High-rate lithium-ion battery performance of a ternary sea urchin-shaped CoNiO2@NiP6Mo18/CNTs composites
Polyoxometalates (POMs) act as electron sponges, enhancing reversible electron transfer and ensuring structural protection of urchin-shaped CoNiO2 nanospheres via CNTs assistance. CoNiO2@NiP6Mo18/CNTs demonstrates superior energy storage properties as anodes for lithium-ion batteries (LIBs). [Displa...
Saved in:
Published in | Journal of energy chemistry Vol. 96; pp. 516 - 525 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polyoxometalates (POMs) act as electron sponges, enhancing reversible electron transfer and ensuring structural protection of urchin-shaped CoNiO2 nanospheres via CNTs assistance. CoNiO2@NiP6Mo18/CNTs demonstrates superior energy storage properties as anodes for lithium-ion batteries (LIBs).
[Display omitted]
Bimetallic oxides are attractive anode materials for lithium-ion batteries (LIBs) due to their large theoretical capacity. However, the low conductivity, short cycle life, and poor rate capability are the bottlenecks for their further applications. To overcome above issues, the basket-like polymolybdate (NiP6Mo18) and carbon nanotubes (CNTs) were uniformly embedded on the urchin-shaped CoNiO2 nanospheres to yield a ternary composites CoNiO2@NiP6Mo18/CNTs via electrostatic adsorption. The multi-level morphology of urchin spinules accelerates the diffusion rate of Li+; CNT improves the conductivity and enhances cycle stability of the material; and heteropoly acid contributes more redox activity centres. Thus, CoNiO2@NiP6Mo18/CNTs as an anode of LIBs exhibits a high initial capacity (1396.7 mA h g−1 at 0.1 A g−1), long-term cycling stability (750.2 mA h g−1 after 300 cycles), and rate performance (450.3 mA h g−1 at 2 A g−1), which are superior to reported metallic oxides anode of LIBs. The density functional theory (DFT) and kinetic mechanism suggest that CoNiO2@NiP6Mo18/CNTs delivers an outstanding pseudocapacitance and rapid Li+ diffusion behaviors, which is due to the rich surface area of the urchin-like CoNiO2 with the uniform embeddedness of NiP6Mo18 and CNTs. This study provides a new idea for optimizing the performance of bimetallic oxides and developing high-rate lithium-ion battery composites. |
---|---|
AbstractList | Polyoxometalates (POMs) act as electron sponges, enhancing reversible electron transfer and ensuring structural protection of urchin-shaped CoNiO2 nanospheres via CNTs assistance. CoNiO2@NiP6Mo18/CNTs demonstrates superior energy storage properties as anodes for lithium-ion batteries (LIBs).
[Display omitted]
Bimetallic oxides are attractive anode materials for lithium-ion batteries (LIBs) due to their large theoretical capacity. However, the low conductivity, short cycle life, and poor rate capability are the bottlenecks for their further applications. To overcome above issues, the basket-like polymolybdate (NiP6Mo18) and carbon nanotubes (CNTs) were uniformly embedded on the urchin-shaped CoNiO2 nanospheres to yield a ternary composites CoNiO2@NiP6Mo18/CNTs via electrostatic adsorption. The multi-level morphology of urchin spinules accelerates the diffusion rate of Li+; CNT improves the conductivity and enhances cycle stability of the material; and heteropoly acid contributes more redox activity centres. Thus, CoNiO2@NiP6Mo18/CNTs as an anode of LIBs exhibits a high initial capacity (1396.7 mA h g−1 at 0.1 A g−1), long-term cycling stability (750.2 mA h g−1 