The photocatalytic H2O2 production by metal-free photocatalysts under visible-light irradiation
The photocatalytic H2O2 production from H2O and O2 over organic polymers is a promising approach to achieve solar-to-chemical energy conversion. The continuous efforts have led to rapid development of various metal-free-based photocatalysts for specific H2O2 production, but generalizations and summa...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 341; p. 123271 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The photocatalytic H2O2 production from H2O and O2 over organic polymers is a promising approach to achieve solar-to-chemical energy conversion. The continuous efforts have led to rapid development of various metal-free-based photocatalysts for specific H2O2 production, but generalizations and summarization are obviously inadequate. This review mainly focuses on the state-of-the-art development process of metal-free-based photocatalysts for photocatalytic H2O2 production via combining O2 reduction and H2O oxidation reactions under visible light irradiation. The representative research work on photocatalytic H2O2 production by various metal-free-based photocatalytic systems, including graphite carbon nitride (g-C3N4), covalent organic frameworks (COFs), covalent triazine frameworks (CTFs) and covalent organic polymers (COPs) was highlighted. The strategies for structure and property optimization of metal-free-based photocatalysts at molecular-level have been proposed for improving the photocatalytic performance. The challenges and future directions have also been provided to guide the design and synthesis of metal-free-based photocatalytic system.
[Display omitted]
•The state-of-the-art development of photocatalytic H2O2 production by metal-free photocatalysts was summarized.•Successful strategies to maximize the catalytic performance were assessed.•Representative research works on photocatalytic H2O2 production was highlighted.•Challenges and future directions discussed in the end. |
---|---|
AbstractList | The photocatalytic H2O2 production from H2O and O2 over organic polymers is a promising approach to achieve solar-to-chemical energy conversion. The continuous efforts have led to rapid development of various metal-free-based photocatalysts for specific H2O2 production, but generalizations and summarization are obviously inadequate. This review mainly focuses on the state-of-the-art development process of metal-free-based photocatalysts for photocatalytic H2O2 production via combining O2 reduction and H2O oxidation reactions under visible light irradiation. The representative research work on photocatalytic H2O2 production by various metal-free-based photocatalytic systems, including graphite carbon nitride (g-C3N4), covalent organic frameworks (COFs), covalent triazine frameworks (CTFs) and covalent organic polymers (COPs) was highlighted. The strategies for structure and property optimization of metal-free-based photocatalysts at molecular-level have been proposed for improving the photocatalytic performance. The challenges and future directions have also been provided to guide the design and synthesis of metal-free-based photocatalytic system.
[Display omitted]
•The state-of-the-art development of photocatalytic H2O2 production by metal-free photocatalysts was summarized.•Successful strategies to maximize the catalytic performance were assessed.•Representative research works on photocatalytic H2O2 production was highlighted.•Challenges and future directions discussed in the end. |
ArticleNumber | 123271 |
Author | Wu, Wenxin Sui, Yan Li, Xiaodan Zhong, Hong Wen, Meicheng Xu, Xiahong Chen, Wentong Liu, Dongsheng Li, Yuntong Huang, Wei Gao, Shuang Pan, Changwang Wen, He-Rui |
Author_xml | – sequence: 1 givenname: Xiahong surname: Xu fullname: Xu, Xiahong organization: Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China – sequence: 2 givenname: Yan surname: Sui fullname: Sui, Yan organization: Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China – sequence: 3 givenname: Wentong surname: Chen fullname: Chen, Wentong organization: Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China – sequence: 4 givenname: Wei surname: Huang fullname: Huang, Wei organization: Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China – sequence: 5 givenname: Xiaodan surname: Li fullname: Li, Xiaodan organization: Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China – sequence: 6 givenname: Yuntong surname: Li fullname: Li, Yuntong organization: Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China – sequence: 7 givenname: Dongsheng surname: Liu fullname: Liu, Dongsheng organization: Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China – sequence: 8 givenname: Shuang surname: Gao fullname: Gao, Shuang organization: Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China – sequence: 9 givenname: Wenxin surname: Wu fullname: Wu, Wenxin organization: Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China – sequence: 10 givenname: Changwang surname: Pan fullname: Pan, Changwang organization: Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China – sequence: 11 givenname: Hong surname: Zhong fullname: Zhong, Hong email: zhonghbush@jgsu.edu.cn organization: Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China – sequence: 12 givenname: He-Rui surname: Wen fullname: Wen, He-Rui organization: School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China – sequence: 13 givenname: Meicheng orcidid: 0000-0002-7394-0592 surname: Wen fullname: Wen, Meicheng email: meicheng.wen@gdut.edu.ch organization: Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China |
BookMark | eNqFkMtOwzAQRS1UJNrCH7DwDySM7eYBCyRUAUWq1E331sSZUFdpHNkuUv-elLCBBaxmMXOu7pwZm3SuI8ZuBaQCRH63T7E3GKtUglSpkEoW4oJNRVmoRJWlmrAp3Ms8UapQV2wWwh5guJTllOntjni_c9ENAdieojV8JTeS997VRxOt63h14gcalknj6cdxiIEfu5o8_7DBVi0lrX3fRW69x9riGb5mlw22gW6-55xtX563y1Wy3ry-LZ_WiVGQxwQRRQGLDLJGNionQCBEObSmRlXlgiCTIitLgUJRY6SqRAZQ11VBhAbVnC3GWONdCJ4a3Xt7QH_SAvTZkd7r0ZE-O9KjowF7-IUZG796R4-2_Q9-HGEa_vqw5HUwljpDtfVkoq6d_TvgE-DWiOo |
CitedBy_id | crossref_primary_10_1016_j_cej_2025_159470 crossref_primary_10_1016_j_ccr_2024_215902 crossref_primary_10_1016_j_apsusc_2024_159664 crossref_primary_10_1002_adma_202405664 crossref_primary_10_1016_j_jcis_2024_02_110 crossref_primary_10_1016_j_jtice_2025_106101 crossref_primary_10_1021_acsanm_4c06299 crossref_primary_10_1016_j_enchem_2024_100121 crossref_primary_10_1039_D4CY01158A crossref_primary_10_1016_j_cej_2024_149183 crossref_primary_10_1016_j_jcis_2024_09_189 crossref_primary_10_1016_j_cej_2024_155117 crossref_primary_10_1016_j_cej_2024_153899 crossref_primary_10_1016_j_cej_2025_161631 crossref_primary_10_1007_s40843_023_2717_0 crossref_primary_10_1021_acs_nanolett_4c06680 crossref_primary_10_1016_j_jece_2024_114151 crossref_primary_10_1016_j_cej_2024_152969 crossref_primary_10_1002_adma_202404539 crossref_primary_10_1016_j_jmat_2024_100970 crossref_primary_10_1002_ange_202421356 crossref_primary_10_1002_cctc_202401099 crossref_primary_10_1016_j_seppur_2025_132284 crossref_primary_10_1002_adfm_202420504 crossref_primary_10_1007_s11120_024_01130_5 crossref_primary_10_1016_j_jece_2024_114425 crossref_primary_10_1016_j_jece_2024_114306 crossref_primary_10_1016_j_mcat_2024_114309 crossref_primary_10_1016_j_seppur_2024_128380 crossref_primary_10_1016_j_ijhydene_2024_12_023 crossref_primary_10_1039_D4EE02505A crossref_primary_10_1002_aenm_202401768 crossref_primary_10_1002_chem_202404003 crossref_primary_10_1016_j_cej_2024_153569 crossref_primary_10_1021_acs_inorgchem_4c04309 crossref_primary_10_1016_j_apcatb_2025_125147 crossref_primary_10_1021_acssuschemeng_4c04143 crossref_primary_10_1039_D4CY00949E crossref_primary_10_1039_D4GC02385D crossref_primary_10_1002_smll_202500573 crossref_primary_10_1016_j_jallcom_2024_178351 crossref_primary_10_1039_D4TA03950E crossref_primary_10_1002_anie_202421356 crossref_primary_10_1021_acsnano_4c01318 crossref_primary_10_1002_ange_202401014 crossref_primary_10_1016_j_jcat_2024_115580 crossref_primary_10_1016_j_cjsc_2024_100457 crossref_primary_10_1016_j_cej_2024_157874 crossref_primary_10_1016_j_jcis_2024_07_037 crossref_primary_10_1016_j_jece_2024_114093 crossref_primary_10_1016_j_jcis_2024_11_137 crossref_primary_10_1016_j_seppur_2024_131092 crossref_primary_10_1002_cssc_202400528 crossref_primary_10_1016_j_jece_2024_115296 crossref_primary_10_1039_D4SC02832E crossref_primary_10_1002_smll_202404139 crossref_primary_10_1039_D4NH00197D crossref_primary_10_1016_j_jcis_2024_12_003 crossref_primary_10_1016_j_apcatb_2024_123767 crossref_primary_10_1002_anie_202401014 crossref_primary_10_1016_j_apcatb_2024_123889 crossref_primary_10_1021_acsapm_4c02016 crossref_primary_10_1039_D4TA04302B crossref_primary_10_1016_j_ccr_2025_216460 crossref_primary_10_1016_j_jphotochem_2024_116043 crossref_primary_10_1016_j_jallcom_2024_176965 crossref_primary_10_1002_adsu_202400261 crossref_primary_10_1016_j_cej_2024_151091 crossref_primary_10_1016_j_jcis_2024_04_177 crossref_primary_10_1016_j_mtchem_2024_102439 crossref_primary_10_1021_acssuschemeng_4c07830 crossref_primary_10_1039_D3GC04045C |
Cites_doi | 10.1002/smll.202103224 10.1039/D2EE03774B 10.1016/j.nanoen.2019.05.086 10.1002/cssc.201901997 10.1039/D3TA01051A 10.1016/j.apcatb.2019.117956 10.1002/cssc.202300015 10.1002/cssc.201600705 10.1038/s44160-023-00272-z 10.3390/polym11081326 10.1002/anie.202006747 10.1016/j.apcatb.2020.119095 10.1126/science.1120411 10.1039/D2GC04459E 10.1021/cs401208c 10.1021/jacs.1c09979 10.1016/j.jcat.2017.10.002 10.1021/jacs.2c11454 10.1016/j.apcatb.2018.01.060 10.1002/adfm.202008247 10.3390/catal8040147 10.1039/D0TA05753C 10.1021/acscatal.2c04085 10.1016/j.cej.2007.09.003 10.1002/anie.201705926 10.1021/acsami.2c20506 10.1038/s41467-019-08731-y 10.1021/acs.chemmater.2c00910 10.1016/j.joule.2017.07.007 10.1016/j.diamond.2018.04.027 10.1002/adfm.202105731 10.1002/adsu.202100184 10.1039/C8EE02727G 10.1021/jacs.1c04622 10.1021/acscatal.6b03334 10.1021/acsapm.3c01455 10.1016/j.cej.2022.139929 10.1002/adma.201304147 10.1039/D1EE02369A 10.1021/jacs.2c09482 10.1016/j.cej.2022.140124 10.1002/adma.202107480 10.1016/j.jcat.2020.05.028 10.1039/D0CS00458H 10.1073/pnas.1913403117 10.1002/adfm.202111999 10.1016/j.jcat.2019.06.015 10.1021/acscatal.6b02367 10.1002/anie.202305355 10.1038/s41560-022-00990-2 10.1016/j.nantod.2020.100946 10.1002/chem.201704512 10.1016/j.apcatb.2020.118917 10.1039/D2TA01646J 10.1002/aenm.201700529 10.1016/j.coco.2022.101390 10.1016/j.cej.2022.139035 10.1002/anie.201407938 10.1016/j.apcatb.2020.118602 10.1039/C8TA12442F 10.1002/aenm.202003323 10.1021/acs.chemrev.9b00399 10.1021/jacs.6b05806 10.1021/acs.chemmater.5b00516 10.1016/j.watres.2018.03.042 10.1021/acssuschemeng.7b00575 10.1002/solr.202200755 10.1021/acsaem.9b01712 10.1021/acsenergylett.8b02303 10.1038/s41467-022-28686-x 10.1016/j.watres.2021.117125 10.1002/cssc.201900560 10.1039/C4TA01871K 10.1038/s41929-017-0017-x 10.1039/D2NJ03744K 10.1002/ejic.201700930 10.1038/nmat2317 10.1073/pnas.2115666118 10.1002/anie.201901961 10.1016/j.jcis.2022.01.107 10.1039/D0GC04236F 10.1021/acsami.7b14191 10.1002/adfm.202111404 10.1016/j.cep.2006.12.012 10.1038/s41467-021-24048-1 10.31635/ccschem.022.202101578 10.1016/j.apcatb.2017.11.005 10.1038/s41560-019-0456-5 10.1016/j.cej.2017.10.016 10.1002/adma.201904433 10.1039/C9TA01481K 10.1002/adma.202110266 10.1002/cnma.202100484 10.1016/j.chempr.2018.12.009 10.1016/S1872-2067(22)64205-0 10.1002/adsu.202200113 10.1021/jacs.2c02666 10.1016/j.cej.2022.140121 10.1021/acs.chemrev.7b00167 10.1002/smll.201703142 10.1021/acsenergylett.9b00277 10.1021/acscatal.1c02056 10.1039/C8EE01316K 10.1002/anie.201911609 10.1039/C9SC03800K 10.1016/j.jechem.2017.12.014 10.1021/ie030578s 10.1016/j.apcatb.2016.03.004 10.1016/j.apcatb.2019.118054 10.1039/D0CS00620C 10.1002/ajoc.202100727 10.1016/S1872-2067(18)63046-3 10.1021/jz500546b 10.1016/j.apcatb.2019.118466 10.1021/acscatal.5b00408 10.1002/adfm.202002654 10.1021/jacs.0c09684 10.1039/C8CC05548C 10.1002/anie.200705710 10.1016/j.cej.2023.142931 10.1002/adma.201907296 10.1021/acs.chemrev.9b00550 10.1002/adfm.202110694 10.1039/C8DT04081H 10.1002/advs.202003077 10.1016/j.apcatb.2023.122862 10.1007/s12274-022-4976-0 10.1016/j.apcatb.2019.118396 10.1002/anie.202200413 10.1002/adma.201806314 10.1002/ceat.201000094 10.1021/acscatal.6b01187 10.1007/s12274-021-3517-6 10.1021/acs.chemmater.2c00936 10.1038/s41467-023-40007-4 10.1016/j.apcatb.2020.119225 10.1039/C4EE02757D 10.1016/j.apcatb.2020.119589 10.1016/S0009-2509(98)00377-7 10.1002/adma.202200180 10.1002/anie.200701595 10.1038/s41598-017-08072-0 10.1021/acscatal.0c03359 10.1039/C6SC05532J 10.1002/adma.201705710 10.1002/anie.200503779 10.1021/acscatal.1c05449 10.1016/j.chempr.2022.10.007 10.1016/j.cattod.2022.05.020 10.1073/pnas.2202913119 10.1016/j.apcatb.2021.120736 10.1016/j.cej.2023.143085 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apcatb.2023.123271 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2023_123271 S0926337323009141 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SES SEW SPC SPD SSG SSZ T5K VH1 WUQ XFK XPP ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-aaa1704505f2f36e0a0eaa2092ef3b84e05215881a13efc23b1500ddb7eeaca3 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Tue Jul 01 04:35:33 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Sat Mar 02 16:01:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Heterogeneous catalysis Visible light Hydrogen peroxide Metal-free photocatalysts Photocatalysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-aaa1704505f2f36e0a0eaa2092ef3b84e05215881a13efc23b1500ddb7eeaca3 |
ORCID | 0000-0002-7394-0592 |
ParticipantIDs | crossref_primary_10_1016_j_apcatb_2023_123271 crossref_citationtrail_10_1016_j_apcatb_2023_123271 elsevier_sciencedirect_doi_10_1016_j_apcatb_2023_123271 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Xu, Sa, Huang, Sui, Chen, Zhou, Li, Li, Zhong (bib172) 2022; 12 Zhang, A, Zou, Luo, Li, Xia, Liu, Mu (bib163) 2014; 2 Li, Ge, Liu, Wang, Gong, Liu, Xie, Wang, Ruana, Zhang (bib62) 2023; 16 Shiraishi, Kanazawa, Kofuji, Sakamoto, Ichikawa, Tanaka, Hirai (bib85) 2014; 53 Li, Dong, Hailili, Yang, Li, Wang, Zeng, Wang (bib97) 2016; 190 Chen, Chen, Yang, Li, Chu, Chen (bib99) 2021; 31 Kumar, Battula, Sharma, Samanta, Rawat, Kailasam (bib168) 2022; 10 Miklos, Remy, Jekel, Linden, Drewes, Hübner (bib5) 2018; 139 Shiraishi, Kofuji, Sakamoto, Tanaka, Ichikawa, Hirai (bib70) 2015; 5 Kuwahara, Matsumura, Yamashita (bib3) 2019; 7 Kosco, Gonzalez-Carrero, Howells, Fei, Dong, Sougrat, Harrison, Firdaus, Sheelamanthula, Purushothaman, Moruzzi, Xu, Zhao, Basu, De Wolf, Anthopoulos, Durrant, McCulloch (bib44) 2022; 7 Liu, Meng, Wang, Liang, Mi, Qi, Li, Wu, Min, Fu (bib15) 2004; 43 Yu, Yang, Yu, Lu, Huang, Xu, Zou, Wang, Chen, Hu, Hou, Zhu (bib71) 2022; 32 Ferguson, Zhang (bib37) 2021; 11 Zhang, Ma, Wang, Gan, Chen, Zhang, Wang, Li, Wang, Zhou, Zheng (bib2) 2022; 15 Kim, Choi, Hu, Choi, Kim (bib91) 2018; 229 Moon, Fujitsuka, Kim, Majima, Wang, Choi (bib104) 2017; 7 Deng, Sun, Laemont, Liu, Wang, Bourd, Chakraborty, Hecke, Morent, Geyter, Leus, Chen, Voort (bib132) 2023; 25 Chen, Zhang, Zhang, Feng, Zhang, Jiang, Yan, Wang (bib59) 2020; 8 Teng, Cai, Liu, Wang, Zhang, Chenliang, Ohno (bib49) 2020; 271 Fu, Wang, Gardner, Wang, Chong, Neri, Cowan, Liu, Li, Vogel, Clowes, Bilton, Chen, Sprick, Cooper (bib156) 2020; 11 Yang, Kang, Li, Liang, Liang, Jiang, Chen, He, Chen, Wang (bib131) 2022; 46 Krishnaraj, Jena, Bourda, Laemont, Pachfule, Roeser, Chandran, Borgmans, Rogge, Leus, Stevens, Martens, Speybroeck, Breynaert, Thomas, Voort (bib136) 2020; 142 Côte, Benin, Ockwig, O ́Keeffe, Matzger, Yaghi (bib122) 2005; 310 Geng, He, Liu, Tan, Li, Tao, Gong, Jiang, Jiang (bib121) 2020; 120 Chen (bib6) 2008; 47 Tan, Zhou, Liu, Zhang, Liu, Guo, Zhou, Chen, Zeng, Gu, Zheng, Tong, Guo (bib66) 2023; 2 Campos-Martin, Blanco-Brieva, Fierro (bib13) 2006; 45 Kim, Gim, Jeon, Kim, Choi (bib87) 2017; 9 Zhao, Chen, Shi, Yang, Zhang (bib40) 2020; 32 Sun, Jena, Krishnaraj, Rawat, Abednatanzi, Chakraborty, Laemont, Liu, Chen, Liu, Leus, Vrielinck, Speybroeck, Voort (bib133) 2023; 62 Wang, Kumar, Tian (bib169) 2022; 6 Kondo, Hino, Kuwahara, Mori, Yamashita (bib28) 2023; 11 Zhang, Yu, Macyk, Wageh, Al-Ghamdi, Wang (bib68) 2023; 7 Chai, Chen, Zhang, Fang, Sprick, Chen (bib140) 2022; 9 Ou, Yang, Lin, Anpo, Wang (bib114) 2017; 56 Teng, Cai, Sim, Zhang, Wang, Su, Ohno (bib112) 2021; 282 Zhu, Zhu, Sun, Zhou, Gao, Huang, Liu, Kang (bib72) 2019; 2 Cao, Yu (bib81) 2014; 5 Pashkova, Svajda, Dittmeyer (bib18) 2008; 139 Song, Wei, Chen, Wen, Han (bib75) 2019; 376 Shao, He, Zhang, Jia, Ji, Hu, Li, Huang, Li (bib124) 2023; 46 Zeng, Liu, Xia, Uddin, Xia, McCarthy, Deletic, Yu, Zhang (bib89) 2020; 274 Bryliakov (bib4) 2017; 117 Hirakawa, Shiota, Shiraishi, Sakamoto, Ichikawa, Hirai (bib30) 2016; 6 Hu, Zeng, Liu, Lu, Yuan, Yin, Hu, McCarthy, Zhang (bib103) 2020; 268 Feng, Wu, Huang, Ye, Zhang (bib67) 2022; 34 Kolesnichenko, Escamilla, Michael, Lynch, Bout, Anslyn (bib14) 2018; 54 Ren, Chang, Li, Yang, Hu (bib153) 2023; 451 Chang, Li, Shi, Zhang, Zhang, Li, Chen, Li, Lan (bib144) 2023; 62 Das, Chakraborty, Roeser, Vogl, Rabeah, Thomas (bib123) 2023; 145 Shiraishi, Matsumoto, Ichikawa, Tanaka, Hirai (bib24) 2021; 143 Zeng, Liu, Hu, Zhang (bib61) 2021; 23 Yan, Shen, Shen, Wang, Lin, Pan, He, Ye, Yang, Zhu, Xu, He, Ouyang (bib165) 2022; 119 Luo, Zhang, Liu, Xia, Ou, Cai, Zhou, Jiang, Han (bib126) 2023; 62 Tang, Zhao, Solanki, Miao, Zhou, Hu (bib9) 2021; 5 Liu, Guo, Jin, Tan (bib145) 2019; 7 Kofuji, Ohkita, Shiraishi, Sakamoto, Tanaka, Ichikawa, Hirai (bib84) 2016; 6 Wei, Liu, Zhang, Yao, Tan, Zhu (bib35) 2018; 11 Wu, Yu, Chen, Quan (bib98) 2020; 10 Zhao, Zhang, Yang, Li, Gao, Chen, Xie, Diao, Xi, Xiao, Hu, Choi (bib47) 2021; 12 Lu, Wang, Wang, Mi (bib17) 2011; 34 Fukuzumi (bib10) 2017; 1 Cheng, Cheng, Wang, Xu (bib56) 2022; 34 Zhang, Pan, Zhuo, Xiang, Yan (bib77) 2023; 38 Zhang, Liu, Miao, Wu, Liu, Jiang (bib22) 2023; 455 Song, Wei, Chen, Wen, Han (bib31) 2019; 376 Wang, Yang, Chen, Zheng, Han (bib139) 2022; 61 Zhang, Sun, Cho, Weon, Lee, Lee, Han, Kim, Choi (bib101) 2019; 10 Lu, Chen, Siahrostami, Chen, Liu, Xie, Liao, Wu, Lin, Liu, Jaramillo, Nørskov, Cui (bib11) 2018; 1 Liu, Xu, Wang, Huang, Shimada, Ye (bib92) 2022; 47 Liu, Bao, Yuan, Zhang, Wang, Wan, Yu (bib32) 2022; 32 Kofuji, Ohkita, Shiraishi, Sakamoto, Ichikawa, Tanaka, Hirai (bib86) 2017; 5 Xu, Zhong, Huang, Sui, Sa, Chen, Zhou, Li, Li, Wen, Jiang (bib164) 2023; 454 Yang, Zeng, Zeng, Huang, Xiao, Zhang, Zhou, Xiong, Wang, Cheng (bib117) 2019; 258 Sun, Han, Strasser (bib26) 2020; 49 Wang, Zhang, Cai, Wang, Deng, Chen, Jiang, Zhang, Yu (bib74) 2023; 16 Brudzynski, Miotto, Kim, Sjaarda, Maldonado-Alvarez, Fukś (bib20) 2017; 7 Zou, Sa, Zhong, Lv, Wang, Wang (bib78) 2022; 12 Wang, Ghasimi, Landfester, Zhang (bib159) 2015; 27 Yang, Zeng, Zeng, Huang, Xiao, Zhang, Zhou, Xiong, Wang, Cheng, Xue, Guo, Tang, He (bib42) 2019; 258 Chang, Yang, Han, Zhang, Xiang, He (bib110) 2018; 8 Ma, Zhang, Wang, Wang, Wang, Feng, Wang, Zhai, Deng, Wang, Zheng (bib79) 2022; 300 Shi, Yang, Zhou, Liu, Yin, Hai, Song, Ye (bib96) 2018; 14 Myers (bib1) 2007; 319 Liang, Wang, Liu, Liu, Huang, Zhang, Zhang, Jiang, Jia, Niu (bib25) 2023; 466 Lee, Cooper (bib154) 2020; 120 Hou, Zeng, Zhang (bib27) 2020; 59 Liu, Xu, Pan, Li, Huang, Huang, Ye (bib82) 2023; 16 Oka, Nishide, Winther-Jensen (bib166) 2021; 8 Xu, Li, Sui, Huang, Chen, Li, Liu, Li, Deng, Zhou, Zhong, Zhong (bib155) 2022; 8 Tahir, Krishnaraj, Leus, Voort (bib146) 2019; 11 Zhong, Yang, Fan, Fu, Yang, Wang, Wang (bib54) 2019; 12 Wang, Zhang, Li, Cao, Pu, Han, Yang, Xiang (bib116) 2018; 27 Wu, Teng, Yang, Chen, Yang, Wang, Xu, Liu, Zheng, Han (bib151) 2022; 34 Zhong, Hong, Yang, Li, Xu, Wang, Wang (bib52) 2019; 12 Qu, Hu, Li, Li, Wang, Ma, Li (bib94) 2018; 86 Teng, Yang, Lv, Wang, Hu, Wang, Wang, Wang (bib90) 2019; 5 Shiraishi, Kanazawa, Kofuji, Sakamoto, Ichikawa, Tanaka, Hirai (bib43) 2014; 53 Wang, Pan, Han, Jiang, Xiang, Huang, Zhang, Xiang (bib50) 2016; 9 Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (bib80) 2009; 8 Tan, Zheng, Zhou, Wang, Dong, Yang, Ou, Qi, Liu, Zheng, Chen (bib143) 2022; 4 Kim, Moon, Kim, Mun, Zhang, Lee, Choi (bib105) 2018; 357 Kofuji, Ohkita, Shiraishi, Sakamoto, Tanaka, Ichikawa, Hirai (bib45) 2016; 6 Zhi, Liu, Jiang, Zhan, Jin, Chen, Yang, Wang, Cao, Qi, Jiang (bib128) 2022; 144 Zhang, Zhang, Miao, Wen, Chen, Zhou, Long (bib127) 2023; 466 Kofuji, Isobe, Shiraishi, Sakamoto, Tanaka, Ichikawa, Hirai (bib119) 2016; 138 Xu, Sui, Huang, Chen, Li, Li, Wang, Ye, Zhong (bib160) 2022; 11 Zhang, Tong, Liu, Vequizo, Sun, Yang, Yamakata, Fan, Lin, Wang, Choi (bib100) 2020; 59 Li, Zhang, Zhou, Zhang, Bai, Wang, Wang (bib95) 2018; 39 Ye, Pan, Shen, Shen, Yan, He, Yang, Zhu, Xu, He (bib171) 2021; 118 Chong, Li, Xu, Yang (bib33) 2022; 406 Isaka, Kawase, Kuwahara, Mori, Yamashita (bib23) 2019; 58 Zhou, Sun, Zhu, Li, Zhang, Wang, Shen (bib125) 2023; 334 Chen, Yao, Chu, Mao (bib7) 2023; 451 Yu, Viengkeo, He, Zhao, Huang, Li, Huang, Li (bib149) 2021; 5 Cheng, Lv, Cheng, Wang, Wu, Xu (bib150) 2022; 34 Yang, Wan, Zhu, Yu, Cao (bib167) 2022; 61 Yoshii, Kuwahara, Mori, Yamashita (bib12) 2021; 394 Xiong, Li, Huang, Gao, Chen, Liu, Li, Kang, Yao, Zhu (bib60) 2020; 266 Yuan, Zhang, Wang, Liu, Yu (bib41) 2021; 14 Li, Xiong, Gu (bib102) 2019; 48 Wang, Waterhouse, Shang, Zhang (bib16) 2021; 11 Xia, Wang, Kim, Wang (bib51) 2021; 31 Liu, Pan, Vequizo, Kato, Wu, Yamakata, Katayama, Chen, Chu, Domen (bib65) 2022; 13 Kou, Wang, Xu, Ye, Huang, Jia, Li, Ren, Deng, Chen, Zhou, Lei, Wang, Liu, Huang, Ma (bib138) 2022; 61 Kuttassery, Sebastian, Mathew, Tachibana, Inoue (bib76) 2019; 12 Zhou, Feng, Qiu, Zhou, Lei, Xing, Wang, Zhou, Liu, Zhang (bib113) 2020; 267 Liu, Tan, Gong, Chen, Li, Xie, He, Lu, Yanga, Jiang (bib120) 2021; 50 Samanta, Yadav, Kumar, Sinha, Srivastava (bib109) 2019; 259 Xue, Sun, Wu, Yao (bib69) 2022; 615 Wang, Zhong, Liu, Cheng (bib8) 2020; 35 Shiraishi, Kanazawa, Sugano, Tsukamoto, Sakamoto, Ichikawa, Hirai (bib83) 2014; 4 Yu, Viengkeo, He, Zhao, Huang, Li, Huang, Li (bib36) 2021; 5 Xiao, Liu, Song, Li, Li, Shang (bib88) 2021; 198 Xu, Sui, Chen, Zhou, Li, Zhong, Wen (bib173) 2023 Kondo, Kuwahara, Mori, Yamashita (bib21) 2022; 8 Zhang, Yu, Lang, Zhou, Zhou, Hu, Long (bib107) 2020; 277 Zhai, Xie, Cui, Yang, Xu, Ke, Liu, Qu, Chen, Mi (bib46) 2022; 34 Santacesaria, Di Serio, Russo, Leone, Velotti (bib19) 1999; 54 Zhao, Yan, Li, Bahri, Liu, Zhou, Clowes, Browning, Wu, Ward, Cooper (bib135) 2022; 144 Baek, Gill, Abroshan, Park, Shi, Nørskov, Jung, Siahrostami, Zheng (bib58) 2019; 4 Zheng, Gao, Chen, Ferguson, Zhang, Fang, Shen, Khan, Wang, Ye (bib152) 2022; 36 Yang, Chen, Wang, Peng, Kong (bib134) 2023; 15 Park, Abroshan, Shi, Jung, Siahrostami, Zheng (bib57) 2019; 4 Wang, Li, Xu (bib64) 2017; 7 Zhao, Guo, Li, Xu, Yang, Zhao (bib115) 2018; 224 Wu, Shan, Wang, Liu, Zhang (bib130) 2023; 454 Liu, Gao, Yang, Wang, Li, Cooper (bib170) 2021; 143 Li, Zhang, Wang, Wan, Lai, Pang, Huang (bib157) 2017; 8 Moon, Kim, Bokare, Sung, Choi (bib29) 2014; 7 Wu, Chen, Liu, Parvez, Liang, Shu, Sachdev, Graf, Feng, Müllen (bib161) 2014; 26 Di, Lv, Wang, Chen, Wang, Zheng, Wang, Han (bib129) 2023; 455 Liao, Wang, Zhu, Thomas (bib162) 2018; 30 Zhai, Xie, Cui, Yang, Xu, Ke, Liu, Qu, Chen, Mi (bib137) 2022; 34 Kumar, Battula, Sharma, Samanta, Rawat, Kailasam (bib34) 2022; 10 Hu, Qu, Li, Wang, Li, Song, Zhao, Kang (bib108) 2018; 334 Kuhn, Antonietti, Thomas (bib147) 2008; 47 Chen, Wang, Wan, Zhang, Qi, Wu, Xu (bib148) 2020; 32 Peng, Wang, Liu, Chen, Lei, Zhang (bib111) 2017; 2017 Cai, Huang, Wang, Iocozzia, Sun, Sun, Yang, Lai, Lin (bib118) 2019; 31 Tian, Jing, Ye, Liu, Chen, Price, Fan, Liu (bib38) 2021; 17 Zhong, Sa, Lv, Yang, Yuan, Wang, Wang (bib48) 2020; 30 Xu, Huang, Li, Sui, Chen, Li, Ye, Pan, Zhong, Wen (bib53) 2023; 11 Chen, Chen, Wu, Wang, Wu, Xu, Chen (bib142) 2023; 62 Liu, Zhou, Hou, Tan, Liang, Liang, Zhang, Guo, Tong, Ni (bib141) 2023; 14 Chu, Zhu, Pan, Kondo (10.1016/j.apcatb.2023.123271_bib28) 2023; 11 Isaka (10.1016/j.apcatb.2023.123271_bib23) 2019; 58 Park (10.1016/j.apcatb.2023.123271_bib57) 2019; 4 Wu (10.1016/j.apcatb.2023.123271_bib98) 2020; 10 Kofuji (10.1016/j.apcatb.2023.123271_bib86) 2017; 5 Liu (10.1016/j.apcatb.2023.123271_bib170) 2021; 143 Zhao (10.1016/j.apcatb.2023.123271_bib40) 2020; 32 Yu (10.1016/j.apcatb.2023.123271_bib71) 2022; 32 Tahir (10.1016/j.apcatb.2023.123271_bib146) 2019; 11 Wang (10.1016/j.apcatb.2023.123271_bib8) 2020; 35 Kofuji (10.1016/j.apcatb.2023.123271_bib84) 2016; 6 Cai (10.1016/j.apcatb.2023.123271_bib118) 2019; 31 Li (10.1016/j.apcatb.2023.123271_bib62) 2023; 16 Zhao (10.1016/j.apcatb.2023.123271_bib135) 2022; 144 Teng (10.1016/j.apcatb.2023.123271_bib90) 2019; 5 Hu (10.1016/j.apcatb.2023.123271_bib103) 2020; 268 Zhou (10.1016/j.apcatb.2023.123271_bib113) 2020; 267 Yu (10.1016/j.apcatb.2023.123271_bib149) 2021; 5 Kim (10.1016/j.apcatb.2023.123271_bib87) 2017; 9 Yang (10.1016/j.apcatb.2023.123271_bib55) 2022; 32 Brudzynski (10.1016/j.apcatb.2023.123271_bib20) 2017; 7 Ma (10.1016/j.apcatb.2023.123271_bib79) 2022; 300 Zhang (10.1016/j.apcatb.2023.123271_bib163) 2014; 2 Campos-Martin (10.1016/j.apcatb.2023.123271_bib13) 2006; 45 Deng (10.1016/j.apcatb.2023.123271_bib132) 2023; 25 Wu (10.1016/j.apcatb.2023.123271_bib151) 2022; 34 Song (10.1016/j.apcatb.2023.123271_bib31) 2019; 376 Tan (10.1016/j.apcatb.2023.123271_bib66) 2023; 2 Liang (10.1016/j.apcatb.2023.123271_bib25) 2023; 466 Wu (10.1016/j.apcatb.2023.123271_bib130) 2023; 454 Xia (10.1016/j.apcatb.2023.123271_bib51) 2021; 31 Chang (10.1016/j.apcatb.2023.123271_bib144) 2023; 62 Shiraishi (10.1016/j.apcatb.2023.123271_bib83) 2014; 4 Shiraishi (10.1016/j.apcatb.2023.123271_bib70) 2015; 5 Kondo (10.1016/j.apcatb.2023.123271_bib21) 2022; 8 Teng (10.1016/j.apcatb.2023.123271_bib112) 2021; 282 Yang (10.1016/j.apcatb.2023.123271_bib167) 2022; 61 Li (10.1016/j.apcatb.2023.123271_bib95) 2018; 39 Yu (10.1016/j.apcatb.2023.123271_bib36) 2021; 5 Zhang (10.1016/j.apcatb.2023.123271_bib22) 2023; 455 Zheng (10.1016/j.apcatb.2023.123271_bib152) 2022; 36 Bryliakov (10.1016/j.apcatb.2023.123271_bib4) 2017; 117 Kosco (10.1016/j.apcatb.2023.123271_bib44) 2022; 7 Liu (10.1016/j.apcatb.2023.123271_bib15) 2004; 43 Zhao (10.1016/j.apcatb.2023.123271_bib115) 2018; 224 Teng (10.1016/j.apcatb.2023.123271_bib49) 2020; 271 Sun (10.1016/j.apcatb.2023.123271_bib133) 2023; 62 Zhai (10.1016/j.apcatb.2023.123271_bib137) 2022; 34 Liu (10.1016/j.apcatb.2023.123271_bib145) 2019; 7 Baek (10.1016/j.apcatb.2023.123271_bib58) 2019; 4 Fukuzumi (10.1016/j.apcatb.2023.123271_bib10) 2017; 1 Kou (10.1016/j.apcatb.2023.123271_bib138) 2022; 61 Chen (10.1016/j.apcatb.2023.123271_bib142) 2023; 62 Xu (10.1016/j.apcatb.2023.123271_bib155) 2022; 8 Liu (10.1016/j.apcatb.2023.123271_bib141) 2023; 14 Zhang (10.1016/j.apcatb.2023.123271_bib2) 2022; 15 Li (10.1016/j.apcatb.2023.123271_bib97) 2016; 190 Shiraishi (10.1016/j.apcatb.2023.123271_bib24) 2021; 143 Xue (10.1016/j.apcatb.2023.123271_bib73) 2019; 62 Miklos (10.1016/j.apcatb.2023.123271_bib5) 2018; 139 Zhang (10.1016/j.apcatb.2023.123271_bib101) 2019; 10 Wang (10.1016/j.apcatb.2023.123271_bib80) 2009; 8 Wu (10.1016/j.apcatb.2023.123271_bib161) 2014; 26 Kumar (10.1016/j.apcatb.2023.123271_bib34) 2022; 10 Yang (10.1016/j.apcatb.2023.123271_bib134) 2023; 15 Kuwahara (10.1016/j.apcatb.2023.123271_bib3) 2019; 7 Lu (10.1016/j.apcatb.2023.123271_bib11) 2018; 1 Xu (10.1016/j.apcatb.2023.123271_bib173) 2023 Tan (10.1016/j.apcatb.2023.123271_bib143) 2022; 4 Wang (10.1016/j.apcatb.2023.123271_bib74) 2023; 16 Das (10.1016/j.apcatb.2023.123271_bib123) 2023; 145 Fu (10.1016/j.apcatb.2023.123271_bib156) 2020; 11 Peng (10.1016/j.apcatb.2023.123271_bib111) 2017; 2017 Wang (10.1016/j.apcatb.2023.123271_bib64) 2017; 7 Yang (10.1016/j.apcatb.2023.123271_bib131) 2022; 46 Liu (10.1016/j.apcatb.2023.123271_bib92) 2022; 47 Yan (10.1016/j.apcatb.2023.123271_bib165) 2022; 119 Ferguson (10.1016/j.apcatb.2023.123271_bib37) 2021; 11 Song (10.1016/j.apcatb.2023.123271_bib75) 2019; 376 Chen (10.1016/j.apcatb.2023.123271_bib148) 2020; 32 Shiraishi (10.1016/j.apcatb.2023.123271_bib43) 2014; 53 Zhang (10.1016/j.apcatb.2023.123271_bib106) 2020; 59 Ren (10.1016/j.apcatb.2023.123271_bib153) 2023; 451 Zhao (10.1016/j.apcatb.2023.123271_bib47) 2021; 12 Xu (10.1016/j.apcatb.2023.123271_bib160) 2022; 11 Chen (10.1016/j.apcatb.2023.123271_bib6) 2008; 47 Zeng (10.1016/j.apcatb.2023.123271_bib89) 2020; 274 Zou (10.1016/j.apcatb.2023.123271_bib78) 2022; 12 Xu (10.1016/j.apcatb.2023.123271_bib53) 2023; 11 Luo (10.1016/j.apcatb.2023.123271_bib126) 2023; 62 Feng (10.1016/j.apcatb.2023.123271_bib67) 2022; 34 Shao (10.1016/j.apcatb.2023.123271_bib124) 2023; 46 Liu (10.1016/j.apcatb.2023.123271_bib82) 2023; 16 Ye (10.1016/j.apcatb.2023.123271_bib171) 2021; 118 Xu (10.1016/j.apcatb.2023.123271_bib172) 2022; 12 Zhang (10.1016/j.apcatb.2023.123271_bib100) 2020; 59 Wang (10.1016/j.apcatb.2023.123271_bib39) 2019; 4 Hou (10.1016/j.apcatb.2023.123271_bib27) 2020; 59 Kofuji (10.1016/j.apcatb.2023.123271_bib45) 2016; 6 Pashkova (10.1016/j.apcatb.2023.123271_bib18) 2008; 139 Sun (10.1016/j.apcatb.2023.123271_bib26) 2020; 49 Krishnaraj (10.1016/j.apcatb.2023.123271_bib136) 2020; 142 Moon (10.1016/j.apcatb.2023.123271_bib104) 2017; 7 Zhou (10.1016/j.apcatb.2023.123271_bib125) 2023; 334 Wang (10.1016/j.apcatb.2023.123271_bib159) 2015; 27 Zhu (10.1016/j.apcatb.2023.123271_bib72) 2019; 2 Cao (10.1016/j.apcatb.2023.123271_bib81) 2014; 5 Qu (10.1016/j.apcatb.2023.123271_bib94) 2018; 86 Wang (10.1016/j.apcatb.2023.123271_bib16) 2021; 11 Tian (10.1016/j.apcatb.2023.123271_bib38) 2021; 17 Zhai (10.1016/j.apcatb.2023.123271_bib46) 2022; 34 Lee (10.1016/j.apcatb.2023.123271_bib154) 2020; 120 Cheng (10.1016/j.apcatb.2023.123271_bib56) 2022; 34 Zhong (10.1016/j.apcatb.2023.123271_bib52) 2019; 12 Chu (10.1016/j.apcatb.2023.123271_bib93) 2020; 117 Chen (10.1016/j.apcatb.2023.123271_bib59) 2020; 8 Chen (10.1016/j.apcatb.2023.123271_bib99) 2021; 31 Zhang (10.1016/j.apcatb.2023.123271_bib107) 2020; 277 Samanta (10.1016/j.apcatb.2023.123271_bib109) 2019; 259 Wang (10.1016/j.apcatb.2023.123271_bib139) 2022; 61 Wei (10.1016/j.apcatb.2023.123271_bib35) 2018; 11 Wang (10.1016/j.apcatb.2023.123271_bib116) 2018; 27 Fukuzumi (10.1016/j.apcatb.2023.123271_bib63) 2018; 24 Myers (10.1016/j.apcatb.2023.123271_bib1) 2007; 319 Shi (10.1016/j.apcatb.2023.123271_bib96) 2018; 14 Kim (10.1016/j.apcatb.2023.123271_bib105) 2018; 357 Zhang (10.1016/j.apcatb.2023.123271_bib77) 2023; 38 Kim (10.1016/j.apcatb.2023.123271_bib91) 2018; 229 Shiraishi (10.1016/j.apcatb.2023.123271_bib85) 2014; 53 Liu (10.1016/j.apcatb.2023.123271_bib120) 2021; 50 Chai (10.1016/j.apcatb.2023.123271_bib140) 2022; 9 Cheng (10.1016/j.apcatb.2023.123271_bib150) 2022; 34 Xu (10.1016/j.apcatb.2023.123271_bib164) 2023; 454 Chang (10.1016/j.apcatb.2023.123271_bib110) 2018; 8 Ou (10.1016/j.apcatb.2023.123271_bib114) 2017; 56 Zhang (10.1016/j.apcatb.2023.123271_bib127) 2023; 466 Jiang (10.1016/j.apcatb.2023.123271_bib158) 2007; 46 Lu (10.1016/j.apcatb.2023.123271_bib17) 2011; 34 Xue (10.1016/j.apcatb.2023.123271_bib69) 2022; 615 Zhi (10.1016/j.apcatb.2023.123271_bib128) 2022; 144 Yuan (10.1016/j.apcatb.2023.123271_bib41) 2021; 14 Liao (10.1016/j.apcatb.2023.123271_bib162) 2018; 30 Chong (10.1016/j.apcatb.2023.123271_bib33) 2022; 406 Xiong (10.1016/j.apcatb.2023.123271_bib60) 2020; 266 Liu (10.1016/j.apcatb.2023.123271_bib65) 2022; 13 Tang (10.1016/j.apcatb.2023.123271_bib9) 2021; 5 Zhong (10.1016/j.apcatb.2023.123271_bib48) 2020; 30 Kofuji (10.1016/j.apcatb.2023.123271_bib119) 2016; 138 Wang (10.1016/j.apcatb.2023.123271_bib169) 2022; 6 Yang (10.1016/j.apcatb.2023.123271_bib42) 2019; 258 Zeng (10.1016/j.apcatb.2023.123271_bib61) 2021; 23 Di (10.1016/j.apcatb.2023.123271_bib129) 2023; 455 Yoshii (10.1016/j.apcatb.2023.123271_bib12) 2021; 394 Kolesnichenko (10.1016/j.apcatb.2023.123271_bib14) 2018; 54 Moon (10.1016/j.apcatb.2023.123271_bib29) 2014; 7 Wang (10.1016/j.apcatb.2023.123271_bib50) 2016; 9 Hu (10.1016/j.apcatb.2023.123271_bib108) 2018; 334 Chen (10.1016/j.apcatb.2023.123271_bib7) 2023; 451 Li (10.1016/j.apcatb.2023.123271_bib102) 2019; 48 Côte (10.1016/j.apcatb.2023.123271_bib122) 2005; 310 Santacesaria (10.1016/j.apcatb.2023.123271_bib19) 1999; 54 Kuttassery (10.1016/j.apcatb.2023.123271_bib76) 2019; 12 Yang (10.1016/j.apcatb.2023.123271_bib117) 2019; 258 Zhong (10.1016/j.apcatb.2023.123271_bib54) 2019; 12 Kumar (10.1016/j.apcatb.2023.123271_bib168) 2022; 10 Xiao (10.1016/j.apcatb.2023.123271_bib88) 2021; 198 Geng (10.1016/j.apcatb.2023.123271_bib121) 2020; 120 Liu (10.1016/j.apcatb.2023.123271_bib32) 2022; 32 Oka (10.1016/j.apcatb.2023.123271_bib166) 2021; 8 Li (10.1016/j.apcatb.2023.123271_bib157) 2017; 8 Hirakawa (10.1016/j.apcatb.2023.123271_bib30) 2016; 6 Zhang (10.1016/j.apcatb.2023.123271_bib68) 2023; 7 Kuhn (10.1016/j.apcatb.2023.123271_bib147) 2008; 47 |
References_xml | – volume: 34 start-page: 5232 year: 2022 end-page: 5240 ident: bib46 article-title: Constructing synergistic triazine and acetylene cores in fully conjugated covalent organic frameworks for cascade photocatalytic H publication-title: Chem. Mater. – volume: 59 start-page: 16209 year: 2020 end-page: 16217 ident: bib100 article-title: Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 12954 year: 2022 end-page: 12963 ident: bib172 article-title: Conjugated organic polymers with anthraquinone redox centers for efficient photocatalytic hydrogen peroxide production from water and oxygen under visible light irradiation without any additives publication-title: ACS Catal. – volume: 282 year: 2021 ident: bib112 article-title: Photoexcited single metal atom catalysts for heterogeneous photocatalytic H publication-title: Appl. Catal. B: Environ. – volume: 12 start-page: 3701 year: 2021 ident: bib47 article-title: Mechanistic analysis of multiple processes controlling solardriven H2O2 synthesis using engineered polymeric carbon nitride publication-title: Nat. Commun. – volume: 4 start-page: 3751 year: 2022 end-page: 3761 ident: bib143 article-title: Aqueous synthesis of covalent organic frameworks as photocatalysts for hydrogen peroxide production publication-title: CCS Chem. – volume: 7 start-page: 7637 year: 2017 ident: bib20 article-title: Active macromolecules of honey form colloidal particles essential for honey antibacterial activity and hydrogen peroxide production publication-title: Sci. Rep. – volume: 10 start-page: 14568 year: 2022 end-page: 14575 ident: bib168 article-title: A metal-free heptazine-porphyrin based porous polymeric network as an artificial leaf for carbon free solar fuels publication-title: J. Mater. Chem. A – volume: 451 year: 2023 ident: bib153 article-title: Carbon dots-modulated covalent triazine frameworks with exceptionally rapid hydrogen peroxide production in water publication-title: Chem. Eng. J. – volume: 34 start-page: 2110266 year: 2022 ident: bib151 article-title: Polarization engineering of covalent triazine frameworks for highly efficient photosynthesis of hydrogen peroxide from molecular oxygen and water publication-title: Adv. Mater. – volume: 86 start-page: 159 year: 2018 end-page: 166 ident: bib94 article-title: The effect of embedding N vacancies into g-C publication-title: Diam. Relat. Mater. – volume: 54 start-page: 11204 year: 2018 end-page: 11207 ident: bib14 article-title: Hydrogen peroxide production via a redox reaction of N, N′-dimethyl-2,6-diaza-9,10-anthraquinonediium by addition of bisulfite publication-title: Chem. Commun. – volume: 266 year: 2020 ident: bib60 article-title: CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H publication-title: Appl. Catal. B: Environ. – volume: 26 start-page: 1450 year: 2014 end-page: 1455 ident: bib161 article-title: High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers publication-title: Adv. Mater. – volume: 258 year: 2019 ident: bib42 article-title: Ti publication-title: Appl. Catal. B: Environ. – volume: 32 start-page: 1907296 year: 2020 ident: bib40 article-title: Recent advances in conjugated polymers for visible-light-driven water splitting publication-title: Adv. Mater. – volume: 454 year: 2023 ident: bib164 article-title: The construction of conjugated organic polymers containing phenanthrenequinone redox centers for visible-light-driven H publication-title: Chem. Eng. J. – volume: 35 year: 2020 ident: bib8 article-title: Recent progress of chemodynamic therapyinduced combination cancer therapy publication-title: Nano Today – volume: 32 start-page: 2111404 year: 2022 ident: bib32 article-title: Semiconducting MOF@ZnS Heterostructures for photocatalytic hydrogen peroxide production: heterojunction coverage matters publication-title: Adv. Funct. Mater. – volume: 12 start-page: 3550 year: 2022 end-page: 3557 ident: bib78 article-title: Photoelectron transfer mediated by the interfacial electron effects for boosting visible-light-driven CO publication-title: ACS Catal. – volume: 455 year: 2023 ident: bib129 article-title: Enhanced pre-sensitization in metal-free covalent organic frameworks promoting hydrogen peroxide photosynthesis publication-title: Chem. Eng. J. – volume: 32 start-page: 1904433 year: 2020 ident: bib148 article-title: Acetylene and diacetylene functionalized covalent triazine frameworks as metal-free photocatalysts for hydrogen peroxide production: A new two-electron water oxidation pathway publication-title: Adv. Mater. – volume: 143 start-page: 19287 year: 2021 end-page: 19293 ident: bib170 article-title: Linear conjugated polymers for solar-driven hydrogen peroxide production: The importance of catalyststability publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 720 year: 2019 end-page: 728 ident: bib58 article-title: Selective and efficient Gd-doped BiVO publication-title: ACS Energy Lett. – volume: 59 start-page: 16209 year: 2020 end-page: 16217 ident: bib106 article-title: Heteroatom dopants promote two-electron O publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 147 year: 2018 ident: bib110 article-title: Enhancing light-driven production of hydrogen peroxide by anchoring Au onto C publication-title: Catalysts – volume: 47 start-page: 3450 year: 2008 end-page: 3453 ident: bib147 article-title: Porous, covalent triazine-based frameworks prepared by ionothermal synthesis publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 6478 year: 2017 end-page: 6485 ident: bib86 article-title: Mellitic triimide-doped carbon nitride as sunlight-driven photocatalysts for hydrogen peroxide production publication-title: ACS Sustain. Chem. Eng. – volume: 8 start-page: 2924 year: 2022 end-page: 2938 ident: bib21 article-title: Design of metal-organic framework catalysts for photocatalytic hydrogen peroxide production publication-title: Chem – volume: 27 start-page: 343 year: 2018 end-page: 350 ident: bib116 article-title: Energy-level dependent H publication-title: J. Energy Chem. – volume: 12 start-page: 4493 year: 2019 end-page: 4499 ident: bib52 article-title: A covalent triazine-based framework consisting of donor-acceptor dyads for visible-light-driven photocatalytic CO publication-title: ChemSusChem – volume: 12 start-page: 1939 year: 2019 end-page: 1948 ident: bib76 article-title: Promotive effect of bicarbonate ion on two-electron water oxidation to form H publication-title: ChemSusChem – volume: 6 start-page: 4976 year: 2016 end-page: 4982 ident: bib30 article-title: Au nanoparticles supported on BiVO publication-title: ACS Catal. – volume: 224 start-page: 725 year: 2018 end-page: 732 ident: bib115 article-title: Carbon nanotubes covalent combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production under visible light publication-title: Appl. Catal. B: Environ. – volume: 119 year: 2022 ident: bib165 article-title: Spontaneous exciton dissociation in organic photocatalyst under ambient conditions for highly efficient synthesis of hydrogen peroxide publication-title: PNAS – volume: 53 start-page: 13454 year: 2014 end-page: 13459 ident: bib43 article-title: Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 557 year: 2023 end-page: 563 ident: bib66 article-title: Photocatalysis of water into hydrogen peroxide over an atomic Ga-N publication-title: Nat. Synth. – volume: 319 year: 2007 ident: bib1 publication-title: The 100 Most Important Chemical Compounds – volume: 357 start-page: 51 year: 2018 end-page: 58 ident: bib105 article-title: Selective charge transfer to dioxygen on KPF6-modified carbon nitride for photocatalytic synthesis of H publication-title: J. Catal. – volume: 11 start-page: 2581 year: 2018 end-page: 2589 ident: bib35 article-title: Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers publication-title: Energy Environ. Sci. – volume: 5 start-page: 1432 year: 2021 end-page: 1461 ident: bib9 article-title: Selective hydrogen peroxide conversion tailored by surface publication-title: Interface, Device Eng., Joule – volume: 47 year: 2022 ident: bib92 article-title: AQ-coupled few-layered g-C publication-title: Int. J. Hydrog. Energy – volume: 47 start-page: 787 year: 2008 end-page: 792 ident: bib6 article-title: Development of an anthraquinone process for the production of hydrogen peroxide in a trickle bed reactor-From bench scale to industrial scale publication-title: Chem. Eng. Process. – volume: 143 start-page: 12590 year: 2021 end-page: 12599 ident: bib24 article-title: Polythiophene-doped resorcinol-formaldehyde resin photocatalysts for solar-to-hydrogen peroxide energy conversion publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 2200180 year: 2022 ident: bib67 article-title: Surface modification of 2D photocatalysts for solar energy conversion publication-title: Adv. Mater. – volume: 61 year: 2022 ident: bib139 article-title: A crystalline partially fluorinated triazine covalent organic framework for efficient photosynthesis of hydrogen peroxide publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 2200113 year: 2023 ident: bib68 article-title: C publication-title: Adv. Sustain. Syst. – volume: 7 start-page: 2886 year: 2017 end-page: 2895 ident: bib104 article-title: Eco-friendly photochemical production of H publication-title: ACS Catal. – volume: 49 start-page: 6605 year: 2020 end-page: 6631 ident: bib26 article-title: A comparative perspective of electrochemical and photochemical approaches for catalytic H publication-title: Chem. Soc. Rev. – volume: 376 start-page: 198 year: 2019 end-page: 208 ident: bib75 article-title: Photocatalytic production of H publication-title: J. Catal. – volume: 16 year: 2023 ident: bib82 article-title: Solar-to-H publication-title: ChemSusChem – volume: 451 year: 2023 ident: bib7 article-title: Photocatalytic H publication-title: Chem. Eng. J. – volume: 198 year: 2021 ident: bib88 article-title: Directing photocatalytic pathway to exceedingly high antibacterial activity in water by functionalizing holey ultrathin nanosheets of graphitic carbon nitride publication-title: Water Res – volume: 8 start-page: 2959 year: 2017 end-page: 2965 ident: bib157 article-title: Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors publication-title: Chem. Sci. – volume: 117 start-page: 6376 year: 2020 end-page: 6382 ident: bib93 article-title: Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H publication-title: PNAS – volume: 466 year: 2023 ident: bib25 article-title: Functionalized graphitic carbon nitride based catalysts in solar-to-chemical conversion for hydrogen peroxide production publication-title: Chem. Eng. J. – volume: 14 start-page: 4344 year: 2023 ident: bib141 article-title: Covalent organic frameworks for direct photosynthesis of hydrogen peroxide from water, air and sunlight publication-title: Nat. Commun. – volume: 32 start-page: 2110694 year: 2022 ident: bib55 article-title: Microenvironments enabled by covalent organic framework linkages for modulating active metal species in photocatalytic CO publication-title: Adv. Funct. Mater. – volume: 117 start-page: 11406 year: 2017 end-page: 11459 ident: bib4 article-title: Catalytic asymmetric oxygenations with the environmentally benign oxidants H publication-title: Chem. Rev. – volume: 7 start-page: 340 year: 2022 end-page: 351 ident: bib44 article-title: Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution publication-title: Nat. Energy – volume: 5 start-page: 2100184 year: 2021 ident: bib36 article-title: Electronic tuning of covalent triazine framework nanoshells for highly efficient photocatalytic H publication-title: Adv. Sustain. Syst. – volume: 31 start-page: 2105731 year: 2021 ident: bib99 article-title: Simultaneously tuning band structure and oxygen reduction pathway toward high-efficient photocatalytic hydrogen peroxide production using cyano-rich graphitic carbon nitride publication-title: Adv. Funct. Mater. – volume: 268 year: 2020 ident: bib103 article-title: Nano-layer based 1T-rich MoS publication-title: Appl. Catal. B: Environ. – volume: 32 start-page: 2111999 year: 2022 ident: bib71 article-title: Steering unit cell dipole and internal electric field by highly dispersed Er atoms embedded into NiO for efficient CO publication-title: Adv. Funct. Mater. – volume: 30 start-page: 2002654 year: 2020 ident: bib48 article-title: Covalent organic framework Hosting Metalloporphyrin-Based Carbon Dots for Visible-Light-Driven Selective CO publication-title: Adv. Funct. Mater. – volume: 267 year: 2020 ident: bib113 article-title: Ultrathin g-C publication-title: Appl. Catal. B: Environ. – volume: 39 start-page: 1090 year: 2018 end-page: 1098 ident: bib95 article-title: Preparation of N-vacancy-doped g-C publication-title: Chin. J. Catal. – volume: 120 start-page: 8814 year: 2020 end-page: 8933 ident: bib121 article-title: Covalent organic frameworks: design, synthesis, and functions publication-title: Chem. Rev. – volume: 5 start-page: 2100184 year: 2021 ident: bib149 article-title: Electronic tuning of covalent triazine framework nanoshells for highly efficient photocatalytic H publication-title: Adv. Sustain. Syst. – volume: 144 start-page: 21328 year: 2022 end-page: 21336 ident: bib128 article-title: Piperazine-linked metalphthalocyanine frameworks for highly efficient visible-light-driven H publication-title: J. Am. Chem. Soc. – volume: 274 year: 2020 ident: bib89 article-title: Cooperatively modulating reactive oxygen species generation and bacteria-photocatalyst contact over graphitic carbon nitride by polyethylenimine for rapid water disinfection publication-title: Appl. Catal. B: Environ. – volume: 334 start-page: 410 year: 2018 end-page: 418 ident: bib108 article-title: Photocatalytic oxygen reduction to hydrogen peroxide over copper doped graphitic carbon nitride hollow microsphere: The effect of Cu(I)-N active sites publication-title: Chem. Eng. J. – volume: 300 year: 2022 ident: bib79 article-title: Band alignment of homojunction by anchoring CN quantum dots on g-C publication-title: Appl. Catal. B: Environ. – volume: 139 start-page: 118 year: 2018 end-page: 131 ident: bib5 article-title: Evaluation of advanced oxidation processes for water and wastewater treatment-A critical review publication-title: Water Res – volume: 271 year: 2020 ident: bib49 article-title: Bandgap engineering of polymetric carbon nitride copolymerized by 2,5,8-triamino-tri-striazine (melem) and barbituric acid for efficient nonsacrificial photocatalytic H publication-title: Appl. Catal. B: Environ. – volume: 277 year: 2020 ident: bib107 article-title: Modulation of lewis acidic-basic sites for efficient photocatalytic H publication-title: Appl. Catal. B: Environ. – volume: 11 start-page: 543 year: 2020 end-page: 550 ident: bib156 article-title: A stable covalent organic framework for photocatalytic carbon dioxide reduction publication-title: Chem. Sci. – volume: 145 start-page: 2975 year: 2023 end-page: 2984 ident: bib123 article-title: Integrating bifunctionality and chemical stability in covalent organic frameworks via one-pot multicomponent reactions for solar-driven H publication-title: J. Am. Chem. Soc. – start-page: 7571 year: 2023 end-page: 7580 ident: bib173 article-title: Anthraquinone-based conjugated organic polymers containing dual oxidation centers for photocatalytic H publication-title: ACS Appl. Polym. Mater.5 – volume: 16 start-page: 1135 year: 2023 end-page: 1145 ident: bib62 article-title: Highly efficient photocatalytic H publication-title: Energy Environ. Sci. – volume: 2017 start-page: 4797 year: 2017 end-page: 4802 ident: bib111 article-title: Visible‐light‐driven photocatalytic H publication-title: Eur. J. Inorg. Chem. – volume: 58 start-page: 5402 year: 2019 end-page: 5406 ident: bib23 article-title: Two-phase system utilizing hydrophobic metal-organic frameworks (MOFs) for photocatalytic synthesis of hydrogen peroxide publication-title: Angew. Chem. Int. Ed. – volume: 23 start-page: 1466 year: 2021 end-page: 1494 ident: bib61 article-title: Photoredox catalysis over semiconductors for light-driven hydrogen peroxide production publication-title: Green Chem. – volume: 1 start-page: 689 year: 2017 end-page: 738 ident: bib10 article-title: Production of liquid solar fuels and their use in fuel cells publication-title: Joule – volume: 16 start-page: 2177 year: 2023 end-page: 2184 ident: bib74 article-title: Introducing B-N unit boosts photocatalytic H publication-title: Nano Res – volume: 5 start-page: 664 year: 2019 end-page: 680 ident: bib90 article-title: Edge functionalized g-C publication-title: Chem – volume: 9 start-page: 2464 year: 2022 end-page: 2469 ident: bib140 article-title: Rational design of covalent organic frameworks for efficient photocatalytic hydrogen peroxide production publication-title: Environ. Sci.: Nano – volume: 59 start-page: 17356 year: 2020 end-page: 17376 ident: bib27 article-title: Production of hydrogen peroxide by photocatalytic processes publication-title: Angew. Chem. Int. Ed. – volume: 258 year: 2019 ident: bib117 article-title: Ti publication-title: Appl. Catal. B: Environ. – volume: 406 start-page: 227 year: 2022 end-page: 234 ident: bib33 article-title: Hollow double-shell stacked CdS@ZnIn publication-title: Catal. Today 405- – volume: 27 start-page: 1921 year: 2015 end-page: 1924 ident: bib159 article-title: Photocatalytic suzuki coupling reaction using conjugated microporous polymer with immobilized palladium nanoparticles under visible light publication-title: Chem. Mater. – volume: 7 start-page: 4023 year: 2014 end-page: 4028 ident: bib29 article-title: Solar production of H publication-title: Energy Environ. Sci. – volume: 376 start-page: 198 year: 2019 end-page: 208 ident: bib31 article-title: Photocatalytic production of H publication-title: J. Catal. – volume: 62 year: 2023 ident: bib142 article-title: Covalent organic frameworks containing dual O publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 1326 year: 2019 ident: bib146 article-title: Development of covalent triazine frameworks as heterogeneous catalytic supports publication-title: Polymers – volume: 4 start-page: 774 year: 2014 end-page: 780 ident: bib83 article-title: Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C publication-title: ACS Catal. – volume: 120 start-page: 2171 year: 2020 end-page: 2214 ident: bib154 article-title: Advances in conjugated microporous polymers publication-title: Chem. Rev. – volume: 61 year: 2022 ident: bib167 article-title: Calcination-regulated microstructures of donor-acceptor polymers towards enhanced and stable photocatalytic H publication-title: Angew. Chem. Int. Ed. – volume: 118 year: 2021 ident: bib171 article-title: G. Ouyang. A solar-to-chemical conversion efficiency up to 0.26% achieved in ambient conditions publication-title: PNAS – volume: 190 start-page: 26 year: 2016 end-page: 35 ident: bib97 article-title: Effective photocatalytic H publication-title: Appl. Catal. B: Environ. – volume: 46 start-page: 21605 year: 2022 end-page: 21614 ident: bib131 article-title: Enhanced photocatalytic hydrogen peroxide production activity of imine-linked covalent organic frameworks via modification with functional groups publication-title: N. J. Chem. – volume: 4 start-page: 746 year: 2019 end-page: 760 ident: bib39 article-title: Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts publication-title: Nat. Energy – volume: 9 start-page: 2470 year: 2016 end-page: 2479 ident: bib50 article-title: Solar-driven H publication-title: ChemSusChem – volume: 466 year: 2023 ident: bib127 article-title: Keto-enamine-based covalent organic framework with controllable anthraquinone moieties for superior H publication-title: Chem. Eng. J. – volume: 138 start-page: 10019 year: 2016 end-page: 10025 ident: bib119 article-title: Carbon nitride-aromatic diimide-graphene nanohybrids: Metal free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 13454 year: 2014 end-page: 13459 ident: bib85 article-title: Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts publication-title: Angew. Chem. Int. Ed. – volume: 11 year: 2022 ident: bib160 article-title: Upgraded heterogenization of homogeneous catalytic systems by hollow porous organic frameworks with hierarchical porous shell for efficient carbon dioxide conversion publication-title: Asian J. Org. Chem. – volume: 15 start-page: 830 year: 2022 end-page: 842 ident: bib2 article-title: Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H publication-title: Energy Environ. Sci. – volume: 4 start-page: 352 year: 2019 end-page: 357 ident: bib57 article-title: CaSnO publication-title: ACS Energy Lett. – volume: 454 year: 2023 ident: bib130 article-title: Three-dimensional covalent organic framework with tty topology for enhanced photocatalytic hydrogen peroxide production publication-title: Chem. Eng. J. – volume: 46 start-page: 28 year: 2023 end-page: 35 ident: bib124 article-title: A covalent organic framework inspired by C publication-title: Chin. J. Catal. – volume: 8 year: 2022 ident: bib155 article-title: Solvent-induced flower- and cudgel-shaped porous organic polymers: effective supports of palladium nanoparticles for dehalogenation in net water publication-title: ChemNanoMat – volume: 54 start-page: 2799 year: 1999 end-page: 2806 ident: bib19 article-title: Kinetic and catalytic aspects in the hydrogen peroxide production via anthraquinone publication-title: Chem. Eng. Sci. – volume: 5 start-page: 3058 year: 2015 end-page: 3066 ident: bib70 article-title: Effects of surface defects on photocatalytic H publication-title: ACS Catal. – volume: 6 start-page: 7021 year: 2016 end-page: 7029 ident: bib45 article-title: Graphitic carbon nitride doped with biphenyl diimide: efficient photocatalyst for hydrogen peroxide production from water and molecular oxygen by sunlight publication-title: ACS Catal. – volume: 10 start-page: 940 year: 2019 ident: bib101 article-title: Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis publication-title: Nat. Commun. – volume: 455 year: 2023 ident: bib22 article-title: Sustainable H publication-title: Chem. Eng. J. – volume: 139 start-page: 165 year: 2008 end-page: 171 ident: bib18 article-title: Direct synthesis of hydrogen peroxide in a catalytic membrane contactor publication-title: Chem. Eng. J. – volume: 142 start-page: 20107 year: 2020 end-page: 20116 ident: bib136 article-title: Strongly reducing (diarylamino)benzene-based covalent organic framework for metal-free visible light photocatalytic H publication-title: J. Am. Chem. Soc. – volume: 11 year: 2023 ident: bib53 article-title: Triphenylamine-based covalent triazine framework @ carbon nanotube complex: efficient photogenerated charges migration for metal free photocatalytic Cr(VI) reduction publication-title: J. Environ. Chem. Eng. – volume: 2 start-page: 8737 year: 2019 end-page: 8746 ident: bib72 article-title: Carbon-supported oxygen vacancy-rich Co publication-title: ACS Appl. Energy Mater. – volume: 7 start-page: 7221 year: 2019 end-page: 7231 ident: bib3 article-title: Hollow titanosilicate nanospheres encapsulating PdAu alloy nanoparticles as reusable high-performance catalysts for H publication-title: J. Mater. Chem. A – volume: 11 start-page: 2003323 year: 2021 ident: bib16 article-title: Electrocatalytic oxygen reduction to hydrogen peroxide: from homogeneous to heterogeneous electrocatalysis publication-title: Adv. Energy Mater. – volume: 62 start-page: 823 year: 2019 end-page: 831 ident: bib73 article-title: Toward efficient photocatalytic pure water splitting for simultaneous H publication-title: Nano Energy – volume: 229 start-page: 121 year: 2018 end-page: 129 ident: bib91 article-title: Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride publication-title: Appl. Catal. B: Environ. – volume: 62 year: 2023 ident: bib133 article-title: Pyrene-based covalent organic frameworks for photocatalytic hydrogen peroxide production publication-title: Angew. Chem. Int. Ed. – volume: 144 start-page: 9902 year: 2022 end-page: 9909 ident: bib135 article-title: Accelerated synthesis and discovery of covalent organic framework photocatalysts for hydrogen peroxide production publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 1703142 year: 2018 ident: bib96 article-title: Photoassisted construction of holey defective g-C publication-title: Small – volume: 12 start-page: 418 year: 2019 end-page: 426 ident: bib54 article-title: Dyadic promotion of photocatalytic aerobic oxidation via the Mott-Schottky effect enabled by nitrogen-doped carbon from imidazolium-based ionic polymer publication-title: Energy Environ. Sci. – volume: 34 start-page: 5232 year: 2022 end-page: 5240 ident: bib137 article-title: Constructing synergistic triazine and acetylene cores in fully conjugated covalent organic frameworks for cascade photocatalytic H publication-title: Chem. Mater. – volume: 50 start-page: 120 year: 2021 end-page: 242 ident: bib120 article-title: Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications publication-title: Chem. Soc. Rev. – volume: 14 start-page: 3267 year: 2021 end-page: 3273 ident: bib41 article-title: Mesoporous resin nanobowls with optimized donor-acceptor conjugation for highly efficient photocatalytic hydrogen peroxide production publication-title: Nano Res. – volume: 2 start-page: 13422 year: 2014 end-page: 13430 ident: bib163 article-title: Gas uptake, molecular sensing and organocatalytic performances of a multifunctional carbazole-based conjugated microporous polymer publication-title: J. Mater. Chem. A – volume: 334 year: 2023 ident: bib125 article-title: A thioether-decorated triazine-based covalent organic framework towards overall H publication-title: Appl. Catal. B: Environ. – volume: 6 start-page: 2200755 year: 2022 ident: bib169 article-title: Organic polymer dots based on star-shaped truxene-core polymers for photocatalytic H publication-title: Sol. RRL – volume: 7 start-page: 1700529 year: 2017 ident: bib64 article-title: Recent progress in semiconductor based nanocomposite photocatalysts for solar-to-chemical energy conversion publication-title: Adv. Energy Mater. – volume: 46 start-page: 8574 year: 2007 end-page: 8578 ident: bib158 article-title: Conjugated microporous poly(aryleneethynylene) networks, Angew publication-title: Chem. Int. Ed. – volume: 24 start-page: 5016 year: 2018 ident: bib63 article-title: Solar-driven production of hydrogen peroxide from water and dioxygen publication-title: Chem. -Eur. J. – volume: 615 start-page: 87 year: 2022 end-page: 94 ident: bib69 article-title: P-doped melon-carbon nitride for efficient photocatalytic H publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 5153 year: 2019 end-page: 5172 ident: bib145 article-title: Covalent triazine frameworks: synthesis and applications publication-title: J. Mater. Chem. A – volume: 8 start-page: 18816 year: 2020 end-page: 18825 ident: bib59 article-title: Sacrificial agent-free photocatalytic H publication-title: J. Mater. Chem. A – volume: 38 year: 2023 ident: bib77 article-title: Abrasion behavior of TiO publication-title: Surf. Interfaces – volume: 11 start-page: 9530 year: 2023 end-page: 9537 ident: bib28 article-title: Photosynthesis of hydrogen peroxide from dioxygen and water using aluminium-based metal-organic framework assembled with porphyrin- and pyrene-based linkers publication-title: J. Mater. Chem. A – volume: 31 start-page: 1806314 year: 2019 ident: bib118 article-title: Crafting mussel-inspired metal nanoparticle-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources publication-title: Adv. Mater. – volume: 56 start-page: 10905 year: 2017 end-page: 10910 ident: bib114 article-title: Carbon nitride aerogels for the photoredox conversion of water publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 2003077 year: 2021 ident: bib166 article-title: Copolymer of phenylene and thiophene toward a visible-light-driven photocatalytic oxygen reduction to hydrogen peroxide publication-title: Adv. Sci. – volume: 394 start-page: 259 year: 2021 end-page: 265 ident: bib12 article-title: Promotional effect of surface plasmon resonance on direct formation of hydrogen peroxide from H publication-title: J. Catal. – volume: 34 start-page: 823 year: 2011 end-page: 830 ident: bib17 article-title: Kinetic model of gas-liquid-liquid reactive extraction for production of hydrogen peroxide publication-title: Chem. Eng. Technol. – volume: 11 start-page: 9547 year: 2021 end-page: 9560 ident: bib37 article-title: Classical polymers as highly tunable and designable heterogeneous photocatalysts publication-title: ACS Catal. – volume: 34 start-page: 2107480 year: 2022 ident: bib150 article-title: Rational design of covalent heptazine frameworks with spatially separated redox centers for high-efficiency photocatalytic hydrogen peroxide production publication-title: Adv. Mater. – volume: 34 start-page: 4259 year: 2022 end-page: 4273 ident: bib56 article-title: Reaction pathways toward sustainable photosynthesis of hydrogen peroxide by polymer photocatalysts publication-title: Chem. Mater. – volume: 5 start-page: 2101 year: 2014 end-page: 2107 ident: bib81 article-title: g-C publication-title: J. Phys. Chem. Lett. – volume: 25 start-page: 3069 year: 2023 end-page: 3076 ident: bib132 article-title: Extending the π-conjugation system of covalent organic frameworks for more efficient photocatalytic H publication-title: Green. Chem. – volume: 61 year: 2022 ident: bib138 article-title: Molecularly engineered covalent organic frameworks for hydrogen peroxide photosynthesis publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 76 year: 2009 end-page: 82 ident: bib80 article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light publication-title: Nat. Mater. – volume: 36 year: 2022 ident: bib152 article-title: CsPbBr publication-title: Compos. Commun. – volume: 43 start-page: 166 year: 2004 end-page: 172 ident: bib15 article-title: Integrated process of H publication-title: Ind. Eng. Chem. Res. – volume: 48 start-page: 182 year: 2019 end-page: 189 ident: bib102 article-title: Fabrication of a full-spectrum-response Cu publication-title: Dalton Trans. – volume: 1 start-page: 156 year: 2018 end-page: 162 ident: bib11 article-title: High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials publication-title: Nat. Catal. – volume: 10 start-page: 14568 year: 2022 end-page: 14575 ident: bib34 article-title: A metal-free heptazine-porphyrin based porous polymeric network as an artificial leaf for carbon-free solar fuels publication-title: J. Mater. Chem. A – volume: 62 year: 2023 ident: bib126 article-title: Sulfone-modified covalent organic frameworks enabling efficient photocatalytic hydrogen peroxide generation via one-step two-electron O publication-title: Angew. Chem. Int. Ed. – volume: 30 start-page: 1705710 year: 2018 ident: bib162 article-title: Efficient supercapacitor energy storage using conjugated microporous polymer networks synthesized from buchwald-hartwig coupling publication-title: Adv. Mater. – volume: 62 year: 2023 ident: bib144 article-title: Oxidation-reduction molecular junction covalent organic frameworks for full reaction photosynthesis of H publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 7021 year: 2016 end-page: 7029 ident: bib84 article-title: Graphitic carbon nitride doped with biphenyl diimide: efficient photocatalyst for hydrogen peroxide production from water and molecular oxygen by sunlight publication-title: ACS Catal. – volume: 259 year: 2019 ident: bib109 article-title: Surface modified C, O co-doped polymeric g-C3N4 as an efficient photocatalyst for visible light assisted CO publication-title: Appl. Catal. B: Environ. – volume: 31 start-page: 2008247 year: 2021 ident: bib51 article-title: Rational design of metal oxide-based heterostructure for efficient photocatalytic and photoelectrochemical systems publication-title: Adv. Funct. Mater. – volume: 10 start-page: 14380 year: 2020 end-page: 14389 ident: bib98 article-title: Enhanced photocatalytic H publication-title: ACS Catal. – volume: 17 start-page: 2103224 year: 2021 ident: bib38 article-title: Nanospatial charge modulation of monodispersed polymeric microsphere photocatalysts for exceptional hydrogen peroxide production publication-title: Small – volume: 13 start-page: 1034 year: 2022 ident: bib65 article-title: Overall photosynthesis of H publication-title: Nat. Commun. – volume: 9 start-page: 40360 year: 2017 end-page: 40368 ident: bib87 article-title: Distorted carbon nitride structure with substituted benzene moieties for enhanced visible light photocatalytic activities publication-title: ACS Appl. Mater. Interfaces – volume: 45 start-page: 6962 year: 2006 end-page: 6984 ident: bib13 article-title: Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process publication-title: Angew. Chem. Int. Ed. – volume: 310 start-page: 1166 year: 2005 end-page: 1170 ident: bib122 article-title: Porous, crystalline, covalent organic frameworks publication-title: Science – volume: 15 start-page: 8066 year: 2023 end-page: 8075 ident: bib134 article-title: Weakly hydrophilic imine-linked covalent benzene-acetylene frameworks for photocatalytic H publication-title: ACS Appl. Mater. Interfaces – volume: 17 start-page: 2103224 year: 2021 ident: 10.1016/j.apcatb.2023.123271_bib38 article-title: Nanospatial charge modulation of monodispersed polymeric microsphere photocatalysts for exceptional hydrogen peroxide production publication-title: Small doi: 10.1002/smll.202103224 – volume: 16 start-page: 1135 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib62 article-title: Highly efficient photocatalytic H2O2 production in microdroplets: Accelerated charge separation and transfer at interfaces publication-title: Energy Environ. Sci. doi: 10.1039/D2EE03774B – volume: 62 start-page: 823 year: 2019 ident: 10.1016/j.apcatb.2023.123271_bib73 article-title: Toward efficient photocatalytic pure water splitting for simultaneous H2 and H2O2 production publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.086 – volume: 12 start-page: 4493 year: 2019 ident: 10.1016/j.apcatb.2023.123271_bib52 article-title: A covalent triazine-based framework consisting of donor-acceptor dyads for visible-light-driven photocatalytic CO2 reduction publication-title: ChemSusChem doi: 10.1002/cssc.201901997 – volume: 11 start-page: 9530 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib28 article-title: Photosynthesis of hydrogen peroxide from dioxygen and water using aluminium-based metal-organic framework assembled with porphyrin- and pyrene-based linkers publication-title: J. Mater. Chem. A doi: 10.1039/D3TA01051A – volume: 258 year: 2019 ident: 10.1016/j.apcatb.2023.123271_bib42 article-title: Ti3C2 mxene/porous g-C3N4 interfacial schottky junction for boosting spatial charge separation in photocatalytic H2O2 production publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.117956 – volume: 62 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib133 article-title: Pyrene-based covalent organic frameworks for photocatalytic hydrogen peroxide production publication-title: Angew. Chem. Int. Ed. – volume: 455 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib22 article-title: Sustainable H2O2 photosynthesis by sunlight and air publication-title: Chem. Eng. J. – volume: 16 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib82 article-title: Solar-to-H2O2 energy conversion by the photothermal effect of a polymeric photocatalyst via a two-channel pathway publication-title: ChemSusChem doi: 10.1002/cssc.202300015 – volume: 9 start-page: 2470 year: 2016 ident: 10.1016/j.apcatb.2023.123271_bib50 article-title: Solar-driven H2O2 generation from H2O and O2 using earth-abundant mixed-metal oxide@carbon nitride photocatalysts publication-title: ChemSusChem doi: 10.1002/cssc.201600705 – volume: 2 start-page: 557 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib66 article-title: Photocatalysis of water into hydrogen peroxide over an atomic Ga-N5 site publication-title: Nat. Synth. doi: 10.1038/s44160-023-00272-z – volume: 11 start-page: 1326 year: 2019 ident: 10.1016/j.apcatb.2023.123271_bib146 article-title: Development of covalent triazine frameworks as heterogeneous catalytic supports publication-title: Polymers doi: 10.3390/polym11081326 – volume: 59 start-page: 16209 year: 2020 ident: 10.1016/j.apcatb.2023.123271_bib100 article-title: Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202006747 – volume: 274 year: 2020 ident: 10.1016/j.apcatb.2023.123271_bib89 article-title: Cooperatively modulating reactive oxygen species generation and bacteria-photocatalyst contact over graphitic carbon nitride by polyethylenimine for rapid water disinfection publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2020.119095 – volume: 310 start-page: 1166 year: 2005 ident: 10.1016/j.apcatb.2023.123271_bib122 article-title: Porous, crystalline, covalent organic frameworks publication-title: Science doi: 10.1126/science.1120411 – volume: 25 start-page: 3069 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib132 article-title: Extending the π-conjugation system of covalent organic frameworks for more efficient photocatalytic H2O2 production publication-title: Green. Chem. doi: 10.1039/D2GC04459E – volume: 4 start-page: 774 year: 2014 ident: 10.1016/j.apcatb.2023.123271_bib83 article-title: Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light publication-title: ACS Catal. doi: 10.1021/cs401208c – volume: 143 start-page: 19287 year: 2021 ident: 10.1016/j.apcatb.2023.123271_bib170 article-title: Linear conjugated polymers for solar-driven hydrogen peroxide production: The importance of catalyststability publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c09979 – volume: 357 start-page: 51 year: 2018 ident: 10.1016/j.apcatb.2023.123271_bib105 article-title: Selective charge transfer to dioxygen on KPF6-modified carbon nitride for photocatalytic synthesis of H2O2 under visible light publication-title: J. Catal. doi: 10.1016/j.jcat.2017.10.002 – volume: 145 start-page: 2975 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib123 article-title: Integrating bifunctionality and chemical stability in covalent organic frameworks via one-pot multicomponent reactions for solar-driven H2O2 production publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c11454 – volume: 229 start-page: 121 year: 2018 ident: 10.1016/j.apcatb.2023.123271_bib91 article-title: Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.01.060 – volume: 31 start-page: 2008247 year: 2021 ident: 10.1016/j.apcatb.2023.123271_bib51 article-title: Rational design of metal oxide-based heterostructure for efficient photocatalytic and photoelectrochemical systems publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202008247 – volume: 8 start-page: 147 year: 2018 ident: 10.1016/j.apcatb.2023.123271_bib110 article-title: Enhancing light-driven production of hydrogen peroxide by anchoring Au onto C3N4 catalysts publication-title: Catalysts doi: 10.3390/catal8040147 – volume: 8 start-page: 18816 year: 2020 ident: 10.1016/j.apcatb.2023.123271_bib59 article-title: Sacrificial agent-free photocatalytic H2O2 evolution via two-electron oxygen reduction using a ternary α-Fe2O3/CQD@g-C3N4 photocatalyst with broadspectrum response publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05753C – volume: 12 start-page: 12954 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib172 article-title: Conjugated organic polymers with anthraquinone redox centers for efficient photocatalytic hydrogen peroxide production from water and oxygen under visible light irradiation without any additives publication-title: ACS Catal. doi: 10.1021/acscatal.2c04085 – volume: 139 start-page: 165 year: 2008 ident: 10.1016/j.apcatb.2023.123271_bib18 article-title: Direct synthesis of hydrogen peroxide in a catalytic membrane contactor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2007.09.003 – volume: 56 start-page: 10905 year: 2017 ident: 10.1016/j.apcatb.2023.123271_bib114 article-title: Carbon nitride aerogels for the photoredox conversion of water publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201705926 – volume: 15 start-page: 8066 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib134 article-title: Weakly hydrophilic imine-linked covalent benzene-acetylene frameworks for photocatalytic H2O2 production in the two-phase system publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c20506 – volume: 10 start-page: 940 year: 2019 ident: 10.1016/j.apcatb.2023.123271_bib101 article-title: Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis publication-title: Nat. Commun. doi: 10.1038/s41467-019-08731-y – volume: 34 start-page: 5232 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib137 article-title: Constructing synergistic triazine and acetylene cores in fully conjugated covalent organic frameworks for cascade photocatalytic H2O2 production publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.2c00910 – volume: 1 start-page: 689 year: 2017 ident: 10.1016/j.apcatb.2023.123271_bib10 article-title: Production of liquid solar fuels and their use in fuel cells publication-title: Joule doi: 10.1016/j.joule.2017.07.007 – volume: 86 start-page: 159 year: 2018 ident: 10.1016/j.apcatb.2023.123271_bib94 article-title: The effect of embedding N vacancies into g-C3N4 on the photocatalytic H2O2 production ability via H2 plasma treatment publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2018.04.027 – volume: 5 start-page: 1432 year: 2021 ident: 10.1016/j.apcatb.2023.123271_bib9 article-title: Selective hydrogen peroxide conversion tailored by surface publication-title: Interface, Device Eng., Joule – volume: 31 start-page: 2105731 year: 2021 ident: 10.1016/j.apcatb.2023.123271_bib99 article-title: Simultaneously tuning band structure and oxygen reduction pathway toward high-efficient photocatalytic hydrogen peroxide production using cyano-rich graphitic carbon nitride publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202105731 – volume: 5 start-page: 2100184 year: 2021 ident: 10.1016/j.apcatb.2023.123271_bib36 article-title: Electronic tuning of covalent triazine framework nanoshells for highly efficient photocatalytic H2O2 production publication-title: Adv. Sustain. Syst. doi: 10.1002/adsu.202100184 – volume: 12 start-page: 418 year: 2019 ident: 10.1016/j.apcatb.2023.123271_bib54 article-title: Dyadic promotion of photocatalytic aerobic oxidation via the Mott-Schottky effect enabled by nitrogen-doped carbon from imidazolium-based ionic polymer publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02727G – volume: 143 start-page: 12590 year: 2021 ident: 10.1016/j.apcatb.2023.123271_bib24 article-title: Polythiophene-doped resorcinol-formaldehyde resin photocatalysts for solar-to-hydrogen peroxide energy conversion publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c04622 – volume: 7 start-page: 2886 year: 2017 ident: 10.1016/j.apcatb.2023.123271_bib104 article-title: Eco-friendly photochemical production of H2O2 through O2 reduction over carbon nitride frameworks incorporated with multiple heteroelements publication-title: ACS Catal. doi: 10.1021/acscatal.6b03334 – start-page: 7571 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib173 article-title: Anthraquinone-based conjugated organic polymers containing dual oxidation centers for photocatalytic H2O2 production from H2O and O2 under visible-light irradiation publication-title: ACS Appl. Polym. Mater.5 doi: 10.1021/acsapm.3c01455 – volume: 454 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib164 article-title: The construction of conjugated organic polymers containing phenanthrenequinone redox centers for visible-light-driven H2O2 production from H2O and O2 without any additives publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139929 – volume: 26 start-page: 1450 year: 2014 ident: 10.1016/j.apcatb.2023.123271_bib161 article-title: High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers publication-title: Adv. Mater. doi: 10.1002/adma.201304147 – volume: 15 start-page: 830 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib2 article-title: Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H2O2 evolution publication-title: Energy Environ. Sci. doi: 10.1039/D1EE02369A – volume: 144 start-page: 21328 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib128 article-title: Piperazine-linked metalphthalocyanine frameworks for highly efficient visible-light-driven H2O2 photosynthesis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c09482 – volume: 455 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib129 article-title: Enhanced pre-sensitization in metal-free covalent organic frameworks promoting hydrogen peroxide photosynthesis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.140124 – volume: 34 start-page: 2107480 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib150 article-title: Rational design of covalent heptazine frameworks with spatially separated redox centers for high-efficiency photocatalytic hydrogen peroxide production publication-title: Adv. Mater. doi: 10.1002/adma.202107480 – volume: 394 start-page: 259 year: 2021 ident: 10.1016/j.apcatb.2023.123271_bib12 article-title: Promotional effect of surface plasmon resonance on direct formation of hydrogen peroxide from H2 and O2 over Pd/graphene-Au nanorod catalytic system publication-title: J. Catal. doi: 10.1016/j.jcat.2020.05.028 – volume: 49 start-page: 6605 year: 2020 ident: 10.1016/j.apcatb.2023.123271_bib26 article-title: A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00458H – volume: 38 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib77 article-title: Abrasion behavior of TiO2 catalyzing H2O2 to synergistically remove single crystal 6H-SiC under ultraviolet irradiation publication-title: Surf. Interfaces – volume: 117 start-page: 6376 year: 2020 ident: 10.1016/j.apcatb.2023.123271_bib93 article-title: Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H2O2 production publication-title: PNAS doi: 10.1073/pnas.1913403117 – volume: 32 start-page: 2111999 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib71 article-title: Steering unit cell dipole and internal electric field by highly dispersed Er atoms embedded into NiO for efficient CO2 photoreduction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202111999 – volume: 376 start-page: 198 year: 2019 ident: 10.1016/j.apcatb.2023.123271_bib31 article-title: Photocatalytic production of H2O2 and its in situ utilization over atomic-scale Au modified MoS2 nanosheets publication-title: J. Catal. doi: 10.1016/j.jcat.2019.06.015 – volume: 6 start-page: 7021 year: 2016 ident: 10.1016/j.apcatb.2023.123271_bib45 article-title: Graphitic carbon nitride doped with biphenyl diimide: efficient photocatalyst for hydrogen peroxide production from water and molecular oxygen by sunlight publication-title: ACS Catal. doi: 10.1021/acscatal.6b02367 – volume: 258 year: 2019 ident: 10.1016/j.apcatb.2023.123271_bib117 article-title: Ti3C2 Mxene/porous g-C3N4 interfacial schottky junction for boosting spatial charge separation in photocatalytic H2O2 production publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.117956 – volume: 62 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib126 article-title: Sulfone-modified covalent organic frameworks enabling efficient photocatalytic hydrogen peroxide generation via one-step two-electron O2 reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202305355 – volume: 7 start-page: 340 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib44 article-title: Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution publication-title: Nat. Energy doi: 10.1038/s41560-022-00990-2 – volume: 35 year: 2020 ident: 10.1016/j.apcatb.2023.123271_bib8 article-title: Recent progress of chemodynamic therapyinduced combination cancer therapy publication-title: Nano Today doi: 10.1016/j.nantod.2020.100946 – volume: 24 start-page: 5016 year: 2018 ident: 10.1016/j.apcatb.2023.123271_bib63 article-title: Solar-driven production of hydrogen peroxide from water and dioxygen publication-title: Chem. -Eur. J. doi: 10.1002/chem.201704512 – volume: 271 year: 2020 ident: 10.1016/j.apcatb.2023.123271_bib49 article-title: Bandgap engineering of polymetric carbon nitride copolymerized by 2,5,8-triamino-tri-striazine (melem) and barbituric acid for efficient nonsacrificial photocatalytic H2O2 production publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2020.118917 – volume: 10 start-page: 14568 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib34 article-title: A metal-free heptazine-porphyrin based porous polymeric network as an artificial leaf for carbon-free solar fuels publication-title: J. Mater. Chem. A doi: 10.1039/D2TA01646J – volume: 7 start-page: 1700529 year: 2017 ident: 10.1016/j.apcatb.2023.123271_bib64 article-title: Recent progress in semiconductor based nanocomposite photocatalysts for solar-to-chemical energy conversion publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700529 – volume: 36 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib152 article-title: CsPbBr3 quantum dots-decorated porous covalent triazine frameworks nanocomposites for enhanced solar-driven H2O2 production publication-title: Compos. Commun. doi: 10.1016/j.coco.2022.101390 – volume: 451 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib153 article-title: Carbon dots-modulated covalent triazine frameworks with exceptionally rapid hydrogen peroxide production in water publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139035 – volume: 53 start-page: 13454 year: 2014 ident: 10.1016/j.apcatb.2023.123271_bib43 article-title: Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201407938 – volume: 266 year: 2020 ident: 10.1016/j.apcatb.2023.123271_bib60 article-title: CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2020.118602 – volume: 7 start-page: 5153 year: 2019 ident: 10.1016/j.apcatb.2023.123271_bib145 article-title: Covalent triazine frameworks: synthesis and applications publication-title: J. Mater. Chem. A doi: 10.1039/C8TA12442F – volume: 34 start-page: 5232 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib46 article-title: Constructing synergistic triazine and acetylene cores in fully conjugated covalent organic frameworks for cascade photocatalytic H2O2 production publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.2c00910 – volume: 62 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib142 article-title: Covalent organic frameworks containing dual O2 reduction centers for overall photosynthetic hydrogen peroxide production publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 2003323 year: 2021 ident: 10.1016/j.apcatb.2023.123271_bib16 article-title: Electrocatalytic oxygen reduction to hydrogen peroxide: from homogeneous to heterogeneous electrocatalysis publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003323 – volume: 120 start-page: 2171 year: 2020 ident: 10.1016/j.apcatb.2023.123271_bib154 article-title: Advances in conjugated microporous polymers publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00399 – volume: 138 start-page: 10019 year: 2016 ident: 10.1016/j.apcatb.2023.123271_bib119 article-title: Carbon nitride-aromatic diimide-graphene nanohybrids: Metal free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05806 – volume: 27 start-page: 1921 year: 2015 ident: 10.1016/j.apcatb.2023.123271_bib159 article-title: Photocatalytic suzuki coupling reaction using conjugated microporous polymer with immobilized palladium nanoparticles under visible light publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b00516 – volume: 139 start-page: 118 year: 2018 ident: 10.1016/j.apcatb.2023.123271_bib5 article-title: Evaluation of advanced oxidation processes for water and wastewater treatment-A critical review publication-title: Water Res doi: 10.1016/j.watres.2018.03.042 – volume: 59 start-page: 16209 year: 2020 ident: 10.1016/j.apcatb.2023.123271_bib106 article-title: Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202006747 – volume: 6 start-page: 7021 year: 2016 ident: 10.1016/j.apcatb.2023.123271_bib84 article-title: Graphitic carbon nitride doped with biphenyl diimide: efficient photocatalyst for hydrogen peroxide production from water and molecular oxygen by sunlight publication-title: ACS Catal. doi: 10.1021/acscatal.6b02367 – volume: 5 start-page: 6478 year: 2017 ident: 10.1016/j.apcatb.2023.123271_bib86 article-title: Mellitic triimide-doped carbon nitride as sunlight-driven photocatalysts for hydrogen peroxide production publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b00575 – volume: 6 start-page: 2200755 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib169 article-title: Organic polymer dots based on star-shaped truxene-core polymers for photocatalytic H2O2 production publication-title: Sol. RRL doi: 10.1002/solr.202200755 – volume: 2 start-page: 8737 year: 2019 ident: 10.1016/j.apcatb.2023.123271_bib72 article-title: Carbon-supported oxygen vacancy-rich Co3O4 for robust photocatalytic H2O2 production via coupled water oxidation and oxygen reduction reaction publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b01712 – volume: 4 start-page: 352 year: 2019 ident: 10.1016/j.apcatb.2023.123271_bib57 article-title: CaSnO3: an electrocatalyst for two-electron water oxidation reaction to form H2O2 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b02303 – volume: 47 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib92 article-title: AQ-coupled few-layered g-C3N4 nanoplates obtained by one-step mechanochemical treatment for efficient visible-light photocatalytic H2O2 production publication-title: Int. J. Hydrog. Energy – volume: 61 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib139 article-title: A crystalline partially fluorinated triazine covalent organic framework for efficient photosynthesis of hydrogen peroxide publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 1034 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib65 article-title: Overall photosynthesis of H2O2 by an inorganic semiconductor publication-title: Nat. Commun. doi: 10.1038/s41467-022-28686-x – volume: 198 year: 2021 ident: 10.1016/j.apcatb.2023.123271_bib88 article-title: Directing photocatalytic pathway to exceedingly high antibacterial activity in water by functionalizing holey ultrathin nanosheets of graphitic carbon nitride publication-title: Water Res doi: 10.1016/j.watres.2021.117125 – volume: 12 start-page: 1939 year: 2019 ident: 10.1016/j.apcatb.2023.123271_bib76 article-title: Promotive effect of bicarbonate ion on two-electron water oxidation to form H2O2 catalyzed by aluminum porphyrins publication-title: ChemSusChem doi: 10.1002/cssc.201900560 – volume: 2 start-page: 13422 year: 2014 ident: 10.1016/j.apcatb.2023.123271_bib163 article-title: Gas uptake, molecular sensing and organocatalytic performances of a multifunctional carbazole-based conjugated microporous polymer publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01871K – volume: 1 start-page: 156 year: 2018 ident: 10.1016/j.apcatb.2023.123271_bib11 article-title: High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials publication-title: Nat. Catal. doi: 10.1038/s41929-017-0017-x – volume: 5 start-page: 2100184 year: 2021 ident: 10.1016/j.apcatb.2023.123271_bib149 article-title: Electronic tuning of covalent triazine framework nanoshells for highly efficient photocatalytic H2O2 production publication-title: Adv. Sustain. Syst. doi: 10.1002/adsu.202100184 – volume: 46 start-page: 21605 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib131 article-title: Enhanced photocatalytic hydrogen peroxide production activity of imine-linked covalent organic frameworks via modification with functional groups publication-title: N. J. Chem. doi: 10.1039/D2NJ03744K – volume: 2017 start-page: 4797 year: 2017 ident: 10.1016/j.apcatb.2023.123271_bib111 article-title: Visible‐light‐driven photocatalytic H2O2 production on g‐C3N4 loaded with CoP as a noble metal free cocatalyst publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201700930 – volume: 8 start-page: 76 year: 2009 ident: 10.1016/j.apcatb.2023.123271_bib80 article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light publication-title: Nat. Mater. doi: 10.1038/nmat2317 – volume: 118 year: 2021 ident: 10.1016/j.apcatb.2023.123271_bib171 article-title: G. Ouyang. A solar-to-chemical conversion efficiency up to 0.26% achieved in ambient conditions publication-title: PNAS doi: 10.1073/pnas.2115666118 – volume: 58 start-page: 5402 year: 2019 ident: 10.1016/j.apcatb.2023.123271_bib23 article-title: Two-phase system utilizing hydrophobic metal-organic frameworks (MOFs) for photocatalytic synthesis of hydrogen peroxide publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201901961 – volume: 615 start-page: 87 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib69 article-title: P-doped melon-carbon nitride for efficient photocatalytic H2O2 production publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.01.107 – volume: 23 start-page: 1466 year: 2021 ident: 10.1016/j.apcatb.2023.123271_bib61 article-title: Photoredox catalysis over semiconductors for light-driven hydrogen peroxide production publication-title: Green Chem. doi: 10.1039/D0GC04236F – volume: 376 start-page: 198 year: 2019 ident: 10.1016/j.apcatb.2023.123271_bib75 article-title: Photocatalytic production of H2O2 and its in situ utilization over atomic-scale Au modified MoS2 nanosheets publication-title: J. Catal. doi: 10.1016/j.jcat.2019.06.015 – volume: 9 start-page: 40360 year: 2017 ident: 10.1016/j.apcatb.2023.123271_bib87 article-title: Distorted carbon nitride structure with substituted benzene moieties for enhanced visible light photocatalytic activities publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b14191 – volume: 32 start-page: 2111404 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib32 article-title: Semiconducting MOF@ZnS Heterostructures for photocatalytic hydrogen peroxide production: heterojunction coverage matters publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202111404 – volume: 61 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib167 article-title: Calcination-regulated microstructures of donor-acceptor polymers towards enhanced and stable photocatalytic H2O2 production in pure water publication-title: Angew. Chem. Int. Ed. – volume: 47 start-page: 787 year: 2008 ident: 10.1016/j.apcatb.2023.123271_bib6 article-title: Development of an anthraquinone process for the production of hydrogen peroxide in a trickle bed reactor-From bench scale to industrial scale publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2006.12.012 – volume: 12 start-page: 3701 year: 2021 ident: 10.1016/j.apcatb.2023.123271_bib47 article-title: Mechanistic analysis of multiple processes controlling solardriven H2O2 synthesis using engineered polymeric carbon nitride publication-title: Nat. Commun. doi: 10.1038/s41467-021-24048-1 – volume: 4 start-page: 3751 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib143 article-title: Aqueous synthesis of covalent organic frameworks as photocatalysts for hydrogen peroxide production publication-title: CCS Chem. doi: 10.31635/ccschem.022.202101578 – volume: 224 start-page: 725 year: 2018 ident: 10.1016/j.apcatb.2023.123271_bib115 article-title: Carbon nanotubes covalent combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production under visible light publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.11.005 – volume: 4 start-page: 746 year: 2019 ident: 10.1016/j.apcatb.2023.123271_bib39 article-title: Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts publication-title: Nat. Energy doi: 10.1038/s41560-019-0456-5 – volume: 334 start-page: 410 year: 2018 ident: 10.1016/j.apcatb.2023.123271_bib108 article-title: Photocatalytic oxygen reduction to hydrogen peroxide over copper doped graphitic carbon nitride hollow microsphere: The effect of Cu(I)-N active sites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.10.016 – volume: 32 start-page: 1904433 year: 2020 ident: 10.1016/j.apcatb.2023.123271_bib148 article-title: Acetylene and diacetylene functionalized covalent triazine frameworks as metal-free photocatalysts for hydrogen peroxide production: A new two-electron water oxidation pathway publication-title: Adv. Mater. doi: 10.1002/adma.201904433 – volume: 7 start-page: 7221 year: 2019 ident: 10.1016/j.apcatb.2023.123271_bib3 article-title: Hollow titanosilicate nanospheres encapsulating PdAu alloy nanoparticles as reusable high-performance catalysts for H2O2-mediatedone-pot oxidation reaction publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01481K – volume: 34 start-page: 2110266 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib151 article-title: Polarization engineering of covalent triazine frameworks for highly efficient photosynthesis of hydrogen peroxide from molecular oxygen and water publication-title: Adv. Mater. doi: 10.1002/adma.202110266 – volume: 8 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib155 article-title: Solvent-induced flower- and cudgel-shaped porous organic polymers: effective supports of palladium nanoparticles for dehalogenation in net water publication-title: ChemNanoMat doi: 10.1002/cnma.202100484 – volume: 5 start-page: 664 year: 2019 ident: 10.1016/j.apcatb.2023.123271_bib90 article-title: Edge functionalized g-C3N4 nanosheets as a highly efficient metal-free photocatalyst for safe drinking water publication-title: Chem doi: 10.1016/j.chempr.2018.12.009 – volume: 46 start-page: 28 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib124 article-title: A covalent organic framework inspired by C3N4 for photosynthesis of hydrogen peroxide with high quantum efficiency publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(22)64205-0 – volume: 7 start-page: 2200113 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib68 article-title: C3N4/PDA S-scheme heterojunction with enhanced photocatalytic H2O2 production performance and its mechanism publication-title: Adv. Sustain. Syst. doi: 10.1002/adsu.202200113 – volume: 144 start-page: 9902 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib135 article-title: Accelerated synthesis and discovery of covalent organic framework photocatalysts for hydrogen peroxide production publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c02666 – volume: 454 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib130 article-title: Three-dimensional covalent organic framework with tty topology for enhanced photocatalytic hydrogen peroxide production publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.140121 – volume: 117 start-page: 11406 year: 2017 ident: 10.1016/j.apcatb.2023.123271_bib4 article-title: Catalytic asymmetric oxygenations with the environmentally benign oxidants H2O2 and O2 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00167 – volume: 14 start-page: 1703142 year: 2018 ident: 10.1016/j.apcatb.2023.123271_bib96 article-title: Photoassisted construction of holey defective g-C3N4 photocatalysts for efficient visible-light-driven H2O2 production publication-title: Small doi: 10.1002/smll.201703142 – volume: 4 start-page: 720 year: 2019 ident: 10.1016/j.apcatb.2023.123271_bib58 article-title: Selective and efficient Gd-doped BiVO4 photoanode for two-electron water oxidation to H2O2 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00277 – volume: 11 start-page: 9547 year: 2021 ident: 10.1016/j.apcatb.2023.123271_bib37 article-title: Classical polymers as highly tunable and designable heterogeneous photocatalysts publication-title: ACS Catal. doi: 10.1021/acscatal.1c02056 – volume: 11 start-page: 2581 year: 2018 ident: 10.1016/j.apcatb.2023.123271_bib35 article-title: Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01316K – volume: 59 start-page: 17356 year: 2020 ident: 10.1016/j.apcatb.2023.123271_bib27 article-title: Production of hydrogen peroxide by photocatalytic processes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201911609 – volume: 11 start-page: 543 year: 2020 ident: 10.1016/j.apcatb.2023.123271_bib156 article-title: A stable covalent organic framework for photocatalytic carbon dioxide reduction publication-title: Chem. Sci. doi: 10.1039/C9SC03800K – volume: 27 start-page: 343 year: 2018 ident: 10.1016/j.apcatb.2023.123271_bib116 article-title: Energy-level dependent H2O2 production on metal-free, carbon-content tunable carbon nitride photocatalysts publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2017.12.014 – volume: 43 start-page: 166 year: 2004 ident: 10.1016/j.apcatb.2023.123271_bib15 article-title: Integrated process of H2O2 generation through anthraquinone hydrogenation-oxidation cycles and the ammoximation of cyclohexanone publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie030578s – volume: 190 start-page: 26 year: 2016 ident: 10.1016/j.apcatb.2023.123271_bib97 article-title: Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.03.004 – volume: 259 year: 2019 ident: 10.1016/j.apcatb.2023.123271_bib109 article-title: Surface modified C, O co-doped polymeric g-C3N4 as an efficient photocatalyst for visible light assisted CO2 reduction and H2O2 production publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.118054 – volume: 50 start-page: 120 year: 2021 ident: 10.1016/j.apcatb.2023.123271_bib120 article-title: Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00620C – volume: 11 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib160 article-title: Upgraded heterogenization of homogeneous catalytic systems by hollow porous organic frameworks with hierarchical porous shell for efficient carbon dioxide conversion publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.202100727 – volume: 39 start-page: 1090 year: 2018 ident: 10.1016/j.apcatb.2023.123271_bib95 article-title: Preparation of N-vacancy-doped g-C3N4 with outstanding photocatalytic H2O2 production ability by dielectric barrier discharge plasma treatment publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(18)63046-3 – volume: 5 start-page: 2101 year: 2014 ident: 10.1016/j.apcatb.2023.123271_bib81 article-title: g-C3N4-based photocatalysts for hydrogen generation publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500546b – volume: 268 year: 2020 ident: 10.1016/j.apcatb.2023.123271_bib103 article-title: Nano-layer based 1T-rich MoS2/g-C3N4 co-catalyst system for enhanced photocatalytic and photoelectrochemical activity publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.118466 – volume: 5 start-page: 3058 year: 2015 ident: 10.1016/j.apcatb.2023.123271_bib70 article-title: Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation publication-title: ACS Catal. doi: 10.1021/acscatal.5b00408 – volume: 30 start-page: 2002654 year: 2020 ident: 10.1016/j.apcatb.2023.123271_bib48 article-title: Covalent organic framework Hosting Metalloporphyrin-Based Carbon Dots for Visible-Light-Driven Selective CO2 Reduction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202002654 – volume: 142 start-page: 20107 year: 2020 ident: 10.1016/j.apcatb.2023.123271_bib136 article-title: Strongly reducing (diarylamino)benzene-based covalent organic framework for metal-free visible light photocatalytic H2O2 generation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09684 – volume: 54 start-page: 11204 year: 2018 ident: 10.1016/j.apcatb.2023.123271_bib14 article-title: Hydrogen peroxide production via a redox reaction of N, N′-dimethyl-2,6-diaza-9,10-anthraquinonediium by addition of bisulfite publication-title: Chem. Commun. doi: 10.1039/C8CC05548C – volume: 47 start-page: 3450 year: 2008 ident: 10.1016/j.apcatb.2023.123271_bib147 article-title: Porous, covalent triazine-based frameworks prepared by ionothermal synthesis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200705710 – volume: 466 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib25 article-title: Functionalized graphitic carbon nitride based catalysts in solar-to-chemical conversion for hydrogen peroxide production publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.142931 – volume: 32 start-page: 1907296 year: 2020 ident: 10.1016/j.apcatb.2023.123271_bib40 article-title: Recent advances in conjugated polymers for visible-light-driven water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201907296 – volume: 120 start-page: 8814 year: 2020 ident: 10.1016/j.apcatb.2023.123271_bib121 article-title: Covalent organic frameworks: design, synthesis, and functions publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00550 – volume: 32 start-page: 2110694 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib55 article-title: Microenvironments enabled by covalent organic framework linkages for modulating active metal species in photocatalytic CO2 reduction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202110694 – volume: 53 start-page: 13454 year: 2014 ident: 10.1016/j.apcatb.2023.123271_bib85 article-title: Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201407938 – volume: 11 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib53 article-title: Triphenylamine-based covalent triazine framework @ carbon nanotube complex: efficient photogenerated charges migration for metal free photocatalytic Cr(VI) reduction publication-title: J. Environ. Chem. Eng. – volume: 48 start-page: 182 year: 2019 ident: 10.1016/j.apcatb.2023.123271_bib102 article-title: Fabrication of a full-spectrum-response Cu2(OH)2CO3/g-C3N4 heterojunction catalyst with outstanding photocatalytic H2O2 production performance via a self-sacrificial method publication-title: Dalton Trans. doi: 10.1039/C8DT04081H – volume: 8 start-page: 2003077 year: 2021 ident: 10.1016/j.apcatb.2023.123271_bib166 article-title: Copolymer of phenylene and thiophene toward a visible-light-driven photocatalytic oxygen reduction to hydrogen peroxide publication-title: Adv. Sci. doi: 10.1002/advs.202003077 – volume: 334 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib125 article-title: A thioether-decorated triazine-based covalent organic framework towards overall H2O2 photosynthesis without sacrificial agents publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2023.122862 – volume: 16 start-page: 2177 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib74 article-title: Introducing B-N unit boosts photocatalytic H2O2 production on metal-free g-C3N4 nanosheets publication-title: Nano Res doi: 10.1007/s12274-022-4976-0 – volume: 267 year: 2020 ident: 10.1016/j.apcatb.2023.123271_bib113 article-title: Ultrathin g-C3N4 nanosheet with hierarchical pores and desirable energy band for highly efficient H2O2 production publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.118396 – volume: 61 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib138 article-title: Molecularly engineered covalent organic frameworks for hydrogen peroxide photosynthesis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202200413 – volume: 31 start-page: 1806314 year: 2019 ident: 10.1016/j.apcatb.2023.123271_bib118 article-title: Crafting mussel-inspired metal nanoparticle-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources publication-title: Adv. Mater. doi: 10.1002/adma.201806314 – volume: 34 start-page: 823 year: 2011 ident: 10.1016/j.apcatb.2023.123271_bib17 article-title: Kinetic model of gas-liquid-liquid reactive extraction for production of hydrogen peroxide publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201000094 – volume: 6 start-page: 4976 year: 2016 ident: 10.1016/j.apcatb.2023.123271_bib30 article-title: Au nanoparticles supported on BiVO4: Effective inorganic photocatalysts for H2O2 production from water and O2 under visible light publication-title: ACS Catal. doi: 10.1021/acscatal.6b01187 – volume: 14 start-page: 3267 year: 2021 ident: 10.1016/j.apcatb.2023.123271_bib41 article-title: Mesoporous resin nanobowls with optimized donor-acceptor conjugation for highly efficient photocatalytic hydrogen peroxide production publication-title: Nano Res. doi: 10.1007/s12274-021-3517-6 – volume: 34 start-page: 4259 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib56 article-title: Reaction pathways toward sustainable photosynthesis of hydrogen peroxide by polymer photocatalysts publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.2c00936 – volume: 14 start-page: 4344 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib141 article-title: Covalent organic frameworks for direct photosynthesis of hydrogen peroxide from water, air and sunlight publication-title: Nat. Commun. doi: 10.1038/s41467-023-40007-4 – volume: 277 year: 2020 ident: 10.1016/j.apcatb.2023.123271_bib107 article-title: Modulation of lewis acidic-basic sites for efficient photocatalytic H2O2 production over potassium intercalated tri-s-triazine materials publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2020.119225 – volume: 62 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib144 article-title: Oxidation-reduction molecular junction covalent organic frameworks for full reaction photosynthesis of H2O2 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 4023 year: 2014 ident: 10.1016/j.apcatb.2023.123271_bib29 article-title: Solar production of H2O2 on reduced graphene oxide-TiO2 hybrid photocatalysts consisting of earth-abundant elements only publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02757D – volume: 282 year: 2021 ident: 10.1016/j.apcatb.2023.123271_bib112 article-title: Photoexcited single metal atom catalysts for heterogeneous photocatalytic H2O2 production: Pragmatic guidelines for predicting charge separation publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2020.119589 – volume: 54 start-page: 2799 year: 1999 ident: 10.1016/j.apcatb.2023.123271_bib19 article-title: Kinetic and catalytic aspects in the hydrogen peroxide production via anthraquinone publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(98)00377-7 – volume: 34 start-page: 2200180 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib67 article-title: Surface modification of 2D photocatalysts for solar energy conversion publication-title: Adv. Mater. doi: 10.1002/adma.202200180 – volume: 46 start-page: 8574 year: 2007 ident: 10.1016/j.apcatb.2023.123271_bib158 article-title: Conjugated microporous poly(aryleneethynylene) networks, Angew publication-title: Chem. Int. Ed. doi: 10.1002/anie.200701595 – volume: 7 start-page: 7637 year: 2017 ident: 10.1016/j.apcatb.2023.123271_bib20 article-title: Active macromolecules of honey form colloidal particles essential for honey antibacterial activity and hydrogen peroxide production publication-title: Sci. Rep. doi: 10.1038/s41598-017-08072-0 – volume: 10 start-page: 14380 year: 2020 ident: 10.1016/j.apcatb.2023.123271_bib98 article-title: Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering publication-title: ACS Catal. doi: 10.1021/acscatal.0c03359 – volume: 9 start-page: 2464 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib140 article-title: Rational design of covalent organic frameworks for efficient photocatalytic hydrogen peroxide production publication-title: Environ. Sci.: Nano – volume: 8 start-page: 2959 year: 2017 ident: 10.1016/j.apcatb.2023.123271_bib157 article-title: Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors publication-title: Chem. Sci. doi: 10.1039/C6SC05532J – volume: 30 start-page: 1705710 year: 2018 ident: 10.1016/j.apcatb.2023.123271_bib162 article-title: Efficient supercapacitor energy storage using conjugated microporous polymer networks synthesized from buchwald-hartwig coupling publication-title: Adv. Mater. doi: 10.1002/adma.201705710 – volume: 45 start-page: 6962 year: 2006 ident: 10.1016/j.apcatb.2023.123271_bib13 article-title: Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200503779 – volume: 319 year: 2007 ident: 10.1016/j.apcatb.2023.123271_bib1 – volume: 12 start-page: 3550 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib78 article-title: Photoelectron transfer mediated by the interfacial electron effects for boosting visible-light-driven CO2 reduction publication-title: ACS Catal. doi: 10.1021/acscatal.1c05449 – volume: 8 start-page: 2924 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib21 article-title: Design of metal-organic framework catalysts for photocatalytic hydrogen peroxide production publication-title: Chem doi: 10.1016/j.chempr.2022.10.007 – volume: 406 start-page: 227 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib33 article-title: Hollow double-shell stacked CdS@ZnIn2S4 photocatalyst incorporating spatially separated dual cocatalysts for the enhanced photocatalytic hydrogen evolution and hydrogen peroxide production publication-title: Catal. Today 405- doi: 10.1016/j.cattod.2022.05.020 – volume: 119 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib165 article-title: Spontaneous exciton dissociation in organic photocatalyst under ambient conditions for highly efficient synthesis of hydrogen peroxide publication-title: PNAS doi: 10.1073/pnas.2202913119 – volume: 10 start-page: 14568 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib168 article-title: A metal-free heptazine-porphyrin based porous polymeric network as an artificial leaf for carbon free solar fuels publication-title: J. Mater. Chem. A doi: 10.1039/D2TA01646J – volume: 451 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib7 article-title: Photocatalytic H2O2 production Systems: Design strategies and environmental applications publication-title: Chem. Eng. J. – volume: 300 year: 2022 ident: 10.1016/j.apcatb.2023.123271_bib79 article-title: Band alignment of homojunction by anchoring CN quantum dots on g-C3N4 (0D/2D) enhance photocatalytic hydrogen peroxide evolution publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2021.120736 – volume: 466 year: 2023 ident: 10.1016/j.apcatb.2023.123271_bib127 article-title: Keto-enamine-based covalent organic framework with controllable anthraquinone moieties for superior H2O2 photosynthesis from O2 and water publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.143085 |
SSID | ssj0002328 |
Score | 2.6685636 |
SecondaryResourceType | review_article |
Snippet | The photocatalytic H2O2 production from H2O and O2 over organic polymers is a promising approach to achieve solar-to-chemical energy conversion. The continuous... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 123271 |
SubjectTerms | Heterogeneous catalysis Hydrogen peroxide Metal-free photocatalysts Photocatalysis Visible light |
Title | The photocatalytic H2O2 production by metal-free photocatalysts under visible-light irradiation |
URI | https://dx.doi.org/10.1016/j.apcatb.2023.123271 |
Volume | 341 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QPKgHoygRX9mD10K7u-3CkRBI1YgHMeHW7LbbiEFoSj1w8bc724dAYjTx2HamaXZmZ75p5psFuI16nOsQixzhSCxQHKZxS4W43e1e7EXCU1wZ7vDj2PNf-P3UndZgUHFhTFtlGfuLmJ5H6_JOp1zNTjKbdZ7tHvUYEwxBNCa9nLzOuTBe3v7ctHkgYsijMQpbRrqiz-U9XjIJZaba5gjxtsEWwvk5PW2lnNExHJVYkfSLzzmBml40YH9QHdHWgMOtaYINaA43pDVUK3ft6hQC9AWSvC6zZf6zZo2vIz59oiQpxr2iaYhak3eND6041TvCq2xFDNEsJYaGrubampt6nszS1Iw1MMpnMBkNJwPfKg9WsEKsEDJLSukIxHK2G9OYedqWtpaS4hrpmKku14bR63a7aD6m45AyhbDRjswkZozTkjWhvlgu9DkQRBNK8pBq1VVcxlrGwlEI8aT2IsojtwWsWs4gLIeOm7Mv5kHVXfYWFEYIjBGCwggtsL61kmLoxh_yorJUsOM8AeaFXzUv_q15CQd4xYsG7iuoZ-mHvkZ8kqmb3AFvYK9_9-CPvwCrlebF |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QOKAHoygRn3vwWmi72xaOhECKPDyICbfNbruNGISm1AP_3lnaoiRGE6_dnabZmZ35pplvBuAh7DCmAkxyPEtggmJRhVcqwOtudiI39FzJpOYOT6au_8Ie5868BL2CC6PLKnPfn_n0nbfOn7Ty02zFi0Xr2ezYLqUeRRCNQU-T1yu6O5VThkp3OPKne4eMoGHnkHG_oQUKBt2uzEvEgUhlU08Rb2p44Vk_R6hvUWdwCic5XCTd7IvOoKRWNaj2iiltNTj-1lCwBvX-F28NxfKLuzkHjuZA4td1ut79r9ni64hvP9kkzjq-onaI3JJ3hYtGlKiDzZt0QzTXLCGaiS6XyljqlJ4skkR3NtDCFzAb9Gc938hnKxgBJgmpIYSwPIRzphPZEXWVKUwlhI1npCIq20xpUq_TbqMGqYoCm0pEjmaomzGjqxa0DuXVeqUugSCgkIIFtpJtyUSkRORZElGeUG5os9BpAC2Okwd533E9_mLJiwKzN54pgWsl8EwJDTD2UnHWd-OP_V6hKX5gPxxDw6-SV_-WvIeqP5uM-Xg4HV3DEa6wrJ77Bspp8qFuEa6k8i43x0-Vc-l2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+photocatalytic+H2O2+production+by+metal-free+photocatalysts+under+visible-light+irradiation&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Xu%2C+Xiahong&rft.au=Sui%2C+Yan&rft.au=Chen%2C+Wentong&rft.au=Huang%2C+Wei&rft.date=2024-02-01&rft.issn=0926-3373&rft.volume=341&rft.spage=123271&rft_id=info:doi/10.1016%2Fj.apcatb.2023.123271&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2023_123271 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |