The photocatalytic H2O2 production by metal-free photocatalysts under visible-light irradiation

The photocatalytic H2O2 production from H2O and O2 over organic polymers is a promising approach to achieve solar-to-chemical energy conversion. The continuous efforts have led to rapid development of various metal-free-based photocatalysts for specific H2O2 production, but generalizations and summa...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 341; p. 123271
Main Authors Xu, Xiahong, Sui, Yan, Chen, Wentong, Huang, Wei, Li, Xiaodan, Li, Yuntong, Liu, Dongsheng, Gao, Shuang, Wu, Wenxin, Pan, Changwang, Zhong, Hong, Wen, He-Rui, Wen, Meicheng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The photocatalytic H2O2 production from H2O and O2 over organic polymers is a promising approach to achieve solar-to-chemical energy conversion. The continuous efforts have led to rapid development of various metal-free-based photocatalysts for specific H2O2 production, but generalizations and summarization are obviously inadequate. This review mainly focuses on the state-of-the-art development process of metal-free-based photocatalysts for photocatalytic H2O2 production via combining O2 reduction and H2O oxidation reactions under visible light irradiation. The representative research work on photocatalytic H2O2 production by various metal-free-based photocatalytic systems, including graphite carbon nitride (g-C3N4), covalent organic frameworks (COFs), covalent triazine frameworks (CTFs) and covalent organic polymers (COPs) was highlighted. The strategies for structure and property optimization of metal-free-based photocatalysts at molecular-level have been proposed for improving the photocatalytic performance. The challenges and future directions have also been provided to guide the design and synthesis of metal-free-based photocatalytic system. [Display omitted] •The state-of-the-art development of photocatalytic H2O2 production by metal-free photocatalysts was summarized.•Successful strategies to maximize the catalytic performance were assessed.•Representative research works on photocatalytic H2O2 production was highlighted.•Challenges and future directions discussed in the end.
AbstractList The photocatalytic H2O2 production from H2O and O2 over organic polymers is a promising approach to achieve solar-to-chemical energy conversion. The continuous efforts have led to rapid development of various metal-free-based photocatalysts for specific H2O2 production, but generalizations and summarization are obviously inadequate. This review mainly focuses on the state-of-the-art development process of metal-free-based photocatalysts for photocatalytic H2O2 production via combining O2 reduction and H2O oxidation reactions under visible light irradiation. The representative research work on photocatalytic H2O2 production by various metal-free-based photocatalytic systems, including graphite carbon nitride (g-C3N4), covalent organic frameworks (COFs), covalent triazine frameworks (CTFs) and covalent organic polymers (COPs) was highlighted. The strategies for structure and property optimization of metal-free-based photocatalysts at molecular-level have been proposed for improving the photocatalytic performance. The challenges and future directions have also been provided to guide the design and synthesis of metal-free-based photocatalytic system. [Display omitted] •The state-of-the-art development of photocatalytic H2O2 production by metal-free photocatalysts was summarized.•Successful strategies to maximize the catalytic performance were assessed.•Representative research works on photocatalytic H2O2 production was highlighted.•Challenges and future directions discussed in the end.
ArticleNumber 123271
Author Wu, Wenxin
Sui, Yan
Li, Xiaodan
Zhong, Hong
Wen, Meicheng
Xu, Xiahong
Chen, Wentong
Liu, Dongsheng
Li, Yuntong
Huang, Wei
Gao, Shuang
Pan, Changwang
Wen, He-Rui
Author_xml – sequence: 1
  givenname: Xiahong
  surname: Xu
  fullname: Xu, Xiahong
  organization: Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
– sequence: 2
  givenname: Yan
  surname: Sui
  fullname: Sui, Yan
  organization: Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
– sequence: 3
  givenname: Wentong
  surname: Chen
  fullname: Chen, Wentong
  organization: Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
– sequence: 4
  givenname: Wei
  surname: Huang
  fullname: Huang, Wei
  organization: Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
– sequence: 5
  givenname: Xiaodan
  surname: Li
  fullname: Li, Xiaodan
  organization: Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
– sequence: 6
  givenname: Yuntong
  surname: Li
  fullname: Li, Yuntong
  organization: Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
– sequence: 7
  givenname: Dongsheng
  surname: Liu
  fullname: Liu, Dongsheng
  organization: Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
– sequence: 8
  givenname: Shuang
  surname: Gao
  fullname: Gao, Shuang
  organization: Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
– sequence: 9
  givenname: Wenxin
  surname: Wu
  fullname: Wu, Wenxin
  organization: Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
– sequence: 10
  givenname: Changwang
  surname: Pan
  fullname: Pan, Changwang
  organization: Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
– sequence: 11
  givenname: Hong
  surname: Zhong
  fullname: Zhong, Hong
  email: zhonghbush@jgsu.edu.cn
  organization: Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
– sequence: 12
  givenname: He-Rui
  surname: Wen
  fullname: Wen, He-Rui
  organization: School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
– sequence: 13
  givenname: Meicheng
  orcidid: 0000-0002-7394-0592
  surname: Wen
  fullname: Wen, Meicheng
  email: meicheng.wen@gdut.edu.ch
  organization: Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
BookMark eNqFkMtOwzAQRS1UJNrCH7DwDySM7eYBCyRUAUWq1E331sSZUFdpHNkuUv-elLCBBaxmMXOu7pwZm3SuI8ZuBaQCRH63T7E3GKtUglSpkEoW4oJNRVmoRJWlmrAp3Ms8UapQV2wWwh5guJTllOntjni_c9ENAdieojV8JTeS997VRxOt63h14gcalknj6cdxiIEfu5o8_7DBVi0lrX3fRW69x9riGb5mlw22gW6-55xtX563y1Wy3ry-LZ_WiVGQxwQRRQGLDLJGNionQCBEObSmRlXlgiCTIitLgUJRY6SqRAZQ11VBhAbVnC3GWONdCJ4a3Xt7QH_SAvTZkd7r0ZE-O9KjowF7-IUZG796R4-2_Q9-HGEa_vqw5HUwljpDtfVkoq6d_TvgE-DWiOo
CitedBy_id crossref_primary_10_1016_j_cej_2025_159470
crossref_primary_10_1016_j_ccr_2024_215902
crossref_primary_10_1016_j_apsusc_2024_159664
crossref_primary_10_1002_adma_202405664
crossref_primary_10_1016_j_jcis_2024_02_110
crossref_primary_10_1016_j_jtice_2025_106101
crossref_primary_10_1021_acsanm_4c06299
crossref_primary_10_1016_j_enchem_2024_100121
crossref_primary_10_1039_D4CY01158A
crossref_primary_10_1016_j_cej_2024_149183
crossref_primary_10_1016_j_jcis_2024_09_189
crossref_primary_10_1016_j_cej_2024_155117
crossref_primary_10_1016_j_cej_2024_153899
crossref_primary_10_1016_j_cej_2025_161631
crossref_primary_10_1007_s40843_023_2717_0
crossref_primary_10_1021_acs_nanolett_4c06680
crossref_primary_10_1016_j_jece_2024_114151
crossref_primary_10_1016_j_cej_2024_152969
crossref_primary_10_1002_adma_202404539
crossref_primary_10_1016_j_jmat_2024_100970
crossref_primary_10_1002_ange_202421356
crossref_primary_10_1002_cctc_202401099
crossref_primary_10_1016_j_seppur_2025_132284
crossref_primary_10_1002_adfm_202420504
crossref_primary_10_1007_s11120_024_01130_5
crossref_primary_10_1016_j_jece_2024_114425
crossref_primary_10_1016_j_jece_2024_114306
crossref_primary_10_1016_j_mcat_2024_114309
crossref_primary_10_1016_j_seppur_2024_128380
crossref_primary_10_1016_j_ijhydene_2024_12_023
crossref_primary_10_1039_D4EE02505A
crossref_primary_10_1002_aenm_202401768
crossref_primary_10_1002_chem_202404003
crossref_primary_10_1016_j_cej_2024_153569
crossref_primary_10_1021_acs_inorgchem_4c04309
crossref_primary_10_1016_j_apcatb_2025_125147
crossref_primary_10_1021_acssuschemeng_4c04143
crossref_primary_10_1039_D4CY00949E
crossref_primary_10_1039_D4GC02385D
crossref_primary_10_1002_smll_202500573
crossref_primary_10_1016_j_jallcom_2024_178351
crossref_primary_10_1039_D4TA03950E
crossref_primary_10_1002_anie_202421356
crossref_primary_10_1021_acsnano_4c01318
crossref_primary_10_1002_ange_202401014
crossref_primary_10_1016_j_jcat_2024_115580
crossref_primary_10_1016_j_cjsc_2024_100457
crossref_primary_10_1016_j_cej_2024_157874
crossref_primary_10_1016_j_jcis_2024_07_037
crossref_primary_10_1016_j_jece_2024_114093
crossref_primary_10_1016_j_jcis_2024_11_137
crossref_primary_10_1016_j_seppur_2024_131092
crossref_primary_10_1002_cssc_202400528
crossref_primary_10_1016_j_jece_2024_115296
crossref_primary_10_1039_D4SC02832E
crossref_primary_10_1002_smll_202404139
crossref_primary_10_1039_D4NH00197D
crossref_primary_10_1016_j_jcis_2024_12_003
crossref_primary_10_1016_j_apcatb_2024_123767
crossref_primary_10_1002_anie_202401014
crossref_primary_10_1016_j_apcatb_2024_123889
crossref_primary_10_1021_acsapm_4c02016
crossref_primary_10_1039_D4TA04302B
crossref_primary_10_1016_j_ccr_2025_216460
crossref_primary_10_1016_j_jphotochem_2024_116043
crossref_primary_10_1016_j_jallcom_2024_176965
crossref_primary_10_1002_adsu_202400261
crossref_primary_10_1016_j_cej_2024_151091
crossref_primary_10_1016_j_jcis_2024_04_177
crossref_primary_10_1016_j_mtchem_2024_102439
crossref_primary_10_1021_acssuschemeng_4c07830
crossref_primary_10_1039_D3GC04045C
Cites_doi 10.1002/smll.202103224
10.1039/D2EE03774B
10.1016/j.nanoen.2019.05.086
10.1002/cssc.201901997
10.1039/D3TA01051A
10.1016/j.apcatb.2019.117956
10.1002/cssc.202300015
10.1002/cssc.201600705
10.1038/s44160-023-00272-z
10.3390/polym11081326
10.1002/anie.202006747
10.1016/j.apcatb.2020.119095
10.1126/science.1120411
10.1039/D2GC04459E
10.1021/cs401208c
10.1021/jacs.1c09979
10.1016/j.jcat.2017.10.002
10.1021/jacs.2c11454
10.1016/j.apcatb.2018.01.060
10.1002/adfm.202008247
10.3390/catal8040147
10.1039/D0TA05753C
10.1021/acscatal.2c04085
10.1016/j.cej.2007.09.003
10.1002/anie.201705926
10.1021/acsami.2c20506
10.1038/s41467-019-08731-y
10.1021/acs.chemmater.2c00910
10.1016/j.joule.2017.07.007
10.1016/j.diamond.2018.04.027
10.1002/adfm.202105731
10.1002/adsu.202100184
10.1039/C8EE02727G
10.1021/jacs.1c04622
10.1021/acscatal.6b03334
10.1021/acsapm.3c01455
10.1016/j.cej.2022.139929
10.1002/adma.201304147
10.1039/D1EE02369A
10.1021/jacs.2c09482
10.1016/j.cej.2022.140124
10.1002/adma.202107480
10.1016/j.jcat.2020.05.028
10.1039/D0CS00458H
10.1073/pnas.1913403117
10.1002/adfm.202111999
10.1016/j.jcat.2019.06.015
10.1021/acscatal.6b02367
10.1002/anie.202305355
10.1038/s41560-022-00990-2
10.1016/j.nantod.2020.100946
10.1002/chem.201704512
10.1016/j.apcatb.2020.118917
10.1039/D2TA01646J
10.1002/aenm.201700529
10.1016/j.coco.2022.101390
10.1016/j.cej.2022.139035
10.1002/anie.201407938
10.1016/j.apcatb.2020.118602
10.1039/C8TA12442F
10.1002/aenm.202003323
10.1021/acs.chemrev.9b00399
10.1021/jacs.6b05806
10.1021/acs.chemmater.5b00516
10.1016/j.watres.2018.03.042
10.1021/acssuschemeng.7b00575
10.1002/solr.202200755
10.1021/acsaem.9b01712
10.1021/acsenergylett.8b02303
10.1038/s41467-022-28686-x
10.1016/j.watres.2021.117125
10.1002/cssc.201900560
10.1039/C4TA01871K