after 300 cycles), and rate performance (450.3 mA h g−1 at 2 A g−1), which are superior to reported metallic oxides anode of LIBs. The density functional theory (DFT) and kinetic mechanism suggest that CoNiO2@NiP6Mo18/CNTs delivers an outstanding pseudocapacitance and rapid Li+ diffusion behaviors, which is due to the rich surface area of the urchin-like CoNiO2 with the uniform embeddedness of NiP6Mo18 and CNTs. This study provides a new idea for optimizing the performance of bimetallic oxides and developing high-rate lithium-ion battery composites. |
Author | Sun, Shuang Zhou, Bai-bin Cui, Li-ping Wang, Mei-lin Chen, Jia-jia Zhang, Shu Yu, Kai |
Author_xml | – sequence: 1 givenname: Li-ping surname: Cui fullname: Cui, Li-ping organization: Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China – sequence: 2 givenname: Shuang surname: Sun fullname: Sun, Shuang organization: Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China – sequence: 3 givenname: Kai surname: Yu fullname: Yu, Kai email: hlyukai188@163.com organization: Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China – sequence: 4 givenname: Shu surname: Zhang fullname: Zhang, Shu organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, Fujian, China – sequence: 5 givenname: Mei-lin surname: Wang fullname: Wang, Mei-lin organization: Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China – sequence: 6 givenname: Jia-jia orcidid: 0000-0003-1044-7079 surname: Chen fullname: Chen, Jia-jia email: JiaJia.Chen@xmu.edu.cn organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, Fujian, China – sequence: 7 givenname: Bai-bin surname: Zhou fullname: Zhou, Bai-bin email: zhou_bai_bin@163.com organization: Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China |
BookMark | eNqFkM9KAzEQxnOoYK19Aw95gW2T7H8PohS1Qm091HOYzc66WbqbkqSCb2-WevKgw8DADN_HN78rMhnMgITccLbgjGfLbtGharFfCCaSBRs7npCpYGUaJWWaXZK5cx0LVSZclOmUtGv90UYWPNKD9q0-9ZE2A63Ae7Rf9Ii2MbaHQSE1DQUatgOEg0OgJ6taPUSuhSPWdGW2eifut_otezW8WK62e0eV6Y_GaY_umlw0cHA4_5kz8v70uF-to83u-WX1sIlUzDIfVQxVklU546UoICurPC45L1KM-Rg6KyCvRB5zCJ8VWCdMqAJiaECURZE3EM9IcvZV1jhnsZFHq_sQWXImR0iyk2dIcoQk2dhxkN3-kintwQcW3oI-_Ce-O4sxPPap0UqnNAZmtbaovKyN_tvgG3XjiJ0 |
CitedBy_id | crossref_primary_10_1016_j_jechem_2025_01_011 crossref_primary_10_1016_j_cinorg_2025_100096 crossref_primary_10_1016_j_jechem_2024_09_061 crossref_primary_10_1016_j_molstruc_2024_139777 crossref_primary_10_1007_s42823_024_00816_z crossref_primary_10_1039_D4TA08656B |
Cites_doi | 10.1002/chem.201701121 10.1021/jacs.1c10584 10.1016/j.jssc.2022.123578 10.1039/c3ta11549f 10.1021/acsami.2c06369 10.1021/jacs.1c10471 10.1039/C9QM00328B 10.1039/c3ee42101e 10.1039/D2TA03050K 10.1016/j.jhazmat.2021.126867 10.1007/s40195-022-01448-w 10.1016/j.jallcom.2020.158433 10.1039/D0QI01207F 10.1039/D0EE03407J 10.1016/j.snb.2023.133928 10.1039/C7TA05254E 10.1016/j.jechem.2023.09.012 10.1039/C4NJ00258J 10.1021/acsami.8b04009 10.1039/C8TA01062E 10.1016/j.energy.2016.07.128 10.1039/C8NJ04375B 10.1016/j.electacta.2018.03.142 10.1016/S1872-2067(19)63414-5 10.1021/ic302311q 10.1039/D0CC03516E 10.1016/j.jechem.2023.10.018 10.1016/j.jmst.2021.05.079 10.1016/j.jallcom.2020.155443 10.1039/C5DT01480H 10.1039/c3ta12713c 10.1039/C5SC04944J 10.1016/j.ijhydene.2021.04.190 10.1002/cplu.201800154 10.1016/j.jmst.2023.07.026 10.1016/j.scriptamat.2017.06.011 |
ContentType | Journal Article |
Copyright | 2024 Science Press |
