume: 969
  year: 2023
  ident: 10.1016/j.jechem.2024.04.043_b0215
  publication-title: J. Alloys Compd.
– volume: 316
  year: 2022
  ident: 10.1016/j.jechem.2024.04.043_b0160
  publication-title: J Solid State Chem.
  doi: 10.1016/j.jssc.2022.123578
– volume: 1
  start-page: 10935
  year: 2013
  ident: 10.1016/j.jechem.2024.04.043_b0090
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta11549f
– volume: 14
  start-page: 30099
  year: 2022
  ident: 10.1016/j.jechem.2024.04.043_b0145
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c06369
– volume: 144
  start-page: 2980
  year: 2022
  ident: 10.1016/j.jechem.2024.04.043_b0175
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c10471
– volume: 3
  start-page: 1619
  year: 2019
  ident: 10.1016/j.jechem.2024.04.043_b0040
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C9QM00328B
– volume: 6
  start-page: 3619
  year: 2013
  ident: 10.1016/j.jechem.2024.04.043_b0055
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee42101e
– volume: 10
  start-page: 15474
  year: 2022
  ident: 10.1016/j.jechem.2024.04.043_b0245
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA03050K
– volume: 422
  year: 2022
  ident: 10.1016/j.jechem.2024.04.043_b0170
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.126867
– volume: 36
  start-page: 158
  year: 2023
  ident: 10.1016/j.jechem.2024.04.043_b0200
  publication-title: Acta Metall. Sin. (engl. Lett.)
  doi: 10.1007/s40195-022-01448-w
– volume: 860
  year: 2021
  ident: 10.1016/j.jechem.2024.04.043_b0020
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.158433
– volume: 8
  start-page: 352
  year: 2021
  ident: 10.1016/j.jechem.2024.04.043_b0210
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D0QI01207F
– volume: 14
  start-page: 1652
  year: 2021
  ident: 10.1016/j.jechem.2024.04.043_b0115
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03407J
– volume: 390
  year: 2023
  ident: 10.1016/j.jechem.2024.04.043_b0135
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2023.133928
– volume: 5
  start-page: 17920
  year: 2017
  ident: 10.1016/j.jechem.2024.04.043_b0165
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA05254E
– volume: 88
  start-page: 112
  year: 2024
  ident: 10.1016/j.jechem.2024.04.043_b0225
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.09.012
– volume: 611
  year: 2023
  ident: 10.1016/j.jechem.2024.04.043_b0030
  publication-title: Appl. Surf. Sci.
– volume: 859
  year: 2023
  ident: 10.1016/j.jechem.2024.04.043_b0190
  publication-title: Sci. Total Environ.
– volume: 145
  start-page: 24889
  year: 2023
  ident: 10.1016/j.jechem.2024.04.043_b0120
  publication-title: J. Am. Chem. Soc.
– volume: 19
  year: 2021
  ident: 10.1016/j.jechem.2024.04.043_b0070
  publication-title: Mater. Today Chem.
– volume: 38
  start-page: 3084
  year: 2014
  ident: 10.1016/j.jechem.2024.04.043_b0085
  publication-title: New J. Chem.
  doi: 10.1039/C4NJ00258J
– volume: 33
  year: 2023
  ident: 10.1016/j.jechem.2024.04.043_b0230
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 16660
  year: 2018
  ident: 10.1016/j.jechem.2024.04.043_b0125
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b04009
– volume: 354
  year: 2020
  ident: 10.1016/j.jechem.2024.04.043_b0065
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 8735
  year: 2018
  ident: 10.1016/j.jechem.2024.04.043_b0010
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01062E
– volume: 113
  start-page: 943
  year: 2016
  ident: 10.1016/j.jechem.2024.04.043_b0180
  publication-title: Energy
  doi: 10.1016/j.energy.2016.07.128
– volume: 62
  year: 2023
  ident: 10.1016/j.jechem.2024.04.043_b0005
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  year: 2023
  ident: 10.1016/j.jechem.2024.04.043_b0025
  publication-title: Energy Environ Mater.
– volume: 42
  start-page: 19528
  year: 2018
  ident: 10.1016/j.jechem.2024.04.043_b0150
  publication-title: New J. Chem.
  doi: 10.1039/C8NJ04375B
– volume: 271
  start-page: 137
  year: 2018
  ident: 10.1016/j.jechem.2024.04.043_b0100
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.03.142
– volume: 40
  start-page: 1576
  year: 2019
  ident: 10.1016/j.jechem.2024.04.043_b0075
  publication-title: Chinese J. Catal.
  doi: 10.1016/S1872-2067(19)63414-5
– volume: 52
  start-page: 485
  year: 2013
  ident: 10.1016/j.jechem.2024.04.043_b0140
  publication-title: Inorg. Chem.
  doi: 10.1021/ic302311q
– volume: 56
  start-page: 9158
  year: 2020
  ident: 10.1016/j.jechem.2024.04.043_b0205
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC03516E
– volume: 89
  start-page: 250
  year: 2024
  ident: 10.1016/j.jechem.2024.04.043_b0235
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.10.018
– volume: 102
  start-page: 186
  year: 2022
  ident: 10.1016/j.jechem.2024.04.043_b0240
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.05.079
– volume: 30
  year: 2018
  ident: 10.1016/j.jechem.2024.04.043_b0050
  publication-title: Adv. Sci.
– volume: 823
  year: 2020
  ident: 10.1016/j.jechem.2024.04.043_b0095
  publication-title: J. Alloys Compd.