10.1038/s41929-017-0017-x
10.1039/D2NJ03744K
10.1002/ejic.201700930
10.1038/nmat2317
10.1073/pnas.2115666118
10.1002/anie.201901961
10.1016/j.jcis.2022.01.107
10.1039/D0GC04236F
10.1021/acsami.7b14191
10.1002/adfm.202111404
10.1016/j.cep.2006.12.012
10.1038/s41467-021-24048-1
10.31635/ccschem.022.202101578
10.1016/j.apcatb.2017.11.005
10.1038/s41560-019-0456-5
10.1016/j.cej.2017.10.016
10.1002/adma.201904433
10.1039/C9TA01481K
10.1002/adma.202110266
10.1002/cnma.202100484
10.1016/j.chempr.2018.12.009
10.1016/S1872-2067(22)64205-0
10.1002/adsu.202200113
10.1021/jacs.2c02666
10.1016/j.cej.2022.140121
10.1021/acs.chemrev.7b00167
10.1002/smll.201703142
10.1021/acsenergylett.9b00277
10.1021/acscatal.1c02056
10.1039/C8EE01316K
10.1002/anie.201911609
10.1039/C9SC03800K
10.1016/j.jechem.2017.12.014
10.1021/ie030578s
10.1016/j.apcatb.2016.03.004
10.1016/j.apcatb.2019.118054
10.1039/D0CS00620C
10.1002/ajoc.202100727
10.1016/S1872-2067(18)63046-3
10.1021/jz500546b
10.1016/j.apcatb.2019.118466
10.1021/acscatal.5b00408
10.1002/adfm.202002654
10.1021/jacs.0c09684
10.1039/C8CC05548C
10.1002/anie.200705710
10.1016/j.cej.2023.142931
10.1002/adma.201907296
10.1021/acs.chemrev.9b00550
10.1002/adfm.202110694
10.1039/C8DT04081H
10.1002/advs.202003077
10.1016/j.apcatb.2023.122862
10.1007/s12274-022-4976-0
10.1016/j.apcatb.2019.118396
10.1002/anie.202200413
10.1002/adma.201806314
10.1002/ceat.201000094
10.1021/acscatal.6b01187
10.1007/s12274-021-3517-6
10.1021/acs.chemmater.2c00936
10.1038/s41467-023-40007-4
10.1016/j.apcatb.2020.119225
10.1039/C4EE02757D
10.1016/j.apcatb.2020.119589
10.1016/S0009-2509(98)00377-7
10.1002/adma.202200180
10.1002/anie.200701595
10.1038/s41598-017-08072-0
10.1021/acscatal.0c03359
10.1039/C6SC05532J
10.1002/adma.201705710
10.1002/anie.200503779
10.1021/acscatal.1c05449
10.1016/j.chempr.2022.10.007
10.1016/j.cattod.2022.05.020
10.1073/pnas.2202913119
10.1016/j.apcatb.2021.120736
10.1016/j.cej.2023.143085
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apcatb.2023.123271
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2023_123271
S0926337323009141
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SES
SEW
SPC
SPD
SSG
SSZ
T5K
VH1
WUQ
XFK
XPP
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-aaa1704505f2f36e0a0eaa2092ef3b84e05215881a13efc23b1500ddb7eeaca3
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Tue Jul 01 04:35:33 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
Sat Mar 02 16:01:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heterogeneous catalysis
Visible light
Hydrogen peroxide
Metal-free photocatalysts
Photocatalysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-aaa1704505f2f36e0a0eaa2092ef3b84e05215881a13efc23b1500ddb7eeaca3
ORCID 0000-0002-7394-0592
ParticipantIDs crossref_primary_10_1016_j_apcatb_2023_123271
crossref_citationtrail_10_1016_j_apcatb_2023_123271
elsevier_sciencedirect_doi_10_1016_j_apcatb_2023_123271
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xu, Sa, Huang, Sui, Chen, Zhou, Li, Li, Zhong (bib172) 2022; 12
Zhang, A, Zou, Luo, Li, Xia, Liu, Mu (bib163) 2014; 2
Li, Ge, Liu, Wang, Gong, Liu, Xie, Wang, Ruana, Zhang (bib62) 2023; 16
Shiraishi, Kanazawa, Kofuji, Sakamoto, Ichikawa, Tanaka, Hirai (bib85) 2014; 53
Li, Dong, Hailili, Yang, Li, Wang, Zeng, Wang (bib97) 2016; 190
Chen, Chen, Yang, Li, Chu, Chen (bib99) 2021; 31
Kumar, Battula, Sharma, Samanta, Rawat, Kailasam (bib168) 2022; 10
Miklos, Remy, Jekel, Linden, Drewes, Hübner (bib5) 2018; 139
Shiraishi, Kofuji, Sakamoto, Tanaka, Ichikawa, Hirai (bib70) 2015; 5
Kuwahara, Matsumura, Yamashita (bib3) 2019; 7
Kosco, Gonzalez-Carrero, Howells, Fei, Dong, Sougrat, Harrison, Firdaus, Sheelamanthula, Purushothaman, Moruzzi, Xu, Zhao, Basu, De Wolf, Anthopoulos, Durrant, McCulloch (bib44) 2022; 7
Liu, Meng, Wang, Liang, Mi, Qi, Li, Wu, Min, Fu (bib15) 2004; 43
Yu, Yang, Yu, Lu, Huang, Xu, Zou, Wang, Chen, Hu, Hou, Zhu (bib71) 2022; 32
Ferguson, Zhang (bib37) 2021; 11
Zhang, Ma, Wang, Gan, Chen, Zhang, Wang, Li, Wang, Zhou, Zheng (bib2) 2022; 15
Kim, Choi, Hu, Choi, Kim (bib91) 2018; 229
Moon, Fujitsuka, Kim, Majima, Wang, Choi (bib104) 2017; 7
Deng, Sun, Laemont, Liu, Wang, Bourd, Chakraborty, Hecke, Morent, Geyter, Leus, Chen, Voort (bib132) 2023; 25
Chen, Zhang, Zhang, Feng, Zhang, Jiang, Yan, Wang (bib59) 2020; 8
Teng, Cai, Liu, Wang, Zhang, Chenliang, Ohno (bib49) 2020; 271
Fu, Wang, Gardner, Wang, Chong, Neri, Cowan, Liu, Li, Vogel, Clowes, Bilton, Chen, Sprick, Cooper (bib156) 2020; 11
Yang, Kang, Li, Liang, Liang, Jiang, Chen, He, Chen, Wang (bib131) 2022; 46
Krishnaraj, Jena, Bourda, Laemont, Pachfule, Roeser, Chandran, Borgmans, Rogge, Leus, Stevens, Martens, Speybroeck, Breynaert, Thomas, Voort (bib136) 2020; 142
Côte, Benin, Ockwig, O ́Keeffe, Matzger, Yaghi (bib122) 2005; 310
Geng, He, Liu, Tan, Li, Tao, Gong, Jiang, Jiang (bib121) 2020; 120
Chen (bib6) 2008; 47
Tan, Zhou, Liu, Zhang, Liu, Guo, Zhou, Chen, Zeng, Gu, Zheng, Tong, Guo (bib66) 2023; 2
Campos-Martin, Blanco-Brieva, Fierro (bib13) 2006; 45
Kim, Gim, Jeon, Kim, Choi (bib87) 2017; 9
Zhao, Chen, Shi, Yang, Zhang (bib40) 2020; 32
Sun, Jena, Krishnaraj, Rawat, Abednatanzi, Chakraborty, Laemont, Liu, Chen, Liu, Leus, Vrielinck, Speybroeck, Voort (bib133) 2023; 62
Wang, Kumar, Tian (bib169) 2022; 6
Kondo, Hino, Kuwahara, Mori, Yamashita (bib28) 2023; 11
Zhang, Yu, Macyk, Wageh, Al-Ghamdi, Wang (bib68) 2023; 7
Chai, Chen, Zhang, Fang, Sprick, Chen (bib140) 2022; 9
Ou, Yang, Lin, Anpo, Wang (bib114) 2017; 56
Teng, Cai, Sim, Zhang, Wang, Su, Ohno (bib112) 2021; 282
Zhu, Zhu, Sun, Zhou, Gao, Huang, Liu, Kang (bib72) 2019; 2
Cao, Yu (bib81) 2014; 5
Pashkova, Svajda, Dittmeyer (bib18) 2008; 139
Song, Wei, Chen, Wen, Han (bib75) 2019; 376
Shao, He, Zhang, Jia, Ji, Hu, Li, Huang, Li (bib124) 2023; 46
Zeng, Liu, Xia, Uddin, Xia, McCarthy, Deletic, Yu, Zhang (bib89) 2020; 274
Bryliakov (bib4) 2017; 117
Hirakawa, Shiota, Shiraishi, Sakamoto, Ichikawa, Hirai (bib30) 2016; 6
Hu, Zeng, Liu, Lu, Yuan, Yin, Hu, McCarthy, Zhang (bib103) 2020; 268
Feng, Wu, Huang, Ye, Zhang (bib67) 2022; 34
Kolesnichenko, Escamilla, Michael, Lynch, Bout, Anslyn (bib14) 2018; 54
Ren, Chang, Li, Yang, Hu (bib153) 2023; 451
Chang, Li, Shi, Zhang, Zhang, Li, Chen, Li, Lan (bib144) 2023; 62
Das, Chakraborty, Roeser, Vogl, Rabeah, Thomas (bib123) 2023; 145
Shiraishi, Matsumoto, Ichikawa, Tanaka, Hirai (bib24) 2021; 143
Zeng, Liu, Hu, Zhang (bib61) 2021; 23
Yan, Shen, Shen, Wang, Lin, Pan, He, Ye, Yang, Zhu, Xu, He, Ouyang (bib165) 2022; 119
Luo, Zhang, Liu, Xia, Ou, Cai, Zhou, Jiang, Han (bib126) 2023; 62
Tang, Zhao, Solanki, Miao, Zhou, Hu (bib9) 2021; 5
Liu, Guo, Jin, Tan (bib145) 2019; 7
Kofuji, Ohkita, Shiraishi, Sakamoto, Tanaka, Ichikawa, Hirai (bib84) 2016; 6
Wei, Liu, Zhang, Yao, Tan, Zhu (bib35) 2018; 11
Wu, Yu, Chen, Quan (bib98) 2020; 10
Zhao, Zhang, Yang, Li, Gao, Chen, Xie, Diao, Xi, Xiao, Hu, Choi (bib47) 2021; 12
Lu, Wang, Wang, Mi (bib17) 2011; 34
Fukuzumi (bib10) 2017; 1
Cheng, Cheng, Wang, Xu (bib56) 2022; 34
Zhang, Pan, Zhuo, Xiang, Yan (bib77) 2023; 38
Zhang, Liu, Miao, Wu, Liu, Jiang (bib22) 2023; 455
Song, Wei, Chen, Wen, Han (bib31) 2019; 376
Wang, Yang, Chen, Zheng, Han (bib139) 2022; 61
Zhang, Sun, Cho, Weon, Lee, Lee, Han, Kim, Choi (bib101) 2019; 10
Lu, Chen, Siahrostami, Chen, Liu, Xie, Liao, Wu, Lin, Liu, Jaramillo, Nørskov, Cui (bib11) 2018; 1
Liu, Xu, Wang, Huang, Shimada, Ye (bib92) 2022; 47
Liu, Bao, Yuan, Zhang, Wang, Wan, Yu (bib32) 2022; 32
Kofuji, Ohkita, Shiraishi, Sakamoto, Ichikawa, Tanaka, Hirai (bib86) 2017; 5
Xu, Zhong, Huang, Sui, Sa, Chen, Zhou, Li, Li, Wen, Jiang (bib164) 2023; 454
Yang, Zeng, Zeng, Huang, Xiao, Zhang, Zhou, Xiong, Wang, Cheng (bib117) 2019; 258
Sun, Han, Strasser (bib26) 2020; 49
Wang, Zhang, Cai, Wang, Deng, Chen, Jiang, Zhang, Yu (bib74) 2023; 16
Brudzynski, Miotto, Kim, Sjaarda, Maldonado-Alvarez, Fukś (bib20) 2017; 7
Zou, Sa, Zhong, Lv, Wang, Wang (bib78) 2022; 12
Wang, Ghasimi, Landfester, Zhang (bib159) 2015; 27
Yang, Zeng, Zeng, Huang, Xiao, Zhang, Zhou, Xiong, Wang, Cheng, Xue, Guo, Tang, He (bib42) 2019; 258
Chang, Yang, Han, Zhang, Xiang, He (bib110) 2018; 8
Ma, Zhang, Wang, Wang, Wang, Feng, Wang, Zhai, Deng, Wang, Zheng (bib79) 2022; 300
Shi, Yang, Zhou, Liu, Yin, Hai, Song, Ye (bib96) 2018; 14
Myers (bib1) 2007; 319
Liang, Wang, Liu, Liu, Huang, Zhang, Zhang, Jiang, Jia, Niu (bib25) 2023; 466
Lee, Cooper (bib154) 2020; 120
Hou, Zeng, Zhang (bib27) 2020; 59
Liu, Xu, Pan, Li, Huang, Huang, Ye (bib82) 2023; 16
Oka, Nishide, Winther-Jensen (bib166) 2021; 8
Xu, Li, Sui, Huang, Chen, Li, Liu, Li, Deng, Zhou, Zhong, Zhong (bib155) 2022; 8
Tahir, Krishnaraj, Leus, Voort (bib146) 2019; 11
Zhong, Yang, Fan, Fu, Yang, Wang, Wang (bib54) 2019; 12
Wang, Zhang, Li, Cao, Pu, Han, Yang, Xiang (bib116) 2018; 27
Wu, Teng, Yang, Chen, Yang, Wang, Xu, Liu, Zheng, Han (bib151) 2022; 34
Zhong, Hong, Yang, Li, Xu, Wang, Wang (bib52) 2019; 12
Qu, Hu, Li, Li, Wang, Ma, Li (bib94) 2018; 86
Teng, Yang, Lv, Wang, Hu, Wang, Wang, Wang (bib90) 2019; 5
Shiraishi, Kanazawa, Kofuji, Sakamoto, Ichikawa, Tanaka, Hirai (bib43) 2014; 53
Wang, Pan, Han, Jiang, Xiang, Huang, Zhang, Xiang (bib50) 2016; 9
Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (bib80) 2009; 8
Tan, Zheng, Zhou, Wang, Dong, Yang, Ou, Qi, Liu, Zheng, Chen (bib143) 2022; 4
Kim, Moon, Kim, Mun, Zhang, Lee, Choi (bib105) 2018; 357
Kofuji, Ohkita, Shiraishi, Sakamoto, Tanaka, Ichikawa, Hirai (bib45) 2016; 6
Zhi, Liu, Jiang, Zhan, Jin, Chen, Yang, Wang, Cao, Qi, Jiang (bib128) 2022; 144
Zhang, Zhang, Miao, Wen, Chen, Zhou, Long (bib127) 2023; 466
Kofuji, Isobe, Shiraishi, Sakamoto, Tanaka, Ichikawa, Hirai (bib119) 2016; 138
Xu, Sui, Huang, Chen, Li, Li, Wang, Ye, Zhong (bib160) 2022; 11
Zhang, Tong, Liu, Vequizo, Sun, Yang, Yamakata, Fan, Lin, Wang, Choi (bib100) 2020; 59
Li, Zhang, Zhou, Zhang, Bai, Wang, Wang (bib95) 2018; 39
Ye, Pan, Shen, Shen, Yan, He, Yang, Zhu, Xu, He (bib171) 2021; 118
Chong, Li, Xu, Yang (bib33) 2022; 406
Isaka, Kawase, Kuwahara, Mori, Yamashita (bib23) 2019; 58
Zhou, Sun, Zhu, Li, Zhang, Wang, Shen (bib125) 2023; 334
Chen, Yao, Chu, Mao (bib7) 2023; 451
Yu, Viengkeo, He, Zhao, Huang, Li, Huang, Li (bib149) 2021; 5
Cheng, Lv, Cheng, Wang, Wu, Xu (bib150) 2022; 34
Yang, Wan, Zhu, Yu, Cao (bib167) 2022; 61
Yoshii, Kuwahara, Mori, Yamashita (bib12) 2021; 394
Xiong, Li, Huang, Gao, Chen, Liu, Li, Kang, Yao, Zhu (bib60) 2020; 266
Yuan, Zhang, Wang, Liu, Yu (bib41) 2021; 14
Li, Xiong, Gu (bib102) 2019; 48
Wang, Waterhouse, Shang, Zhang (bib16) 2021; 11
Xia, Wang, Kim, Wang (bib51) 2021; 31
Liu, Pan, Vequizo, Kato, Wu, Yamakata, Katayama, Chen, Chu, Domen (bib65) 2022; 13
Kou, Wang, Xu, Ye, Huang, Jia, Li, Ren, Deng, Chen, Zhou, Lei, Wang, Liu, Huang, Ma (bib138) 2022; 61
Kuttassery, Sebastian, Mathew, Tachibana, Inoue (bib76) 2019; 12
Zhou, Feng, Qiu, Zhou, Lei, Xing, Wang, Zhou, Liu, Zhang (bib113) 2020; 267
Liu, Tan, Gong, Chen, Li, Xie, He, Lu, Yanga, Jiang (bib120) 2021; 50
Samanta, Yadav, Kumar, Sinha, Srivastava (bib109) 2019; 259
Xue, Sun, Wu, Yao (bib69) 2022; 615
Wang, Zhong, Liu, Cheng (bib8) 2020; 35
Shiraishi, Kanazawa, Sugano, Tsukamoto, Sakamoto, Ichikawa, Hirai (bib83) 2014; 4