Copyright_xml | – notice: 2024 Science Press |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jechem.2024.04.043 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 525 |
ExternalDocumentID | 10_1016_j_jechem_2024_04_043 S2095495624003383 |
GroupedDBID | --M -SB -S~ .~1 0R~ 1~. 2B. 2C0 4.4 457 4G. 5VR 5VS 5XC 7-5 8P~ 92H 92I AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXDM AAXUO ABJNI ABMAC ABNUV ABXDB ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFUIB AGHFR AGUBO AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CAJEB CCEZO CDRFL CHBEP EBS EFJIC EJD ENUVR FA0 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ KOM M41 MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSG SSR SSZ T5K TCJ TGT U1G U5L ~G- 5XA AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION Q-- SSH |
ID | FETCH-LOGICAL-c306t-b0ec46b701928a69b7391185e31009468a7b2731a0438ed402c8a3afa29887fa3 |
IEDL.DBID | .~1 |
ISSN | 2095-4956 |
IngestDate | Tue Jul 01 03:49:07 EDT 2025 Thu Apr 24 23:04:16 EDT 2025 Sat Jul 27 15:43:10 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bi-metal oxides Transition metal oxides Polyoxometalates Nanocomposite LIBs |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-b0ec46b701928a69b7391185e31009468a7b2731a0438ed402c8a3afa29887fa3 |
ORCID | 0000-0003-1044-7079 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_jechem_2024_04_043 crossref_citationtrail_10_1016_j_jechem_2024_04_043 elsevier_sciencedirect_doi_10_1016_j_jechem_2024_04_043 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2024 2024-09-00 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of energy chemistry |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liu, Wang, Wang, Xu, Yu, Dong, Zhang, Wang (b0045) 2017; 139 Liang, Fan, Chen, Zheng, Wang (b0020) 2021; 860 Cui, Dai, Zhang, Fan, Wang (b0245) 2022; 10 Cheng, Li, Zang, Chen (b0025) 2023; 6 Zhang, Lv, Yu, Wang, Wang, Sun, Zhou (b0155) 2015; 44 Zhao, Cui, Yu, Lv, Ma, Yang, Zhou (b0145) 2022; 14 Yu, Wan, Yu, Wang, Su, Wang, Wang, Zhou (b0140) 2013; 52 Zhu, Sheng, Li, Li, Liu, Yang, Sha, Zhu, Jiang (b0165) 2017; 5 Yang, Hao, Lin, Li, Luo, Lei, Han, Yuan, Liu, Ren, Chen (b0130) 2022; 34 Huang, Yuan, Lin, Lin, Li, Guo, Huang, Yan (b0215) 2023; 969 Zang, Chen, Long, Cronin, Miras (b0060) 2016; 7 Bayu, Yoshida, Karnjanakom, Zuo, Hao, Abudula, Guan (b0195) 2018; 83 Behbahani, Eshghi, Ghaedi, kheirmand (b0185) 2021; 46 Jiang, Wang, Li, Li, Yang, Yu, Dong (b0135) 2023; 390 Zhao, Jia, Wang, Wu, Jia, Zhou, Ji (b0190) 2023; 859 Han, Xu, Zhang, Du, Han, Zhou, Cui, Chen (b0015) 2019; 9 Liu, Zhao, Yu, Li, Ahmad, Sun (b0085) 2014; 38 Zhang, Zhang, Wang, Huang, Zhu, Wang, Dong, Li, Lan (b0010) 2018; 6 He, Cui, Yu, Lv, Ma, Tian, Zhou (b0160) 2022; 316 Fang, Liu, Han, Ma, Lv, Huang, Cheng, Tong, Wang (b0205) 2020; 56 Ren, Li, Wang, Gong, Gu, Gao, Sun, Zhou (b0240) 2022; 102 Huo, Zhang, Wu, Wang, Wang, Shao, Crittenden, Huo (b0170) 2022; 422 Zhao, Li, Li, Qiu, Mu, Ma, Zhao, Zhang, Zhang, Li, Tan (b0230) 2023; 33 Yan, Sun, Yue, Li, Qian (b0035) 2020; 836 Li, Zhang, Zhu, Cui, Yang, Chen (b0120) 2023; 145 Zhang, Chen, Wang, Li (b0180) 2016; 113 Fu, Peng, Zha, Zhu, Zhang, Wang (b0100) 2018; 271 Ni, Gu, Jiang, Xu, Wu, Wu, Liu, Xie, Wei, Diao (b0005) 2023; 62 Xu, Shi, Tong, Li (b0050) 2018; 30 Li, Cheah, Ko, Teh, Wee, Wong, Peng, Srinivasan (b0090) 2013; 1 Meng, Lv, Yu, Zhang, Wang, Zhou (b0150) 2018; 42 Tang, Jiang, Zhang, Lai, Cui, Xiao, Jiang, Ren, Qin, Guo (b0065) 2020; 354 Li, Xue, Mo, Yang, Li, Zhong (b0075) 2019; 40 