– volume: 11
  year: 2023
  ident: 10.1016/j.jechem.2024.04.043_b0250
  publication-title: J. Environ. Chem. Eng.
– volume: 836
  year: 2020
  ident: 10.1016/j.jechem.2024.04.043_b0035
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.155443
– volume: 44
  start-page: 12839
  year: 2015
  ident: 10.1016/j.jechem.2024.04.043_b0155
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT01480H
– volume: 1
  start-page: 13290
  year: 2013
  ident: 10.1016/j.jechem.2024.04.043_b0080
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta12713c
– volume: 7
  start-page: 3798
  year: 2016
  ident: 10.1016/j.jechem.2024.04.043_b0060
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC04944J
– volume: 9
  year: 2019
  ident: 10.1016/j.jechem.2024.04.043_b0015
  publication-title: Adv. Energy Mater.
– volume: 46
  start-page: 24977
  year: 2021
  ident: 10.1016/j.jechem.2024.04.043_b0185
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2021.04.190
– volume: 83
  start-page: 383
  year: 2018
  ident: 10.1016/j.jechem.2024.04.043_b0195
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201800154
– volume: 173
  start-page: 181
  year: 2024
  ident: 10.1016/j.jechem.2024.04.043_b0220
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2023.07.026
– volume: 139
  start-page: 30
  year: 2017
  ident: 10.1016/j.jechem.2024.04.043_b0045
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2017.06.011
– volume: 34
  year: 2022
  ident: 10.1016/j.jechem.2024.04.043_b0130
  publication-title: Adv. Mater.
SSID ssj0000941295
Score 2.3971195
Snippet Polyoxometalates (POMs) act as electron sponges, enhancing reversible electron transfer and ensuring structural protection of urchin-shaped CoNiO2 nanospheres...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 516
SubjectTerms Bi-metal oxides
LIBs
Nanocomposite
Polyoxometalates
Transition metal oxides
Title High-rate lithium-ion battery performance of a ternary sea urchin-shaped CoNiO2@NiP6Mo18/CNTs composites
URI https://dx.doi.org/10.1016/j.jechem.2024.04.043
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg5eY9vdZJPeLMVSFVfBFnpbkt2EbtG22Pbgxd_uzD5qBVEQ9rK7GTbMDjOT5JtvCLn0nddyXAYs8GXMuBWWmbaARC6RTkiTQEzJ2D7DoD_kdyMxqpBuWQuDsMrC9-c-PfPWxZNGoc3GPE0bz14Tj6ggfnNsSKaQ8ZPDV8Gmrz5a630WWL5ASEMkI45nKFBW0GUwr4kF5WBJusczzlPu_xyhNqJOb4_sFuki7eQz2icVOz0gOxskgodkjFANhowPFFLqcbp6ZaBrajLizHc6_6oMoDNHNc12AOEF2DjFTlDplC3Gem4T2p2F6aN3HaZPwcOspRrdcLCgiDlHYJddHJFh72bQ7bOifwKLYSGwZKZpYx4YJFz3lA7aRvrg2pSwuKnf5oHS0kD20tJ4GmgTWEnGSvvaaa8Nrsdp_5hUp7OpPSHUgHqkFwsnIJwpq0wzESoJlJE8NsK5GvFLnUVxQS6OPS5eohJFNolyTUeo6aiJl18jbC01z8k1_hgvy98RfTOSCPz_r5Kn_5Y8I9t4l8PKzkl1-bayF5CHLE09M7Q62erc3vfDT44V2zc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5ROLQcENBWPFsfytFN4rXXzgGpKBSFAttKDRK3rb1rK4sgiUgQ4sKf6h9kZh88pKqVKiHtab2zsmbs-cb2-BuAT1EQnSB1zONIZ1x65bnrKgzkch2UdjliSsn2mcT9U_ntTJ3Nwe_mLgylVda-v_Lppbeu37RqbbYmRdH6Kdp0RIX4LakgmWkqWB_52xtct013D_fRyDtCHHwd9Pq8Li3AM4yRZ9y1fSZjR1zkwti463SEs94oT_vdXRkbqx0Ce8fSQZnPcZGVGRvZYEUXZ2WwEf73FSxIdBdUNuHzXedhYwfFEUMpdZI6yKmHzZW9Mq_s3KM16A68kCXJqoz-DIlPYO5gGZbq-JTtVSpYgTk_WoXFJ6yFb2FIuSGcKCYYxvDD4vqSo3GZK5k6b9nk8SoCGwdmWbnliA2oOEalp4oRnw7txOesN06K7-JLUvyIT8Yd0-olgymjJHfKJPPTd3D6Ilp9D_Oj8civAXOoHi0yFRTip_HGtXNl8tg4LTOnQliHqNFZmtVs5lRU4yJt0tbO00rTKWk6bdMTrQN_kJpUbB7_-F435kifjcoUAeevkhv_LfkRXvcHJ8fp8WFytAlvqKXKaduC-dnVtd_GIGjmPpSDjsGvlx7l959eFLo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-rate+lithium-ion+battery+performance+of+a+ternary+sea+urchin-shaped+CoNiO2%40NiP6Mo18%2FCNTs+composites&rft.jtitle=Journal+of+energy+chemistry&rft.au=Cui%2C+Li-ping&rft.au=Sun%2C+Shuang&rft.au=Yu%2C+Kai&rft.au=Zhang%2C+Shu&rft.date=2024-09-01&rft.issn=2095-4956&rft.volume=96&rft.spage=516&rft.epage=525&rft_id=info:doi/10.1016%2Fj.jechem.2024.04.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jechem_2024_04_043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-4956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-4956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-4956&client=summon