Yu, Viengkeo, He, Zhao, Huang, Li, Huang, Li (bib36) 2021; 5
Xiao, Liu, Song, Li, Li, Shang (bib88) 2021; 198
Xu, Sui, Chen, Zhou, Li, Zhong, Wen (bib173) 2023
Kondo, Kuwahara, Mori, Yamashita (bib21) 2022; 8
Zhang, Yu, Lang, Zhou, Zhou, Hu, Long (bib107) 2020; 277
Zhai, Xie, Cui, Yang, Xu, Ke, Liu, Qu, Chen, Mi (bib46) 2022; 34
Santacesaria, Di Serio, Russo, Leone, Velotti (bib19) 1999; 54
Zhao, Yan, Li, Bahri, Liu, Zhou, Clowes, Browning, Wu, Ward, Cooper (bib135) 2022; 144
Baek, Gill, Abroshan, Park, Shi, Nørskov, Jung, Siahrostami, Zheng (bib58) 2019; 4
Zheng, Gao, Chen, Ferguson, Zhang, Fang, Shen, Khan, Wang, Ye (bib152) 2022; 36
Yang, Chen, Wang, Peng, Kong (bib134) 2023; 15
Park, Abroshan, Shi, Jung, Siahrostami, Zheng (bib57) 2019; 4
Wang, Li, Xu (bib64) 2017; 7
Zhao, Guo, Li, Xu, Yang, Zhao (bib115) 2018; 224
Wu, Shan, Wang, Liu, Zhang (bib130) 2023; 454
Liu, Gao, Yang, Wang, Li, Cooper (bib170) 2021; 143
Li, Zhang, Wang, Wan, Lai, Pang, Huang (bib157) 2017; 8
Moon, Kim, Bokare, Sung, Choi (bib29) 2014; 7
Wu, Chen, Liu, Parvez, Liang, Shu, Sachdev, Graf, Feng, Müllen (bib161) 2014; 26
Di, Lv, Wang, Chen, Wang, Zheng, Wang, Han (bib129) 2023; 455
Liao, Wang, Zhu, Thomas (bib162) 2018; 30
Zhai, Xie, Cui, Yang, Xu, Ke, Liu, Qu, Chen, Mi (bib137) 2022; 34
Kumar, Battula, Sharma, Samanta, Rawat, Kailasam (bib34) 2022; 10
Hu, Qu, Li, Wang, Li, Song, Zhao, Kang (bib108) 2018; 334
Kuhn, Antonietti, Thomas (bib147) 2008; 47
Chen, Wang, Wan, Zhang, Qi, Wu, Xu (bib148) 2020; 32
Peng, Wang, Liu, Chen, Lei, Zhang (bib111) 2017; 2017
Cai, Huang, Wang, Iocozzia, Sun, Sun, Yang, Lai, Lin (bib118) 2019; 31
Tian, Jing, Ye, Liu, Chen, Price, Fan, Liu (bib38) 2021; 17
Zhong, Sa, Lv, Yang, Yuan, Wang, Wang (bib48) 2020; 30
Xu, Huang, Li, Sui, Chen, Li, Ye, Pan, Zhong, Wen (bib53) 2023; 11
Chen, Chen, Wu, Wang, Wu, Xu, Chen (bib142) 2023; 62
Liu, Zhou, Hou, Tan, Liang, Liang, Zhang, Guo, Tong, Ni (bib141) 2023; 14
Chu, Zhu, Pan,
Kondo (10.1016/j.apcatb.2023.123271_bib28) 2023; 11
Isaka (10.1016/j.apcatb.2023.123271_bib23) 2019; 58
Park (10.1016/j.apcatb.2023.123271_bib57) 2019; 4
Wu (10.1016/j.apcatb.2023.123271_bib98) 2020; 10
Kofuji (10.1016/j.apcatb.2023.123271_bib86) 2017; 5
Liu (10.1016/j.apcatb.2023.123271_bib170) 2021; 143
Zhao (10.1016/j.apcatb.2023.123271_bib40) 2020; 32
Yu (10.1016/j.apcatb.2023.123271_bib71) 2022; 32
Tahir (10.1016/j.apcatb.2023.123271_bib146) 2019; 11
Wang (10.1016/j.apcatb.2023.123271_bib8) 2020; 35
Kofuji (10.1016/j.apcatb.2023.123271_bib84) 2016; 6
Cai (10.1016/j.apcatb.2023.123271_bib118) 2019; 31
Li (10.1016/j.apcatb.2023.123271_bib62) 2023; 16
Zhao (10.1016/j.apcatb.2023.123271_bib135) 2022; 144
Teng (10.1016/j.apcatb.2023.123271_bib90) 2019; 5
Hu (10.1016/j.apcatb.2023.123271_bib103) 2020; 268
Zhou (10.1016/j.apcatb.2023.123271_bib113) 2020; 267
Yu (10.1016/j.apcatb.2023.123271_bib149) 2021; 5
Kim (10.1016/j.apcatb.2023.123271_bib87) 2017; 9
Yang (10.1016/j.apcatb.2023.123271_bib55) 2022; 32
Brudzynski (10.1016/j.apcatb.2023.123271_bib20) 2017; 7
Ma (10.1016/j.apcatb.2023.123271_bib79) 2022; 300
Zhang (10.1016/j.apcatb.2023.123271_bib163) 2014; 2
Campos-Martin (10.1016/j.apcatb.2023.123271_bib13) 2006; 45
Deng (10.1016/j.apcatb.2023.123271_bib132) 2023; 25
Wu (10.1016/j.apcatb.2023.123271_bib151) 2022; 34
Song (10.1016/j.apcatb.2023.123271_bib31) 2019; 376
Tan (10.1016/j.apcatb.2023.123271_bib66) 2023; 2
Liang (10.1016/j.apcatb.2023.123271_bib25) 2023; 466
Wu (10.1016/j.apcatb.2023.123271_bib130) 2023; 454
Xia (10.1016/j.apcatb.2023.123271_bib51) 2021; 31
Chang (10.1016/j.apcatb.2023.123271_bib144) 2023; 62
Shiraishi (10.1016/j.apcatb.2023.123271_bib83) 2014; 4
Shiraishi (10.1016/j.apcatb.2023.123271_bib70) 2015; 5
Kondo (10.1016/j.apcatb.2023.123271_bib21) 2022; 8
Teng (10.1016/j.apcatb.2023.123271_bib112) 2021; 282
Yang (10.1016/j.apcatb.2023.123271_bib167) 2022; 61
Li (10.1016/j.apcatb.2023.123271_bib95) 2018; 39
Yu (10.1016/j.apcatb.2023.123271_bib36) 2021; 5
Zhang (10.1016/j.apcatb.2023.123271_bib22) 2023; 455
Zheng (10.1016/j.apcatb.2023.123271_bib152) 2022; 36
Bryliakov (10.1016/j.apcatb.2023.123271_bib4) 2017; 117
Kosco (10.1016/j.apcatb.2023.123271_bib44) 2022; 7
Liu (10.1016/j.apcatb.2023.123271_bib15) 2004; 43
Zhao (10.1016/j.apcatb.2023.123271_bib115) 2018; 224
Teng (10.1016/j.apcatb.2023.123271_bib49) 2020; 271
Sun (10.1016/j.apcatb.2023.123271_bib133) 2023; 62
Zhai (10.1016/j.apcatb.2023.123271_bib137) 2022; 34
Liu (10.1016/j.apcatb.2023.123271_bib145) 2019; 7
Baek (10.1016/j.apcatb.2023.123271_bib58) 2019; 4
Fukuzumi (10.1016/j.apcatb.2023.123271_bib10) 2017; 1
Kou (10.1016/j.apcatb.2023.123271_bib138) 2022; 61
Chen (10.1016/j.apcatb.2023.123271_bib142) 2023; 62
Xu (10.1016/j.apcatb.2023.123271_bib155) 2022; 8
Liu (10.1016/j.apcatb.2023.123271_bib141) 2023; 14
Zhang (10.1016/j.apcatb.2023.123271_bib2) 2022; 15
Li (10.1016/j.apcatb.2023.123271_bib97) 2016; 190
Shiraishi (10.1016/j.apcatb.2023.123271_bib24) 2021; 143
Xue (10.1016/j.apcatb.2023.123271_bib73) 2019; 62
Miklos (10.1016/j.apcatb.2023.123271_bib5) 2018; 139
Zhang (10.1016/j.apcatb.2023.123271_bib101) 2019; 10
Wang (10.1016/j.apcatb.2023.123271_bib80) 2009; 8
Wu (10.1016/j.apcatb.2023.123271_bib161) 2014; 26
Kumar (10.1016/j.apcatb.2023.123271_bib34) 2022; 10
Yang (10.1016/j.apcatb.2023.123271_bib134) 2023; 15
Kuwahara (10.1016/j.apcatb.2023.123271_bib3) 2019; 7
Lu (10.1016/j.apcatb.2023.123271_bib11) 2018; 1
Xu (10.1016/j.apcatb.2023.123271_bib173) 2023
Tan (10.1016/j.apcatb.2023.123271_bib143) 2022; 4
Wang (10.1016/j.apcatb.2023.123271_bib74) 2023; 16
Das (10.1016/j.apcatb.2023.123271_bib123) 2023; 145
Fu (10.1016/j.apcatb.2023.123271_bib156) 2020; 11
Peng (10.1016/j.apcatb.2023.123271_bib111) 2017; 2017
Wang (10.1016/j.apcatb.2023.123271_bib64) 2017; 7
Yang (10.1016/j.apcatb.2023.123271_bib131) 2022; 46
Liu (10.1016/j.apcatb.2023.123271_bib92) 2022; 47
Yan (10.1016/j.apcatb.2023.123271_bib165) 2022; 119
Ferguson (10.1016/j.apcatb.2023.123271_bib37) 2021; 11
Song (10.1016/j.apcatb.2023.123271_bib75) 2019; 376
Chen (10.1016/j.apcatb.2023.123271_bib148) 2020; 32
Shiraishi (10.1016/j.apcatb.2023.123271_bib43) 2014; 53
Zhang (10.1016/j.apcatb.2023.123271_bib106) 2020; 59
Ren (10.1016/j.apcatb.2023.123271_bib153) 2023; 451
Zhao (10.1016/j.apcatb.2023.123271_bib47) 2021; 12
Xu (10.1016/j.apcatb.2023.123271_bib160) 2022; 11
Chen (10.1016/j.apcatb.2023.123271_bib6) 2008; 47
Zeng (10.1016/j.apcatb.2023.123271_bib89) 2020; 274
Zou (10.1016/j.apcatb.2023.123271_bib78) 2022; 12
Xu (10.1016/j.apcatb.2023.123271_bib53) 2023; 11
Luo (10.1016/j.apcatb.2023.123271_bib126) 2023; 62
Feng (10.1016/j.apcatb.2023.123271_bib67) 2022; 34
Shao (10.1016/j.apcatb.2023.123271_bib124) 2023; 46
Liu (10.1016/j.apcatb.2023.123271_bib82) 2023; 16
Ye (10.1016/j.apcatb.2023.123271_bib171) 2021; 118
Xu (10.1016/j.apcatb.2023.123271_bib172) 2022; 12
Zhang (10.1016/j.apcatb.2023.123271_bib100) 2020; 59
Wang (10.1016/j.apcatb.2023.123271_bib39) 2019; 4
Hou (10.1016/j.apcatb.2023.123271_bib27) 2020; 59
Kofuji (10.1016/j.apcatb.2023.123271_bib45) 2016; 6
Pashkova (10.1016/j.apcatb.2023.123271_bib18) 2008; 139
Sun (10.1016/j.apcatb.2023.123271_bib26) 2020; 49
Krishnaraj (10.1016/j.apcatb.2023.123271_bib136) 2020; 142
Moon (10.1016/j.apcatb.2023.123271_bib104) 2017; 7
Zhou (10.1016/j.apcatb.2023.123271_bib125) 2023; 334
Wang (10.1016/j.apcatb.2023.123271_bib159) 2015; 27
Zhu (10.1016/j.apcatb.2023.123271_bib72) 2019; 2
Cao (10.1016/j.apcatb.2023.123271_bib81) 2014; 5
Qu (10.1016/j.apcatb.2023.123271_bib94) 2018; 86
Wang (10.1016/j.apcatb.2023.123271_bib16) 2021; 11
Tian (10.1016/j.apcatb.2023.123271_bib38) 2021; 17
Zhai (10.1016/j.apcatb.2023.123271_bib46) 2022; 34
Lee (10.1016/j.apcatb.2023.123271_bib154) 2020; 120
Cheng (10.1016/j.apcatb.2023.123271_bib56) 2022; 34
Zhong (10.1016/j.apcatb.2023.123271_bib52) 2019; 12
Chu (10.1016/j.apcatb.2023.123271_bib93) 2020; 117
Chen (10.1016/j.apcatb.2023.123271_bib59) 2020; 8
Chen (10.1016/j.apcatb.2023.123271_bib99) 2021; 31
Zhang (10.1016/j.apcatb.2023.123271_bib107) 2020; 277
Samanta (10.1016/j.apcatb.2023.123271_bib109) 2019; 259
Wang (10.1016/j.apcatb.2023.123271_bib139) 2022; 61
Wei (10.1016/j.apcatb.2023.123271_bib35) 2018; 11
Wang (10.1016/j.apcatb.2023.123271_bib116) 2018; 27
Fukuzumi (10.1016/j.apcatb.2023.123271_bib63) 2018; 24
Myers (10.1016/j.apcatb.2023.123271_bib1) 2007; 319
Shi (10.1016/j.apcatb.2023.123271_bib96) 2018; 14
Kim (10.1016/j.apcatb.2023.123271_bib105) 2018; 357
Zhang (10.1016/j.apcatb.2023.123271_bib77) 2023; 38
Kim (10.1016/j.apcatb.2023.123271_bib91) 2018; 229
Shiraishi (10.1016/j.apcatb.2023.123271_bib85) 2014; 53
Liu (10.1016/j.apcatb.2023.123271_bib120) 2021; 50
Chai (10.1016/j.apcatb.2023.123271_bib140) 2022; 9
Cheng (10.1016/j.apcatb.2023.123271_bib150) 2022; 34
Xu (10.1016/j.apcatb.2023.123271_bib164) 2023; 454
Chang (10.1016/j.apcatb.2023.123271_bib110) 2018; 8
Ou (10.1016/j.apcatb.2023.123271_bib114) 2017; 56
Zhang (10.1016/j.apcatb.2023.123271_bib127) 2023; 466
Jiang (10.1016/j.apcatb.2023.123271_bib158) 2007; 46
Lu (10.1016/j.apcatb.2023.123271_bib17) 2011; 34
Xue (10.1016/j.apcatb.2023.123271_bib69) 2022; 615
Zhi (10.1016/j.apcatb.2023.123271_bib128) 2022; 144
Yuan (10.1016/j.apcatb.2023.123271_bib41) 2021; 14
Liao (10.1016/j.apcatb.2023.123271_bib162) 2018; 30
Chong (10.1016/j.apcatb.2023.123271_bib33) 2022; 406
Xiong (10.1016/j.apcatb.2023.123271_bib60) 2020; 266
Liu (10.1016/j.apcatb.2023.123271_bib65) 2022; 13
Tang (10.1016/j.apcatb.2023.123271_bib9) 2021; 5
Zhong (10.1016/j.apcatb.2023.123271_bib48) 2020; 30
Kofuji (10.1016/j.apcatb.2023.123271_bib119) 2016; 138
Wang (10.1016/j.apcatb.2023.123271_bib169) 2022; 6
Yang (10.1016/j.apcatb.2023.123271_bib42) 2019; 258
Zeng (10.1016/j.apcatb.2023.123271_bib61) 2021; 23
Di (10.1016/j.apcatb.2023.123271_bib129) 2023; 455
Yoshii (10.1016/j.apcatb.2023.123271_bib12) 2021; 394
Kolesnichenko (10.1016/j.apcatb.2023.123271_bib14) 2018; 54
Moon (10.1016/j.apcatb.2023.123271_bib29) 2014; 7
Wang (10.1016/j.apcatb.2023.123271_bib50) 2016; 9
Hu (10.1016/j.apcatb.2023.123271_bib108) 2018; 334
Chen (10.1016/j.apcatb.2023.123271_bib7) 2023; 451
Li (10.1016/j.apcatb.2023.123271_bib102) 2019; 48
Côte (10.1016/j.apcatb.2023.123271_bib122) 2005; 310
Santacesaria (10.1016/j.apcatb.2023.123271_bib19) 1999; 54
Kuttassery (10.1016/j.apcatb.2023.123271_bib76) 2019; 12
Yang (10.1016/j.apcatb.2023.123271_bib117) 2019; 258
Zhong (10.1016/j.apcatb.2023.123271_bib54) 2019; 12
Kumar (10.1016/j.apcatb.2023.123271_bib168) 2022; 10
Xiao (10.1016/j.apcatb.2023.123271_bib88) 2021; 198
Geng (10.1016/j.apcatb.2023.123271_bib121) 2020; 120
Liu (10.1016/j.apcatb.2023.123271_bib32) 2022; 32
Oka (10.1016/j.apcatb.2023.123271_bib166) 2021; 8
Li (10.1016/j.apcatb.2023.123271_bib157) 2017; 8
Hirakawa (10.1016/j.apcatb.2023.123271_bib30) 2016; 6
Zhang (10.1016/j.apcatb.2023.123271_bib68) 2023; 7
Kuhn (10.1016/j.apcatb.2023.123271_bib147) 2008; 47
References_xml – volume: 34
  start-page: 5232
  year: 2022
  end-page: 5240
  ident: bib46
  article-title: Constructing synergistic triazine and acetylene cores in fully conjugated covalent organic frameworks for cascade photocatalytic H
  publication-title: Chem. Mater.