Chen, Vilà-Nadal, Solé-Daura, Chisholm, Minato, Busche, Zhao, Kandasamy, Ganin, Smith, Colliard, Carbó, Poblet, Nyman, Cronin (b0110) 2022; 144 Sha, Yang, Chen, Zhu, Song, Jiang (b0125) 2018; 10 Zhang, Deng, Huang, Xu, Huang, Xu, Xu, Li, Hu, Lin (b0225) 2024; 88 Shimoyama, Ogiwara, Weng, Uchida (b0175) 2022; 144 Li, He, Li, Yu, Sun, Gao, Zhou (b0030) 2023; 611 Wang, Zhang, Guo, Zhao, Lia (b0080) 2013; 1 Cao, Gao, Wang, Wu, Zhu, Li, Ling, Liang, Chen (b0220) 2024; 173 Hu, Jia, Wang, Chen, He, Song (b0210) 2021; 8 Yuan, Zeng, Sui, Wang, Xu, Mao, Wen, Xiao, Wu, Yuan, Liu (b0250) 2023; 11 Zhang, Chen, Liu, Liu, Li, Yang, Li (b0095) 2020; 823 Wu, Pang, Lou (b0055) 2013; 6 Zhao, Li, Lv, Wang, Yi (b0200) 2023; 36 Yi, Qu, Lai, Han, Chang, Zhu (b0070) 2021; 19 Tian, Zhang, Yuan, Man, Sun, Bao, Wang, Zhou (b0235) 2024; 89 Hu, Diao, Luo, Song (b0105) 2017; 23 Horn, Singh, Alomari, Goberna-Ferrón, Benages-Vilau, Chodankar, Motta, Ostrikov, MacLeod, Sonar, Gomez-Romero, Dubal (b0115) 2021; 14 Wang, Su, Zhang, Wang, Chen, Liu, Liu (b0040) 2019; 3 Ren (10.1016/j.jechem.2024.04.043_b0240) 2022; 102 Zhao (10.1016/j.jechem.2024.04.043_b0145) 2022; 14 Behbahani (10.1016/j.jechem.2024.04.043_b0185) 2021; 46 Hu (10.1016/j.jechem.2024.04.043_b0210) 2021; 8 He (10.1016/j.jechem.2024.04.043_b0160) 2022; 316 Meng (10.1016/j.jechem.2024.04.043_b0150) 2018; 42 Chen (10.1016/j.jechem.2024.04.043_b0110) 2022; 144 Tian (10.1016/j.jechem.2024.04.043_b0235) 2024; 89 Liu (10.1016/j.jechem.2024.04.043_b0085) 2014; 38 Yu (10.1016/j.jechem.2024.04.043_b0140) 2013; 52 Li (10.1016/j.jechem.2024.04.043_b0075) 2019; 40 Han (10.1016/j.jechem.2024.04.043_b0015) 2019; 9 Zang (10.1016/j.jechem.2024.04.043_b0060) 2016; 7 Zhang (10.1016/j.jechem.2024.04.043_b0155) 2015; 44 Huang (10.1016/j.jechem.2024.04.043_b0215) 2023; 969 Shimoyama (10.1016/j.jechem.2024.04.043_b0175) 2022; 144 Jiang (10.1016/j.jechem.2024.04.043_b0135) 2023; 390 Yang (10.1016/j.jechem.2024.04.043_b0130) 2022; 34 Wang (10.1016/j.jechem.2024.04.043_b0080) 2013; 1 Ni (10.1016/j.jechem.2024.04.043_b0005) 2023; 62 Liang (10.1016/j.jechem.2024.04.043_b0020) 2021; 860 Wang (10.1016/j.jechem.2024.04.043_b0040) 2019; 3 Xu (10.1016/j.jechem.2024.04.043_b0050) 2018; 30 Zhang (10.1016/j.jechem.2024.04.043_b0225) 2024; 88 Zhang (10.1016/j.jechem.2024.04.043_b0010) 2018; 6 Cheng (10.1016/j.jechem.2024.04.043_b0025) 2023; 6 Li (10.1016/j.jechem.2024.04.043_b0090) 2013; 1 Fu (10.1016/j.jechem.2024.04.043_b0100) 2018; 271 Yi (10.1016/j.jechem.2024.04.043_b0070) 2021; 19 Wu (10.1016/j.jechem.2024.04.043_b0055) 2013; 6 Fang (10.1016/j.jechem.2024.04.043_b0205) 2020; 56 Zhang (10.1016/j.jechem.2024.04.043_b0095) 2020; 823 Huo (10.1016/j.jechem.2024.04.043_b0170) 2022; 422 Zhao (10.1016/j.jechem.2024.04.043_b0230) 2023; 33 Zhao (10.1016/j.jechem.2024.04.043_b0190) 2023; 859 Liu (10.1016/j.jechem.2024.04.043_b0045) 2017; 139 Zhang (10.1016/j.jechem.2024.04.043_b0180) 2016; 113 Tang (10.1016/j.jechem.2024.04.043_b0065) 2020; 354 Horn (10.1016/j.jechem.2024.04.043_b0115) 2021; 14 Hu (10.1016/j.jechem.2024.04.043_b0105) 2017; 23 Zhu (10.1016/j.jechem.2024.04.043_b0165) 2017; 5 Li (10.1016/j.jechem.2024.04.043_b0030) 2023; 611 Yuan (10.1016/j.jechem.2024.04.043_b0250) 2023; 11 Cui (10.1016/j.jechem.2024.04.043_b0245) 2022; 10 Zhao (10.1016/j.jechem.2024.04.043_b0200) 2023; 36 Sha (10.1016/j.jechem.2024.04.043_b0125) 2018; 10 Yan (10.1016/j.jechem.2024.04.043_b0035) 2020; 836 Bayu (10.1016/j.jechem.2024.04.043_b0195) 2018; 83 Cao (10.1016/j.jechem.2024.04.043_b0220) 2024; 173 Li (10.1016/j.jechem.2024.04.043_b0120) 2023; 145 |
