Attention assessment based on multi‐view classroom behaviour recognition
In recent years, artificial intelligence has been applied in many fields, and education has attracted more and more attention. More and more behaviour detection and recognition algorithms are applied in the field of education. Students' attention in class is the key to improving the quality of...
Saved in:
Published in | IET computer vision Vol. 19; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, artificial intelligence has been applied in many fields, and education has attracted more and more attention. More and more behaviour detection and recognition algorithms are applied in the field of education. Students' attention in class is the key to improving the quality of teaching, and classroom behavior is a direct manifestation of students' attention. In view of the problem that the accuracy of students' classroom behavior recognition is generally low, we apply deep learning to multi‐view behavior detection, which can detect and recognize behaviors from different perspectives, to evaluate students' classroom attention. First, an improved detection model based on YOLOv5 is proposed, which improves the CBL module throughout the entire network to optimize the model and uses SIoU as the loss function to improve the convergence speed of the prediction box. Second, a quantitative evaluation standard for students' classroom attention is established and then training and verification are conducted by collecting multi‐view classroom datasets. Finally, the environment variation in the training model phase is increased to make the model have better generalization ability. Experiments demonstrate that our method can effectively identify and detect students' behaviours in the classroom from different angles, and it has good robustness and feature extraction capabilities. |
---|---|
AbstractList | In recent years, artificial intelligence has been applied in many fields, and education has attracted more and more attention. More and more behaviour detection and recognition algorithms are applied in the field of education. Students' attention in class is the key to improving the quality of teaching, and classroom behavior is a direct manifestation of students' attention. In view of the problem that the accuracy of students' classroom behavior recognition is generally low, we apply deep learning to multi‐view behavior detection, which can detect and recognize behaviors from different perspectives, to evaluate students' classroom attention. First, an improved detection model based on YOLOv5 is proposed, which improves the CBL module throughout the entire network to optimize the model and uses SIoU as the loss function to improve the convergence speed of the prediction box. Second, a quantitative evaluation standard for students' classroom attention is established and then training and verification are conducted by collecting multi‐view classroom datasets. Finally, the environment variation in the training model phase is increased to make the model have better generalization ability. Experiments demonstrate that our method can effectively identify and detect students' behaviours in the classroom from different angles, and it has good robustness and feature extraction capabilities. |
Author | Zheng, ZhouJie Liang, GuoJun Yin, HaiChang Luo, HuiBin |
Author_xml | – sequence: 1 givenname: ZhouJie surname: Zheng fullname: Zheng, ZhouJie organization: Zhuhai Technician College Zhuhai China – sequence: 2 givenname: GuoJun orcidid: 0000-0001-7845-1408 surname: Liang fullname: Liang, GuoJun organization: Zhuhai Technician College Zhuhai China, Faculty of Information Technology Macau University of Science and Technology Macau China – sequence: 3 givenname: HuiBin surname: Luo fullname: Luo, HuiBin organization: Faculty of Information Technology Macau University of Science and Technology Macau China – sequence: 4 givenname: HaiChang surname: Yin fullname: Yin, HaiChang organization: Faculty of Information Technology Macau University of Science and Technology Macau China |
BookMark | eNptkM1KxDAUhYOM4MzoxifIWuiYn7ZJlsOgjjLgRtflJk010jaSZCrufASf0SexVXEhru69h-8eDmeBZr3vLUKnlKwoydW5GRxbUUbz8gDNqShopsqczH53zo7QIsYnQopSqXyObtYp2T4532OI0cbYjRfWEG2NR63bt8l9vL0Pzr5g045I8L7D2j7C4Pw-4GCNf-jdZHCMDhtooz35mUt0f3lxt9lmu9ur6816lxlOypSBkVKCZLKQOWE1rUsBVnCltAZmZFHXmgIjwhBaq4ZzDdwqIzSROWeCcr5EZ9--Jvgxj22q5-A6CK8VJdXUQjW1UH21MMLkD2xcgiluCuDa_14-AbTMZF0 |
CitedBy_id | crossref_primary_10_3390_systems11070372 crossref_primary_10_3390_s23115205 crossref_primary_10_3390_app131810426 crossref_primary_10_1007_s11036_023_02251_2 crossref_primary_10_1016_j_procs_2024_03_206 crossref_primary_10_3390_fishes8040186 crossref_primary_10_1007_s10639_025_13330_0 crossref_primary_10_3390_s25020373 crossref_primary_10_4018_IJGCMS_371423 crossref_primary_10_3390_app14010230 |
Cites_doi | 10.1109/tgrs.2022.3170493 10.1109/CVPR.2016.91 10.1109/CVPR.2005.177 10.1109/CSAIEE54046.2021.9543310 10.3390/s22165932 10.1109/ICCV.2015.169 10.1109/CCAI55564.2022.9807756 10.1109/tpami.2009.167 10.1049/iet‐ipr.2018.5905 10.1016/j.chb.2018.08.016 10.1007/s11042‐020‐09242‐5 10.1109/TCDS.2022.3182650 10.1016/j.compag.2019.01.012 10.1109/tcsvt.2020.3043026 10.1016/j.patcog.2021.108498 10.1109/CVPR.2014.81 10.1016/j.patcog.2021.108102 10.3390/s19204588 10.3390/app12136790 10.1007/978-3-319-46448-0_2 10.1111/j.1553‐2712.2011.01270.x 10.1109/ICCV.2017.324 10.3390/s21093263 10.1007/978-3-030-01264-9_45 10.1007/978-3-319-10602-1_48 10.1109/CVPR.2009.5206848 10.1021/ed100409p 10.1016/j.patcog.2022.108873 10.1007/s11263‐009‐0275‐4 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1049/cvi2.12146 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1751-9640 |
ExternalDocumentID | 10_1049_cvi2_12146 |
GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 5GY 6IK 8FE 8FG 8VB AAHJG AAJGR AAMMB AAYXX ABJCF ABQXS ABUWG ACCMX ACESK ACGFO ACGFS ACIWK ACXQS ADEYR AEFGJ AEGXH AENEX AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU AZQEC BENPR BGLVJ BPHCQ CCPQU CITATION CS3 DU5 DWQXO EBS EJD GNUQQ GROUPED_DOAJ HCIFZ HZ~ IAO IDLOA IPLJI ITC J9A K1G K6V K7- L6V LAI M43 M7S MCNEO MS~ O9- OK1 P62 PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS PUEGO QWB RNS RUI S0W UNMZH WIN ZL0 ~ZZ |
ID | FETCH-LOGICAL-c306t-ac888a82858402d1d67ae7399bba2c85ddb1a207c01d9f33ba3e9c7b084327133 |
ISSN | 1751-9632 |
IngestDate | Wed Aug 27 16:40:33 EDT 2025 Thu Apr 24 23:09:34 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c306t-ac888a82858402d1d67ae7399bba2c85ddb1a207c01d9f33ba3e9c7b084327133 |
ORCID | 0000-0001-7845-1408 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdf/10.1049/cvi2.12146 |
ParticipantIDs | crossref_primary_10_1049_cvi2_12146 crossref_citationtrail_10_1049_cvi2_12146 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IET computer vision |
PublicationYear | 2025 |
References | e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Ren S. (e_1_2_9_16_1) 2015; 28 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_2_1 Rosegard E. (e_1_2_9_4_1) 2013 Gomaa A. (e_1_2_9_24_1) 2022 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – ident: e_1_2_9_11_1 doi: 10.1109/tgrs.2022.3170493 – ident: e_1_2_9_18_1 doi: 10.1109/CVPR.2016.91 – ident: e_1_2_9_13_1 doi: 10.1109/CVPR.2005.177 – ident: e_1_2_9_26_1 doi: 10.1109/CSAIEE54046.2021.9543310 – start-page: 1 year: 2022 ident: e_1_2_9_24_1 article-title: Faster CNN‐Based Vehicle Detection and Counting Strategy for Fixed Camera scenes publication-title: Multimedia Tools and Applications – ident: e_1_2_9_28_1 doi: 10.3390/s22165932 – ident: e_1_2_9_15_1 doi: 10.1109/ICCV.2015.169 – ident: e_1_2_9_25_1 doi: 10.1109/CCAI55564.2022.9807756 – ident: e_1_2_9_36_1 – ident: e_1_2_9_14_1 doi: 10.1109/tpami.2009.167 – volume: 28 year: 2015 ident: e_1_2_9_16_1 article-title: Faster r‐CNN: towards real‐time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_2_9_19_1 doi: 10.1049/iet‐ipr.2018.5905 – ident: e_1_2_9_7_1 doi: 10.1016/j.chb.2018.08.016 – ident: e_1_2_9_23_1 doi: 10.1007/s11042‐020‐09242‐5 – ident: e_1_2_9_2_1 doi: 10.1109/TCDS.2022.3182650 – ident: e_1_2_9_20_1 doi: 10.1016/j.compag.2019.01.012 – ident: e_1_2_9_3_1 doi: 10.1109/tcsvt.2020.3043026 – ident: e_1_2_9_35_1 – ident: e_1_2_9_9_1 doi: 10.1016/j.patcog.2021.108498 – ident: e_1_2_9_12_1 doi: 10.1109/CVPR.2014.81 – start-page: 1 year: 2013 ident: e_1_2_9_4_1 article-title: Capturing students' attention: an empirical student publication-title: J. Scholarsh. Teach. Learn. – ident: e_1_2_9_10_1 doi: 10.1016/j.patcog.2021.108102 – ident: e_1_2_9_22_1 doi: 10.3390/s19204588 – ident: e_1_2_9_27_1 doi: 10.3390/app12136790 – ident: e_1_2_9_17_1 doi: 10.1007/978-3-319-46448-0_2 – ident: e_1_2_9_5_1 doi: 10.1111/j.1553‐2712.2011.01270.x – ident: e_1_2_9_32_1 doi: 10.1109/ICCV.2017.324 – ident: e_1_2_9_33_1 – ident: e_1_2_9_21_1 doi: 10.3390/s21093263 – ident: e_1_2_9_34_1 doi: 10.1007/978-3-030-01264-9_45 – ident: e_1_2_9_30_1 doi: 10.1007/978-3-319-10602-1_48 – ident: e_1_2_9_31_1 doi: 10.1109/CVPR.2009.5206848 – ident: e_1_2_9_6_1 doi: 10.1021/ed100409p – ident: e_1_2_9_8_1 doi: 10.1016/j.patcog.2022.108873 – ident: e_1_2_9_29_1 doi: 10.1007/s11263‐009‐0275‐4 |
SSID | ssj0056994 |
Score | 2.393568 |
Snippet | In recent years, artificial intelligence has been applied in many fields, and education has attracted more and more attention. More and more behaviour... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
Title | Attention assessment based on multi‐view classroom behaviour recognition |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZgufTCq62gBWSJXtAqNHFe9nFBwLKinHYr4LKyHUeNVO1WkPTAiZ_Ab-SXMHYcJ4I9AJcospyH_E3GM5OZbxD6ATZxkMNO6WUiZ16UJNSjVDBPE4XkKfPzkOpC4V-XyXASja7iq7YrqqkuKcWhvF9YV_IRVGEMcNVVsu9A1t0UBuAc8IUjIAzHN2E8KEubrcgdwWZf70uZ_gdgcgVdMoOpUJGNrdyU51e3fZdCZAGylur5ydjkm-uWD_26Ar0NMqtaQ9z8mVejwonGRWGDz2fVfFS1uT6VCccOq-KocIPXNXfBkBemvqEbfCBxJ_hQ68s0Djz4hmuFqrpjNQuTU7LspTC90t3gq8CCy_8F0ZQX0QKC7Bcbl0snND_SIzbV107NtctohYDfQHpoZfB7cjNpNuc4YaY3pnvvhrE2Yj_bJ3dslI6xMV5Hq9ZLwIMa8g20pGabaM16DNjq47vPaOQkALcSgI0EYBgzEvD08Kixxw577LDHHey_oMnpyfh46NnuGJ4EN6_0uKSUck1ACD46yYIsSblKwd4UghNJ4ywTASd-Kv0gY3kYCh4qJlPh0ygkOjTxFfVm85naQpjEPKE5VXka5JEiSoDV78fwnRK4f0LVNjpo1mMqLXW87mDyd_p65bfRvpv7ryZMWTDr25tmfUefWqHbQb3ytlK7YAOWYs_i-gxw6193 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention+assessment+based+on+multi%E2%80%90view+classroom+behaviour+recognition&rft.jtitle=IET+computer+vision&rft.au=Zheng%2C+ZhouJie&rft.au=Liang%2C+GuoJun&rft.au=Luo%2C+HuiBin&rft.au=Yin%2C+HaiChang&rft.date=2025-01-01&rft.issn=1751-9632&rft.eissn=1751-9640&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1049%2Fcvi2.12146&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_cvi2_12146 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9632&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9632&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9632&client=summon |