NiTi shape memory alloy: Unraveling the role of internal friction in passive damping – A review
Shape memory alloys (SMA) fabricated from nickel-titanium (NiTi) have garnered significant attention due to their intrinsic properties, including the shape memory effect (SME), pseudoelasticity (PE) or superelasticity (SE), accompanied by exceptional mechanical properties and superior damping capabi...
Saved in:
Published in | Materials today communications Vol. 37; p. 107276 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2352-4928 2352-4928 |
DOI | 10.1016/j.mtcomm.2023.107276 |
Cover
Abstract | Shape memory alloys (SMA) fabricated from nickel-titanium (NiTi) have garnered significant attention due to their intrinsic properties, including the shape memory effect (SME), pseudoelasticity (PE) or superelasticity (SE), accompanied by exceptional mechanical properties and superior damping capabilities. The escalating demand for NiTi-based SMA stems from its wide-ranging damping applications in aerospace, medical, microelectromechanical systems (MEMS), and civil engineering sectors. Internal Friction (IF) is a crucial damping mechanism, enabling the absorption and release of mechanical vibrations during cyclic loading. The martensitic phase transformation in NiTi SMA demonstrates a remarkable IF. This comprehensive review article delves into the fundamental aspects of IF during phase transformation and elucidates the various measurement techniques employed. The influence of processing and testing conditions on the IF behaviour of NiTi-based binary, ternary, quaternary, porous, and smart composites with their metallurgical characteristics are discussed. Furthermore, this review article provides an extensive overview of diverse damping applications, including their operational parameters, and highlights the limitations of existing studies. Ultimately, the article presents insightful future perspectives in the field of NiTi SMA damping, offering a well-rounded analysis of this subject matter.
[Display omitted] |
---|---|
AbstractList | Shape memory alloys (SMA) fabricated from nickel-titanium (NiTi) have garnered significant attention due to their intrinsic properties, including the shape memory effect (SME), pseudoelasticity (PE) or superelasticity (SE), accompanied by exceptional mechanical properties and superior damping capabilities. The escalating demand for NiTi-based SMA stems from its wide-ranging damping applications in aerospace, medical, microelectromechanical systems (MEMS), and civil engineering sectors. Internal Friction (IF) is a crucial damping mechanism, enabling the absorption and release of mechanical vibrations during cyclic loading. The martensitic phase transformation in NiTi SMA demonstrates a remarkable IF. This comprehensive review article delves into the fundamental aspects of IF during phase transformation and elucidates the various measurement techniques employed. The influence of processing and testing conditions on the IF behaviour of NiTi-based binary, ternary, quaternary, porous, and smart composites with their metallurgical characteristics are discussed. Furthermore, this review article provides an extensive overview of diverse damping applications, including their operational parameters, and highlights the limitations of existing studies. Ultimately, the article presents insightful future perspectives in the field of NiTi SMA damping, offering a well-rounded analysis of this subject matter.
[Display omitted] |
ArticleNumber | 107276 |
Author | Balakrishnan, Muralidharan Radhamani, Rajeshkannan |
Author_xml | – sequence: 1 givenname: Rajeshkannan surname: Radhamani fullname: Radhamani, Rajeshkannan – sequence: 2 givenname: Muralidharan surname: Balakrishnan fullname: Balakrishnan, Muralidharan email: b.murlidharan@gmail.com |
BookMark | eNqFkEtOwzAQhi1UJErpDVj4Aim2Y-fRBVJV8ZIq2LRry3Em1FUSR7ZV1B134IachERhgVjAaka_9P2a-S7RpLUtIHRNyYISmtwcFk3QtmkWjLC4j1KWJmdoymLBIp6zbPJjv0Bz7w-EEJoJwnM-RerZbA32e9UBbqCx7oRVXdvTEu9ap45Qm_YVhz1gZ2vAtsKmDeBaVePKGR2MbfsEd8p7cwRcqqYbgM_3D7zCDo4G3q7QeaVqD_PvOUO7-7vt-jHavDw8rVebSMckCVFBElUUsU4pTzirUp4VvKI65SXJlBag0kTwhJU5zYjIdUVEUYlCKGBUEJqSeIaWY6921nsHldQmqOHC4JSpJSVy8CUPcvQlB19y9NXD_BfcOdMod_oPux0x6B_rn3XSawOthtI40EGW1vxd8AU09on7 |
CitedBy_id | crossref_primary_10_1002_adem_202402939 crossref_primary_10_1016_j_conbuildmat_2024_138565 crossref_primary_10_1088_2053_1591_adabbc crossref_primary_10_1002_mgea_72 crossref_primary_10_1038_s41598_024_79545_2 crossref_primary_10_3390_ma17061285 crossref_primary_10_1016_j_mtcomm_2025_111727 crossref_primary_10_3390_ma17051207 |
Cites_doi | 10.1016/j.pmatsci.2011.11.001 10.4028/www.scientific.net/AMR.97-101.1083 10.1016/j.jallcom.2009.10.025 10.1002/1527-2648(20020717)4:7<437::AID-ADEM437>3.0.CO;2-8 10.1016/j.jallcom.2009.03.148 10.1155/2017/5496053 10.1016/j.matdes.2015.04.028 10.1016/j.matpr.2018.03.051 10.1007/s11661-014-2193-5 10.1016/j.matlet.2022.133245 10.1016/j.jallcom.2015.08.259 10.1007/s00707-015-1433-0 10.1016/j.scriptamat.2006.04.044 10.1007/s11665-017-2947-5 10.1142/S0219455418500876 10.1016/j.matlet.2019.127025 10.1111/j.1365-246X.2004.02093.x 10.1016/j.actamat.2015.02.029 10.1016/j.matlet.2011.01.027 10.1016/j.scriptamat.2019.03.004 10.1016/j.cap.2018.03.025 10.1115/1.3101674 10.1115/IMECE2006-15029 10.1016/j.jallcom.2022.164075 10.1016/j.engstruct.2021.112125 10.1016/S1003-6326(13)62692-8 10.1088/1361-665X/ac13b2 10.1088/2631-8695/ac9bcd 10.1016/0036-9748(76)90038-7 10.1117/12.659664 10.1016/j.msea.2003.08.070 10.1002/adem.200900266 10.1016/j.jmbbm.2019.04.036 10.4028/www.scientific.net/MSF.891.447 10.3390/s7091887 10.1016/j.matdes.2013.11.084 10.1007/978-981-10-6884-3_31 10.1007/s40830-021-00335-0 10.1016/j.jallcom.2013.10.026 10.1016/0040-6031(91)80240-J 10.1016/j.matlet.2012.12.086 10.1007/s11661-011-1060-x 10.1016/S0925-8388(03)00267-6 10.1021/acsami.9b08145 10.1007/s10973-015-4405-7 10.1177/1045389X16682839 10.1016/j.matdes.2014.05.062 10.1051/e3sconf/202129302001 10.4028/www.scientific.net/MSF.583.85 10.1016/j.msea.2004.11.030 10.1080/19475411.2011.592866 10.1016/j.jallcom.2015.01.301 10.1016/j.jallcom.2003.09.135 10.1016/j.msea.2004.03.013 10.1016/j.jallcom.2022.166027 10.1016/j.matchar.2007.08.014 10.1061/(ASCE)ST.1943-541X.0002127 10.1016/j.jallcom.2019.152578 10.1177/1528083719883057 10.1021/acsomega.2c01190 10.2320/matertrans.M2015425 10.1016/j.matpr.2020.03.539 10.1016/0502-8205(53)90014-8 10.1016/j.mechmat.2020.103565 10.1016/j.msea.2003.07.023 10.1016/j.scriptamat.2020.03.017 10.1177/1528083719852312 10.1016/S0925-8388(03)00277-9 10.1016/j.intermet.2019.04.006 10.1142/9789812772572_0032 10.1016/j.sna.2012.12.005 10.1016/0001-6160(88)90006-5 10.1016/j.jallcom.2012.09.145 10.1007/BF01151671 10.1016/j.proeng.2015.08.025 10.1016/j.matpr.2017.09.047 10.1016/j.matlet.2015.05.143 10.1016/j.jallcom.2020.157471 10.1115/1.2203109 10.3390/app11041802 10.1016/j.jmapro.2022.10.047 10.1016/j.jallcom.2016.04.102 10.4028/www.scientific.net/MSF.643.37 10.1016/j.msea.2003.08.083 10.4028/www.scientific.net/MSF.394-395.69 10.1177/1045389X9600700213 10.3390/ma15145073 10.1007/978-3-642-59768-8_4 10.1016/j.actamat.2006.06.018 10.1179/095066062790207821 10.1016/j.jallcom.2023.170286 10.1016/j.matlet.2018.01.046 10.1016/j.msea.2017.11.104 10.1016/j.scriptamat.2017.11.047 10.1016/j.actamat.2010.09.057 10.1016/j.vacuum.2018.06.040 10.1016/j.pmatsci.2004.10.001 10.1007/s40830-015-0007-2 10.1016/0025-5416(69)90033-0 10.1016/j.msea.2015.03.023 10.2320/matertrans.M2014304 10.1088/0022-3727/41/7/074021 10.3390/ma7064574 10.1016/S1003-6326(21)65511-5 10.1016/j.jobe.2018.11.014 10.1016/j.msea.2014.11.034 10.4028/www.scientific.net/MSF.687.485 10.1080/15583050701636258 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mtcomm.2023.107276 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-4928 |
ExternalDocumentID | 10_1016_j_mtcomm_2023_107276 S2352492823019670 |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AABXZ AACTN AAEDT AAEDW AAIAV AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE ROL SPC SPCBC SSM SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-b06abb3c714642f748b4f1c74d08ac5ea765462d918059cf05bf5b5ae21501703 |
IEDL.DBID | AIKHN |
ISSN | 2352-4928 |
IngestDate | Thu Apr 24 22:56:06 EDT 2025 Tue Jul 01 02:08:41 EDT 2025 Sat May 25 15:41:57 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Isothermal condition Pseudoelasticity Smart composite Internal friction Nano Indenter NiTi DMA |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-b06abb3c714642f748b4f1c74d08ac5ea765462d918059cf05bf5b5ae21501703 |
ParticipantIDs | crossref_citationtrail_10_1016_j_mtcomm_2023_107276 crossref_primary_10_1016_j_mtcomm_2023_107276 elsevier_sciencedirect_doi_10_1016_j_mtcomm_2023_107276 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2023 2023-12-00 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
PublicationDecade | 2020 |