References_xml | – volume: 969 year: 2023 ident: b0215 publication-title: J. Alloys Compd. – volume: 1 start-page: 10935 year: 2013 end-page: 10941 ident: b0090 publication-title: J. Mater. Chem. A – volume: 422 year: 2022 ident: b0170 publication-title: J. Hazard. Mater. – volume: 42 start-page: 19528 year: 2018 end-page: 19536 ident: b0150 publication-title: New J. Chem. – volume: 36 start-page: 158 year: 2023 end-page: 166 ident: b0200 publication-title: Acta Metall. Sin. (engl. Lett.) – volume: 11 year: 2023 ident: b0250 publication-title: J. Environ. Chem. Eng. – volume: 6 start-page: 8735 year: 2018 end-page: 8741 ident: b0010 publication-title: J. Mater. Chem. A – volume: 1 start-page: 13290 year: 2013 end-page: 13300 ident: b0080 publication-title: J. Mater. Chem. A – volume: 144 start-page: 8951 year: 2022 end-page: 8960 ident: b0110 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 352 year: 2021 end-page: 360 ident: b0210 publication-title: Inorg. Chem. Front. – volume: 14 start-page: 30099 year: 2022 end-page: 30111 ident: b0145 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 1652 year: 2021 end-page: 1700 ident: b0115 publication-title: Energy Environ. Sci. – volume: 30 year: 2018 ident: b0050 publication-title: Adv. Sci. – volume: 354 year: 2020 ident: b0065 publication-title: Electrochim. Acta – volume: 823 year: 2020 ident: b0095 publication-title: J. Alloys Compd. – volume: 3 start-page: 1619 year: 2019 end-page: 1625 ident: b0040 publication-title: Mater. Chem. Front. – volume: 390 year: 2023 ident: b0135 publication-title: Sens. Actuators B Chem. – volume: 102 start-page: 186 year: 2022 end-page: 194 ident: b0240 publication-title: J. Mater. Sci. Technol. – volume: 19 year: 2021 ident: b0070 publication-title: Mater. Today Chem. – volume: 173 start-page: 181 year: 2024 end-page: 191 ident: b0220 publication-title: J. Mater. Sci. Technol. – volume: 9 year: 2019 ident: b0015 publication-title: Adv. Energy Mater. – volume: 860 year: 2021 ident: b0020 publication-title: J. Alloys Compd. – volume: 6 year: 2023 ident: b0025 publication-title: Energy Environ Mater. – volume: 611 year: 2023 ident: b0030 publication-title: Appl. Surf. Sci. – volume: 23 start-page: 8729 year: 2017 end-page: 8735 ident: b0105 publication-title: Chem. Eur. J. – volume: 52 start-page: 485 year: 2013 end-page: 498 ident: b0140 publication-title: Inorg. Chem. – volume: 316 year: 2022 ident: b0160 publication-title: J Solid State Chem. – volume: 5 start-page: 17920 year: 2017 end-page: 17925 ident: b0165 publication-title: J. Mater. Chem. A – volume: 113 start-page: 943 year: 2016 end-page: 948 ident: b0180 publication-title: Energy – volume: 859 year: 2023 ident: b0190 publication-title: Sci. Total Environ. – volume: 88 start-page: 112 year: 2024 end-page: 124 ident: b0225 publication-title: J. Energy Chem. – volume: 62 year: 2023 ident: b0005 publication-title: Angew. Chem. Int. Ed. – volume: 271 start-page: 137 year: 2018 end-page: 145 ident: b0100 publication-title: Electrochim. Acta – volume: 38 start-page: 3084 year: 2014 end-page: 3091 ident: b0085 publication-title: New J. Chem. – volume: 6 start-page: 3619 year: 2013 end-page: 3626 ident: b0055 publication-title: Energy Environ. Sci. – volume: 836 year: 2020 ident: b0035 publication-title: J. Alloys Compd. – volume: 40 start-page: 1576 year: 2019 end-page: 1584 