– volume: 59
  start-page: 16209
  year: 2020
  end-page: 16217
  ident: bib100
  article-title: Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 12954
  year: 2022
  end-page: 12963
  ident: bib172
  article-title: Conjugated organic polymers with anthraquinone redox centers for efficient photocatalytic hydrogen peroxide production from water and oxygen under visible light irradiation without any additives
  publication-title: ACS Catal.
– volume: 282
  year: 2021
  ident: bib112
  article-title: Photoexcited single metal atom catalysts for heterogeneous photocatalytic H
  publication-title: Appl. Catal. B: Environ.
– volume: 12
  start-page: 3701
  year: 2021
  ident: bib47
  article-title: Mechanistic analysis of multiple processes controlling solardriven H2O2 synthesis using engineered polymeric carbon nitride
  publication-title: Nat. Commun.
– volume: 4
  start-page: 3751
  year: 2022
  end-page: 3761
  ident: bib143
  article-title: Aqueous synthesis of covalent organic frameworks as photocatalysts for hydrogen peroxide production
  publication-title: CCS Chem.
– volume: 7
  start-page: 7637
  year: 2017
  ident: bib20
  article-title: Active macromolecules of honey form colloidal particles essential for honey antibacterial activity and hydrogen peroxide production
  publication-title: Sci. Rep.
– volume: 10
  start-page: 14568
  year: 2022
  end-page: 14575
  ident: bib168
  article-title: A metal-free heptazine-porphyrin based porous polymeric network as an artificial leaf for carbon free solar fuels
  publication-title: J. Mater. Chem. A
– volume: 451
  year: 2023
  ident: bib153
  article-title: Carbon dots-modulated covalent triazine frameworks with exceptionally rapid hydrogen peroxide production in water
  publication-title: Chem. Eng. J.
– volume: 34
  start-page: 2110266
  year: 2022
  ident: bib151
  article-title: Polarization engineering of covalent triazine frameworks for highly efficient photosynthesis of hydrogen peroxide from molecular oxygen and water
  publication-title: Adv. Mater.
– volume: 86
  start-page: 159
  year: 2018
  end-page: 166
  ident: bib94
  article-title: The effect of embedding N vacancies into g-C
  publication-title: Diam. Relat. Mater.
– volume: 54
  start-page: 11204
  year: 2018
  end-page: 11207
  ident: bib14
  article-title: Hydrogen peroxide production via a redox reaction of N, N′-dimethyl-2,6-diaza-9,10-anthraquinonediium by addition of bisulfite
  publication-title: Chem. Commun.
– volume: 266
  year: 2020
  ident: bib60
  article-title: CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H
  publication-title: Appl. Catal. B: Environ.
– volume: 26
  start-page: 1450
  year: 2014
  end-page: 1455
  ident: bib161
  article-title: High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers
  publication-title: Adv. Mater.
– volume: 258
  year: 2019
  ident: bib42
  article-title: Ti
  publication-title: Appl. Catal. B: Environ.
– volume: 32
  start-page: 1907296
  year: 2020
  ident: bib40
  article-title: Recent advances in conjugated polymers for visible-light-driven water splitting
  publication-title: Adv. Mater.
– volume: 454
  year: 2023
  ident: bib164
  article-title: The construction of conjugated organic polymers containing phenanthrenequinone redox centers for visible-light-driven H
  publication-title: Chem. Eng. J.
– volume: 35
  year: 2020
  ident: bib8
  article-title: Recent progress of chemodynamic therapyinduced combination cancer therapy
  publication-title: Nano Today
– volume: 32
  start-page: 2111404
  year: 2022
  ident: bib32
  article-title: Semiconducting MOF@ZnS Heterostructures for photocatalytic hydrogen peroxide production: heterojunction coverage matters
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 3550
  year: 2022
  end-page: 3557
  ident: bib78
  article-title: Photoelectron transfer mediated by the interfacial electron effects for boosting visible-light-driven CO
  publication-title: ACS Catal.
– volume: 455
  year: 2023
  ident: bib129
  article-title: Enhanced pre-sensitization in metal-free covalent organic frameworks promoting hydrogen peroxide photosynthesis
  publication-title: Chem. Eng. J.
– volume: 32
  start-page: 1904433
  year: 2020
  ident: bib148
  article-title: Acetylene and diacetylene functionalized covalent triazine frameworks as metal-free photocatalysts for hydrogen peroxide production: A new two-electron water oxidation pathway
  publication-title: Adv. Mater.
– volume: 143
  start-page: 19287
  year: 2021
  end-page: 19293
  ident: bib170
  article-title: Linear conjugated polymers for solar-driven hydrogen peroxide production: The importance of catalyststability
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 720
  year: 2019
  end-page: 728
  ident: bib58
  article-title: Selective and efficient Gd-doped BiVO
  publication-title: ACS Energy Lett.
– volume: 59
  start-page: 16209
  year: 2020
  end-page: 16217
  ident: bib106
  article-title: Heteroatom dopants promote two-electron O
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 147
  year: 2018
  ident: bib110
  article-title: Enhancing light-driven production of hydrogen peroxide by anchoring Au onto C
  publication-title: Catalysts
– volume: 47
  start-page: 3450
  year: 2008
  end-page: 3453
  ident: bib147
  article-title: Porous, covalent triazine-based frameworks prepared by ionothermal synthesis
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 6478
  year: 2017
  end-page: 6485
  ident: bib86
  article-title: Mellitic triimide-doped carbon nitride as sunlight-driven photocatalysts for hydrogen peroxide production
  publication-title: ACS Sustain. Chem. Eng.
– volume: 8
  start-page: 2924
  year: 2022
  end-page: 2938
  ident: bib21
  article-title: Design of metal-organic framework catalysts for photocatalytic hydrogen peroxide production
  publication-title: Chem
– volume: 27
  start-page: 343
  year: 2018
  end-page: 350
  ident: bib116
  article-title: Energy-level dependent H
  publication-title: J. Energy Chem.
– volume: 12
  start-page: 4493
  year: 2019
  end-page: 4499
  ident: bib52
  article-title: A covalent triazine-based framework consisting of donor-acceptor dyads for visible-light-driven photocatalytic CO
  publication-title: ChemSusChem
– volume: 12
  start-page: 1939
  year: 2019
  end-page: 1948
  ident: bib76
  article-title: Promotive effect of bicarbonate ion on two-electron water oxidation to form H
  publication-title: ChemSusChem
– volume: 6
  start-page: 4976
  year: 2016
  end-page: 4982
  ident: bib30
  article-title: Au nanoparticles supported on BiVO
  publication-title: ACS Catal.
– volume: 224
  start-page: 725
  year: 2018
  end-page: 732
  ident: bib115
  article-title: Carbon nanotubes covalent combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production under visible light
  publication-title: Appl. Catal. B: Environ.
– volume: 119
  year: 2022
  ident: bib165
  article-title: Spontaneous exciton dissociation in organic photocatalyst under ambient conditions for highly efficient synthesis of hydrogen peroxide
  publication-title: PNAS
– volume: 53
  start-page: 13454
  year: 2014
  end-page: 13459
  ident: bib43
  article-title: Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 557
  year: 2023
  end-page: 563
  ident: bib66
  article-title: Photocatalysis of water into hydrogen peroxide over an atomic Ga-N
  publication-title: Nat. Synth.
– volume: 319
  year: 2007
  ident: bib1
  publication-title: The 100 Most Important Chemical Compounds
– volume: 357
  start-page: 51
  year: 2018
  end-page: 58
  ident: bib105
  article-title: Selective charge transfer to dioxygen on KPF6-modified carbon nitride for photocatalytic synthesis of H
  publication-title: J. Catal.
– volume: 11
  start-page: 2581
  year: 2018
  end-page: 2589
  ident: bib35
  article-title: Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 1432
  year: 2021
  end-page: 1461
  ident: bib9
  article-title: Selective hydrogen peroxide conversion tailored by surface
  publication-title: Interface, Device Eng., Joule
– volume: 47
  year: 2022
  ident: bib92
  article-title: AQ-coupled few-layered g-C
  publication-title: Int. J. Hydrog. Energy
– volume: 47
  start-page: 787
  year: 2008
  end-page: 792
  ident: bib6
  article-title: Development of an anthraquinone process for the production of hydrogen peroxide in a trickle bed reactor-From bench scale to industrial scale
  publication-title: Chem. Eng. Process.
– volume: 143
  start-page: 12590
  year: 2021
  end-page: 12599
  ident: bib24
  article-title: Polythiophene-doped resorcinol-formaldehyde resin photocatalysts for solar-to-hydrogen peroxide energy conversion
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 2200180
  year: 2022
  ident: bib67
  article-title: Surface modification of 2D photocatalysts for solar energy conversion
  publication-title: Adv. Mater.
– volume: 61
  year: 2022
  ident: bib139
  article-title: A crystalline partially fluorinated triazine covalent organic framework for efficient photosynthesis of hydrogen peroxide
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 2200113
  year: 2023
  ident: bib68
  article-title: C
  publication-title: Adv. Sustain. Syst.
– volume: 7
  start-page: 2886
  year: 2017
  end-page: 2895
  ident: bib104
  article-title: Eco-friendly photochemical production of H
  publication-title: ACS Catal.
– volume: 49
  start-page: 6605
  year: 2020
  end-page: 6631
  ident: bib26
  article-title: A comparative perspective of electrochemical and photochemical approaches for catalytic H
  publication-title: Chem. Soc. Rev.
– volume: 376
  start-page: 198
  year: 2019
  end-page: 208
  ident: bib75
  article-title: Photocatalytic production of H
  publication-title: J. Catal.
– volume: 16
  year: 2023
  ident: bib82
  article-title: Solar-to-H
  publication-title: ChemSusChem
– volume: 451
  year: 2023
  ident: bib7
  article-title: Photocatalytic H
  publication-title: Chem. Eng. J.
– volume: 198
  year: 2021
  ident: bib88
  article-title: Directing photocatalytic pathway to exceedingly high antibacterial activity in water by functionalizing holey ultrathin nanosheets of graphitic carbon nitride
  publication-title: Water Res
– volume: 8
  start-page: 2959
  year: 2017
  end-page: 2965
  ident: bib157
  article-title: Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors
  publication-title: Chem. Sci.
– volume: 117
  start-page: 6376
  year: 2020
  end-page: 6382
  ident: bib93
  article-title: Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H
  publication-title: PNAS
– volume: 466
  year: 2023
  ident: bib25
  article-title: Functionalized graphitic carbon nitride based catalysts in solar-to-chemical conversion for hydrogen peroxide production
  publication-title: Chem. Eng. J.
– volume: 14
  start-page: 4344
  year: 2023
  ident: bib141
  article-title: Covalent organic frameworks for direct photosynthesis of hydrogen peroxide from water, air and sunlight
  publication-title: Nat. Commun.
– volume: 32
  start-page: 2110694
  year: 2022
  ident: bib55
  article-title: Microenvironments enabled by covalent organic framework linkages for modulating active metal species in photocatalytic CO
  publication-title: Adv. Funct. Mater.
– volume: 117
  start-page: 11406
  year: 2017
  end-page: 11459
  ident: bib4
  article-title: Catalytic asymmetric oxygenations with the environmentally benign oxidants H
  publication-title: Chem. Rev.
– volume: 7
  start-page: 340
  year: 2022
  end-page: 351
  ident: bib44
  article-title: Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution
  publication-title: Nat. Energy
– volume: 5
  start-page: 2100184
  year: 2021
  ident: bib36
  article-title: Electronic tuning of covalent triazine framework nanoshells for highly efficient photocatalytic H
  publication-title: Adv. Sustain. Syst.
– volume: 31
  start-page: 2105731
  year: 2021
  ident: bib99
  article-title: Simultaneously tuning band structure and oxygen reduction pathway toward high-efficient photocatalytic hydrogen peroxide production using cyano-rich graphitic carbon nitride
  publication-title: Adv. Funct. Mater.
– volume: 268
  year: 2020
  ident: bib103
  article-title: Nano-layer based 1T-rich MoS
  publication-title: Appl. Catal. B: Environ.
– volume: 32
  start-page: 2111999
  year: 2022
  ident: bib71
  article-title: Steering unit cell dipole and internal electric field by highly dispersed Er atoms embedded into NiO for efficient CO
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 2002654
  year: 2020
  ident: bib48
  article-title: Covalent organic framework Hosting Metalloporphyrin-Based Carbon Dots for Visible-Light-Driven Selective CO
  publication-title: Adv. Funct. Mater.
– volume: 267
  year: 2020
  ident: bib113
  article-title: Ultrathin g-C
  publication-title: Appl. Catal. B: Environ.
– volume: 39
  start-page: 1090
  year: 2018
  end-page: 1098
  ident: bib95
  article-title: Preparation of N-vacancy-doped g-C
  publication-title: Chin. J. Catal.
– volume: 120
  start-page: 8814
  year: 2020
  end-page: 8933
  ident: bib121
  article-title: Covalent organic frameworks: design, synthesis, and functions
  publication-title: Chem. Rev.
– volume: 5
  start-page: 2100184
  year: 2021
  ident: bib149
  article-title: Electronic tuning of covalent triazine framework nanoshells for highly efficient photocatalytic H
  publication-title: Adv. Sustain. Syst.
– volume: 144
  start-page: 21328
  year: 2022
  end-page: 21336
  ident: bib128
  article-title: Piperazine-linked metalphthalocyanine frameworks for highly efficient visible-light-driven H
  publication-title: J. Am. Chem. Soc.
– volume: 274
  year: 2020
  ident: bib89
  article-title: Cooperatively modulating reactive oxygen species generation and bacteria-photocatalyst contact over graphitic carbon nitride by polyethylenimine for rapid water disinfection
  publication-title: Appl. Catal. B: Environ.
– volume: 334
  start-page: 410
  year: 2018
  end-page: 418
  ident: bib108
  article-title: Photocatalytic oxygen reduction to hydrogen peroxide over copper doped graphitic carbon nitride hollow microsphere: The effect of Cu(I)-N active sites
  publication-title: Chem. Eng. J.
– volume: 300
  year: 2022
  ident: bib79
  article-title: Band alignment of homojunction by anchoring CN quantum dots on g-C
  publication-title: Appl. Catal. B: Environ.
– volume: 139
  start-page: 118
  year: 2018
  end-page: 131
  ident: bib5
  article-title: Evaluation of advanced oxidation processes for water and wastewater treatment-A critical review
  publication-title: Water Res
– volume: 271
  year: 2020
  ident: bib49
  article-title: Bandgap engineering of polymetric carbon nitride copolymerized by 2,5,8-triamino-tri-striazine (melem) and barbituric acid for efficient nonsacrificial photocatalytic H
  publication-title: Appl. Catal. B: Environ.
– volume: 277
  year: 2020
  ident: bib107
  article-title: Modulation of lewis acidic-basic sites for efficient photocatalytic H
  publication-title: Appl. Catal. B: Environ.
– volume: 11
  start-page: 543
  year: 2020
  end-page: 550
  ident: bib156
  article-title: A stable covalent organic framework for photocatalytic carbon dioxide reduction
  publication-title: Chem. Sci.
– volume: 145
  start-page: 2975
  year: 2023
  end-page: 2984
  ident: bib123
  article-title: Integrating bifunctionality and chemical stability in covalent organic frameworks via one-pot multicomponent reactions for solar-driven H
  publication-title: J. Am. Chem. Soc.
– start-page: 7571
  year: 2023
  end-page: 7580
  ident: bib173
  article-title: Anthraquinone-based conjugated organic polymers containing dual oxidation centers for photocatalytic H
  publication-title: ACS Appl. Polym. Mater.5
– volume: 16
  start-page: 1135
  year: 2023
  end-page: 1145
  ident: bib62
  article-title: Highly efficient photocatalytic H
  publication-title: Energy Environ. Sci.
– volume: 2017
  start-page: 4797
  year: 2017
  end-page: 4802
  ident: bib111
  article-title: Visible‐light‐driven photocatalytic H
  publication-title: Eur. J. Inorg. Chem.
– volume: 58
  start-page: 5402
  year: 2019
  end-page: 5406
  ident: bib23
  article-title: Two-phase system utilizing hydrophobic metal-organic frameworks (MOFs) for photocatalytic synthesis of hydrogen peroxide
  publication-title: Angew. Chem. Int. Ed.
– volume: 23
  start-page: 1466
  year: 2021
  end-page: 1494
  ident: bib61
  article-title: Photoredox catalysis over semiconductors for light-driven hydrogen peroxide production
  publication-title: Green Chem.
– volume: 1
  start-page: 689
  year: 2017
  end-page: 738
  ident: bib10
  article-title: Production of liquid solar fuels and their use in fuel cells
  publication-title: Joule
– volume: 16
  start-page: 2177
  year: 2023
  end-page: 2184
  ident: bib74
  article-title: Introducing B-N unit boosts photocatalytic H
  publication-title: Nano Res
– volume: 5
  start-page: 664
  year: 2019
  end-page: 680
  ident: bib90
  article-title: Edge functionalized g-C
  publication-title: Chem
– volume: 9
  start-page: 2464
  year: 2022
  end-page: 2469
  ident: bib140
  article-title: Rational design of covalent organic frameworks for efficient photocatalytic hydrogen peroxide production
  publication-title: Environ. Sci.: Nano
– volume: 59
  start-page: 17356
  year: 2020
  end-page: 17376
  ident: bib27
  article-title: Production of hydrogen peroxide by photocatalytic processes
  publication-title: Angew. Chem. Int. Ed.
– volume: 258
  year: 2019
  ident: bib117
  article-title: Ti
  publication-title: Appl. Catal. B: Environ.
– volume: 406
  start-page: 227
  year: 2022
  end-page: 234
  ident: bib33
  article-title: Hollow double-shell stacked CdS@ZnIn
  publication-title: Catal. Today 405-
– volume: 27
  start-page: 1921
  year: 2015
  end-page: 1924
  ident: bib159
  article-title: Photocatalytic suzuki coupling reaction using conjugated microporous polymer with immobilized palladium nanoparticles under visible light
  publication-title: Chem. Mater.
– volume: 7
  start-page: 4023
  year: 2014
  end-page: 4028
  ident: bib29
  article-title: Solar production of H
  publication-title: Energy Environ. Sci.
– volume: 376
  start-page: 198
  year: 2019
  end-page: 208
  ident: bib31
  article-title: Photocatalytic production of H
  publication-title: J. Catal.
– volume: 62
  year: 2023
  ident: bib142
  article-title: Covalent organic frameworks containing dual O
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 1326
  year: 2019
  ident: bib146
  article-title: Development of covalent triazine frameworks as heterogeneous catalytic supports
  publication-title: Polymers
– volume: 4
  start-page: 774
  year: 2014
  end-page: 780
  ident: bib83
  article-title: Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C
  publication-title: ACS Catal.
– volume: 120
  start-page: 2171
  year: 2020
  end-page: 2214
  ident: bib154
  article-title: Advances in conjugated microporous polymers
  publication-title: Chem. Rev.
– volume: 61
  year: 2022
  ident: bib167
  article-title: Calcination-regulated microstructures of donor-acceptor polymers towards enhanced and stable photocatalytic H
  publication-title: Angew. Chem. Int. Ed.
– volume: 118
  year: 2021
  ident: bib171
  article-title: G. Ouyang. A solar-to-chemical conversion efficiency up to 0.26% achieved in ambient conditions
  publication-title: PNAS
– volume: 190
  start-page: 26
  year: 2016
  end-page: 35
  ident: bib97
  article-title: Effective photocatalytic H
  publication-title: Appl. Catal. B: Environ.
– volume: 46
  start-page: 21605
  year: 2022
  end-page: 21614
  ident: bib131
  article-title: Enhanced photocatalytic hydrogen peroxide production activity of imine-linked covalent organic frameworks via modification with functional groups
  publication-title: N. J. Chem.
– volume: 4
  start-page: 746
  year: 2019
  end-page: 760
  ident: bib39
  article-title: Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts
  publication-title: Nat. Energy
– volume: 9
  start-page: 2470
  year: 2016
  end-page: 2479
  ident: bib50
  article-title: Solar-driven H
  publication-title: ChemSusChem
– volume: 466
  year: 2023
  ident: bib127
  article-title: Keto-enamine-based covalent organic framework with controllable anthraquinone moieties for superior H
  publication-title: Chem. Eng. J.
– volume: 138
  start-page: 10019
  year: 2016
  end-page: 10025
  ident: bib119
  article-title: Carbon nitride-aromatic diimide-graphene nanohybrids: Metal free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 13454
  year: 2014
  end-page: 13459
  ident: bib85
  article-title: Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  year: 2022
  ident: bib160
  article-title: Upgraded heterogenization of homogeneous catalytic systems by hollow porous organic frameworks with hierarchical porous shell for efficient carbon dioxide conversion
  publication-title: Asian J. Org. Chem.
– volume: 15
  start-page: 830
  year: 2022
  end-page: 842
  ident: bib2
  article-title: Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 352
  year: 2019
  end-page: 357
  ident: bib57
  article-title: CaSnO
  publication-title: ACS Energy Lett.
– volume: 454
  year: 2023
  ident: bib130
  article-title: Three-dimensional covalent organic framework with tty topology for enhanced photocatalytic hydrogen peroxide production
  publication-title: Chem. Eng. J.
– volume: 46
  start-page: 28
  year: 2023
  end-page: 35
  ident: bib124
  article-title: A covalent organic framework inspired by C
  publication-title: Chin. J. Catal.
– volume: 8
  year: 2022
  ident: bib155
  article-title: Solvent-induced flower- and cudgel-shaped porous organic polymers: effective supports of palladium nanoparticles for dehalogenation in net water
  publication-title: ChemNanoMat
– volume: 54
  start-page: 2799
  year: 1999
  end-page: 2806
  ident: bib19
  article-title: Kinetic and catalytic aspects in the hydrogen peroxide production via anthraquinone
  publication-title: Chem. Eng. Sci.
– volume: 5
  start-page: 3058
  year: 2015
  end-page: 3066
  ident: bib70
  article-title: Effects of surface defects on photocatalytic H
  publication-title: ACS Catal.
– volume: 6
  start-page: 7021
  year: 2016
  end-page: 7029
  ident: bib45
  article-title: Graphitic carbon nitride doped with biphenyl diimide: efficient photocatalyst for hydrogen peroxide production from water and molecular oxygen by sunlight
  publication-title: ACS Catal.
– volume: 10
  start-page: 940
  year: 2019
  ident: bib101
  article-title: Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis
  publication-title: Nat. Commun.
– volume: 455
  year: 2023
  ident: bib22
  article-title: Sustainable H
  publication-title: Chem. Eng. J.
– volume: 139
  start-page: 165
  year: 2008
  end-page: 171
  ident: bib18
  article-title: Direct synthesis of hydrogen peroxide in a catalytic membrane contactor
  publication-title: Chem. Eng. J.
– volume: 142
  start-page: 20107
  year: 2020
  end-page: 20116
  ident: bib136
  article-title: Strongly reducing (diarylamino)benzene-based covalent organic framework for metal-free visible light photocatalytic H
  publication-title: J. Am. Chem. Soc.
– volume: 11
  year: 2023
  ident: bib53
  article-title: Triphenylamine-based covalent triazine framework @ carbon nanotube complex: efficient photogenerated charges migration for metal free photocatalytic Cr(VI) reduction
  publication-title: J. Environ. Chem. Eng.
– volume: 2
  start-page: 8737
  year: 2019
  end-page: 8746
  ident: bib72
  article-title: Carbon-supported oxygen vacancy-rich Co
  publication-title: ACS Appl. Energy Mater.
– volume: 7
  start-page: 7221
  year: 2019
  end-page: 7231
  ident: bib3
  article-title: Hollow titanosilicate nanospheres encapsulating PdAu alloy nanoparticles as reusable high-performance catalysts for H
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 2003323
  year: 2021
  ident: bib16
  article-title: Electrocatalytic oxygen reduction to hydrogen peroxide: from homogeneous to heterogeneous electrocatalysis
  publication-title: Adv. Energy Mater.
– volume: 62
  start-page: 823
  year: 2019
  end-page: 831
  ident: bib73
  article-title: Toward efficient photocatalytic pure water splitting for simultaneous H
  publication-title: Nano Energy
– volume: 229
  start-page: 121
  year: 2018
  end-page: 129
  ident: bib91
  article-title: Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride
  publication-title: Appl. Catal. B: Environ.
– volume: 62
  year: 2023
  ident: bib133
  article-title: Pyrene-based covalent organic frameworks for photocatalytic hydrogen peroxide production
  publication-title: Angew. Chem. Int. Ed.
– volume: 144
  start-page: 9902
  year: 2022
  end-page: 9909
  ident: bib135
  article-title: Accelerated synthesis and discovery of covalent organic framework photocatalysts for hydrogen peroxide production
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 1703142
  year: 2018
  ident: bib96
  article-title: Photoassisted construction of holey defective g-C
  publication-title: Small
– volume: 12
  start-page: 418
  year: 2019
  end-page: 426
  ident: bib54
  article-title: Dyadic promotion of photocatalytic aerobic oxidation via the Mott-Schottky effect enabled by nitrogen-doped carbon from imidazolium-based ionic polymer
  publication-title: Energy Environ. Sci.
– volume: 34
  start-page: 5232
  year: 2022
  end-page: 5240
  ident: bib137
  article-title: Constructing synergistic triazine and acetylene cores in fully conjugated covalent organic frameworks for cascade photocatalytic H
  publication-title: Chem. Mater.
– volume: 50
  start-page: 120
  year: 2021
  end-page: 242
  ident: bib120
  article-title: Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 3267
  year: 2021
  end-page: 3273
  ident: bib41
  article-title: Mesoporous resin nanobowls with optimized donor-acceptor conjugation for highly efficient photocatalytic hydrogen peroxide production
  publication-title: Nano Res.
– volume: 2
  start-page: 13422
  year: 2014
  end-page: 13430
  ident: bib163
  article-title: Gas uptake, molecular sensing and organocatalytic performances of a multifunctional carbazole-based conjugated microporous polymer
  publication-title: J. Mater. Chem. A
– volume: 334
  year: 2023
  ident: bib125
  article-title: A thioether-decorated triazine-based covalent organic framework towards overall H
  publication-title: Appl. Catal. B: Environ.
– volume: 6
  start-page: 2200755
  year: 2022
  ident: bib169
  article-title: Organic polymer dots based on star-shaped truxene-core polymers for photocatalytic H
  publication-title: Sol. RRL
– volume: 7
  start-page: 1700529
  year: 2017
  ident: bib64
  article-title: Recent progress in semiconductor based nanocomposite photocatalysts for solar-to-chemical energy conversion
  publication-title: Adv. Energy Mater.
– volume: 46
  start-page: 8574
  year: 2007
  end-page: 8578
  ident: bib158
  article-title: Conjugated microporous poly(aryleneethynylene) networks, Angew
  publication-title: Chem. Int. Ed.
– volume: 24
  start-page: 5016
  year: 2018
  ident: bib63
  article-title: Solar-driven production of hydrogen peroxide from water and dioxygen
  publication-title: Chem. -Eur. J.
– volume: 615
  start-page: 87
  year: 2022
  end-page: 94
  ident: bib69
  article-title: P-doped melon-carbon nitride for efficient photocatalytic H
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 5153
  year: 2019
  end-page: 5172
  ident: bib145
  article-title: Covalent triazine frameworks: synthesis and applications
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 18816
  year: 2020
  end-page: 18825
  ident: bib59
  article-title: Sacrificial agent-free photocatalytic H
  publication-title: J. Mater. Chem. A
– volume: 38
  year: 2023
  ident: bib77
  article-title: Abrasion behavior of TiO
  publication-title: Surf. Interfaces
– volume: 11
  start-page: 9530
  year: 2023
  end-page: 9537
  ident: bib28
  article-title: Photosynthesis of hydrogen peroxide from dioxygen and water using aluminium-based metal-organic framework assembled with porphyrin- and pyrene-based linkers
  publication-title: J. Mater. Chem. A
– volume: 31
  start-page: 1806314
  year: 2019
  ident: bib118
  article-title: Crafting mussel-inspired metal nanoparticle-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources
  publication-title: Adv. Mater.
– volume: 56
  start-page: 10905
  year: 2017
  end-page: 10910
  ident: bib114
  article-title: Carbon nitride aerogels for the photoredox conversion of water
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 2003077
  year: 2021
  ident: bib166
  article-title: Copolymer of phenylene and thiophene toward a visible-light-driven photocatalytic oxygen reduction to hydrogen peroxide
  publication-title: Adv. Sci.
– volume: 394
  start-page: 259
  year: 2021
  end-page: 265
  ident: bib12
  article-title: Promotional effect of surface plasmon resonance on direct formation of hydrogen peroxide from H
  publication-title: J. Catal.
– volume: 34
  start-page: 823
  year: 2011
  end-page: 830
  ident: bib17
  article-title: Kinetic model of gas-liquid-liquid reactive extraction for production of hydrogen peroxide
  publication-title: Chem. Eng. Technol.
– volume: 11
  start-page: 9547
  year: 2021
  end-page: 9560
  ident: bib37
  article-title: Classical polymers as highly tunable and designable heterogeneous photocatalysts
  publication-title: ACS Catal.
– volume: 34
  start-page: 2107480
  year: 2022
  ident: bib150
  article-title: Rational design of covalent heptazine frameworks with spatially separated redox centers for high-efficiency photocatalytic hydrogen peroxide production
  publication-title: Adv. Mater.
– volume: 34
  start-page: 4259
  year: 2022
  end-page: 4273
  ident: bib56
  article-title: Reaction pathways toward sustainable photosynthesis of hydrogen peroxide by polymer photocatalysts
  publication-title: Chem. Mater.