PublicationTitle | Materials today communications |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Koleske, Hill (bib34) 2012 Torra, Isalgue, Lovey (bib130) 2015; 119 Properties, Principles (bib46) 1981; 07 Elahinia, Hashemi, Tabesh (bib14) 2012; 57 Hodgson (bib25) 2002; 394–395 Alipour, Kadkhodaei, Safaei (bib123) 2017; 28 Sidharth, Mohammed, Abuzaid (bib28) 2021; 7 Zhang, Hou, Qu (bib124) 2021; 236 Instruments (bib37) 2018 Kothalkar, Benitez, Hu (bib108) 2014; 45 Zhe (bib125) 2021; 293 Santosh, Rajkumar, Sabareesh (bib33) 2022; 924 Damping Capacities of Ti50Ni50−xCux Shape Memory Alloys Measured under Temperature, Strain, and Frequency Sweeps Mater. Trans. 56 2 2015 193 199. Santo A. Padula, James Benzing, Vivake M. Asnani. Superelastic tire. US10449804B1, 2019. Chen, Jiang, Liu (bib78) 2009; 482 Shuitcev, Li, Markova (bib92) 2020; 262 ASTM D5023-15 (bib43) 2007 Frenzel, Wieczorek, Opahle (bib61) 2015; 90 Entwistle (bib22) 1962; 7 Zhang, Hu, Li (bib53) 2022; 84 . Zhang, Liu, Huan (bib107) 2014; 63 Otsuka, Ren (bib58) 2005; 50 Hu, Zheng, Tong (bib67) 2015; 623 Guo, Kato (bib81) 2015; 78 Fang, Yam (bib126) 2023; 8 Wetton, Marsh, Van-de-Velde (bib32) 1991; 175 ASTM-E1867 (bib44) 2013 Lester, Baxevanis, Chemisky (bib16) 2015; 226 Zhang, Hou, Wei (bib100) 2013; 550 Puškár (bib24) 2001 McCormick, DesRoches, Fugazza (bib128) 2006; 128 Novák, Salvetr, Školáková (bib63) 2017; 891 Cao, Li, Zeng (bib80) 2018 Bocciolone, Carnevale, Collina (bib139) 2012 Padula S., Creager C. Shape Memory Alloy (SMA) Tires-A New Paradigm in Tire Performance. In Annual Meeting and Conference on Tire Science and Technology 2018 Sep 11 (No. GRC-E-DAA-TN59946). Wolfenden (bib31) 1997 Samal, Molnárová, Průša (bib102) 2021; 11 Wang, Kustov, Verlinden (bib69) 2015; 1 Luo, Zhao, Lu (bib96) 2013; 95 Yuan, Feng, Miao (bib6) 2011; 687 Kwon, Jeon, Oh (bib119) 2015; 67 Villa, Bassani, Passaretti (bib116) 2021; 30 Li, Sun, Li (bib85) 2023; 330 Mohd Jani, Leary, Subic (bib11) 2014; 56 Lobo, Almeida, Guerreiro (bib15) 2015; 114 Naresh, Bharath, Prashantha (bib64) 2017; 4 Zadler, Le Rousseau, Scales (bib55) 2004; 156 Rheology, Analyzers (bib47) 2008 Herbert, Oliver, Pharr (bib50) 2008; 41 Jiang, Liu, Li (bib99) 2010; 97–101 Chang, Wu (bib65) 2008; 59 San Juan, Nó (bib10) 2003; 355 Pan, Cho (bib121) 2007; 7 Naresh, Bose, Rao (bib17) 2016; Vol. 149 Birman (bib12) 1997; 50 F.T. Calkins J.H. Mabe G.W. Butler Boeing’s variable geometry chevron: morphing aerospace structures for jet noise reduction Smart Struct. Mater. 2006 Ind. Commer. Appl. Smart Struct. Technol. 6171 2006 61710O. Cai, Lu, Zhao (bib77) 2005; 394 Dejonghe, De Batist, Delaey (bib66) 1976 1; 10 Fan, Zhou, Otsuka (bib83) 2006; 54 James (bib1) 1969; 4 Liang, Xiao, Chen (bib72) 2019; 166 Gallardo Fuentes, Gümpel, Strittmatter (bib60) 2002; 4 Gutiérrez-Urrutia, Nó, Carreno-Morelli (bib57) 2004; 370 Saedi, Acar, Raji (bib29) 2023; 956 Chen, Tong, Lu (bib86) 2011; 65 Suresh, Lahiri, Agarwal (bib54) 2015; 633 Liu, Qi, Tong (bib98) 2018; 155 Xie, Li, Yuan (bib112) 2019; 11 Alaneme, Okotete, Anaele (bib122) 2019; 22 Chien, Wu, Chang (bib90) 2014; 7 Yang, Luo, Yuan (bib110) 2017; 26 Indirli, Castellano (bib129) 2008; 2 Toker, Saedi, Acar (bib9) 2020; 150 Pan Q., Cho C. Damping property of shape memory alloys. 17th Int Metall Mater Conf Met 2008 - Proc. Patel, Swain, Roshan (bib20) 2020; 33 Nohava J. Dynamic mechanical analysis by nanoindentation. Application report from Anton Paar GmbH. 0: 2–5. Duffy, Padula, Scheiman (bib89) 2008; 6929 Biscarini, Coluzzi, Mazzolai (bib82) 2003; 355 Santosh, Nithyanandh, Ashwath (bib38) 2022; 924 Krishnasamy, CK, Rajamurugan, Jayaraman, Maniyambath (bib39) 2022; 4 Choudhary, Kharat, Van Humbeeck, Kaur (bib51) 2013; 193 Blanter, Golovin, Neuhäuser (bib3) 2007; 8 Pfetzing-Micklich, Wagner, Zarnetta (bib52) 2010; 12 Golovin, Sinning (bib7) 2004; 370 Ikeda (bib137) 2011 Van Humbeeck, Liu (bib4) 2000 Wang, Yang, Liu (bib49) 2022; 7 Stachowiak, McCormick (bib71) 1988; 36 Chang, Hsiao (bib95) 2014; 586 Kwon, Jo, Oh (bib118) 2017 Zhang, Wei (bib101) 2019; 96 Regelbrugge, Carrier, Dickson (bib117) 1996; 7 Da Silva, Grassi, De, AraúJo (bib75) 2010; 643 Chen, Schuh (bib115) 2011; 59 Hartl D., Volk B., Lagoudas D.C., et al. Thermomechanical characterization and modeling of NI60TI40 SMA for actuated chevrons. Am Soc Mech Eng Aerosp Div AD. 47659: 281–290. DOI Leisure, Foster, Hightower (bib56) 2004; 370 Atli (bib68) 2016; 679 Jiang, Ke, Cao (bib105) 2013; 23 Fabregat-Sanjuan, Gispert-Guirado, Ferrando (bib87) 2018; 712 Lai, XU, XIAO (bib103) 2021; 31 Instruments (bib36) 2004; 9 Nowick (bib23) 1953; 1 Arulmurugan, Prabu, Rajamurugan (bib41) 2021; 50 Wang, Liu, Li (bib111) 2018; 217 Zhao, Shao, Zheng (bib104) 2021; 855 Jin, Song, Wang (bib73) 2020; 183 Radhamani, Balakrishnan (bib62) 2023; 237 ASTM-D5279 Standard Test Method for Plastics: Dynamic Mechanical Properties: In Torsion Annu B ASTM Stand 2013 2 5. Acar (bib21) 2015; 633 Van Humbeeck (bib8) 1996; 6 Bhattacharya (bib59) 2004 Instruments (bib35) 2018 Chang, Wu (bib27) 2019 Kustov, Van Humbeeck (bib26) 2008; 583 Jiang, Xi, Li (bib74) 2022; 15 Sun, Jiang, Yuan (bib114) 2022; 905 Zhang, Sehitoglu (bib70) 2004; 374 Hasegawa, Takeuchi, Kato (bib84) 2004; 372 Ngo, Nothwang, Cole (bib120) 2006 R.J. Perez Doc. damping Capacit. Met., Ceram. Met. -Matrix Compos. Mater. 28 1993 2395 2404. E. Choi Y. Ha T.Y. Kim et al. Damping device having self-centering capacity using SMA rings SMAR- fifth Conf. smart Monit., Assess. Rehabil. Civ. Struct. 2019 1 7. Zuo, Wu, Pang (bib93) 2019; 109 Guo, Kato (bib109) 2015; 158 Wang, Speirs, Kustov (bib79) 2018; 146 Fang, Wang, Ricles (bib131) 2018; 144 ASTM D5023-15 (bib45) 2007 Chang, Chien, Wu (bib94) 2016; 57 Chang, Wu (bib30) 2006; 55 Li, Zhang, Xiong (bib106) 2010; 490 Velmurugan, Senthilkumar, Dinesh (bib18) 2018; 5 Young, Defouw, Frenzel (bib76) 2012; 43 Krishnasamy, Rajamurugan, Thirumurugan (bib40) 2021; 51 2018-Damping and transformation behaviors of Ti50(Pd50−xCrx) shape memory alloys with x ranging from 4.0 to 5.0 Curr. Appl. Phys. 18 7 2018 847 852. Sharma, Jangra, Raj (bib19) 2018; 232 Wang, Zu, Fu (bib13) 2011; 2 Peng, Liu, Shah (bib113) 2020; 816 K.P. Duffy Overview of NASA GRC Research on Damping of Jet Engine Blades Semin. Penn State''S. Act. Struct. Noise Control Group Cent. Acoust. Vib. 2009 Dec 1. Qiu, Tian (bib132) 2018; 18 Nespoli, Villa, Passaretti (bib97) 2015; 653 10.1016/j.mtcomm.2023.107276_bib133 Alipour (10.1016/j.mtcomm.2023.107276_bib123) 2017; 28 10.1016/j.mtcomm.2023.107276_bib134 Zadler (10.1016/j.mtcomm.2023.107276_bib55) 2004; 156 10.1016/j.mtcomm.2023.107276_bib135 Instruments (10.1016/j.mtcomm.2023.107276_bib36) 2004; 9 10.1016/j.mtcomm.2023.107276_bib136 Krishnasamy (10.1016/j.mtcomm.2023.107276_bib39) 2022; 4 Zhao (10.1016/j.mtcomm.2023.107276_bib104) 2021; 855 Li (10.1016/j.mtcomm.2023.107276_bib106) 2010; 490 10.1016/j.mtcomm.2023.107276_bib138 Novák (10.1016/j.mtcomm.2023.107276_bib63) 2017; 891 Guo (10.1016/j.mtcomm.2023.107276_bib81) 2015; 78 Zhe (10.1016/j.mtcomm.2023.107276_bib125) 2021; 293 Leisure (10.1016/j.mtcomm.2023.107276_bib56) 2004; 370 Jiang (10.1016/j.mtcomm.2023.107276_bib99) 2010; 97–101 Alaneme (10.1016/j.mtcomm.2023.107276_bib122) 2019; 22 Patel (10.1016/j.mtcomm.2023.107276_bib20) 2020; 33 Choudhary (10.1016/j.mtcomm.2023.107276_bib51) 2013; 193 Zhang (10.1016/j.mtcomm.2023.107276_bib70) 2004; 374 Pan (10.1016/j.mtcomm.2023.107276_bib121) 2007; 7 Hasegawa (10.1016/j.mtcomm.2023.107276_bib84) 2004; 372 Kustov (10.1016/j.mtcomm.2023.107276_bib26) 2008; 583 Zhang (10.1016/j.mtcomm.2023.107276_bib107) 2014; 63 10.1016/j.mtcomm.2023.107276_bib5 Van Humbeeck (10.1016/j.mtcomm.2023.107276_bib8) 1996; 6 Fabregat-Sanjuan (10.1016/j.mtcomm.2023.107276_bib87) 2018; 712 Blanter (10.1016/j.mtcomm.2023.107276_bib3) 2007; 8 Arulmurugan (10.1016/j.mtcomm.2023.107276_bib41) 2021; 50 10.1016/j.mtcomm.2023.107276_bib2 Lobo (10.1016/j.mtcomm.2023.107276_bib15) 2015; 114 10.1016/j.mtcomm.2023.107276_bib127 Instruments (10.1016/j.mtcomm.2023.107276_bib37) 2018 Acar (10.1016/j.mtcomm.2023.107276_bib21) 2015; 633 Indirli (10.1016/j.mtcomm.2023.107276_bib129) 2008; 2 Fang (10.1016/j.mtcomm.2023.107276_bib131) 2018; 144 Zhang (10.1016/j.mtcomm.2023.107276_bib124) 2021; 236 ASTM-E1867 (10.1016/j.mtcomm.2023.107276_bib44) 2013 Jiang (10.1016/j.mtcomm.2023.107276_bib74) 2022; 15 Fan (10.1016/j.mtcomm.2023.107276_bib83) 2006; 54 Ikeda (10.1016/j.mtcomm.2023.107276_bib137) 2011 Cai (10.1016/j.mtcomm.2023.107276_bib77) 2005; 394 Frenzel (10.1016/j.mtcomm.2023.107276_bib61) 2015; 90 Yuan (10.1016/j.mtcomm.2023.107276_bib6) 2011; 687 Pfetzing-Micklich (10.1016/j.mtcomm.2023.107276_bib52) 2010; 12 Ngo (10.1016/j.mtcomm.2023.107276_bib120) 2006 Sidharth (10.1016/j.mtcomm.2023.107276_bib28) 2021; 7 Wang (10.1016/j.mtcomm.2023.107276_bib111) 2018; 217 Zuo (10.1016/j.mtcomm.2023.107276_bib93) 2019; 109 Xie (10.1016/j.mtcomm.2023.107276_bib112) 2019; 11 Chien (10.1016/j.mtcomm.2023.107276_bib90) 2014; 7 Villa (10.1016/j.mtcomm.2023.107276_bib116) 2021; 30 Regelbrugge (10.1016/j.mtcomm.2023.107276_bib117) 1996; 7 Shuitcev (10.1016/j.mtcomm.2023.107276_bib92) 2020; 262 Koleske (10.1016/j.mtcomm.2023.107276_bib34) 2012 Krishnasamy (10.1016/j.mtcomm.2023.107276_bib40) 2021; 51 Biscarini (10.1016/j.mtcomm.2023.107276_bib82) 2003; 355 Jiang (10.1016/j.mtcomm.2023.107276_bib105) 2013; 23 James (10.1016/j.mtcomm.2023.107276_bib1) 1969; 4 Otsuka (10.1016/j.mtcomm.2023.107276_bib58) 2005; 50 Yang (10.1016/j.mtcomm.2023.107276_bib110) 2017; 26 Chang (10.1016/j.mtcomm.2023.107276_bib94) 2016; 57 10.1016/j.mtcomm.2023.107276_bib48 Wang (10.1016/j.mtcomm.2023.107276_bib13) 2011; 2 Wang (10.1016/j.mtcomm.2023.107276_bib69) 2015; 1 Kwon (10.1016/j.mtcomm.2023.107276_bib118) 2017 10.1016/j.mtcomm.2023.107276_bib42 Suresh (10.1016/j.mtcomm.2023.107276_bib54) 2015; 633 Liang (10.1016/j.mtcomm.2023.107276_bib72) 2019; 166 Chen (10.1016/j.mtcomm.2023.107276_bib115) 2011; 59 Santosh (10.1016/j.mtcomm.2023.107276_bib33) 2022; 924 Atli (10.1016/j.mtcomm.2023.107276_bib68) 2016; 679 Toker (10.1016/j.mtcomm.2023.107276_bib9) 2020; 150 ASTM D5023-15 (10.1016/j.mtcomm.2023.107276_bib45) 2007 Naresh (10.1016/j.mtcomm.2023.107276_bib64) 2017; 4 Entwistle (10.1016/j.mtcomm.2023.107276_bib22) 1962; 7 Properties (10.1016/j.mtcomm.2023.107276_bib46) 1981; 07 Herbert (10.1016/j.mtcomm.2023.107276_bib50) 2008; 41 Da Silva (10.1016/j.mtcomm.2023.107276_bib75) 2010; 643 Zhang (10.1016/j.mtcomm.2023.107276_bib101) 2019; 96 Wang (10.1016/j.mtcomm.2023.107276_bib79) 2018; 146 Sharma (10.1016/j.mtcomm.2023.107276_bib19) 2018; 232 Wetton (10.1016/j.mtcomm.2023.107276_bib32) 1991; 175 Gallardo Fuentes (10.1016/j.mtcomm.2023.107276_bib60) 2002; 4 Hu (10.1016/j.mtcomm.2023.107276_bib67) 2015; 623 Cao (10.1016/j.mtcomm.2023.107276_bib80) 2018 Chang (10.1016/j.mtcomm.2023.107276_bib65) 2008; 59 Mohd Jani (10.1016/j.mtcomm.2023.107276_bib11) 2014; 56 McCormick (10.1016/j.mtcomm.2023.107276_bib128) 2006; 128 Radhamani (10.1016/j.mtcomm.2023.107276_bib62) 2023; 237 Chen (10.1016/j.mtcomm.2023.107276_bib78) 2009; 482 Saedi (10.1016/j.mtcomm.2023.107276_bib29) 2023; 956 Li (10.1016/j.mtcomm.2023.107276_bib85) 2023; 330 Golovin (10.1016/j.mtcomm.2023.107276_bib7) 2004; 370 Bocciolone (10.1016/j.mtcomm.2023.107276_bib139) 2012 Van Humbeeck (10.1016/j.mtcomm.2023.107276_bib4) 2000 San Juan (10.1016/j.mtcomm.2023.107276_bib10) 2003; 355 Zhang (10.1016/j.mtcomm.2023.107276_bib53) 2022; 84 Duffy (10.1016/j.mtcomm.2023.107276_bib89) 2008; 6929 Birman (10.1016/j.mtcomm.2023.107276_bib12) 1997; 50 Guo (10.1016/j.mtcomm.2023.107276_bib109) 2015; 158 Luo (10.1016/j.mtcomm.2023.107276_bib96) 2013; 95 Elahinia (10.1016/j.mtcomm.2023.107276_bib14) 2012; 57 Torra (10.1016/j.mtcomm.2023.107276_bib130) 2015; 119 Dejonghe (10.1016/j.mtcomm.2023.107276_bib66) 1976; 10 Nespoli (10.1016/j.mtcomm.2023.107276_bib97) 2015; 653 Santosh (10.1016/j.mtcomm.2023.107276_bib38) 2022; 924 Samal (10.1016/j.mtcomm.2023.107276_bib102) 2021; 11 Wang (10.1016/j.mtcomm.2023.107276_bib49) 2022; 7 Velmurugan (10.1016/j.mtcomm.2023.107276_bib18) 2018; 5 Kothalkar (10.1016/j.mtcomm.2023.107276_bib108) 2014; 45 ASTM D5023-15 (10.1016/j.mtcomm.2023.107276_bib43) 2007 Fang (10.1016/j.mtcomm.2023.107276_bib126) 2023; 8 Chang (10.1016/j.mtcomm.2023.107276_bib27) 2019 Qiu (10.1016/j.mtcomm.2023.107276_bib132) 2018; 18 Young (10.1016/j.mtcomm.2023.107276_bib76) 2012; 43 Liu (10.1016/j.mtcomm.2023.107276_bib98) 2018; 155 Gutiérrez-Urrutia (10.1016/j.mtcomm.2023.107276_bib57) 2004; 370 10.1016/j.mtcomm.2023.107276_bib91 Jin (10.1016/j.mtcomm.2023.107276_bib73) 2020; 183 Chang (10.1016/j.mtcomm.2023.107276_bib30) 2006; 55 Peng (10.1016/j.mtcomm.2023.107276_bib113) 2020; 816 Rheology (10.1016/j.mtcomm.2023.107276_bib47) 2008 Hodgson (10.1016/j.mtcomm.2023.107276_bib25) 2002; 394–395 Wolfenden (10.1016/j.mtcomm.2023.107276_bib31) 1997 Chang (10.1016/j.mtcomm.2023.107276_bib95) 2014; 586 Lai (10.1016/j.mtcomm.2023.107276_bib103) 2021; 31 Puškár (10.1016/j.mtcomm.2023.107276_bib24) 2001 10.1016/j.mtcomm.2023.107276_bib88 Naresh (10.1016/j.mtcomm.2023.107276_bib17) 2016; Vol. 149 Zhang (10.1016/j.mtcomm.2023.107276_bib100) 2013; 550 Kwon (10.1016/j.mtcomm.2023.107276_bib119) 2015; 67 Nowick (10.1016/j.mtcomm.2023.107276_bib23) 1953; 1 Stachowiak (10.1016/j.mtcomm.2023.107276_bib71) 1988; 36 Instruments (10.1016/j.mtcomm.2023.107276_bib35) 2018 Chen (10.1016/j.mtcomm.2023.107276_bib86) 2011; 65 Bhattacharya (10.1016/j.mtcomm.2023.107276_bib59) 2004 Lester (10.1016/j.mtcomm.2023.107276_bib16) 2015; 226 Sun (10.1016/j.mtcomm.2023.107276_bib114) 2022; 905 |
References_xml | – volume: 924 year: 2022 ident: bib38 article-title: Comparison of internal friction measurements on Ni-Ti reinforced smart composites prepared by additive manufacturing publication-title: J. Alloy. Compd. – volume: 59 start-page: 537 year: 2011 end-page: 553 ident: bib115 article-title: Size effects in shape memory alloy microwires publication-title: Acta Mater. – volume: 1 start-page: 1 year: 1953 end-page: 70 ident: bib23 article-title: Internal friction in metals publication-title: Prog. Met. Phys. – volume: 217 start-page: 206 year: 2018 end-page: 210 ident: bib111 article-title: Fabrication and damping behavior of a novel Mg/TiNiCu composite publication-title: Mater. Lett. – volume: 150 start-page: 1 year: 2020 end-page: 19 ident: bib9 article-title: Loading frequency and temperature-dependent damping capacity of NiTiHfPd shape memory alloy publication-title: Mech. Mater. – reference: K.P. Duffy Overview of NASA GRC Research on Damping of Jet Engine Blades Semin. Penn State''S. Act. Struct. Noise Control Group Cent. Acoust. Vib. 2009 Dec 1. – volume: 65 start-page: 1073 year: 2011 end-page: 1075 ident: bib86 article-title: Effect of graphite addition on martensitic transformation and damping behavior of NiTi shape memory alloy publication-title: Mater. Lett. – volume: 394–395 start-page: 69 year: 2002 end-page: 74 ident: bib25 article-title: Damping applications of shape-memory alloys publication-title: Mater. Sci. Forum – volume: 653 start-page: 234 year: 2015 end-page: 242 ident: bib97 article-title: Effect of Yttrium on microstructure, thermal properties and damping capacity of Ni41Ti50Cu9 alloy publication-title: J. Alloy. Compd. – volume: 31 start-page: 485 year: 2021 end-page: 498 ident: bib103 article-title: Preparation and characterization of porous NiTi alloys synthesized by microwave sintering using Mg space holder publication-title: Trans. Nonferrous Met Soc. China – volume: 4 year: 2022 ident: bib39 article-title: Dynamic mechanical behavior of mono/synthetic-natural fiber composites-a review publication-title: Eng. Res. Express – volume: 2 start-page: 93 year: 2008 end-page: 119 ident: bib129 article-title: Shape memory alloy devices for the structural improvement of masonry heritage structures publication-title: Int. J. Arch. Herit. – start-page: 1 year: 2012 end-page: 9 ident: bib139 article-title: Design for the damping of a railway collector based on the application of shape memory alloys publication-title: Smart Mater. Res. – volume: 30 year: 2021 ident: bib116 article-title: Damping properties of innovative NiTi elements: Development of proof of concept and demonstrators publication-title: Smart Mater. Struct. – volume: 374 start-page: 292 year: 2004 end-page: 302 ident: bib70 article-title: Crystallography of the B2 → R → B19′ phase transformations in NiTi publication-title: Mater. Sci. Eng. A – volume: 156 start-page: 154 year: 2004 end-page: 169 ident: bib55 article-title: Resonant ultrasound spectroscopy: Theory and application publication-title: Geophys J. Int. – volume: 370 start-page: 435 year: 2004 end-page: 439 ident: bib57 article-title: High performance very low frequency forced pendulum publication-title: Mater. Sci. Eng. A – volume: 956 year: 2023 ident: bib29 article-title: Energy damping in shape memory alloys: A review publication-title: J. Alloy. Compd. – volume: 855 year: 2021 ident: bib104 article-title: Tailoring the damping and mechanical properties of porous NiTi by a phase leaching process publication-title: J. Alloy. Compd. – start-page: 125 year: 2011 end-page: 140 ident: bib137 article-title: The use of shape memory alloys (SMAs) in aerospace engineering, Shape Memory and Superelastic Alloys publication-title: Woodhead Publishing – volume: 23 start-page: 2029 year: 2013 end-page: 2036 ident: bib105 article-title: Phase transformation and damping behavior of lightweight porous TiNiCu alloys fabricated by powder metallurgy process publication-title: Trans. Nonferrous Met Soc. China – volume: 7 start-page: 175 year: 1962 end-page: 240 ident: bib22 article-title: The internal friction of metals publication-title: Metall. Rev. – volume: 183 start-page: 102 year: 2020 end-page: 106 ident: bib73 article-title: Ultrahigh damping capacity achieved by modulating R phase in Ti49.2Ni50.8 shape memory alloy wires publication-title: Scr. Mater. – reference: Nohava J. Dynamic mechanical analysis by nanoindentation. Application report from Anton Paar GmbH. 0: 2–5. – volume: 54 start-page: 5221 year: 2006 end-page: 5229 ident: bib83 article-title: Effects of frequency, composition, hydrogen and twin boundary density on the internal friction of Ti50Ni50-xCux shape memory alloys publication-title: Acta Mater. – volume: 372 start-page: 116 year: 2004 end-page: 120 ident: bib84 article-title: Stability and hydrogen-induced internal friction of Ti-rich multicomponent glassy alloys publication-title: J. Alloy. Compd. – volume: 43 start-page: 2939 year: 2012 end-page: 2944 ident: bib76 article-title: Cast-replicated NiTiCu foams with superelastic properties publication-title: Met. Mater. Trans. A Phys. Met. Mater. Sci. – volume: 237 start-page: 1137 year: 2023 end-page: 1145 ident: bib62 article-title: The effect of copper on phase transformation, microstructure and mechanical characterization of Ni50-xTi50Cux shape-memory alloy publication-title: Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. – reference: Damping Capacities of Ti50Ni50−xCux Shape Memory Alloys Measured under Temperature, Strain, and Frequency Sweeps Mater. Trans. 56 2 2015 193 199. – volume: 50 start-page: 629 year: 1997 end-page: 645 ident: bib12 article-title: Review of mechanics of shape memory alloy structures publication-title: Appl. Mech. Rev. – volume: 816 start-page: 1 year: 2020 end-page: 7 ident: bib113 article-title: Enhanced internal friction and specific strength of porous TiNi shape memory alloy composite by the synergistic effect of pore and Ti2Ni publication-title: J. Alloy. Compd. – volume: Vol. 149 year: 2016 ident: bib17 article-title: Shape memory alloys: a state of art review publication-title: IOP Conf Ser Mater Sci Eng – start-page: 1 year: 2018 end-page: 38 ident: bib35 article-title: Discover the world’s finest dynamic mechanical analyzer publication-title: TA Instrum. Appl. Briefs – volume: 26 start-page: 4970 year: 2017 end-page: 4976 ident: bib110 article-title: High Damping of Lightweight TiNi-Ti2Ni Shape Memory Composites for Wide Temperature Range Usage publication-title: J. Mater. Eng. Perform. – volume: 891 start-page: 447 year: 2017 end-page: 451 ident: bib63 article-title: Effect of alloying elements on the reactive sintering behaviour of NiTi alloy publication-title: Mater. Sci. Forum – volume: 109 start-page: 174 year: 2019 end-page: 178 ident: bib93 article-title: High temperature internal friction in Ni 50.3 Ti 29.7 Zr 20 shape memory alloy publication-title: Intermetallics – volume: 146 start-page: 246 year: 2018 end-page: 250 ident: bib79 article-title: Selective laser melting produced layer-structured NiTi shape memory alloys with high damping properties and Elinvar effect publication-title: Scr. Mater. – start-page: 251 year: 2006 end-page: 256 ident: bib120 article-title: Fabrication of Active Thin Films for Vibration Damping in Mems Devices for the Next Generation Army Munition Systems publication-title: Transform. Sci. Technol. Curr. Future Force.: ( CD-ROM) – volume: 355 start-page: 52 year: 2003 end-page: 57 ident: bib82 article-title: Extraordinary high damping of hydrogen-doped NiTi and NiTiCu shape memory alloys publication-title: J. Alloy. Compd. – volume: 226 start-page: 3907 year: 2015 end-page: 3960 ident: bib16 article-title: Review and perspectives: shape memory alloy composite systems publication-title: Acta Mech. – start-page: 1 year: 2008 end-page: 7 ident: bib47 article-title: Standard practice for plastics: dynamic mechanical properties: determination and publication-title: Annu B ASTM Stand – volume: 8 start-page: 1 year: 2023 end-page: 8 ident: bib126 article-title: Emerging superelastic SMA core damping elements for seismic application. Front publication-title: Built Environ. – start-page: 275 year: 2018 end-page: 279 ident: bib80 article-title: Porous Ni – Ti – Nb shape memory alloys with tunable damping performance controlled by martensitic transformation publication-title: Proc of the Int Conf on Mart Transformations – volume: 193 start-page: 30 year: 2013 end-page: 34 ident: bib51 article-title: NiTi/Pb (Zr0. 52Ti0. 48) O3 thin film heterostructures for vibration damping in MEMS publication-title: Sens. Actuators A. Phys. – volume: 51 start-page: 540 year: 2021 end-page: 558 ident: bib40 article-title: Dynamic mechanical characteristics of jute fiber and 304 wire mesh reinforced epoxy composite publication-title: J. Ind. Text. – volume: 490 start-page: 15 year: 2010 end-page: 19 ident: bib106 article-title: Lightweight NiTi shape memory alloy based composites with high damping capacity and high strength publication-title: J. Alloy. Compd. – volume: 158 start-page: 1 year: 2015 end-page: 4 ident: bib109 article-title: Development of a high-damping NiTi shape-memory-alloy-based composite publication-title: Mater. Lett. – volume: 394 start-page: 78 year: 2005 end-page: 82 ident: bib77 article-title: Damping behavior of TiNi-based shape memory alloys publication-title: Mater. Sci. Eng. A – volume: 56 start-page: 1078 year: 2014 end-page: 1113 ident: bib11 article-title: A review of shape memory alloy research, applications and opportunities publication-title: Mater. Des. – volume: 7 start-page: 4574 year: 2014 end-page: 4586 ident: bib90 article-title: Damping characteristics of Ti50Ni50-xCux (x = 0–30 at%) shape memory alloys at a low frequency publication-title: Materials – volume: 50 start-page: 1040 year: 2021 end-page: 1064 ident: bib41 article-title: Viscoelastic behavior of aloevera/hemp/flax sandwich laminate composite reinforced with BaSO4: Dynamic mechanical analysis publication-title: J. Ind. Text. – volume: 687 start-page: 485 year: 2011 end-page: 489 ident: bib6 article-title: High damping capacity of a binary TiNi shape memory alloy publication-title: Mater. Sci. Forum – volume: 155 start-page: 358 year: 2018 end-page: 360 ident: bib98 article-title: Study of martensitic transformation in TiNiCuNb shape memory alloys using dynamic mechanical analysis publication-title: Vacuum – volume: 18 start-page: 1 year: 2018 end-page: 24 ident: bib132 article-title: Feasibility analysis of SMA-based damping devices for use in seismic isolation of low-rise frame buildings publication-title: Int J. Struct. Stab. Dyn. – reference: Hartl D., Volk B., Lagoudas D.C., et al. Thermomechanical characterization and modeling of NI60TI40 SMA for actuated chevrons. Am Soc Mech Eng Aerosp Div AD. 47659: 281–290. DOI: – volume: 232 start-page: 250 year: 2018 end-page: 269 ident: bib19 article-title: Fabrication of NiTi alloy: a review publication-title: Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. – reference: 2018-Damping and transformation behaviors of Ti50(Pd50−xCrx) shape memory alloys with x ranging from 4.0 to 5.0 Curr. Appl. Phys. 18 7 2018 847 852. – volume: 12 start-page: 13 year: 2010 end-page: 19 ident: bib52 article-title: Nanoindentation of a pseudoelastic NiTiFe shape memory alloy publication-title: Adv. Eng. Mater. – volume: 4 start-page: 11251 year: 2017 end-page: 11259 ident: bib64 article-title: The Influence of Alloying Constituent Fe on Mechanical Properties of NiTi Based Shape Memory Alloys publication-title: Mater. Today Proc. – year: 2004 ident: bib59 article-title: Theory of martensitic microstructure and the shape-memory effect. Unpubl Notes publication-title: Microstructure of Martensite – volume: 41 year: 2008 ident: bib50 article-title: Nanoindentation and the dynamic characterization of viscoelastic solids publication-title: J. Phys. D. Appl. Phys. – volume: 114 start-page: 776 year: 2015 end-page: 783 ident: bib15 article-title: Shape memory alloys behaviour: a review publication-title: Procedia Eng. – volume: 924 year: 2022 ident: bib33 article-title: Effect of Ni and Mn additions on the damping characteristics of Cu-Al-Fe based high temperature shape memory alloys publication-title: J. Alloy. Compd. – start-page: 1 year: 2013 end-page: 5 ident: bib44 article-title: Standard test method for temperature calibration of dynamic mechanical analyzers publication-title: ASTM Int – volume: 07 start-page: 1 year: 1981 end-page: 4 ident: bib46 article-title: Standard terminology for: plastics: dynamic mechanical properties 1 publication-title: Current – volume: 90 start-page: 213 year: 2015 end-page: 231 ident: bib61 article-title: On the effect of alloy composition on martensite start temperatures and latent heats in Ni-Ti-based shape memory alloys publication-title: Acta Mater. – volume: 57 start-page: 351 year: 2016 end-page: 356 ident: bib94 article-title: Damping characteristics of the inherent and intrinsic internal friction of Ti50Ni50-xFex (x = 2, 3, and 4) shape memory alloys publication-title: Mater. Trans. – volume: 9 start-page: 563 year: 2004 end-page: 590 ident: bib36 article-title: Dynamic mechanical analysis, basic theory & applications training publication-title: Encycl. Polym. Sci. Technol. – volume: 586 start-page: 69 year: 2014 end-page: 73 ident: bib95 article-title: Inherent internal friction of Ti50Ni50-xCux shape memory alloys measured under isothermal conditions publication-title: J. Alloy. Compd. – volume: 11 start-page: 1 year: 2021 end-page: 18 ident: bib102 article-title: Net-shape NiTi shape memory alloy by spark plasma sintering method publication-title: Appl. Sci. – volume: 370 start-page: 34 year: 2004 end-page: 40 ident: bib56 article-title: Internal friction studies by resonant ultrasound spectroscopy publication-title: Mater. Sci. Eng. A – volume: 10 start-page: 1125 year: 1976 1 end-page: 1128 ident: bib66 article-title: Factors affecting the internal friction peak due to thermoelastic martensitic transformation publication-title: Scr. Metall. – volume: 236 year: 2021 ident: bib124 article-title: Tests of a novel re-centering damper with SMA rods and friction wedges publication-title: Eng. Struct. – start-page: 1565 year: 2019 end-page: 1593 ident: bib27 article-title: Damping characteristics of shape memory alloys on their inherent and intrinsic internal friction publication-title: Handb. Mech. Mater. – year: 1997 ident: bib31 article-title: M3D III: Mechanics and Mechanisms of Material Damping – reference: Padula S., Creager C. Shape Memory Alloy (SMA) Tires-A New Paradigm in Tire Performance. In Annual Meeting and Conference on Tire Science and Technology 2018 Sep 11 (No. GRC-E-DAA-TN59946). – volume: 175 year: 1991 ident: bib32 article-title: Theory and application of dynamic mechanical thermal analysis publication-title: Thermochim. Acta – volume: 8 year: 2007 ident: bib3 publication-title: Internal Friction in Metallic Materials: A Handbook. 2007 – volume: 144 start-page: 1 year: 2018 end-page: 15 ident: bib131 article-title: Application of an innovative SMA ring spring system for self-centering steel frames subject to seismic conditions publication-title: J. Struct. Eng. – volume: 679 start-page: 260 year: 2016 end-page: 267 ident: bib68 article-title: The effect of tensile deformation on the damping capacity of NiTi shape memory alloy publication-title: J. Alloy. Compd. – volume: 63 start-page: 460 year: 2014 end-page: 463 ident: bib107 article-title: High damping NiTi/Ti3Sn in situ composite with transformation-mediated plasticity publication-title: Mater. Des. – volume: 1 start-page: 231 year: 2015 end-page: 239 ident: bib69 article-title: Fundamental development on utilizing the R-phase transformation in NiTi Shape Memory Alloys publication-title: Shape Mem. Superelasticity – volume: 6 start-page: C8 year: 1996 end-page: 371 ident: bib8 article-title: Damping properties of shape memory alloys during phase transformation publication-title: Le. J. De. Phys. IV – volume: 643 start-page: 37 year: 2010 end-page: 41 ident: bib75 article-title: Dynamic properties of NiTi shape memory alloy and classic structural materials: a comparative analysis publication-title: Mater. Sci. Forum – volume: 45 start-page: 2646 year: 2014 end-page: 2658 ident: bib108 article-title: Thermo-mechanical response and damping behavior of shape memory alloy-MAX phase composites publication-title: Met. Mater. Trans. A Phys. Met. Mater. Sci. – volume: 7 start-page: 1887 year: 2007 end-page: 1900 ident: bib121 article-title: The investigation of a shape memory alloy micro-damper for MEMS applications publication-title: Sensors – volume: 7 start-page: 211 year: 1996 end-page: 215 ident: bib117 article-title: Performance of a smart vibration isolator for precision spacecraft instruments publication-title: J. Intell. Mater. Syst. Struct. – volume: 2 start-page: 101 year: 2011 end-page: 119 ident: bib13 article-title: Review on the temperature memory effect in shape memory alloys publication-title: Int. J. Smart Nano Mater. – start-page: 85 year: 2018 ident: bib37 article-title: Dynamic mechanical analysis: basic theory & applications training publication-title: TA Instrum. – reference: Santo A. Padula, James Benzing, Vivake M. Asnani. Superelastic tire. US10449804B1, 2019. – start-page: 9 year: 2007 end-page: 12 ident: bib45 article-title: Standard test method for plastics: dynamic mechanical properties: in flexure (Three-Point Bending) publication-title: ASTM Int – volume: 293 start-page: 1 year: 2021 end-page: 7 ident: bib125 article-title: Research on different applications of SMA in seismic resistance of building structures publication-title: E3S Web Conf. – start-page: 46 year: 2000 end-page: 60 ident: bib4 article-title: The high damping capacity of shape memory alloys publication-title: Shape Mem. Implants – volume: 166 start-page: 44 year: 2019 end-page: 47 ident: bib72 article-title: Internal friction of the R-phase in single crystalline Ti-50.8Ni (at%) alloy containing controlled precipitate of Ti 3 Ni 4 publication-title: Scr. Mater. – volume: 15 start-page: 5073 year: 2022 ident: bib74 article-title: Structure, martensitic transformation, and damping properties of functionally graded NiTi shape memory alloys fabricated by laser powder bed fusion publication-title: Materials – volume: 97–101 start-page: 1083 year: 2010 end-page: 1086 ident: bib99 article-title: Damping characteristics of biomedical porous NiTi shape memory alloy publication-title: Adv. Mater. Res – volume: 583 start-page: 85 year: 2008 end-page: 109 ident: bib26 article-title: Damping properties of SMA publication-title: Mater. Sci. Forum – volume: 33 start-page: 5552 year: 2020 end-page: 5556 ident: bib20 article-title: A brief review of shape memory effects and fabrication processes of NiTi shape memory alloys publication-title: Mater. Today Proc. – volume: 482 start-page: 151 year: 2009 end-page: 154 ident: bib78 article-title: Damping capacity of TiNi-based shape memory alloys publication-title: J. Alloy. Compd. – reference: R.J. Perez Doc. damping Capacit. Met., Ceram. Met. -Matrix Compos. Mater. 28 1993 2395 2404. – volume: 330 year: 2023 ident: bib85 article-title: High damping performances over wide temperature range in the B doped Ti-Ni shape memory alloys publication-title: Mater. Lett. – volume: 355 start-page: 65 year: 2003 end-page: 71 ident: bib10 article-title: Damping behavior during martensitic transformation in shape memory alloys publication-title: J. Alloy. Compd. – reference: E. Choi Y. Ha T.Y. Kim et al. Damping device having self-centering capacity using SMA rings SMAR- fifth Conf. smart Monit., Assess. Rehabil. Civ. Struct. 2019 1 7. – volume: 36 start-page: 291 year: 1988 end-page: 297 ident: bib71 article-title: Shape memory behaviour associated with the R and martensitic transformations in a NiTi alloy publication-title: Acta Met. – volume: 67 start-page: 19 year: 2015 end-page: 27 ident: bib119 article-title: Performance evaluation of spaceborne cryocooler micro-vibration isolation system employing pseudoelastic SMA mesh washer publication-title: Cryog. (Guildf. ) – volume: 6929 start-page: 270 year: 2008 end-page: 279 ident: bib89 article-title: Damping of high-temperature shape memory alloys publication-title: Behav. Mech. Multifunct. Compos. Mater. – volume: 78 start-page: 74 year: 2015 end-page: 79 ident: bib81 article-title: Submicron-porous NiTi and NiTiNb shape memory alloys with high damping capacity fabricated by a new top-down process publication-title: Mater. Des. – volume: 7 start-page: 235 year: 2021 end-page: 249 ident: bib28 article-title: Unraveling Frequency Effects in Shape Memory Alloys: NiTi and FeMnAlNi publication-title: Shape Mem. Superelasticity – volume: 7 start-page: 14317 year: 2022 end-page: 14331 ident: bib49 article-title: Using nanoindentation to characterize the mechanical and creep properties of shale: load and loading strain rate effects publication-title: ACS Omega – reference: Pan Q., Cho C. Damping property of shape memory alloys. 17th Int Metall Mater Conf Met 2008 - Proc. – volume: 633 start-page: 169 year: 2015 end-page: 175 ident: bib21 article-title: Dynamic mechanical response of a Ni45.7Ti29.3Hf20Pd5 alloy publication-title: Mater. Sci. Eng. A – volume: 4 start-page: 437 year: 2002 end-page: 452 ident: bib60 article-title: Phase change behavior of nitinol shape memory alloys publication-title: Adv. Eng. Mater. – start-page: 9 year: 2007 end-page: 12 ident: bib43 article-title: Standard test method for plastics: dynamic mechanical properties: in flexure (Three-Point Bending) publication-title: ASTM Int – volume: 84 start-page: 965 year: 2022 end-page: 976 ident: bib53 article-title: Excellent damping properties and their correlations with the microstructures in the NiTi alloys fabricated by laser-directed energy deposition publication-title: J. Manuf. Process. – volume: 128 start-page: 294 year: 2006 end-page: 301 ident: bib128 article-title: Seismic vibration control using superelastic shape memory alloys publication-title: J. Eng. Mater. Technol. – volume: 633 start-page: 71 year: 2015 end-page: 74 ident: bib54 article-title: Microstructure dependent elastic modulus variation in NiTi shape memory alloy publication-title: J. Alloy. Compd. – volume: 22 start-page: 22 year: 2019 end-page: 32 ident: bib122 article-title: Structural vibration mitigation – a concise review of the capabilities and applications of Cu and Fe based shape memory alloys in civil structures publication-title: J. Build. Eng. – volume: 550 start-page: 297 year: 2013 end-page: 301 ident: bib100 article-title: High damping capacity in porous NiTi alloy with bimodal pore architecture publication-title: J. Alloy. Compd. – volume: 262 year: 2020 ident: bib92 article-title: Internal friction in Ti29.7Ni50.3Hf20 alloy with high temperature shape memory effect publication-title: Mater. Lett. – volume: 55 start-page: 311 year: 2006 end-page: 314 ident: bib30 article-title: Inherent internal friction of B2 → R and R → B19′ martensitic transformations in equiatomic TiNi shape memory alloy publication-title: Scr. Mater. – volume: 623 start-page: 1 year: 2015 end-page: 3 ident: bib67 article-title: High damping capacity in a wide temperature range of a compositionally graded TiNi alloy prepared by electroplating and diffusion annealing publication-title: Mater. Sci. Eng. A – reference: F.T. Calkins J.H. Mabe G.W. Butler Boeing’s variable geometry chevron: morphing aerospace structures for jet noise reduction Smart Struct. Mater. 2006 Ind. Commer. Appl. Smart Struct. Technol. 6171 2006 61710O. – year: 2001 ident: bib24 article-title: Internal Friction of Materials – volume: 50 start-page: 511 year: 2005 end-page: 678 ident: bib58 article-title: Physical metallurgy of Ti-Ni-based shape memory alloys publication-title: Prog. Mater. Sci. – volume: 905 year: 2022 ident: bib114 article-title: High damping capacity of AlSi10Mg-NiTi lattice structure interpenetrating phase composites prepared by additive manufacturing and pressureless infiltration publication-title: J. Alloy. Compd. – volume: 57 start-page: 911 year: 2012 end-page: 946 ident: bib14 article-title: Manufacturing and processing of NiTi implants: a review publication-title: Prog. Mater. Sci. – volume: 5 start-page: 14597 year: 2018 end-page: 14606 ident: bib18 article-title: Review on phase transformation behavior of NiTi shape memory alloys publication-title: Mater. Today Proc. – reference: ASTM-D5279 Standard Test Method for Plastics: Dynamic Mechanical Properties: In Torsion Annu B ASTM Stand 2013 2 5. – volume: 119 start-page: 1475 year: 2015 end-page: 1533 ident: bib130 article-title: Shape memory alloys as an effective tool to damp oscillations: Study of the fundamental parameters required to guarantee technological applications publication-title: J. Therm. Anal. Calor. – volume: 4 start-page: 1 year: 1969 end-page: 8 ident: bib1 article-title: High damping metals for engineering applications publication-title: Mater. Sci. Eng. – volume: 96 start-page: 108 year: 2019 end-page: 117 ident: bib101 article-title: Processing and damping capacity of NiTi foams with laminated pore architecture publication-title: J. Mech. Behav. Biomed. Mater. – volume: 370 start-page: 504 year: 2004 end-page: 511 ident: bib7 article-title: Internal friction in metallic foams and some related cellular structures publication-title: Mater. Sci. Eng. A – reference: . – volume: 28 start-page: 2129 year: 2017 end-page: 2139 ident: bib123 article-title: Design, analysis, and manufacture of a tension–compression self-centering damper based on energy dissipation of pre-stretched superelastic shape memory alloy wires publication-title: J. Intell. Mater. Syst. Struct. – year: 2017 ident: bib118 article-title: Experimental validation of fly-wheel passive launch and on-orbit vibration isolation system by using a superelastic SMA mesh washer isolator publication-title: Int J. Aerosp. Eng. – volume: 11 start-page: 28043 year: 2019 end-page: 28051 ident: bib112 article-title: Ti3Sn-NiTi Syntactic Foams with Extremely High Specific Strength and Damping Capacity Fabricated by Pressure Melt Infiltration publication-title: ACS Appl. Mater. Interfaces – volume: 59 start-page: 987 year: 2008 end-page: 990 ident: bib65 article-title: Effect of cooling rate on transformation temperature measurements of Ti50Ni50 alloy by differential scanning calorimetry and dynamic mechanical analysis publication-title: Mater. Charact. – year: 2012 ident: bib34 article-title: Dynamic mechanical and tensile properties publication-title: Paint Coat Test Man – volume: 95 start-page: 125 year: 2013 end-page: 127 ident: bib96 article-title: Microstructure and damping characteristics of Ti50Ni 24.9Cu25Y0.1 shape memory alloy publication-title: Mater. Lett. – volume: 712 start-page: 281 year: 2018 end-page: 291 ident: bib87 article-title: Identifying the effects of heat treatment temperatures on the Ti50Ni45Cu5 alloy using dynamic mechanical analysis combined with microstructural analysis publication-title: Mater. Sci. Eng. A – volume: 57 start-page: 911 year: 2012 ident: 10.1016/j.mtcomm.2023.107276_bib14 article-title: Manufacturing and processing of NiTi implants: a review publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2011.11.001 – volume: 97–101 start-page: 1083 year: 2010 ident: 10.1016/j.mtcomm.2023.107276_bib99 article-title: Damping characteristics of biomedical porous NiTi shape memory alloy publication-title: Adv. Mater. Res doi: 10.4028/www.scientific.net/AMR.97-101.1083 – volume: 490 start-page: 15 year: 2010 ident: 10.1016/j.mtcomm.2023.107276_bib106 article-title: Lightweight NiTi shape memory alloy based composites with high damping capacity and high strength publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2009.10.025 – volume: 4 start-page: 437 year: 2002 ident: 10.1016/j.mtcomm.2023.107276_bib60 article-title: Phase change behavior of nitinol shape memory alloys publication-title: Adv. Eng. Mater. doi: 10.1002/1527-2648(20020717)4:7<437::AID-ADEM437>3.0.CO;2-8 – volume: 9 start-page: 563 year: 2004 ident: 10.1016/j.mtcomm.2023.107276_bib36 article-title: Dynamic mechanical analysis, basic theory & applications training publication-title: Encycl. Polym. Sci. Technol. – year: 2001 ident: 10.1016/j.mtcomm.2023.107276_bib24 – volume: 482 start-page: 151 year: 2009 ident: 10.1016/j.mtcomm.2023.107276_bib78 article-title: Damping capacity of TiNi-based shape memory alloys publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2009.03.148 – year: 2017 ident: 10.1016/j.mtcomm.2023.107276_bib118 article-title: Experimental validation of fly-wheel passive launch and on-orbit vibration isolation system by using a superelastic SMA mesh washer isolator publication-title: Int J. Aerosp. Eng. doi: 10.1155/2017/5496053 – volume: 78 start-page: 74 year: 2015 ident: 10.1016/j.mtcomm.2023.107276_bib81 article-title: Submicron-porous NiTi and NiTiNb shape memory alloys with high damping capacity fabricated by a new top-down process publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.04.028 – volume: 5 start-page: 14597 year: 2018 ident: 10.1016/j.mtcomm.2023.107276_bib18 article-title: Review on phase transformation behavior of NiTi shape memory alloys publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2018.03.051 – volume: 45 start-page: 2646 year: 2014 ident: 10.1016/j.mtcomm.2023.107276_bib108 article-title: Thermo-mechanical response and damping behavior of shape memory alloy-MAX phase composites publication-title: Met. Mater. Trans. A Phys. Met. Mater. Sci. doi: 10.1007/s11661-014-2193-5 – volume: 330 year: 2023 ident: 10.1016/j.mtcomm.2023.107276_bib85 article-title: High damping performances over wide temperature range in the B doped Ti-Ni shape memory alloys publication-title: Mater. Lett. doi: 10.1016/j.matlet.2022.133245 – volume: 653 start-page: 234 year: 2015 ident: 10.1016/j.mtcomm.2023.107276_bib97 article-title: Effect of Yttrium on microstructure, thermal properties and damping capacity of Ni41Ti50Cu9 alloy publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2015.08.259 – volume: 226 start-page: 3907 year: 2015 ident: 10.1016/j.mtcomm.2023.107276_bib16 article-title: Review and perspectives: shape memory alloy composite systems publication-title: Acta Mech. doi: 10.1007/s00707-015-1433-0 – volume: 55 start-page: 311 year: 2006 ident: 10.1016/j.mtcomm.2023.107276_bib30 article-title: Inherent internal friction of B2 → R and R → B19′ martensitic transformations in equiatomic TiNi shape memory alloy publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2006.04.044 – volume: 26 start-page: 4970 year: 2017 ident: 10.1016/j.mtcomm.2023.107276_bib110 article-title: High Damping of Lightweight TiNi-Ti2Ni Shape Memory Composites for Wide Temperature Range Usage publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-017-2947-5 – volume: 18 start-page: 1 year: 2018 ident: 10.1016/j.mtcomm.2023.107276_bib132 article-title: Feasibility analysis of SMA-based damping devices for use in seismic isolation of low-rise frame buildings publication-title: Int J. Struct. Stab. Dyn. doi: 10.1142/S0219455418500876 – volume: 262 year: 2020 ident: 10.1016/j.mtcomm.2023.107276_bib92 article-title: Internal friction in Ti29.7Ni50.3Hf20 alloy with high temperature shape memory effect publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.127025 – volume: 156 start-page: 154 year: 2004 ident: 10.1016/j.mtcomm.2023.107276_bib55 article-title: Resonant ultrasound spectroscopy: Theory and application publication-title: Geophys J. Int. doi: 10.1111/j.1365-246X.2004.02093.x – volume: 90 start-page: 213 year: 2015 ident: 10.1016/j.mtcomm.2023.107276_bib61 article-title: On the effect of alloy composition on martensite start temperatures and latent heats in Ni-Ti-based shape memory alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.02.029 – start-page: 1 year: 2013 ident: 10.1016/j.mtcomm.2023.107276_bib44 article-title: Standard test method for temperature calibration of dynamic mechanical analyzers publication-title: ASTM Int – ident: 10.1016/j.mtcomm.2023.107276_bib5 – volume: 65 start-page: 1073 year: 2011 ident: 10.1016/j.mtcomm.2023.107276_bib86 article-title: Effect of graphite addition on martensitic transformation and damping behavior of NiTi shape memory alloy publication-title: Mater. Lett. doi: 10.1016/j.matlet.2011.01.027 – ident: 10.1016/j.mtcomm.2023.107276_bib42 – volume: 166 start-page: 44 year: 2019 ident: 10.1016/j.mtcomm.2023.107276_bib72 article-title: Internal friction of the R-phase in single crystalline Ti-50.8Ni (at%) alloy containing controlled precipitate of Ti 3 Ni 4 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2019.03.004 – ident: 10.1016/j.mtcomm.2023.107276_bib88 doi: 10.1016/j.cap.2018.03.025 – volume: 50 start-page: 629 year: 1997 ident: 10.1016/j.mtcomm.2023.107276_bib12 article-title: Review of mechanics of shape memory alloy structures publication-title: Appl. Mech. Rev. doi: 10.1115/1.3101674 – year: 2004 ident: 10.1016/j.mtcomm.2023.107276_bib59 article-title: Theory of martensitic microstructure and the shape-memory effect. Unpubl Notes – ident: 10.1016/j.mtcomm.2023.107276_bib136 doi: 10.1115/IMECE2006-15029 – volume: 905 year: 2022 ident: 10.1016/j.mtcomm.2023.107276_bib114 article-title: High damping capacity of AlSi10Mg-NiTi lattice structure interpenetrating phase composites prepared by additive manufacturing and pressureless infiltration publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2022.164075 – volume: 236 year: 2021 ident: 10.1016/j.mtcomm.2023.107276_bib124 article-title: Tests of a novel re-centering damper with SMA rods and friction wedges publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2021.112125 – volume: Vol. 149 year: 2016 ident: 10.1016/j.mtcomm.2023.107276_bib17 article-title: Shape memory alloys: a state of art review – volume: 23 start-page: 2029 year: 2013 ident: 10.1016/j.mtcomm.2023.107276_bib105 article-title: Phase transformation and damping behavior of lightweight porous TiNiCu alloys fabricated by powder metallurgy process publication-title: Trans. Nonferrous Met Soc. China doi: 10.1016/S1003-6326(13)62692-8 – start-page: 1 year: 2008 ident: 10.1016/j.mtcomm.2023.107276_bib47 article-title: Standard practice for plastics: dynamic mechanical properties: determination and publication-title: Annu B ASTM Stand – volume: 30 issue: 9 year: 2021 ident: 10.1016/j.mtcomm.2023.107276_bib116 article-title: Damping properties of innovative NiTi elements: Development of proof of concept and demonstrators publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ac13b2 – start-page: 1 year: 2012 ident: 10.1016/j.mtcomm.2023.107276_bib139 article-title: Design for the damping of a railway collector based on the application of shape memory alloys publication-title: Smart Mater. Res. – volume: 4 year: 2022 ident: 10.1016/j.mtcomm.2023.107276_bib39 article-title: Dynamic mechanical behavior of mono/synthetic-natural fiber composites-a review publication-title: Eng. Res. Express doi: 10.1088/2631-8695/ac9bcd – volume: 10 start-page: 1125 issue: 12 year: 1976 ident: 10.1016/j.mtcomm.2023.107276_bib66 article-title: Factors affecting the internal friction peak due to thermoelastic martensitic transformation publication-title: Scr. Metall. doi: 10.1016/0036-9748(76)90038-7 – ident: 10.1016/j.mtcomm.2023.107276_bib135 doi: 10.1117/12.659664 – volume: 370 start-page: 34 year: 2004 ident: 10.1016/j.mtcomm.2023.107276_bib56 article-title: Internal friction studies by resonant ultrasound spectroscopy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2003.08.070 – volume: 12 start-page: 13 year: 2010 ident: 10.1016/j.mtcomm.2023.107276_bib52 article-title: Nanoindentation of a pseudoelastic NiTiFe shape memory alloy publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200900266 – volume: 96 start-page: 108 year: 2019 ident: 10.1016/j.mtcomm.2023.107276_bib101 article-title: Processing and damping capacity of NiTi foams with laminated pore architecture publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2019.04.036 – volume: 891 start-page: 447 year: 2017 ident: 10.1016/j.mtcomm.2023.107276_bib63 article-title: Effect of alloying elements on the reactive sintering behaviour of NiTi alloy publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.891.447 – volume: 7 start-page: 1887 year: 2007 ident: 10.1016/j.mtcomm.2023.107276_bib121 article-title: The investigation of a shape memory alloy micro-damper for MEMS applications publication-title: Sensors doi: 10.3390/s7091887 – volume: 56 start-page: 1078 year: 2014 ident: 10.1016/j.mtcomm.2023.107276_bib11 article-title: A review of shape memory alloy research, applications and opportunities publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.11.084 – start-page: 85 year: 2018 ident: 10.1016/j.mtcomm.2023.107276_bib37 article-title: Dynamic mechanical analysis: basic theory & applications training publication-title: TA Instrum. – volume: 6 start-page: C8 issue: C8 year: 1996 ident: 10.1016/j.mtcomm.2023.107276_bib8 article-title: Damping properties of shape memory alloys during phase transformation publication-title: Le. J. De. Phys. IV – start-page: 1565 year: 2019 ident: 10.1016/j.mtcomm.2023.107276_bib27 article-title: Damping characteristics of shape memory alloys on their inherent and intrinsic internal friction publication-title: Handb. Mech. Mater. doi: 10.1007/978-981-10-6884-3_31 – volume: 7 start-page: 235 year: 2021 ident: 10.1016/j.mtcomm.2023.107276_bib28 article-title: Unraveling Frequency Effects in Shape Memory Alloys: NiTi and FeMnAlNi publication-title: Shape Mem. Superelasticity doi: 10.1007/s40830-021-00335-0 – start-page: 9 year: 2007 ident: 10.1016/j.mtcomm.2023.107276_bib43 article-title: Standard test method for plastics: dynamic mechanical properties: in flexure (Three-Point Bending) publication-title: ASTM Int – volume: 586 start-page: 69 year: 2014 ident: 10.1016/j.mtcomm.2023.107276_bib95 article-title: Inherent internal friction of Ti50Ni50-xCux shape memory alloys measured under isothermal conditions publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2013.10.026 – volume: 175 issue: 1 year: 1991 ident: 10.1016/j.mtcomm.2023.107276_bib32 article-title: Theory and application of dynamic mechanical thermal analysis publication-title: Thermochim. Acta doi: 10.1016/0040-6031(91)80240-J – volume: 95 start-page: 125 year: 2013 ident: 10.1016/j.mtcomm.2023.107276_bib96 article-title: Microstructure and damping characteristics of Ti50Ni 24.9Cu25Y0.1 shape memory alloy publication-title: Mater. Lett. doi: 10.1016/j.matlet.2012.12.086 – year: 2012 ident: 10.1016/j.mtcomm.2023.107276_bib34 article-title: Dynamic mechanical and tensile properties – volume: 67 start-page: 19 year: 2015 ident: 10.1016/j.mtcomm.2023.107276_bib119 article-title: Performance evaluation of spaceborne cryocooler micro-vibration isolation system employing pseudoelastic SMA mesh washer publication-title: Cryog. (Guildf. ) – volume: 43 start-page: 2939 year: 2012 ident: 10.1016/j.mtcomm.2023.107276_bib76 article-title: Cast-replicated NiTiCu foams with superelastic properties publication-title: Met. Mater. Trans. A Phys. Met. Mater. Sci. doi: 10.1007/s11661-011-1060-x – volume: 355 start-page: 52 year: 2003 ident: 10.1016/j.mtcomm.2023.107276_bib82 article-title: Extraordinary high damping of hydrogen-doped NiTi and NiTiCu shape memory alloys publication-title: J. Alloy. Compd. doi: 10.1016/S0925-8388(03)00267-6 – volume: 11 start-page: 28043 year: 2019 ident: 10.1016/j.mtcomm.2023.107276_bib112 article-title: Ti3Sn-NiTi Syntactic Foams with Extremely High Specific Strength and Damping Capacity Fabricated by Pressure Melt Infiltration publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b08145 – ident: 10.1016/j.mtcomm.2023.107276_bib48 – volume: 119 start-page: 1475 year: 2015 ident: 10.1016/j.mtcomm.2023.107276_bib130 article-title: Shape memory alloys as an effective tool to damp oscillations: Study of the fundamental parameters required to guarantee technological applications publication-title: J. Therm. Anal. Calor. doi: 10.1007/s10973-015-4405-7 – volume: 28 start-page: 2129 year: 2017 ident: 10.1016/j.mtcomm.2023.107276_bib123 article-title: Design, analysis, and manufacture of a tension–compression self-centering damper based on energy dissipation of pre-stretched superelastic shape memory alloy wires publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X16682839 – volume: 63 start-page: 460 year: 2014 ident: 10.1016/j.mtcomm.2023.107276_bib107 article-title: High damping NiTi/Ti3Sn in situ composite with transformation-mediated plasticity publication-title: Mater. Des. doi: 10.1016/j.matdes.2014.05.062 – volume: 293 start-page: 1 year: 2021 ident: 10.1016/j.mtcomm.2023.107276_bib125 article-title: Research on different applications of SMA in seismic resistance of building structures publication-title: E3S Web Conf. doi: 10.1051/e3sconf/202129302001 – ident: 10.1016/j.mtcomm.2023.107276_bib134 – volume: 232 start-page: 250 year: 2018 ident: 10.1016/j.mtcomm.2023.107276_bib19 article-title: Fabrication of NiTi alloy: a review publication-title: Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. – volume: 583 start-page: 85 year: 2008 ident: 10.1016/j.mtcomm.2023.107276_bib26 article-title: Damping properties of SMA publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.583.85 – volume: 394 start-page: 78 year: 2005 ident: 10.1016/j.mtcomm.2023.107276_bib77 article-title: Damping behavior of TiNi-based shape memory alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2004.11.030 – volume: 2 start-page: 101 year: 2011 ident: 10.1016/j.mtcomm.2023.107276_bib13 article-title: Review on the temperature memory effect in shape memory alloys publication-title: Int. J. Smart Nano Mater. doi: 10.1080/19475411.2011.592866 – volume: 633 start-page: 71 year: 2015 ident: 10.1016/j.mtcomm.2023.107276_bib54 article-title: Microstructure dependent elastic modulus variation in NiTi shape memory alloy publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2015.01.301 – start-page: 275 year: 2018 ident: 10.1016/j.mtcomm.2023.107276_bib80 article-title: Porous Ni – Ti – Nb shape memory alloys with tunable damping performance controlled by martensitic transformation – ident: 10.1016/j.mtcomm.2023.107276_bib127 – volume: 924 year: 2022 ident: 10.1016/j.mtcomm.2023.107276_bib33 article-title: Effect of Ni and Mn additions on the damping characteristics of Cu-Al-Fe based high temperature shape memory alloys publication-title: J. Alloy. Compd. – volume: 372 start-page: 116 year: 2004 ident: 10.1016/j.mtcomm.2023.107276_bib84 article-title: Stability and hydrogen-induced internal friction of Ti-rich multicomponent glassy alloys publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2003.09.135 – volume: 374 start-page: 292 year: 2004 ident: 10.1016/j.mtcomm.2023.107276_bib70 article-title: Crystallography of the B2 → R → B19′ phase transformations in NiTi publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2004.03.013 – volume: 924 year: 2022 ident: 10.1016/j.mtcomm.2023.107276_bib38 article-title: Comparison of internal friction measurements on Ni-Ti reinforced smart composites prepared by additive manufacturing publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2022.166027 – volume: 59 start-page: 987 year: 2008 ident: 10.1016/j.mtcomm.2023.107276_bib65 article-title: Effect of cooling rate on transformation temperature measurements of Ti50Ni50 alloy by differential scanning calorimetry and dynamic mechanical analysis publication-title: Mater. Charact. doi: 10.1016/j.matchar.2007.08.014 – volume: 144 start-page: 1 year: 2018 ident: 10.1016/j.mtcomm.2023.107276_bib131 article-title: Application of an innovative SMA ring spring system for self-centering steel frames subject to seismic conditions publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0002127 – volume: 816 start-page: 1 year: 2020 ident: 10.1016/j.mtcomm.2023.107276_bib113 article-title: Enhanced internal friction and specific strength of porous TiNi shape memory alloy composite by the synergistic effect of pore and Ti2Ni publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.152578 – volume: 51 start-page: 540 year: 2021 ident: 10.1016/j.mtcomm.2023.107276_bib40 article-title: Dynamic mechanical characteristics of jute fiber and 304 wire mesh reinforced epoxy composite publication-title: J. Ind. Text. doi: 10.1177/1528083719883057 – start-page: 1 year: 2018 ident: 10.1016/j.mtcomm.2023.107276_bib35 article-title: Discover the world’s finest dynamic mechanical analyzer publication-title: TA Instrum. Appl. Briefs – start-page: 9 year: 2007 ident: 10.1016/j.mtcomm.2023.107276_bib45 article-title: Standard test method for plastics: dynamic mechanical properties: in flexure (Three-Point Bending) publication-title: ASTM Int – volume: 7 start-page: 14317 year: 2022 ident: 10.1016/j.mtcomm.2023.107276_bib49 article-title: Using nanoindentation to characterize the mechanical and creep properties of shale: load and loading strain rate effects publication-title: ACS Omega doi: 10.1021/acsomega.2c01190 – volume: 237 start-page: 1137 issue: 5 year: 2023 ident: 10.1016/j.mtcomm.2023.107276_bib62 article-title: The effect of copper on phase transformation, microstructure and mechanical characterization of Ni50-xTi50Cux shape-memory alloy publication-title: Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. – volume: 57 start-page: 351 year: 2016 ident: 10.1016/j.mtcomm.2023.107276_bib94 article-title: Damping characteristics of the inherent and intrinsic internal friction of Ti50Ni50-xFex (x = 2, 3, and 4) shape memory alloys publication-title: Mater. Trans. doi: 10.2320/matertrans.M2015425 – volume: 33 start-page: 5552 year: 2020 ident: 10.1016/j.mtcomm.2023.107276_bib20 article-title: A brief review of shape memory effects and fabrication processes of NiTi shape memory alloys publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.03.539 – ident: 10.1016/j.mtcomm.2023.107276_bib133 – volume: 1 start-page: 1 issue: 4 year: 1953 ident: 10.1016/j.mtcomm.2023.107276_bib23 article-title: Internal friction in metals publication-title: Prog. Met. Phys. doi: 10.1016/0502-8205(53)90014-8 – volume: 150 start-page: 1 year: 2020 ident: 10.1016/j.mtcomm.2023.107276_bib9 article-title: Loading frequency and temperature-dependent damping capacity of NiTiHfPd shape memory alloy publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2020.103565 – volume: 370 start-page: 435 year: 2004 ident: 10.1016/j.mtcomm.2023.107276_bib57 article-title: High performance very low frequency forced pendulum publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2003.07.023 – volume: 183 start-page: 102 year: 2020 ident: 10.1016/j.mtcomm.2023.107276_bib73 article-title: Ultrahigh damping capacity achieved by modulating R phase in Ti49.2Ni50.8 shape memory alloy wires publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2020.03.017 – volume: 50 start-page: 1040 year: 2021 ident: 10.1016/j.mtcomm.2023.107276_bib41 article-title: Viscoelastic behavior of aloevera/hemp/flax sandwich laminate composite reinforced with BaSO4: Dynamic mechanical analysis publication-title: J. Ind. Text. doi: 10.1177/1528083719852312 – volume: 355 start-page: 65 year: 2003 ident: 10.1016/j.mtcomm.2023.107276_bib10 article-title: Damping behavior during martensitic transformation in shape memory alloys publication-title: J. Alloy. Compd. doi: 10.1016/S0925-8388(03)00277-9 – volume: 109 start-page: 174 year: 2019 ident: 10.1016/j.mtcomm.2023.107276_bib93 article-title: High temperature internal friction in Ni 50.3 Ti 29.7 Zr 20 shape memory alloy publication-title: Intermetallics doi: 10.1016/j.intermet.2019.04.006 – start-page: 251 year: 2006 ident: 10.1016/j.mtcomm.2023.107276_bib120 article-title: Fabrication of Active Thin Films for Vibration Damping in Mems Devices for the Next Generation Army Munition Systems publication-title: Transform. Sci. Technol. Curr. Future Force.: ( CD-ROM) doi: 10.1142/9789812772572_0032 – volume: 193 start-page: 30 year: 2013 ident: 10.1016/j.mtcomm.2023.107276_bib51 article-title: NiTi/Pb (Zr0. 52Ti0. 48) O3 thin film heterostructures for vibration damping in MEMS publication-title: Sens. Actuators A. Phys. doi: 10.1016/j.sna.2012.12.005 – volume: 36 start-page: 291 year: 1988 ident: 10.1016/j.mtcomm.2023.107276_bib71 article-title: Shape memory behaviour associated with the R and martensitic transformations in a NiTi alloy publication-title: Acta Met. doi: 10.1016/0001-6160(88)90006-5 – start-page: 125 year: 2011 ident: 10.1016/j.mtcomm.2023.107276_bib137 article-title: The use of shape memory alloys (SMAs) in aerospace engineering, Shape Memory and Superelastic Alloys publication-title: Woodhead Publishing – volume: 550 start-page: 297 year: 2013 ident: 10.1016/j.mtcomm.2023.107276_bib100 article-title: High damping capacity in porous NiTi alloy with bimodal pore architecture publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2012.09.145 – ident: 10.1016/j.mtcomm.2023.107276_bib2 doi: 10.1007/BF01151671 – volume: 114 start-page: 776 year: 2015 ident: 10.1016/j.mtcomm.2023.107276_bib15 article-title: Shape memory alloys behaviour: a review publication-title: Procedia Eng. doi: 10.1016/j.proeng.2015.08.025 – volume: 4 start-page: 11251 year: 2017 ident: 10.1016/j.mtcomm.2023.107276_bib64 article-title: The Influence of Alloying Constituent Fe on Mechanical Properties of NiTi Based Shape Memory Alloys publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2017.09.047 – year: 1997 ident: 10.1016/j.mtcomm.2023.107276_bib31 – volume: 158 start-page: 1 year: 2015 ident: 10.1016/j.mtcomm.2023.107276_bib109 article-title: Development of a high-damping NiTi shape-memory-alloy-based composite publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.05.143 – volume: 855 year: 2021 ident: 10.1016/j.mtcomm.2023.107276_bib104 article-title: Tailoring the damping and mechanical properties of porous NiTi by a phase leaching process publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2020.157471 – volume: 128 start-page: 294 year: 2006 ident: 10.1016/j.mtcomm.2023.107276_bib128 article-title: Seismic vibration control using superelastic shape memory alloys publication-title: J. Eng. Mater. Technol. doi: 10.1115/1.2203109 – volume: 11 start-page: 1 year: 2021 ident: 10.1016/j.mtcomm.2023.107276_bib102 article-title: Net-shape NiTi shape memory alloy by spark plasma sintering method publication-title: Appl. Sci. doi: 10.3390/app11041802 – volume: 84 start-page: 965 year: 2022 ident: 10.1016/j.mtcomm.2023.107276_bib53 article-title: Excellent damping properties and their correlations with the microstructures in the NiTi alloys fabricated by laser-directed energy deposition publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2022.10.047 – volume: 679 start-page: 260 year: 2016 ident: 10.1016/j.mtcomm.2023.107276_bib68 article-title: The effect of tensile deformation on the damping capacity of NiTi shape memory alloy publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2016.04.102 – volume: 643 start-page: 37 year: 2010 ident: 10.1016/j.mtcomm.2023.107276_bib75 article-title: Dynamic properties of NiTi shape memory alloy and classic structural materials: a comparative analysis publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.643.37 – volume: 370 start-page: 504 year: 2004 ident: 10.1016/j.mtcomm.2023.107276_bib7 article-title: Internal friction in metallic foams and some related cellular structures publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2003.08.083 – volume: 394–395 start-page: 69 year: 2002 ident: 10.1016/j.mtcomm.2023.107276_bib25 article-title: Damping applications of shape-memory alloys publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.394-395.69 – volume: 7 start-page: 211 year: 1996 ident: 10.1016/j.mtcomm.2023.107276_bib117 article-title: Performance of a smart vibration isolator for precision spacecraft instruments publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X9600700213 – volume: 15 start-page: 5073 issue: 14 year: 2022 ident: 10.1016/j.mtcomm.2023.107276_bib74 article-title: Structure, martensitic transformation, and damping properties of functionally graded NiTi shape memory alloys fabricated by laser powder bed fusion publication-title: Materials doi: 10.3390/ma15145073 – start-page: 46 year: 2000 ident: 10.1016/j.mtcomm.2023.107276_bib4 article-title: The high damping capacity of shape memory alloys publication-title: Shape Mem. Implants doi: 10.1007/978-3-642-59768-8_4 – volume: 54 start-page: 5221 year: 2006 ident: 10.1016/j.mtcomm.2023.107276_bib83 article-title: Effects of frequency, composition, hydrogen and twin boundary density on the internal friction of Ti50Ni50-xCux shape memory alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2006.06.018 – volume: 7 start-page: 175 issue: 1 year: 1962 ident: 10.1016/j.mtcomm.2023.107276_bib22 article-title: The internal friction of metals publication-title: Metall. Rev. doi: 10.1179/095066062790207821 – volume: 956 year: 2023 ident: 10.1016/j.mtcomm.2023.107276_bib29 article-title: Energy damping in shape memory alloys: A review publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2023.170286 – volume: 217 start-page: 206 year: 2018 ident: 10.1016/j.mtcomm.2023.107276_bib111 article-title: Fabrication and damping behavior of a novel Mg/TiNiCu composite publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.01.046 – volume: 712 start-page: 281 year: 2018 ident: 10.1016/j.mtcomm.2023.107276_bib87 article-title: Identifying the effects of heat treatment temperatures on the Ti50Ni45Cu5 alloy using dynamic mechanical analysis combined with microstructural analysis publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.11.104 – volume: 8 year: 2007 ident: 10.1016/j.mtcomm.2023.107276_bib3 – volume: 146 start-page: 246 year: 2018 ident: 10.1016/j.mtcomm.2023.107276_bib79 article-title: Selective laser melting produced layer-structured NiTi shape memory alloys with high damping properties and Elinvar effect publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.11.047 – volume: 59 start-page: 537 issue: 2 year: 2011 ident: 10.1016/j.mtcomm.2023.107276_bib115 article-title: Size effects in shape memory alloy microwires publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.09.057 – volume: 155 start-page: 358 year: 2018 ident: 10.1016/j.mtcomm.2023.107276_bib98 article-title: Study of martensitic transformation in TiNiCuNb shape memory alloys using dynamic mechanical analysis publication-title: Vacuum doi: 10.1016/j.vacuum.2018.06.040 – volume: 50 start-page: 511 year: 2005 ident: 10.1016/j.mtcomm.2023.107276_bib58 article-title: Physical metallurgy of Ti-Ni-based shape memory alloys publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2004.10.001 – volume: 1 start-page: 231 year: 2015 ident: 10.1016/j.mtcomm.2023.107276_bib69 article-title: Fundamental development on utilizing the R-phase transformation in NiTi Shape Memory Alloys publication-title: Shape Mem. Superelasticity doi: 10.1007/s40830-015-0007-2 – volume: 07 start-page: 1 year: 1981 ident: 10.1016/j.mtcomm.2023.107276_bib46 article-title: Standard terminology for: plastics: dynamic mechanical properties 1 publication-title: Current – volume: 4 start-page: 1 year: 1969 ident: 10.1016/j.mtcomm.2023.107276_bib1 article-title: High damping metals for engineering applications publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(69)90033-0 – volume: 633 start-page: 169 year: 2015 ident: 10.1016/j.mtcomm.2023.107276_bib21 article-title: Dynamic mechanical response of a Ni45.7Ti29.3Hf20Pd5 alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.03.023 – ident: 10.1016/j.mtcomm.2023.107276_bib91 doi: 10.2320/matertrans.M2014304 – volume: 41 issue: 7 year: 2008 ident: 10.1016/j.mtcomm.2023.107276_bib50 article-title: Nanoindentation and the dynamic characterization of viscoelastic solids publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/41/7/074021 – volume: 6929 start-page: 270 year: 2008 ident: 10.1016/j.mtcomm.2023.107276_bib89 article-title: Damping of high-temperature shape memory alloys publication-title: Behav. Mech. Multifunct. Compos. Mater. – volume: 7 start-page: 4574 year: 2014 ident: 10.1016/j.mtcomm.2023.107276_bib90 article-title: Damping characteristics of Ti50Ni50-xCux (x = 0–30 at%) shape memory alloys at a low frequency publication-title: Materials doi: 10.3390/ma7064574 – volume: 31 start-page: 485 year: 2021 ident: 10.1016/j.mtcomm.2023.107276_bib103 article-title: Preparation and characterization of porous NiTi alloys synthesized by microwave sintering using Mg space holder publication-title: Trans. Nonferrous Met Soc. China doi: 10.1016/S1003-6326(21)65511-5 – volume: 22 start-page: 22 year: 2019 ident: 10.1016/j.mtcomm.2023.107276_bib122 article-title: Structural vibration mitigation – a concise review of the capabilities and applications of Cu and Fe based shape memory alloys in civil structures publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2018.11.014 – volume: 8 start-page: 1 year: 2023 ident: 10.1016/j.mtcomm.2023.107276_bib126 article-title: Emerging superelastic SMA core damping elements for seismic application. Front publication-title: Built Environ. – volume: 623 start-page: 1 year: 2015 ident: 10.1016/j.mtcomm.2023.107276_bib67 article-title: High damping capacity in a wide temperature range of a compositionally graded TiNi alloy prepared by electroplating and diffusion annealing publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2014.11.034 – volume: 687 start-page: 485 year: 2011 ident: 10.1016/j.mtcomm.2023.107276_bib6 article-title: High damping capacity of a binary TiNi shape memory alloy publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.687.485 – volume: 2 start-page: 93 year: 2008 ident: 10.1016/j.mtcomm.2023.107276_bib129 article-title: Shape memory alloy devices for the structural improvement of masonry heritage structures publication-title: Int. J. Arch. Herit. doi: 10.1080/15583050701636258 – ident: 10.1016/j.mtcomm.2023.107276_bib138 |
SSID | ssj0001850494 |
Score | 2.3670723 |
SecondaryResourceType | review_article |
Snippet | Shape memory alloys (SMA) fabricated from nickel-titanium (NiTi) have garnered significant attention due to their intrinsic properties, including the shape... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107276 |
SubjectTerms | DMA Internal friction Isothermal condition Nano Indenter NiTi Pseudoelasticity Smart composite |
Title | NiTi shape memory alloy: Unraveling the role of internal friction in passive damping – A review |
URI | https://dx.doi.org/10.1016/j.mtcomm.2023.107276 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke_Eiior1xRy8hua1eXgrxVIt9qAt9hZ2NxuMtDVoPPTmf_Af-kucySY-QBQ8hSwZEmaXmS-7883H2KnmMc9EaltCUVNtWwsLQb1jpSIQtiBZlEoO6GoSjGb-5ZzPW2zQcGGorLKO_SamV9G6HunV3uwVed67cRE7-LFLJ0W4jEL8b--4XhzwNuv0L8ajyedWS8SpC0olM8ddi2waEl1V6bUs8R3ESnc9HMKEHvycpL4knuEW26wRI_TNR22zll7tMDHJpzk83YlCw5KKZddAJ-jrM5itSFCISOaA2A6oehAeMsjNzt8CSBeIJgNHoEDkjNEOUrEk2hS8vbxCHwybZZfNhufTwciq1RIshbC_tKQdCCk9FWLs890s9CPpZ44K_dSOhOJahMRbctPYiRBSqczmMuOSC41Jn5roeHusvXpY6X0GmgtVYTeexr7SMooUwgYhuacczaOsy7zGPYmqW4mTosUiaWrG7hPj1IScmhindpn1YVWYVhp_PB82nk--LYkEo_2vlgf_tjxkG3Rn6lWOWLt8fNbHiDpKeVKvKrqOr2_H79DS1_g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWq9gAXBAJEWX3gGjWL3STcqooqpW0utFJvke04IoimEYRDb_wDf8iXMJOFRUIgcXUySjS2Zp7tefMIudTc54mITUMobKptamEAqLeMWPSFKVAWpZQDmoX9YMFulnzZIsOGC4NllXXsr2J6Ga3rkV7tzV6epr1bG7AD8228KYJl5MK-vcM47PbapDMYT4Lw86jF49gFpZSZ47aBNg2Jrqz0WhXwDWSl2w4MQULv_5ykviSe0S7ZqREjHVQ_tUdaOtsnIkznKX26E7mmKyyW3VC8Qd9c0UWGgkJIMqeA7ShWD9J1QtPq5O-Boi4QTgaM0ByQM0Q7GosV0qbo28srHdCKzXJAFqPr-TAwarUEQwHsLwxp9oWUjnIh9jE7cZknWWIpl8WmJxTXwkXekh37lgeQSiUmlwmXXGhI-thExzkk7Wyd6SNCNReqxG489pnS0vMUwAYhuaMszb2kS5zGPZGqW4mjosVD1NSM3UeVUyN0alQ5tUuMD6u8aqXxx_tu4_no25KIINr_ann8b8sLshXMZ9NoOg4nJ2Qbn1S1K6ekXTw-6zNAIIU8r1fYO0xP2UI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NiTi+shape+memory+alloy%3A+Unraveling+the+role+of+internal+friction+in+passive+damping+%E2%80%93+A+review&rft.jtitle=Materials+today+communications&rft.au=Radhamani%2C+Rajeshkannan&rft.au=Balakrishnan%2C+Muralidharan&rft.date=2023-12-01&rft.pub=Elsevier+Ltd&rft.issn=2352-4928&rft.eissn=2352-4928&rft.volume=37&rft_id=info:doi/10.1016%2Fj.mtcomm.2023.107276&rft.externalDocID=S2352492823019670 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4928&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4928&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4928&client=summon |