ident: b0075 publication-title: Chinese J. Catal. – volume: 33 year: 2023 ident: b0230 publication-title: Adv. Funct. Mater. – volume: 89 start-page: 250 year: 2024 end-page: 258 ident: b0235 publication-title: J. Energy Chem. – volume: 144 start-page: 2980 year: 2022 end-page: 2986 ident: b0175 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 16660 year: 2018 end-page: 16665 ident: b0125 publication-title: ACS Appl. Mater. Interfaces – volume: 44 start-page: 12839 year: 2015 end-page: 12851 ident: b0155 publication-title: Dalton Trans. – volume: 139 start-page: 30 year: 2017 end-page: 33 ident: b0045 publication-title: Scr. Mater. – volume: 83 start-page: 383 year: 2018 end-page: 389 ident: b0195 publication-title: ChemPlusChem – volume: 145 start-page: 24889 year: 2023 end-page: 24896 ident: b0120 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 15474 year: 2022 end-page: 15484 ident: b0245 publication-title: J. Mater. Chem. A – volume: 46 start-page: 24977 year: 2021 end-page: 24990 ident: b0185 publication-title: Int. J. Hydrog. Energy – volume: 7 start-page: 3798 year: 2016 end-page: 3804 ident: b0060 publication-title: Chem. Sci. – volume: 56 start-page: 9158 year: 2020 end-page: 9161 ident: b0205 publication-title: Chem. Commun. – volume: 34 year: 2022 ident: b0130 publication-title: Adv. Mater. – volume: 23 start-page: 8729 year: 2017 ident: 10.1016/j.jechem.2024.04.043_b0105 publication-title: Chem. Eur. J. doi: 10.1002/chem.201701121 – volume: 144 start-page: 8951 year: 2022 ident: 10.1016/j.jechem.2024.04.043_b0110 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c10584 – volume: 969 year: 2023 ident: 10.1016/j.jechem.2024.04.043_b0215 publication-title: J. Alloys Compd. – volume: 316 year: 2022 ident: 10.1016/j.jechem.2024.04.043_b0160 publication-title: J Solid State Chem. doi: 10.1016/j.jssc.2022.123578 – volume: 1 start-page: 10935 year: 2013 ident: 10.1016/j.jechem.2024.04.043_b0090 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta11549f – volume: 14 start-page: 30099 year: 2022 ident: 10.1016/j.jechem.2024.04.043_b0145 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c06369 – volume: 144 start-page: 2980 year: 2022 ident: 10.1016/j.jechem.2024.04.043_b0175 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c10471 – volume: 3 start-page: 1619 year: 2019 ident: 10.1016/j.jechem.2024.04.043_b0040 publication-title: Mater. Chem. Front. doi: 10.1039/C9QM00328B – volume: 6 start-page: 3619 year: 2013 ident: 10.1016/j.jechem.2024.04.043_b0055 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee42101e – volume: 10 start-page: 15474 year: 2022 ident: 10.1016/j.jechem.2024.04.043_b0245 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA03050K – volume: 422 year: 2022 ident: 10.1016/j.jechem.2024.04.043_b0170 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126867 – volume: 36 start-page: 158 year: 2023 ident: 10.1016/j.jechem.2024.04.043_b0200 publication-title: Acta Metall. Sin. (engl. Lett.) doi: 10.1007/s40195-022-01448-w – volume: 860 year: 2021 ident: 10.1016/j.jechem.2024.04.043_b0020 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.158433 – volume: 8 start-page: 352 year: 2021 ident: 10.1016/j.jechem.2024.04.043_b0210 publication-title: Inorg. Chem. Front. doi: 10.1039/D0QI01207F – volume: 14 start-page: 1652 year: 2021 ident: 10.1016/j.jechem.2024.04.043_b0115 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03407J – volume: 390 year: 2023 ident: 10.1016/j.jechem.2024.04.043_b0135 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2023.133928 – volume: 5 start-page: 17920 year: 2017 ident: 10.1016/j.jechem.2024.04.043_b0165 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA05254E – volume: 88 start-page: 112 year: 2024 ident: 10.1016/j.jechem.2024.04.043_b0225 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2023.09.012 – volume: 611 year: 2023 ident: 10.1016/j.jechem.2024.04.043_b0030 publication-title: Appl. Surf. Sci. – volume: 859 year: 2023 ident: 10.1016/j.jechem.2024.04.043_b0190 publication-title: Sci. Total Environ. – volume: 145 start-page: 24889 year: 2023 ident: 10.1016/j.jechem.2024.04.043_b0120 publication-title: J. Am. Chem. Soc. – volume: 19 year: 2021 ident: 10.1016/j.jechem.2024.04.043_b0070 publication-title: Mater. Today Chem. – volume: 38 start-page: 3084 year: 2014 ident: 10.1016/j.jechem.2024.04.043_b0085 publication-title: New J. Chem. doi: 10.1039/C4NJ00258J – volume: 33 year: 2023 ident: 10.1016/j.jechem.2024.04.043_b0230 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 16660 year: 2018 ident: 10.1016/j.jechem.2024.04.043_b0125 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b04009 – volume: 354 year: 2020 ident: 10.1016/j.jechem.2024.04.043_b0065 publication-title: Electrochim. Acta – volume: 6 start-page: 8735 year: 2018 ident: 10.1016/j.jechem.2024.04.043_b0010 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01062E – volume: 113 start-page: 943 year: 2016 ident: 10.1016/j.jechem.2024.04.043_b0180 publication-title: Energy doi: 10.1016/j.energy.2016.07.128 – volume: 62 year: 2023 ident: 10.1016/j.jechem.2024.04.043_b0005 publication-title: Angew. Chem. Int. Ed. – volume: 6 year: 2023 ident: 10.1016/j.jechem.2024.04.043_b0025 publication-title: Energy Environ Mater. – volume: 42 start-page: 19528 year: 2018 ident: 10.1016/j.jechem.2024.04.043_b0150 publication-title: New J. Chem. doi: 10.1039/C8NJ04375B – volume: 271 start-page: 137 year: 2018 ident: 10.1016/j.jechem.2024.04.043_b0100 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.03.142 – volume: 40 start-page: 1576 year: 2019 ident: 10.1016/j.jechem.2024.04.043_b0075 publication-title: Chinese J. Catal. doi: 10.1016/S1872-2067(19)63414-5 – volume: 52 start-page: 485 year: 2013 ident: 10.1016/j.jechem.2024.04.043_b0140 publication-title: Inorg. Chem. doi: 10.1021/ic302311q – volume: 56 start-page: 9158 year: 2020 ident: 10.1016/j.jechem.2024.04.043_b0205 publication-title: Chem. Commun. doi: 10.1039/D0CC03516E – volume: 89 start-page: 250 year: 2024 ident: 10.1016/j.jechem.2024.04.043_b0235 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2023.10.018 – volume: 102 start-page: 186 year: 2022 ident: 10.1016/j.jechem.2024.04.043_b0240 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.05.079 – volume: 30 year: 2018 ident: 10.1016/j.jechem.2024.04.043_b0050 publication-title: Adv. Sci. – volume: 823 year: 2020 ident: 10.1016/j.jechem.2024.04.043_b0095 publication-title: J. Alloys Compd. – volume: 11 year: 2023 ident: 10.1016/j.jechem.2024.04.043_b0250 publication-title: J. Environ. Chem. Eng. – volume: 836 year: 2020 ident: 10.1016/j.jechem.2024.04.043_b0035 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.155443 – volume: 44 start-page: 12839 year: 2015 ident: 10.1016/j.jechem.2024.04.043_b0155 publication-title: Dalton Trans. doi: 10.1039/C5DT01480H – volume: 1 start-page: 13290 year: 2013 ident: 10.1016/j.jechem.2024.04.043_b0080 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12713c – volume: 7 start-page: 3798 year: 2016 ident: 10.1016/j.jechem.2024.04.043_b0060 publication-title: Chem. Sci. doi: 10.1039/C5SC04944J – volume: 9 year: 2019 ident: 10.1016/j.jechem.2024.04.043_b0015 publication-title: Adv. Energy Mater. – volume: 46 start-page: 24977 year: 2021 ident: 10.1016/j.jechem.2024.04.043_b0185 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2021.04.190 – volume: 83 start-page: 383 year: 2018 ident: 10.1016/j.jechem.2024.04.043_b0195 publication-title: ChemPlusChem doi: 10.1002/cplu.201800154 – volume: 173 start-page: 181 year: 2024 ident: 10.1016/j.jechem.2024.04.043_b0220 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2023.07.026 – volume: 139 start-page: 30 year: 2017 ident: 10.1016/j.jechem.2024.04.043_b0045 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.06.011 – volume: 34 year: 2022 ident: 10.1016/j.jechem.2024.04.043_b0130 publication-title: Adv. Mater. |
SSID | ssj0000941295 |
Score | 2.3971195 |
Snippet | Polyoxometalates (POMs) act as electron sponges, enhancing reversible electron transfer and ensuring structural protection of urchin-shaped CoNiO2 nanospheres... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 516 |
SubjectTerms | Bi-metal oxides LIBs Nanocomposite Polyoxometalates Transition metal oxides |
Title | High-rate lithium-ion battery performance of a ternary sea urchin-shaped CoNiO2@NiP6Mo18/CNTs composites |
URI | https://dx.doi.org/10.1016/j.jechem.2024.04.043 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg5eY9vdZJPeLMVSFVfBFnpbkt2EbtG22Pbgxd_uzD5qBVEQ9rK7GTbMDjOT5JtvCLn0nddyXAYs8GXMuBWWmbaARC6RTkiTQEzJ2D7DoD_kdyMxqpBuWQuDsMrC9-c-PfPWxZNGoc3GPE0bz14Tj6ggfnNsSKaQ8ZPDV8Gmrz5a630WWL5ASEMkI45nKFBW0GUwr4kF5WBJusczzlPu_xyhNqJOb4_sFuki7eQz2icVOz0gOxskgodkjFANhowPFFLqcbp6ZaBrajLizHc6_6oMoDNHNc12AOEF2DjFTlDplC3Gem4T2p2F6aN3HaZPwcOspRrdcLCgiDlHYJddHJFh72bQ7bOifwKLYSGwZKZpYx4YJFz3lA7aRvrg2pSwuKnf5oHS0kD20tJ4GmgTWEnGSvvaaa8Nrsdp_5hUp7OpPSHUgHqkFwsnIJwpq0wzESoJlJE8NsK5GvFLnUVxQS6OPS5eohJFNolyTUeo6aiJl18jbC01z8k1_hgvy98RfTOSCPz_r5Kn_5Y8I9t4l8PKzkl1-bayF5CHLE09M7Q62erc3vfDT44V2zc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5ROLQcENBWPFsfytFN4rXXzgGpKBSFAttKDRK3rb1rK4sgiUgQ4sKf6h9kZh88pKqVKiHtab2zsmbs-cb2-BuAT1EQnSB1zONIZ1x65bnrKgzkch2UdjliSsn2mcT9U_ntTJ3Nwe_mLgylVda-v_Lppbeu37RqbbYmRdH6Kdp0RIX4LakgmWkqWB_52xtct013D_fRyDtCHHwd9Pq8Li3AM4yRZ9y1fSZjR1zkwti463SEs94oT_vdXRkbqx0Ce8fSQZnPcZGVGRvZYEUXZ2WwEf73FSxIdBdUNuHzXedhYwfFEUMpdZI6yKmHzZW9Mq_s3KM16A68kCXJqoz-DIlPYO5gGZbq-JTtVSpYgTk_WoXFJ6yFb2FIuSGcKCYYxvDD4vqSo3GZK5k6b9nk8SoCGwdmWbnliA2oOEalp4oRnw7txOesN06K7-JLUvyIT8Yd0-olgymjJHfKJPPTd3D6Ilp9D_Oj8civAXOoHi0yFRTip_HGtXNl8tg4LTOnQliHqNFZmtVs5lRU4yJt0tbO00rTKWk6bdMTrQN_kJpUbB7_-F435kifjcoUAeevkhv_LfkRXvcHJ8fp8WFytAlvqKXKaduC-dnVtd_GIGjmPpSDjsGvlx7l959eFLo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-rate+lithium-ion+battery+performance+of+a+ternary+sea+urchin-shaped+CoNiO2%40NiP6Mo18%2FCNTs+composites&rft.jtitle=Journal+of+energy+chemistry&rft.au=Cui%2C+Li-ping&rft.au=Sun%2C+Shuang&rft.au=Yu%2C+Kai&rft.au=Zhang%2C+Shu&rft.date=2024-09-01&rft.issn=2095-4956&rft.volume=96&rft.spage=516&rft.epage=525&rft_id=info:doi/10.1016%2Fj.jechem.2024.04.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jechem_2024_04_043 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-4956&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-4956&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-4956&client=summon |