– volume: 5
  start-page: 2101
  year: 2014
  end-page: 2107
  ident: bib81
  article-title: g-C
  publication-title: J. Phys. Chem. Lett.
– volume: 25
  start-page: 3069
  year: 2023
  end-page: 3076
  ident: bib132
  article-title: Extending the π-conjugation system of covalent organic frameworks for more efficient photocatalytic H
  publication-title: Green. Chem.
– volume: 61
  year: 2022
  ident: bib138
  article-title: Molecularly engineered covalent organic frameworks for hydrogen peroxide photosynthesis
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 76
  year: 2009
  end-page: 82
  ident: bib80
  article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light
  publication-title: Nat. Mater.
– volume: 36
  year: 2022
  ident: bib152
  article-title: CsPbBr
  publication-title: Compos. Commun.
– volume: 43
  start-page: 166
  year: 2004
  end-page: 172
  ident: bib15
  article-title: Integrated process of H
  publication-title: Ind. Eng. Chem. Res.
– volume: 48
  start-page: 182
  year: 2019
  end-page: 189
  ident: bib102
  article-title: Fabrication of a full-spectrum-response Cu
  publication-title: Dalton Trans.
– volume: 1
  start-page: 156
  year: 2018
  end-page: 162
  ident: bib11
  article-title: High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials
  publication-title: Nat. Catal.
– volume: 10
  start-page: 14568
  year: 2022
  end-page: 14575
  ident: bib34
  article-title: A metal-free heptazine-porphyrin based porous polymeric network as an artificial leaf for carbon-free solar fuels
  publication-title: J. Mater. Chem. A
– volume: 62
  year: 2023
  ident: bib126
  article-title: Sulfone-modified covalent organic frameworks enabling efficient photocatalytic hydrogen peroxide generation via one-step two-electron O
  publication-title: Angew. Chem. Int. Ed.
– volume: 30
  start-page: 1705710
  year: 2018
  ident: bib162
  article-title: Efficient supercapacitor energy storage using conjugated microporous polymer networks synthesized from buchwald-hartwig coupling
  publication-title: Adv. Mater.
– volume: 62
  year: 2023
  ident: bib144
  article-title: Oxidation-reduction molecular junction covalent organic frameworks for full reaction photosynthesis of H
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 7021
  year: 2016
  end-page: 7029
  ident: bib84
  article-title: Graphitic carbon nitride doped with biphenyl diimide: efficient photocatalyst for hydrogen peroxide production from water and molecular oxygen by sunlight
  publication-title: ACS Catal.
– volume: 259
  year: 2019
  ident: bib109
  article-title: Surface modified C, O co-doped polymeric g-C3N4 as an efficient photocatalyst for visible light assisted CO
  publication-title: Appl. Catal. B: Environ.
– volume: 31
  start-page: 2008247
  year: 2021
  ident: bib51
  article-title: Rational design of metal oxide-based heterostructure for efficient photocatalytic and photoelectrochemical systems
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 14380
  year: 2020
  end-page: 14389
  ident: bib98
  article-title: Enhanced photocatalytic H
  publication-title: ACS Catal.
– volume: 17
  start-page: 2103224
  year: 2021
  ident: bib38
  article-title: Nanospatial charge modulation of monodispersed polymeric microsphere photocatalysts for exceptional hydrogen peroxide production
  publication-title: Small
– volume: 13
  start-page: 1034
  year: 2022
  ident: bib65
  article-title: Overall photosynthesis of H
  publication-title: Nat. Commun.
– volume: 9
  start-page: 40360
  year: 2017
  end-page: 40368
  ident: bib87
  article-title: Distorted carbon nitride structure with substituted benzene moieties for enhanced visible light photocatalytic activities
  publication-title: ACS Appl. Mater. Interfaces
– volume: 45
  start-page: 6962
  year: 2006
  end-page: 6984
  ident: bib13
  article-title: Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process
  publication-title: Angew. Chem. Int. Ed.
– volume: 310
  start-page: 1166
  year: 2005
  end-page: 1170
  ident: bib122
  article-title: Porous, crystalline, covalent organic frameworks
  publication-title: Science
– volume: 15
  start-page: 8066
  year: 2023
  end-page: 8075
  ident: bib134
  article-title: Weakly hydrophilic imine-linked covalent benzene-acetylene frameworks for photocatalytic H
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  start-page: 2103224
  year: 2021
  ident: 10.1016/j.apcatb.2023.123271_bib38
  article-title: Nanospatial charge modulation of monodispersed polymeric microsphere photocatalysts for exceptional hydrogen peroxide production
  publication-title: Small
  doi: 10.1002/smll.202103224
– volume: 16
  start-page: 1135
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib62
  article-title: Highly efficient photocatalytic H2O2 production in microdroplets: Accelerated charge separation and transfer at interfaces
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE03774B
– volume: 62
  start-page: 823
  year: 2019
  ident: 10.1016/j.apcatb.2023.123271_bib73
  article-title: Toward efficient photocatalytic pure water splitting for simultaneous H2 and H2O2 production
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.086
– volume: 12
  start-page: 4493
  year: 2019
  ident: 10.1016/j.apcatb.2023.123271_bib52
  article-title: A covalent triazine-based framework consisting of donor-acceptor dyads for visible-light-driven photocatalytic CO2 reduction
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201901997
– volume: 11
  start-page: 9530
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib28
  article-title: Photosynthesis of hydrogen peroxide from dioxygen and water using aluminium-based metal-organic framework assembled with porphyrin- and pyrene-based linkers
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D3TA01051A
– volume: 258
  year: 2019
  ident: 10.1016/j.apcatb.2023.123271_bib42
  article-title: Ti3C2 mxene/porous g-C3N4 interfacial schottky junction for boosting spatial charge separation in photocatalytic H2O2 production
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.117956
– volume: 62
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib133
  article-title: Pyrene-based covalent organic frameworks for photocatalytic hydrogen peroxide production
  publication-title: Angew. Chem. Int. Ed.
– volume: 455
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib22
  article-title: Sustainable H2O2 photosynthesis by sunlight and air
  publication-title: Chem. Eng. J.
– volume: 16
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib82
  article-title: Solar-to-H2O2 energy conversion by the photothermal effect of a polymeric photocatalyst via a two-channel pathway
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202300015
– volume: 9
  start-page: 2470
  year: 2016
  ident: 10.1016/j.apcatb.2023.123271_bib50
  article-title: Solar-driven H2O2 generation from H2O and O2 using earth-abundant mixed-metal oxide@carbon nitride photocatalysts
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600705
– volume: 2
  start-page: 557
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib66
  article-title: Photocatalysis of water into hydrogen peroxide over an atomic Ga-N5 site
  publication-title: Nat. Synth.
  doi: 10.1038/s44160-023-00272-z
– volume: 11
  start-page: 1326
  year: 2019
  ident: 10.1016/j.apcatb.2023.123271_bib146
  article-title: Development of covalent triazine frameworks as heterogeneous catalytic supports
  publication-title: Polymers
  doi: 10.3390/polym11081326
– volume: 59
  start-page: 16209
  year: 2020
  ident: 10.1016/j.apcatb.2023.123271_bib100
  article-title: Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202006747
– volume: 274
  year: 2020
  ident: 10.1016/j.apcatb.2023.123271_bib89
  article-title: Cooperatively modulating reactive oxygen species generation and bacteria-photocatalyst contact over graphitic carbon nitride by polyethylenimine for rapid water disinfection
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2020.119095
– volume: 310
  start-page: 1166
  year: 2005
  ident: 10.1016/j.apcatb.2023.123271_bib122
  article-title: Porous, crystalline, covalent organic frameworks
  publication-title: Science
  doi: 10.1126/science.1120411
– volume: 25
  start-page: 3069
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib132
  article-title: Extending the π-conjugation system of covalent organic frameworks for more efficient photocatalytic H2O2 production
  publication-title: Green. Chem.
  doi: 10.1039/D2GC04459E
– volume: 4
  start-page: 774
  year: 2014
  ident: 10.1016/j.apcatb.2023.123271_bib83
  article-title: Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light
  publication-title: ACS Catal.
  doi: 10.1021/cs401208c
– volume: 143
  start-page: 19287
  year: 2021
  ident: 10.1016/j.apcatb.2023.123271_bib170
  article-title: Linear conjugated polymers for solar-driven hydrogen peroxide production: The importance of catalyststability
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c09979
– volume: 357
  start-page: 51
  year: 2018
  ident: 10.1016/j.apcatb.2023.123271_bib105
  article-title: Selective charge transfer to dioxygen on KPF6-modified carbon nitride for photocatalytic synthesis of H2O2 under visible light
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2017.10.002
– volume: 145
  start-page: 2975
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib123
  article-title: Integrating bifunctionality and chemical stability in covalent organic frameworks via one-pot multicomponent reactions for solar-driven H2O2 production
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c11454
– volume: 229
  start-page: 121
  year: 2018
  ident: 10.1016/j.apcatb.2023.123271_bib91
  article-title: Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.01.060
– volume: 31
  start-page: 2008247
  year: 2021
  ident: 10.1016/j.apcatb.2023.123271_bib51
  article-title: Rational design of metal oxide-based heterostructure for efficient photocatalytic and photoelectrochemical systems
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202008247
– volume: 8
  start-page: 147
  year: 2018
  ident: 10.1016/j.apcatb.2023.123271_bib110
  article-title: Enhancing light-driven production of hydrogen peroxide by anchoring Au onto C3N4 catalysts
  publication-title: Catalysts
  doi: 10.3390/catal8040147
– volume: 8
  start-page: 18816
  year: 2020
  ident: 10.1016/j.apcatb.2023.123271_bib59
  article-title: Sacrificial agent-free photocatalytic H2O2 evolution via two-electron oxygen reduction using a ternary α-Fe2O3/CQD@g-C3N4 photocatalyst with broadspectrum response
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05753C
– volume: 12
  start-page: 12954
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib172
  article-title: Conjugated organic polymers with anthraquinone redox centers for efficient photocatalytic hydrogen peroxide production from water and oxygen under visible light irradiation without any additives
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c04085
– volume: 139
  start-page: 165
  year: 2008
  ident: 10.1016/j.apcatb.2023.123271_bib18
  article-title: Direct synthesis of hydrogen peroxide in a catalytic membrane contactor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2007.09.003
– volume: 56
  start-page: 10905
  year: 2017
  ident: 10.1016/j.apcatb.2023.123271_bib114
  article-title: Carbon nitride aerogels for the photoredox conversion of water
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201705926
– volume: 15
  start-page: 8066
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib134
  article-title: Weakly hydrophilic imine-linked covalent benzene-acetylene frameworks for photocatalytic H2O2 production in the two-phase system
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c20506
– volume: 10
  start-page: 940
  year: 2019
  ident: 10.1016/j.apcatb.2023.123271_bib101
  article-title: Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08731-y
– volume: 34
  start-page: 5232
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib137
  article-title: Constructing synergistic triazine and acetylene cores in fully conjugated covalent organic frameworks for cascade photocatalytic H2O2 production
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.2c00910
– volume: 1
  start-page: 689
  year: 2017
  ident: 10.1016/j.apcatb.2023.123271_bib10
  article-title: Production of liquid solar fuels and their use in fuel cells
  publication-title: Joule
  doi: 10.1016/j.joule.2017.07.007
– volume: 86
  start-page: 159
  year: 2018
  ident: 10.1016/j.apcatb.2023.123271_bib94
  article-title: The effect of embedding N vacancies into g-C3N4 on the photocatalytic H2O2 production ability via H2 plasma treatment
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2018.04.027
– volume: 5
  start-page: 1432
  year: 2021
  ident: 10.1016/j.apcatb.2023.123271_bib9
  article-title: Selective hydrogen peroxide conversion tailored by surface
  publication-title: Interface, Device Eng., Joule
– volume: 31
  start-page: 2105731
  year: 2021
  ident: 10.1016/j.apcatb.2023.123271_bib99
  article-title: Simultaneously tuning band structure and oxygen reduction pathway toward high-efficient photocatalytic hydrogen peroxide production using cyano-rich graphitic carbon nitride
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202105731
– volume: 5
  start-page: 2100184
  year: 2021
  ident: 10.1016/j.apcatb.2023.123271_bib36
  article-title: Electronic tuning of covalent triazine framework nanoshells for highly efficient photocatalytic H2O2 production
  publication-title: Adv. Sustain. Syst.
  doi: 10.1002/adsu.202100184
– volume: 12
  start-page: 418
  year: 2019
  ident: 10.1016/j.apcatb.2023.123271_bib54
  article-title: Dyadic promotion of photocatalytic aerobic oxidation via the Mott-Schottky effect enabled by nitrogen-doped carbon from imidazolium-based ionic polymer
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02727G
– volume: 143
  start-page: 12590
  year: 2021
  ident: 10.1016/j.apcatb.2023.123271_bib24
  article-title: Polythiophene-doped resorcinol-formaldehyde resin photocatalysts for solar-to-hydrogen peroxide energy conversion
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c04622
– volume: 7
  start-page: 2886
  year: 2017
  ident: 10.1016/j.apcatb.2023.123271_bib104
  article-title: Eco-friendly photochemical production of H2O2 through O2 reduction over carbon nitride frameworks incorporated with multiple heteroelements
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03334
– start-page: 7571
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib173
  article-title: Anthraquinone-based conjugated organic polymers containing dual oxidation centers for photocatalytic H2O2 production from H2O and O2 under visible-light irradiation
  publication-title: ACS Appl. Polym. Mater.5
  doi: 10.1021/acsapm.3c01455
– volume: 454
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib164
  article-title: The construction of conjugated organic polymers containing phenanthrenequinone redox centers for visible-light-driven H2O2 production from H2O and O2 without any additives
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139929
– volume: 26
  start-page: 1450
  year: 2014
  ident: 10.1016/j.apcatb.2023.123271_bib161
  article-title: High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304147
– volume: 15
  start-page: 830
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib2
  article-title: Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H2O2 evolution
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE02369A
– volume: 144
  start-page: 21328
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib128
  article-title: Piperazine-linked metalphthalocyanine frameworks for highly efficient visible-light-driven H2O2 photosynthesis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c09482
– volume: 455
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib129
  article-title: Enhanced pre-sensitization in metal-free covalent organic frameworks promoting hydrogen peroxide photosynthesis
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.140124
– volume: 34
  start-page: 2107480
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib150
  article-title: Rational design of covalent heptazine frameworks with spatially separated redox centers for high-efficiency photocatalytic hydrogen peroxide production
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107480
– volume: 394
  start-page: 259
  year: 2021
  ident: 10.1016/j.apcatb.2023.123271_bib12
  article-title: Promotional effect of surface plasmon resonance on direct formation of hydrogen peroxide from H2 and O2 over Pd/graphene-Au nanorod catalytic system
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2020.05.028
– volume: 49
  start-page: 6605
  year: 2020
  ident: 10.1016/j.apcatb.2023.123271_bib26
  article-title: A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00458H
– volume: 38
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib77
  article-title: Abrasion behavior of TiO2 catalyzing H2O2 to synergistically remove single crystal 6H-SiC under ultraviolet irradiation
  publication-title: Surf. Interfaces
– volume: 117
  start-page: 6376
  year: 2020
  ident: 10.1016/j.apcatb.2023.123271_bib93
  article-title: Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H2O2 production
  publication-title: PNAS
  doi: 10.1073/pnas.1913403117
– volume: 32
  start-page: 2111999
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib71
  article-title: Steering unit cell dipole and internal electric field by highly dispersed Er atoms embedded into NiO for efficient CO2 photoreduction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202111999
– volume: 376
  start-page: 198
  year: 2019
  ident: 10.1016/j.apcatb.2023.123271_bib31
  article-title: Photocatalytic production of H2O2 and its in situ utilization over atomic-scale Au modified MoS2 nanosheets
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2019.06.015
– volume: 6
  start-page: 7021
  year: 2016
  ident: 10.1016/j.apcatb.2023.123271_bib45
  article-title: Graphitic carbon nitride doped with biphenyl diimide: efficient photocatalyst for hydrogen peroxide production from water and molecular oxygen by sunlight
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02367
– volume: 258
  year: 2019
  ident: 10.1016/j.apcatb.2023.123271_bib117
  article-title: Ti3C2 Mxene/porous g-C3N4 interfacial schottky junction for boosting spatial charge separation in photocatalytic H2O2 production
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.117956
– volume: 62
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib126
  article-title: Sulfone-modified covalent organic frameworks enabling efficient photocatalytic hydrogen peroxide generation via one-step two-electron O2 reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202305355
– volume: 7
  start-page: 340
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib44
  article-title: Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution
  publication-title: Nat. Energy
  doi: 10.1038/s41560-022-00990-2
– volume: 35
  year: 2020
  ident: 10.1016/j.apcatb.2023.123271_bib8
  article-title: Recent progress of chemodynamic therapyinduced combination cancer therapy
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2020.100946
– volume: 24
  start-page: 5016
  year: 2018
  ident: 10.1016/j.apcatb.2023.123271_bib63
  article-title: Solar-driven production of hydrogen peroxide from water and dioxygen
  publication-title: Chem. -Eur. J.
  doi: 10.1002/chem.201704512
– volume: 271
  year: 2020
  ident: 10.1016/j.apcatb.2023.123271_bib49
  article-title: Bandgap engineering of polymetric carbon nitride copolymerized by 2,5,8-triamino-tri-striazine (melem) and barbituric acid for efficient nonsacrificial photocatalytic H2O2 production
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2020.118917
– volume: 10
  start-page: 14568
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib34
  article-title: A metal-free heptazine-porphyrin based porous polymeric network as an artificial leaf for carbon-free solar fuels
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA01646J
– volume: 7
  start-page: 1700529
  year: 2017
  ident: 10.1016/j.apcatb.2023.123271_bib64
  article-title: Recent progress in semiconductor based nanocomposite photocatalysts for solar-to-chemical energy conversion
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700529
– volume: 36
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib152
  article-title: CsPbBr3 quantum dots-decorated porous covalent triazine frameworks nanocomposites for enhanced solar-driven H2O2 production
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2022.101390
– volume: 451
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib153
  article-title: Carbon dots-modulated covalent triazine frameworks with exceptionally rapid hydrogen peroxide production in water
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139035
– volume: 53
  start-page: 13454
  year: 2014
  ident: 10.1016/j.apcatb.2023.123271_bib43
  article-title: Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201407938
– volume: 266
  year: 2020
  ident: 10.1016/j.apcatb.2023.123271_bib60
  article-title: CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2020.118602
– volume: 7
  start-page: 5153
  year: 2019
  ident: 10.1016/j.apcatb.2023.123271_bib145
  article-title: Covalent triazine frameworks: synthesis and applications
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA12442F
– volume: 34
  start-page: 5232
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib46
  article-title: Constructing synergistic triazine and acetylene cores in fully conjugated covalent organic frameworks for cascade photocatalytic H2O2 production
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.2c00910
– volume: 62
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib142
  article-title: Covalent organic frameworks containing dual O2 reduction centers for overall photosynthetic hydrogen peroxide production
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 2003323
  year: 2021
  ident: 10.1016/j.apcatb.2023.123271_bib16
  article-title: Electrocatalytic oxygen reduction to hydrogen peroxide: from homogeneous to heterogeneous electrocatalysis
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003323
– volume: 120
  start-page: 2171
  year: 2020
  ident: 10.1016/j.apcatb.2023.123271_bib154
  article-title: Advances in conjugated microporous polymers
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00399
– volume: 138
  start-page: 10019
  year: 2016
  ident: 10.1016/j.apcatb.2023.123271_bib119
  article-title: Carbon nitride-aromatic diimide-graphene nanohybrids: Metal free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05806
– volume: 27
  start-page: 1921
  year: 2015
  ident: 10.1016/j.apcatb.2023.123271_bib159
  article-title: Photocatalytic suzuki coupling reaction using conjugated microporous polymer with immobilized palladium nanoparticles under visible light
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00516
– volume: 139
  start-page: 118
  year: 2018
  ident: 10.1016/j.apcatb.2023.123271_bib5
  article-title: Evaluation of advanced oxidation processes for water and wastewater treatment-A critical review
  publication-title: Water Res
  doi: 10.1016/j.watres.2018.03.042
– volume: 59
  start-page: 16209
  year: 2020
  ident: 10.1016/j.apcatb.2023.123271_bib106
  article-title: Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202006747
– volume: 6
  start-page: 7021
  year: 2016
  ident: 10.1016/j.apcatb.2023.123271_bib84
  article-title: Graphitic carbon nitride doped with biphenyl diimide: efficient photocatalyst for hydrogen peroxide production from water and molecular oxygen by sunlight
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02367
– volume: 5
  start-page: 6478
  year: 2017
  ident: 10.1016/j.apcatb.2023.123271_bib86
  article-title: Mellitic triimide-doped carbon nitride as sunlight-driven photocatalysts for hydrogen peroxide production
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00575
– volume: 6
  start-page: 2200755
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib169
  article-title: Organic polymer dots based on star-shaped truxene-core polymers for photocatalytic H2O2 production
  publication-title: Sol. RRL
  doi: 10.1002/solr.202200755
– volume: 2
  start-page: 8737
  year: 2019
  ident: 10.1016/j.apcatb.2023.123271_bib72
  article-title: Carbon-supported oxygen vacancy-rich Co3O4 for robust photocatalytic H2O2 production via coupled water oxidation and oxygen reduction reaction
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b01712
– volume: 4
  start-page: 352
  year: 2019
  ident: 10.1016/j.apcatb.2023.123271_bib57
  article-title: CaSnO3: an electrocatalyst for two-electron water oxidation reaction to form H2O2
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b02303
– volume: 47
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib92
  article-title: AQ-coupled few-layered g-C3N4 nanoplates obtained by one-step mechanochemical treatment for efficient visible-light photocatalytic H2O2 production
  publication-title: Int. J. Hydrog. Energy
– volume: 61
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib139
  article-title: A crystalline partially fluorinated triazine covalent organic framework for efficient photosynthesis of hydrogen peroxide
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  start-page: 1034
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib65
  article-title: Overall photosynthesis of H2O2 by an inorganic semiconductor
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28686-x
– volume: 198
  year: 2021
  ident: 10.1016/j.apcatb.2023.123271_bib88
  article-title: Directing photocatalytic pathway to exceedingly high antibacterial activity in water by functionalizing holey ultrathin nanosheets of graphitic carbon nitride
  publication-title: Water Res
  doi: 10.1016/j.watres.2021.117125
– volume: 12
  start-page: 1939
  year: 2019
  ident: 10.1016/j.apcatb.2023.123271_bib76
  article-title: Promotive effect of bicarbonate ion on two-electron water oxidation to form H2O2 catalyzed by aluminum porphyrins
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201900560
– volume: 2
  start-page: 13422
  year: 2014
  ident: 10.1016/j.apcatb.2023.123271_bib163
  article-title: Gas uptake, molecular sensing and organocatalytic performances of a multifunctional carbazole-based conjugated microporous polymer
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01871K
– volume: 1
  start-page: 156
  year: 2018
  ident: 10.1016/j.apcatb.2023.123271_bib11
  article-title: High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0017-x
– volume: 5
  start-page: 2100184
  year: 2021
  ident: 10.1016/j.apcatb.2023.123271_bib149
  article-title: Electronic tuning of covalent triazine framework nanoshells for highly efficient photocatalytic H2O2 production
  publication-title: Adv. Sustain. Syst.
  doi: 10.1002/adsu.202100184
– volume: 46
  start-page: 21605
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib131
  article-title: Enhanced photocatalytic hydrogen peroxide production activity of imine-linked covalent organic frameworks via modification with functional groups
  publication-title: N. J. Chem.
  doi: 10.1039/D2NJ03744K
– volume: 2017
  start-page: 4797
  year: 2017
  ident: 10.1016/j.apcatb.2023.123271_bib111
  article-title: Visible‐light‐driven photocatalytic H2O2 production on g‐C3N4 loaded with CoP as a noble metal free cocatalyst
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201700930
– volume: 8
  start-page: 76
  year: 2009
  ident: 10.1016/j.apcatb.2023.123271_bib80
  article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2317
– volume: 118
  year: 2021
  ident: 10.1016/j.apcatb.2023.123271_bib171
  article-title: G. Ouyang. A solar-to-chemical conversion efficiency up to 0.26% achieved in ambient conditions
  publication-title: PNAS
  doi: 10.1073/pnas.2115666118
– volume: 58
  start-page: 5402
  year: 2019
  ident: 10.1016/j.apcatb.2023.123271_bib23
  article-title: Two-phase system utilizing hydrophobic metal-organic frameworks (MOFs) for photocatalytic synthesis of hydrogen peroxide
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201901961
– volume: 615
  start-page: 87
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib69
  article-title: P-doped melon-carbon nitride for efficient photocatalytic H2O2 production
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.01.107
– volume: 23
  start-page: 1466
  year: 2021
  ident: 10.1016/j.apcatb.2023.123271_bib61
  article-title: Photoredox catalysis over semiconductors for light-driven hydrogen peroxide production
  publication-title: Green Chem.
  doi: 10.1039/D0GC04236F
– volume: 376
  start-page: 198
  year: 2019
  ident: 10.1016/j.apcatb.2023.123271_bib75
  article-title: Photocatalytic production of H2O2 and its in situ utilization over atomic-scale Au modified MoS2 nanosheets
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2019.06.015
– volume: 9
  start-page: 40360
  year: 2017
  ident: 10.1016/j.apcatb.2023.123271_bib87
  article-title: Distorted carbon nitride structure with substituted benzene moieties for enhanced visible light photocatalytic activities
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14191
– volume: 32
  start-page: 2111404
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib32
  article-title: Semiconducting MOF@ZnS Heterostructures for photocatalytic hydrogen peroxide production: heterojunction coverage matters
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202111404
– volume: 61
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib167
  article-title: Calcination-regulated microstructures of donor-acceptor polymers towards enhanced and stable photocatalytic H2O2 production in pure water
  publication-title: Angew. Chem. Int. Ed.
– volume: 47
  start-page: 787
  year: 2008
  ident: 10.1016/j.apcatb.2023.123271_bib6
  article-title: Development of an anthraquinone process for the production of hydrogen peroxide in a trickle bed reactor-From bench scale to industrial scale
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2006.12.012
– volume: 12
  start-page: 3701
  year: 2021
  ident: 10.1016/j.apcatb.2023.123271_bib47
  article-title: Mechanistic analysis of multiple processes controlling solardriven H2O2 synthesis using engineered polymeric carbon nitride
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24048-1
– volume: 4
  start-page: 3751
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib143
  article-title: Aqueous synthesis of covalent organic frameworks as photocatalysts for hydrogen peroxide production
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.022.202101578
– volume: 224
  start-page: 725
  year: 2018
  ident: 10.1016/j.apcatb.2023.123271_bib115
  article-title: Carbon nanotubes covalent combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production under visible light
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.11.005
– volume: 4
  start-page: 746
  year: 2019
  ident: 10.1016/j.apcatb.2023.123271_bib39
  article-title: Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0456-5
– volume: 334
  start-page: 410
  year: 2018
  ident: 10.1016/j.apcatb.2023.123271_bib108
  article-title: Photocatalytic oxygen reduction to hydrogen peroxide over copper doped graphitic carbon nitride hollow microsphere: The effect of Cu(I)-N active sites
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.016
– volume: 32
  start-page: 1904433
  year: 2020
  ident: 10.1016/j.apcatb.2023.123271_bib148
  article-title: Acetylene and diacetylene functionalized covalent triazine frameworks as metal-free photocatalysts for hydrogen peroxide production: A new two-electron water oxidation pathway
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904433
– volume: 7
  start-page: 7221
  year: 2019
  ident: 10.1016/j.apcatb.2023.123271_bib3
  article-title: Hollow titanosilicate nanospheres encapsulating PdAu alloy nanoparticles as reusable high-performance catalysts for H2O2-mediatedone-pot oxidation reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01481K
– volume: 34
  start-page: 2110266
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib151
  article-title: Polarization engineering of covalent triazine frameworks for highly efficient photosynthesis of hydrogen peroxide from molecular oxygen and water
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202110266
– volume: 8
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib155
  article-title: Solvent-induced flower- and cudgel-shaped porous organic polymers: effective supports of palladium nanoparticles for dehalogenation in net water
  publication-title: ChemNanoMat
  doi: 10.1002/cnma.202100484
– volume: 5
  start-page: 664
  year: 2019
  ident: 10.1016/j.apcatb.2023.123271_bib90
  article-title: Edge functionalized g-C3N4 nanosheets as a highly efficient metal-free photocatalyst for safe drinking water
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.12.009
– volume: 46
  start-page: 28
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib124
  article-title: A covalent organic framework inspired by C3N4 for photosynthesis of hydrogen peroxide with high quantum efficiency
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(22)64205-0
– volume: 7
  start-page: 2200113
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib68
  article-title: C3N4/PDA S-scheme heterojunction with enhanced photocatalytic H2O2 production performance and its mechanism
  publication-title: Adv. Sustain. Syst.
  doi: 10.1002/adsu.202200113
– volume: 144
  start-page: 9902
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib135
  article-title: Accelerated synthesis and discovery of covalent organic framework photocatalysts for hydrogen peroxide production
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c02666
– volume: 454
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib130
  article-title: Three-dimensional covalent organic framework with tty topology for enhanced photocatalytic hydrogen peroxide production
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.140121
– volume: 117
  start-page: 11406
  year: 2017
  ident: 10.1016/j.apcatb.2023.123271_bib4
  article-title: Catalytic asymmetric oxygenations with the environmentally benign oxidants H2O2 and O2
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00167
– volume: 14
  start-page: 1703142
  year: 2018
  ident: 10.1016/j.apcatb.2023.123271_bib96
  article-title: Photoassisted construction of holey defective g-C3N4 photocatalysts for efficient visible-light-driven H2O2 production
  publication-title: Small
  doi: 10.1002/smll.201703142
– volume: 4
  start-page: 720
  year: 2019
  ident: 10.1016/j.apcatb.2023.123271_bib58
  article-title: Selective and efficient Gd-doped BiVO4 photoanode for two-electron water oxidation to H2O2
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00277
– volume: 11
  start-page: 9547
  year: 2021
  ident: 10.1016/j.apcatb.2023.123271_bib37
  article-title: Classical polymers as highly tunable and designable heterogeneous photocatalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c02056
– volume: 11
  start-page: 2581
  year: 2018
  ident: 10.1016/j.apcatb.2023.123271_bib35
  article-title: Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01316K
– volume: 59
  start-page: 17356
  year: 2020
  ident: 10.1016/j.apcatb.2023.123271_bib27
  article-title: Production of hydrogen peroxide by photocatalytic processes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201911609
– volume: 11
  start-page: 543
  year: 2020
  ident: 10.1016/j.apcatb.2023.123271_bib156
  article-title: A stable covalent organic framework for photocatalytic carbon dioxide reduction
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC03800K
– volume: 27
  start-page: 343
  year: 2018
  ident: 10.1016/j.apcatb.2023.123271_bib116
  article-title: Energy-level dependent H2O2 production on metal-free, carbon-content tunable carbon nitride photocatalysts
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2017.12.014
– volume: 43
  start-page: 166
  year: 2004
  ident: 10.1016/j.apcatb.2023.123271_bib15
  article-title: Integrated process of H2O2 generation through anthraquinone hydrogenation-oxidation cycles and the ammoximation of cyclohexanone
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie030578s
– volume: 190
  start-page: 26
  year: 2016
  ident: 10.1016/j.apcatb.2023.123271_bib97
  article-title: Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2016.03.004
– volume: 259
  year: 2019
  ident: 10.1016/j.apcatb.2023.123271_bib109
  article-title: Surface modified C, O co-doped polymeric g-C3N4 as an efficient photocatalyst for visible light assisted CO2 reduction and H2O2 production
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.118054
– volume: 50
  start-page: 120
  year: 2021
  ident: 10.1016/j.apcatb.2023.123271_bib120
  article-title: Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00620C
– volume: 11
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib160
  article-title: Upgraded heterogenization of homogeneous catalytic systems by hollow porous organic frameworks with hierarchical porous shell for efficient carbon dioxide conversion
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.202100727
– volume: 39
  start-page: 1090
  year: 2018
  ident: 10.1016/j.apcatb.2023.123271_bib95
  article-title: Preparation of N-vacancy-doped g-C3N4 with outstanding photocatalytic H2O2 production ability by dielectric barrier discharge plasma treatment
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(18)63046-3
– volume: 5
  start-page: 2101
  year: 2014
  ident: 10.1016/j.apcatb.2023.123271_bib81
  article-title: g-C3N4-based photocatalysts for hydrogen generation
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz500546b
– volume: 268
  year: 2020
  ident: 10.1016/j.apcatb.2023.123271_bib103
  article-title: Nano-layer based 1T-rich MoS2/g-C3N4 co-catalyst system for enhanced photocatalytic and photoelectrochemical activity
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.118466
– volume: 5
  start-page: 3058
  year: 2015
  ident: 10.1016/j.apcatb.2023.123271_bib70
  article-title: Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00408
– volume: 30
  start-page: 2002654
  year: 2020
  ident: 10.1016/j.apcatb.2023.123271_bib48
  article-title: Covalent organic framework Hosting Metalloporphyrin-Based Carbon Dots for Visible-Light-Driven Selective CO2 Reduction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202002654
– volume: 142
  start-page: 20107
  year: 2020
  ident: 10.1016/j.apcatb.2023.123271_bib136
  article-title: Strongly reducing (diarylamino)benzene-based covalent organic framework for metal-free visible light photocatalytic H2O2 generation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c09684
– volume: 54
  start-page: 11204
  year: 2018
  ident: 10.1016/j.apcatb.2023.123271_bib14
  article-title: Hydrogen peroxide production via a redox reaction of N, N′-dimethyl-2,6-diaza-9,10-anthraquinonediium by addition of bisulfite
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC05548C
– volume: 47
  start-page: 3450
  year: 2008
  ident: 10.1016/j.apcatb.2023.123271_bib147
  article-title: Porous, covalent triazine-based frameworks prepared by ionothermal synthesis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200705710
– volume: 466
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib25
  article-title: Functionalized graphitic carbon nitride based catalysts in solar-to-chemical conversion for hydrogen peroxide production
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.142931
– volume: 32
  start-page: 1907296
  year: 2020
  ident: 10.1016/j.apcatb.2023.123271_bib40
  article-title: Recent advances in conjugated polymers for visible-light-driven water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907296
– volume: 120
  start-page: 8814
  year: 2020
  ident: 10.1016/j.apcatb.2023.123271_bib121
  article-title: Covalent organic frameworks: design, synthesis, and functions
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00550
– volume: 32
  start-page: 2110694
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib55
  article-title: Microenvironments enabled by covalent organic framework linkages for modulating active metal species in photocatalytic CO2 reduction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202110694
– volume: 53
  start-page: 13454
  year: 2014
  ident: 10.1016/j.apcatb.2023.123271_bib85
  article-title: Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201407938
– volume: 11
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib53
  article-title: Triphenylamine-based covalent triazine framework @ carbon nanotube complex: efficient photogenerated charges migration for metal free photocatalytic Cr(VI) reduction
  publication-title: J. Environ. Chem. Eng.
– volume: 48
  start-page: 182
  year: 2019
  ident: 10.1016/j.apcatb.2023.123271_bib102
  article-title: Fabrication of a full-spectrum-response Cu2(OH)2CO3/g-C3N4 heterojunction catalyst with outstanding photocatalytic H2O2 production performance via a self-sacrificial method
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT04081H
– volume: 8
  start-page: 2003077
  year: 2021
  ident: 10.1016/j.apcatb.2023.123271_bib166
  article-title: Copolymer of phenylene and thiophene toward a visible-light-driven photocatalytic oxygen reduction to hydrogen peroxide
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202003077
– volume: 334
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib125
  article-title: A thioether-decorated triazine-based covalent organic framework towards overall H2O2 photosynthesis without sacrificial agents
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2023.122862
– volume: 16
  start-page: 2177
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib74
  article-title: Introducing B-N unit boosts photocatalytic H2O2 production on metal-free g-C3N4 nanosheets
  publication-title: Nano Res
  doi: 10.1007/s12274-022-4976-0
– volume: 267
  year: 2020
  ident: 10.1016/j.apcatb.2023.123271_bib113
  article-title: Ultrathin g-C3N4 nanosheet with hierarchical pores and desirable energy band for highly efficient H2O2 production
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.118396
– volume: 61
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib138
  article-title: Molecularly engineered covalent organic frameworks for hydrogen peroxide photosynthesis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202200413
– volume: 31
  start-page: 1806314
  year: 2019
  ident: 10.1016/j.apcatb.2023.123271_bib118
  article-title: Crafting mussel-inspired metal nanoparticle-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806314
– volume: 34
  start-page: 823
  year: 2011
  ident: 10.1016/j.apcatb.2023.123271_bib17
  article-title: Kinetic model of gas-liquid-liquid reactive extraction for production of hydrogen peroxide
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201000094
– volume: 6
  start-page: 4976
  year: 2016
  ident: 10.1016/j.apcatb.2023.123271_bib30
  article-title: Au nanoparticles supported on BiVO4: Effective inorganic photocatalysts for H2O2 production from water and O2 under visible light
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01187
– volume: 14
  start-page: 3267
  year: 2021
  ident: 10.1016/j.apcatb.2023.123271_bib41
  article-title: Mesoporous resin nanobowls with optimized donor-acceptor conjugation for highly efficient photocatalytic hydrogen peroxide production
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3517-6
– volume: 34
  start-page: 4259
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib56
  article-title: Reaction pathways toward sustainable photosynthesis of hydrogen peroxide by polymer photocatalysts
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.2c00936
– volume: 14
  start-page: 4344
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib141
  article-title: Covalent organic frameworks for direct photosynthesis of hydrogen peroxide from water, air and sunlight
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-40007-4
– volume: 277
  year: 2020
  ident: 10.1016/j.apcatb.2023.123271_bib107
  article-title: Modulation of lewis acidic-basic sites for efficient photocatalytic H2O2 production over potassium intercalated tri-s-triazine materials
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2020.119225
– volume: 62
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib144
  article-title: Oxidation-reduction molecular junction covalent organic frameworks for full reaction photosynthesis of H2O2
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 4023
  year: 2014
  ident: 10.1016/j.apcatb.2023.123271_bib29
  article-title: Solar production of H2O2 on reduced graphene oxide-TiO2 hybrid photocatalysts consisting of earth-abundant elements only
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02757D
– volume: 282
  year: 2021
  ident: 10.1016/j.apcatb.2023.123271_bib112
  article-title: Photoexcited single metal atom catalysts for heterogeneous photocatalytic H2O2 production: Pragmatic guidelines for predicting charge separation
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2020.119589
– volume: 54
  start-page: 2799
  year: 1999
  ident: 10.1016/j.apcatb.2023.123271_bib19
  article-title: Kinetic and catalytic aspects in the hydrogen peroxide production via anthraquinone
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(98)00377-7
– volume: 34
  start-page: 2200180
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib67
  article-title: Surface modification of 2D photocatalysts for solar energy conversion
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202200180
– volume: 46
  start-page: 8574
  year: 2007
  ident: 10.1016/j.apcatb.2023.123271_bib158
  article-title: Conjugated microporous poly(aryleneethynylene) networks, Angew
  publication-title: Chem. Int. Ed.
  doi: 10.1002/anie.200701595
– volume: 7
  start-page: 7637
  year: 2017
  ident: 10.1016/j.apcatb.2023.123271_bib20
  article-title: Active macromolecules of honey form colloidal particles essential for honey antibacterial activity and hydrogen peroxide production
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-08072-0
– volume: 10
  start-page: 14380
  year: 2020
  ident: 10.1016/j.apcatb.2023.123271_bib98
  article-title: Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03359
– volume: 9
  start-page: 2464
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib140
  article-title: Rational design of covalent organic frameworks for efficient photocatalytic hydrogen peroxide production
  publication-title: Environ. Sci.: Nano
– volume: 8
  start-page: 2959
  year: 2017
  ident: 10.1016/j.apcatb.2023.123271_bib157
  article-title: Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC05532J
– volume: 30
  start-page: 1705710
  year: 2018
  ident: 10.1016/j.apcatb.2023.123271_bib162
  article-title: Efficient supercapacitor energy storage using conjugated microporous polymer networks synthesized from buchwald-hartwig coupling
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705710
– volume: 45
  start-page: 6962
  year: 2006
  ident: 10.1016/j.apcatb.2023.123271_bib13
  article-title: Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200503779
– volume: 319
  year: 2007
  ident: 10.1016/j.apcatb.2023.123271_bib1
– volume: 12
  start-page: 3550
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib78
  article-title: Photoelectron transfer mediated by the interfacial electron effects for boosting visible-light-driven CO2 reduction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c05449
– volume: 8
  start-page: 2924
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib21
  article-title: Design of metal-organic framework catalysts for photocatalytic hydrogen peroxide production
  publication-title: Chem
  doi: 10.1016/j.chempr.2022.10.007
– volume: 406
  start-page: 227
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib33
  article-title: Hollow double-shell stacked CdS@ZnIn2S4 photocatalyst incorporating spatially separated dual cocatalysts for the enhanced photocatalytic hydrogen evolution and hydrogen peroxide production
  publication-title: Catal. Today 405-
  doi: 10.1016/j.cattod.2022.05.020
– volume: 119
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib165
  article-title: Spontaneous exciton dissociation in organic photocatalyst under ambient conditions for highly efficient synthesis of hydrogen peroxide
  publication-title: PNAS
  doi: 10.1073/pnas.2202913119
– volume: 10
  start-page: 14568
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib168
  article-title: A metal-free heptazine-porphyrin based porous polymeric network as an artificial leaf for carbon free solar fuels
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA01646J
– volume: 451
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib7
  article-title: Photocatalytic H2O2 production Systems: Design strategies and environmental applications
  publication-title: Chem. Eng. J.
– volume: 300
  year: 2022
  ident: 10.1016/j.apcatb.2023.123271_bib79
  article-title: Band alignment of homojunction by anchoring CN quantum dots on g-C3N4 (0D/2D) enhance photocatalytic hydrogen peroxide evolution
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2021.120736
– volume: 466
  year: 2023
  ident: 10.1016/j.apcatb.2023.123271_bib127
  article-title: Keto-enamine-based covalent organic framework with controllable anthraquinone moieties for superior H2O2 photosynthesis from O2 and water
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.143085
SSID ssj0002328
Score 2.6685636
SecondaryResourceType review_article
Snippet The photocatalytic H2O2 production from H2O and O2 over organic polymers is a promising approach to achieve solar-to-chemical energy conversion. The continuous...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 123271
SubjectTerms Heterogeneous catalysis
Hydrogen peroxide
Metal-free photocatalysts
Photocatalysis
Visible light
Title The photocatalytic H2O2 production by metal-free photocatalysts under visible-light irradiation
URI https://dx.doi.org/10.1016/j.apcatb.2023.123271
Volume 341
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QPKgHoygRX9mD10K7u-3CkRBI1YgHMeHW7LbbiEFoSj1w8bc724dAYjTx2HamaXZmZ75p5psFuI16nOsQixzhSCxQHKZxS4W43e1e7EXCU1wZ7vDj2PNf-P3UndZgUHFhTFtlGfuLmJ5H6_JOp1zNTjKbdZ7tHvUYEwxBNCa9nLzOuTBe3v7ctHkgYsijMQpbRrqiz-U9XjIJZaba5gjxtsEWwvk5PW2lnNExHJVYkfSLzzmBml40YH9QHdHWgMOtaYINaA43pDVUK3ft6hQC9AWSvC6zZf6zZo2vIz59oiQpxr2iaYhak3eND6041TvCq2xFDNEsJYaGrubampt6nszS1Iw1MMpnMBkNJwPfKg9WsEKsEDJLSukIxHK2G9OYedqWtpaS4hrpmKku14bR63a7aD6m45AyhbDRjswkZozTkjWhvlgu9DkQRBNK8pBq1VVcxlrGwlEI8aT2IsojtwWsWs4gLIeOm7Mv5kHVXfYWFEYIjBGCwggtsL61kmLoxh_yorJUsOM8AeaFXzUv_q15CQd4xYsG7iuoZ-mHvkZ8kqmb3AFvYK9_9-CPvwCrlebF
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QOKAHoygRn3vwWmi72xaOhECKPDyICbfNbruNGISm1AP_3lnaoiRGE6_dnabZmZ35pplvBuAh7DCmAkxyPEtggmJRhVcqwOtudiI39FzJpOYOT6au_8Ie5868BL2CC6PLKnPfn_n0nbfOn7Ty02zFi0Xr2ezYLqUeRRCNQU-T1yu6O5VThkp3OPKne4eMoGHnkHG_oQUKBt2uzEvEgUhlU08Rb2p44Vk_R6hvUWdwCic5XCTd7IvOoKRWNaj2iiltNTj-1lCwBvX-F28NxfKLuzkHjuZA4td1ut79r9ni64hvP9kkzjq-onaI3JJ3hYtGlKiDzZt0QzTXLCGaiS6XyljqlJ4skkR3NtDCFzAb9Gc938hnKxgBJgmpIYSwPIRzphPZEXWVKUwlhI1npCIq20xpUq_TbqMGqYoCm0pEjmaomzGjqxa0DuXVeqUugSCgkIIFtpJtyUSkRORZElGeUG5os9BpAC2Okwd533E9_mLJiwKzN54pgWsl8EwJDTD2UnHWd-OP_V6hKX5gPxxDw6-SV_-WvIeqP5uM-Xg4HV3DEa6wrJ77Bspp8qFuEa6k8i43x0-Vc-l2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+photocatalytic+H2O2+production+by+metal-free+photocatalysts+under+visible-light+irradiation&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Xu%2C+Xiahong&rft.au=Sui%2C+Yan&rft.au=Chen%2C+Wentong&rft.au=Huang%2C+Wei&rft.date=2024-02-01&rft.issn=0926-3373&rft.volume=341&rft.spage=123271&rft_id=info:doi/10.1016%2Fj.apcatb.2023.123271&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2023_123271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon