Vacuum pressure swing adsorption for efficient off-gas recycling: Techno-economic and CO2 abatement study
We suggest a vacuum pressure swing adsorption that uses CuCl/Boehmite adsorbent as a novel material to efficiently recycle a blast furnace gas into the blast furnace and discuss the techno-economic and CO2 abatement impact. To identify the crucial factors of the separation, five cases are simulated:...
Saved in:
Published in | Energy (Oxford) Vol. 264; p. 126281 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We suggest a vacuum pressure swing adsorption that uses CuCl/Boehmite adsorbent as a novel material to efficiently recycle a blast furnace gas into the blast furnace and discuss the techno-economic and CO2 abatement impact. To identify the crucial factors of the separation, five cases are simulated: three adsorption pressures at moderate CO purity, and three purity levels at moderate adsorption pressure. Also, the coke-replacement effects are estimated through the blast furnace simulation to consider the economic benefits. The result shows that the energy efficiency of the separation process varied 72–82%, and injection of highly purified off-gas (99% purity) was the most economically profitable, giving 86.7 US-MM$ of net present value. Cost sensitivity showed that the coke price is the most influential, but the adsorbent cost and carbon taxes have relatively little effect. In the best case, the coke-replacement ratio is 0.26kgCoke mgas−3. The suggested process reduces net emission by 0.19tCO2-eq tHM−1, and this corresponds to the 10% of net reduction which is the competitive strategy compared with the renewable hydrogen blast furnace. This study broadened the understanding of the separation process for off-gas recycling, and optimization of the process should be studied further.
•CuCl/Boehmite is newly applied to integrate gas separation and recycling with a BF.•The proposed scheme is economically viable and CO purity is the most critical factor.•Exterior carbon flow reduces by 5.2% and net emission reduction is 0.2 tCO2-eq tHM−1.•The annual reduction potential is estimated to be 725.3ktCO2-eq y−1. |
---|---|
AbstractList | We suggest a vacuum pressure swing adsorption that uses CuCl/Boehmite adsorbent as a novel material to efficiently recycle a blast furnace gas into the blast furnace and discuss the techno-economic and CO2 abatement impact. To identify the crucial factors of the separation, five cases are simulated: three adsorption pressures at moderate CO purity, and three purity levels at moderate adsorption pressure. Also, the coke-replacement effects are estimated through the blast furnace simulation to consider the economic benefits. The result shows that the energy efficiency of the separation process varied 72–82%, and injection of highly purified off-gas (99% purity) was the most economically profitable, giving 86.7 US-MM$ of net present value. Cost sensitivity showed that the coke price is the most influential, but the adsorbent cost and carbon taxes have relatively little effect. In the best case, the coke-replacement ratio is 0.26kgCoke mgas−3. The suggested process reduces net emission by 0.19tCO2-eq tHM−1, and this corresponds to the 10% of net reduction which is the competitive strategy compared with the renewable hydrogen blast furnace. This study broadened the understanding of the separation process for off-gas recycling, and optimization of the process should be studied further.
•CuCl/Boehmite is newly applied to integrate gas separation and recycling with a BF.•The proposed scheme is economically viable and CO purity is the most critical factor.•Exterior carbon flow reduces by 5.2% and net emission reduction is 0.2 tCO2-eq tHM−1.•The annual reduction potential is estimated to be 725.3ktCO2-eq y−1. |
ArticleNumber | 126281 |
Author | Kim, Jinsu Yoon, Young-Seek Oh, Hyunmin Kim, Jungil Lee, In-Beum Han, Sang Sup |
Author_xml | – sequence: 1 givenname: Jinsu orcidid: 0000-0002-4669-1631 surname: Kim fullname: Kim, Jinsu organization: Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea – sequence: 2 givenname: Sang Sup surname: Han fullname: Han, Sang Sup organization: Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, South Korea – sequence: 3 givenname: Jungil orcidid: 0000-0002-9263-5278 surname: Kim fullname: Kim, Jungil organization: POSCO, 6262, Donghaean-ro, Nam-gu, Pohang, Gyeongbuk, 37877, South Korea – sequence: 4 givenname: In-Beum surname: Lee fullname: Lee, In-Beum organization: School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, South Korea – sequence: 5 givenname: Hyunmin surname: Oh fullname: Oh, Hyunmin email: min0808@postech.ac.kr organization: Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea – sequence: 6 givenname: Young-Seek orcidid: 0000-0002-4005-6901 surname: Yoon fullname: Yoon, Young-Seek email: ysyoon@postech.ac.kr organization: Graduate Institute of Ferrous & Energy Materials Technology, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea |
BookMark | eNp9kL1qwzAUhTWk0KTtG3TQC9iVZFtYHQol9A8CWUJXoVxdpQqxFCS7xW9fm3TudJf7Hc75VmQRYkBC7jkrOePy4VhiwHQYS8GEKLmQouULsmSVZEVT1-KarHI-MsaaVqkl8Z8GhqGj54Q5Dwlp_vHhQI3NMZ17HwN1MVF0zoPH0NPoXHEwmSaEEU7T6yPdIXyFWCDEEDsP1ARL11tBzd702M1Q7gc73pIrZ04Z7_7uDdm9vuzW78Vm-_axft4UUDHZF0Zx3jYMuKntHuq9kSAZqgoUc9Y6dNDW3NbIGwlVbaVQaLmSTQNcucpWN6S-xEKKOSd0-px8Z9KoOdOzIX3UF0N6NqQvhibs6YLhVO3bY9J5Hgxo_TS11zb6_wN-AdK6d08 |
CitedBy_id | crossref_primary_10_1016_j_jmapro_2023_05_108 crossref_primary_10_3390_pr12051015 crossref_primary_10_1016_j_cej_2023_144579 crossref_primary_10_1016_j_energy_2024_131376 crossref_primary_10_1016_j_energy_2023_129853 crossref_primary_10_1021_acsomega_3c08692 crossref_primary_10_1016_j_enconman_2024_118138 |
Cites_doi | 10.1080/10426910802679485 10.1007/s11663-019-01538-8 10.1126/science.aas9793 10.1039/C6GC02852G 10.2355/isijinternational.55.340 10.1021/acs.iecr.9b04173 10.3989/revmetalm.2002.v38.i4.411 10.3390/s18020625 10.1039/D0GC02969F 10.1016/j.seppur.2020.116651 10.1007/s11705-013-1351-4 10.1016/j.seppur.2022.121827 10.1002/srin.201500054 10.1016/0950-4214(91)80031-Y 10.1016/j.jclepro.2022.131062 10.1016/j.energy.2018.08.114 10.2355/isijinternational.ISIJINT-2016-090 10.1016/j.energy.2021.122908 10.1007/BF03378564 10.1016/j.ijggc.2014.11.007 10.1016/j.seppur.2020.117832 10.2355/isijinternational.46.1759 10.1002/srin.201500372 10.1002/srin.201000103 10.1016/j.jiec.2019.02.019 10.1016/S1006-706X(17)30092-4 10.1021/acs.iecr.0c01752 10.2355/isijinternational.50.931 10.1007/s11431-010-0029-0 10.1179/174328109X439298 10.2355/isijinternational.38.239 10.1038/s41467-021-22245-6 10.1016/j.jhazmat.2017.11.037 10.1051/metal/2009008 10.1016/j.micromeso.2018.10.010 10.1016/j.enconman.2021.114922 10.1016/j.energy.2015.05.093 10.1179/0301923313Z.000000000221 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.energy.2022.126281 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
ExternalDocumentID | 10_1016_j_energy_2022_126281 S036054422203167X |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AAXKI AAYXX ABFNM ABXDB ADMUD AFJKZ AHHHB AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 G8K HVGLF HZ~ R2- RIG SAC SEW WUQ |
ID | FETCH-LOGICAL-c306t-a911850c1a4dbc4ba6c60e93c90fddfefc841d4e156c34d629ed19655c19f3d3 |
IEDL.DBID | AIKHN |
ISSN | 0360-5442 |
IngestDate | Thu Sep 26 17:02:38 EDT 2024 Fri Feb 23 02:39:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Blast furnace gas recirculation Techno-economic analysis CO selective Adsorbent CO2 emission reduction Vacuum pressure swing adsorption |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-a911850c1a4dbc4ba6c60e93c90fddfefc841d4e156c34d629ed19655c19f3d3 |
ORCID | 0000-0002-9263-5278 0000-0002-4669-1631 0000-0002-4005-6901 |
ParticipantIDs | crossref_primary_10_1016_j_energy_2022_126281 elsevier_sciencedirect_doi_10_1016_j_energy_2022_126281 |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 2023-02-00 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Meijer, Denys, Lasar, Birat, Still, Overmaat (bib24) 2009; 36 Subraveti, Li, Prasad, Rajendran (bib38) 2019; 58 Wang, Ryberg, Yang, Feng, Kara, Hauschild (bib2) 2021; 12 Kim, Kim, Oh, Lee, Lee, Yoon (bib34) 2022; 241 Subraveti, Roussanaly, Anantharaman, Riboldi, Rajendran (bib40) 2021; 256 Pistorius (bib46) 2012 bib29 Net-zero emissions energy systems | Science n.d https://science.sciencemag.org/content/360/6396/eaas9793 (accessed April 19, 2021). https://doi.org/10.1126/science.aas9793. Zhang, Li, Tang, Bao (bib16) 2010; 53 Lee, Lee, Han (bib45) 2019; 75 Cho, Kim, Beum, Jung, Han (bib26) 2018; 344 Pettersson, Saxén, Deb (bib6) 2009; 24 Chu, Yagi (bib8) 2010; 81 Jin, Jiang, Bao, Lu, Zhang, Zhang (bib11) 2016; 87 Pai, Prasad, Rajendran (bib37) 2020; 241 Zhang, Zhang, Xue, Zou, Qi (bib13) 2016 Oh, Lee, Beum, Kim, Kim, Lee (bib30) 2022 bib41 Jampani, Gibson, Pistorius (bib35) 2019; 50 Kasuya, Tsuji (bib19) 1991; 5 Tsupari, Kärki, Arasto, Lilja, Kinnunen, Sihvonen (bib43) 2015; 32 reduction in the steel Industry (EMECR) 2017. Kobe International Conference center, Kobe, Japan. The Iron and Steel Institute of Japan, ISIJ. Asen (bib44) 2020 Kim, Son, Han, Yoon, Oh (bib22) 2022; 300 She, An, Wang, Xue, Kong (bib17) 2017; 24 Kim, Lee, Lee, Kim, Oh, Lee (bib28) 2021; 250 Sternberg, Jens, Bardow (bib48) 2017; 19 Iron and steel technology roadmap – analysis. IEA n.d. https://www.iea.org/reports/iron-and-steel-technology-roadmap (accessed March 18, 2021). Li, Yang, Zhang (bib20) 2013; 7 Afanga, Mirgaux, Patisson (bib9) 2012 U.S. Energy information administration - EIA - independent statistics and analysis n.d. (accessed August 6, 2021). Babich, Gudenau, Mavrommatis, Froechling, Formoso, Cores (bib15) 2002; 38 Cho, Kim, Park, Jung, Beum, Cho (bib27) 2019; 277 Danloy, Berthelemot, Grant, Borlée, Sert, Van der Stel (bib23) 2009; 106 Davenport, Cameron, Sukhram, Lefebvre (bib33) 2019 Junjie (bib25) 2018; 3 Rist, Meysson (bib32) 1967; 19 Lee, Lee, Ryu, Park, Lee, Lee (bib47) 2021; 23 Kim, Lee, Lee, Lee, Park, Han (bib42) 2015; 88 Suzuki, Hayashi, Kuribara, Nakagaki, Kasahara (bib36) 2015; 55 Tang Wei, Geng Yunfeng, Lü Changzhong, Li Tengjiao, Zhang Jiaping, Xie Youchang. Enrichment of CO from blast furnace gas by VPSA using adsorbent PU-1. International Conference on energy and material efficiency and CO Zhang, Jiang, Yin, Xiao, Zhao (bib39) 2018; 18 Helle, Helle, Saxén, Pettersson (bib7) 2010; 50 Stel, van der, Louwerse, Sert, Hirsch, Eklund, Pettersson (bib10) 2013; 40 Koizumu, Fujita, Sakuraya (bib18) 1986; 18 Nogami, Yagi, Kitamura, Austin (bib5) 2006; 46 Austin, Nogami, Yagi (bib4) 1998; 38 Wang, Chu, Guo, Zhao, Feng, Liu (bib12) 2016; 87 Liu, Jiang, Zhang, Lu, He, Wang (bib14) 2018; 163 Oh, Beum, Yoon, Kim, Han, Kim (bib31) 2020; 59 Junjie (10.1016/j.energy.2022.126281_bib25) 2018; 3 Oh (10.1016/j.energy.2022.126281_bib30) 2022 Zhang (10.1016/j.energy.2022.126281_bib39) 2018; 18 10.1016/j.energy.2022.126281_bib49 Zhang (10.1016/j.energy.2022.126281_bib13) 2016 Asen (10.1016/j.energy.2022.126281_bib44) 2020 Pettersson (10.1016/j.energy.2022.126281_bib6) 2009; 24 Kim (10.1016/j.energy.2022.126281_bib34) 2022; 241 Lee (10.1016/j.energy.2022.126281_bib45) 2019; 75 Subraveti (10.1016/j.energy.2022.126281_bib38) 2019; 58 Subraveti (10.1016/j.energy.2022.126281_bib40) 2021; 256 Kim (10.1016/j.energy.2022.126281_bib42) 2015; 88 Stel (10.1016/j.energy.2022.126281_bib10) 2013; 40 Suzuki (10.1016/j.energy.2022.126281_bib36) 2015; 55 Rist (10.1016/j.energy.2022.126281_bib32) 1967; 19 Tsupari (10.1016/j.energy.2022.126281_bib43) 2015; 32 Kasuya (10.1016/j.energy.2022.126281_bib19) 1991; 5 Jampani (10.1016/j.energy.2022.126281_bib35) 2019; 50 Sternberg (10.1016/j.energy.2022.126281_bib48) 2017; 19 Liu (10.1016/j.energy.2022.126281_bib14) 2018; 163 Zhang (10.1016/j.energy.2022.126281_bib16) 2010; 53 Nogami (10.1016/j.energy.2022.126281_bib5) 2006; 46 Davenport (10.1016/j.energy.2022.126281_bib33) 2019 Wang (10.1016/j.energy.2022.126281_bib2) 2021; 12 Meijer (10.1016/j.energy.2022.126281_bib24) 2009; 36 10.1016/j.energy.2022.126281_bib3 10.1016/j.energy.2022.126281_bib1 Oh (10.1016/j.energy.2022.126281_bib31) 2020; 59 Helle (10.1016/j.energy.2022.126281_bib7) 2010; 50 Li (10.1016/j.energy.2022.126281_bib20) 2013; 7 Kim (10.1016/j.energy.2022.126281_bib22) 2022; 300 Chu (10.1016/j.energy.2022.126281_bib8) 2010; 81 Koizumu (10.1016/j.energy.2022.126281_bib18) 1986; 18 Danloy (10.1016/j.energy.2022.126281_bib23) 2009; 106 Lee (10.1016/j.energy.2022.126281_bib47) 2021; 23 Kim (10.1016/j.energy.2022.126281_bib28) 2021; 250 Babich (10.1016/j.energy.2022.126281_bib15) 2002; 38 She (10.1016/j.energy.2022.126281_bib17) 2017; 24 Wang (10.1016/j.energy.2022.126281_bib12) 2016; 87 Pistorius (10.1016/j.energy.2022.126281_bib46) 2012 Jin (10.1016/j.energy.2022.126281_bib11) 2016; 87 Cho (10.1016/j.energy.2022.126281_bib27) 2019; 277 Pai (10.1016/j.energy.2022.126281_bib37) 2020; 241 Cho (10.1016/j.energy.2022.126281_bib26) 2018; 344 Austin (10.1016/j.energy.2022.126281_bib4) 1998; 38 Afanga (10.1016/j.energy.2022.126281_bib9) 2012 10.1016/j.energy.2022.126281_bib21 |
References_xml | – volume: 88 start-page: 756 year: 2015 end-page: 764 ident: bib42 article-title: Economic process design for separation of CO publication-title: Energy contributor: fullname: Han – volume: 75 start-page: 77 year: 2019 end-page: 85 ident: bib45 article-title: Techno-economic analysis of methanol production from joint feedstock of coke oven gas and basic oxygen furnace gas from steel-making publication-title: J Ind Eng Chem contributor: fullname: Han – year: 2019 ident: bib33 article-title: Blast furnace ironmaking: analysis, control and optimization contributor: fullname: Lefebvre – volume: 87 start-page: 320 year: 2016 end-page: 329 ident: bib11 article-title: Mathematical modeling of the energy consumption and carbon emission for the oxygen blast furnace with top gas recycling publication-title: Steel Res Int contributor: fullname: Zhang – volume: 19 start-page: 2244 year: 2017 end-page: 2259 ident: bib48 article-title: Life cycle assessment of CO publication-title: Green Chem contributor: fullname: Bardow – volume: 18 start-page: 284 year: 1986 end-page: 288 ident: bib18 article-title: Installation and operation of high purity CO gas recovery plant publication-title: Kawasaki Steel Giho contributor: fullname: Sakuraya – volume: 250 year: 2021 ident: bib28 article-title: An integrative process of blast furnace and SOEC for hydrogen utilization: techno-economic and environmental impact assessment publication-title: Energy Convers Manag contributor: fullname: Lee – volume: 53 start-page: 85 year: 2010 end-page: 92 ident: bib16 article-title: Conceptual design and simulation analysis of thermal behaviors of TGR blast furnace and oxygen blast furnace publication-title: Sci China Ser E Technol Sci contributor: fullname: Bao – year: 2012 ident: bib46 article-title: Partially reduced feedstocks and blast furnace ironmaking carbon intensity publication-title: Int. Smelt. Technol. Symp. Inc. 6th Adv. Sulfide Smelt. Symp. contributor: fullname: Pistorius – volume: 50 start-page: 931 year: 2010 end-page: 938 ident: bib7 article-title: Optimization of top gas recycling conditions under high oxygen enrichment in the blast furnace publication-title: ISIJ Int contributor: fullname: Pettersson – year: 2016 ident: bib13 article-title: Unsteady analyses of the top gas recycling oxygen blast furnace publication-title: ISIJ Int contributor: fullname: Qi – volume: 7 start-page: 472 year: 2013 end-page: 481 ident: bib20 article-title: Enrichment of CO from syngas with Cu (I) Y adsorbent by five-bed VPSA publication-title: Front Chem Sci Eng contributor: fullname: Zhang – ident: bib41 – volume: 40 start-page: 483 year: 2013 end-page: 489 ident: bib10 article-title: Top gas recycling blast furnace developments for ‘green’ and sustainable ironmaking publication-title: Ironmak Steelmak contributor: fullname: Pettersson – volume: 19 start-page: 50 year: 1967 end-page: 59 ident: bib32 article-title: A dual graphic representation of the blast-furnace mass and heat balances publication-title: JOM contributor: fullname: Meysson – volume: 38 start-page: 239 year: 1998 end-page: 245 ident: bib4 article-title: Prediction of blast furnace performance with top gas recycling publication-title: ISIJ Int contributor: fullname: Yagi – volume: 3 start-page: 15 year: 2018 ident: bib25 article-title: Progress and future of breakthrough low-carbon steelmaking technology (ULCOS) of EU publication-title: Int J Miner Process Extr Metall contributor: fullname: Junjie – volume: 344 start-page: 857 year: 2018 end-page: 864 ident: bib26 article-title: Synthesis of CuCl/Boehmite adsorbents that exhibit high CO selectivity in CO/CO publication-title: J Hazard Mater contributor: fullname: Han – ident: bib29 – volume: 241 year: 2022 ident: bib34 article-title: Techno-economic and environmental impact analysis of tuyere injection of hot reducing gas from low-rank coal gasification in blast furnace publication-title: Energy contributor: fullname: Yoon – year: 2020 ident: bib44 article-title: Carbon taxes in Europe contributor: fullname: Asen – volume: 38 start-page: 288 year: 2002 end-page: 305 ident: bib15 article-title: Choice of technological regimes of a blast furnace operation with injection of hot reducing gases publication-title: Rev Metal (Madr) contributor: fullname: Cores – volume: 300 year: 2022 ident: bib22 article-title: Computational-cost-efficient surrogate model of vacuum pressure swing adsorption for CO separation process optimization publication-title: Separ Purif Technol contributor: fullname: Oh – volume: 23 start-page: 2397 year: 2021 end-page: 2410 ident: bib47 article-title: Catholyte-free electroreduction of CO publication-title: Green Chem contributor: fullname: Lee – volume: 256 year: 2021 ident: bib40 article-title: Techno-economic assessment of optimised vacuum swing adsorption for post-combustion CO publication-title: Separ Purif Technol contributor: fullname: Rajendran – volume: 58 start-page: 20412 year: 2019 end-page: 20422 ident: bib38 article-title: Machine learning-based multiobjective optimization of pressure swing adsorption publication-title: Ind Eng Chem Res contributor: fullname: Rajendran – volume: 24 start-page: 343 year: 2009 end-page: 349 ident: bib6 article-title: Genetic algorithm-based multicriteria optimization of ironmaking in the blast furnace publication-title: Mater Manuf Process contributor: fullname: Deb – volume: 163 start-page: 144 year: 2018 end-page: 150 ident: bib14 article-title: Effects of top gas recycling on in-furnace status, productivity, and energy consumption of oxygen blast furnace publication-title: Energy contributor: fullname: Wang – volume: 55 start-page: 340 year: 2015 end-page: 347 ident: bib36 article-title: Quantitative evaluation of CO publication-title: ISIJ Int contributor: fullname: Kasahara – year: 2022 ident: bib30 article-title: CO recovery from blast furnace gas by vacuum pressure swing adsorption process: experimental and simulation approach publication-title: J Clean Prod contributor: fullname: Lee – year: 2012 ident: bib9 article-title: Assessment of top gas recycling blast furnace: a technology to reduce CO publication-title: Carbon Manag. Technol. Conf., carbon Management technology Conference contributor: fullname: Patisson – volume: 59 start-page: 12176 year: 2020 end-page: 12185 ident: bib31 article-title: Experiment and modeling of adsorption of CO from blast furnace gas onto CuCl/boehmite publication-title: Ind Eng Chem Res contributor: fullname: Kim – volume: 32 start-page: 189 year: 2015 end-page: 196 ident: bib43 article-title: Oxygen blast furnace with CO publication-title: Int J Greenh Gas Control contributor: fullname: Sihvonen – volume: 12 start-page: 2066 year: 2021 ident: bib2 article-title: Efficiency stagnation in global steel production urges joint supply- and demand-side mitigation efforts publication-title: Nat Commun contributor: fullname: Hauschild – volume: 241 year: 2020 ident: bib37 article-title: Experimentally validated machine learning frameworks for accelerated prediction of cyclic steady state and optimization of pressure swing adsorption processes publication-title: Separ Purif Technol contributor: fullname: Rajendran – volume: 277 start-page: 142 year: 2019 end-page: 148 ident: bib27 article-title: High CO adsorption capacity, and CO selectivity to CO publication-title: Microporous Mesoporous Mater contributor: fullname: Cho – volume: 81 start-page: 1043 year: 2010 end-page: 1050 ident: bib8 article-title: Numerical evaluation of blast furnace performance under top gas recycling and lower temperature operation publication-title: Steel Res Int contributor: fullname: Yagi – volume: 5 start-page: 242 year: 1991 end-page: 246 ident: bib19 article-title: High purity CO gas separation by pressure swing adsorption publication-title: Gas Sep Purif contributor: fullname: Tsuji – volume: 24 start-page: 608 year: 2017 end-page: 616 ident: bib17 article-title: Numerical analysis of carbon saving potential in a top gas recycling oxygen blast furnace publication-title: J Iron Steel Res Int contributor: fullname: Kong – volume: 46 start-page: 1759 year: 2006 end-page: 1766 ident: bib5 article-title: Analysis on material and energy balances of ironmaking systems on blast furnace operations with metallic charging, top gas recycling and natural gas injection publication-title: ISIJ Int contributor: fullname: Austin – volume: 36 start-page: 249 year: 2009 end-page: 251 ident: bib24 article-title: ULCOS: ultra-low CO2 steelmaking publication-title: Ironmak Steelmak contributor: fullname: Overmaat – volume: 50 start-page: 1290 year: 2019 end-page: 1299 ident: bib35 article-title: Increased use of natural gas in blast furnace ironmaking: mass and energy balance calculations publication-title: Metall Mater Trans B contributor: fullname: Pistorius – volume: 106 start-page: 1 year: 2009 end-page: 8 ident: bib23 article-title: ULCOS-Pilot testing of the low-CO publication-title: Rev Métall contributor: fullname: Van der Stel – volume: 18 start-page: 625 year: 2018 ident: bib39 article-title: The prediction of the gas utilization ratio based on TS fuzzy neural network and particle swarm optimization publication-title: Sensors contributor: fullname: Zhao – volume: 87 start-page: 539 year: 2016 end-page: 549 ident: bib12 article-title: Mathematical simulation on blast furnace operation of coke oven gas injection in combination with top gas recycling publication-title: Steel Res Int contributor: fullname: Liu – volume: 24 start-page: 343 year: 2009 ident: 10.1016/j.energy.2022.126281_bib6 article-title: Genetic algorithm-based multicriteria optimization of ironmaking in the blast furnace publication-title: Mater Manuf Process doi: 10.1080/10426910802679485 contributor: fullname: Pettersson – volume: 50 start-page: 1290 year: 2019 ident: 10.1016/j.energy.2022.126281_bib35 article-title: Increased use of natural gas in blast furnace ironmaking: mass and energy balance calculations publication-title: Metall Mater Trans B doi: 10.1007/s11663-019-01538-8 contributor: fullname: Jampani – ident: 10.1016/j.energy.2022.126281_bib3 doi: 10.1126/science.aas9793 – volume: 18 start-page: 284 year: 1986 ident: 10.1016/j.energy.2022.126281_bib18 article-title: Installation and operation of high purity CO gas recovery plant publication-title: Kawasaki Steel Giho contributor: fullname: Koizumu – volume: 19 start-page: 2244 year: 2017 ident: 10.1016/j.energy.2022.126281_bib48 article-title: Life cycle assessment of CO2-based C1-chemicals publication-title: Green Chem doi: 10.1039/C6GC02852G contributor: fullname: Sternberg – volume: 55 start-page: 340 year: 2015 ident: 10.1016/j.energy.2022.126281_bib36 article-title: Quantitative evaluation of CO2 emission reduction of active carbon recycling energy system for ironmaking by modeling with aspen plus publication-title: ISIJ Int doi: 10.2355/isijinternational.55.340 contributor: fullname: Suzuki – volume: 58 start-page: 20412 year: 2019 ident: 10.1016/j.energy.2022.126281_bib38 article-title: Machine learning-based multiobjective optimization of pressure swing adsorption publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.9b04173 contributor: fullname: Subraveti – volume: 38 start-page: 288 year: 2002 ident: 10.1016/j.energy.2022.126281_bib15 article-title: Choice of technological regimes of a blast furnace operation with injection of hot reducing gases publication-title: Rev Metal (Madr) doi: 10.3989/revmetalm.2002.v38.i4.411 contributor: fullname: Babich – volume: 18 start-page: 625 year: 2018 ident: 10.1016/j.energy.2022.126281_bib39 article-title: The prediction of the gas utilization ratio based on TS fuzzy neural network and particle swarm optimization publication-title: Sensors doi: 10.3390/s18020625 contributor: fullname: Zhang – volume: 23 start-page: 2397 year: 2021 ident: 10.1016/j.energy.2022.126281_bib47 article-title: Catholyte-free electroreduction of CO2 for sustainable production of CO: concept, process development, techno-economic analysis, and CO2 reduction assessment publication-title: Green Chem doi: 10.1039/D0GC02969F contributor: fullname: Lee – year: 2012 ident: 10.1016/j.energy.2022.126281_bib46 article-title: Partially reduced feedstocks and blast furnace ironmaking carbon intensity contributor: fullname: Pistorius – volume: 3 start-page: 15 year: 2018 ident: 10.1016/j.energy.2022.126281_bib25 article-title: Progress and future of breakthrough low-carbon steelmaking technology (ULCOS) of EU publication-title: Int J Miner Process Extr Metall contributor: fullname: Junjie – volume: 241 year: 2020 ident: 10.1016/j.energy.2022.126281_bib37 article-title: Experimentally validated machine learning frameworks for accelerated prediction of cyclic steady state and optimization of pressure swing adsorption processes publication-title: Separ Purif Technol doi: 10.1016/j.seppur.2020.116651 contributor: fullname: Pai – volume: 7 start-page: 472 year: 2013 ident: 10.1016/j.energy.2022.126281_bib20 article-title: Enrichment of CO from syngas with Cu (I) Y adsorbent by five-bed VPSA publication-title: Front Chem Sci Eng doi: 10.1007/s11705-013-1351-4 contributor: fullname: Li – volume: 300 year: 2022 ident: 10.1016/j.energy.2022.126281_bib22 article-title: Computational-cost-efficient surrogate model of vacuum pressure swing adsorption for CO separation process optimization publication-title: Separ Purif Technol doi: 10.1016/j.seppur.2022.121827 contributor: fullname: Kim – volume: 87 start-page: 320 year: 2016 ident: 10.1016/j.energy.2022.126281_bib11 article-title: Mathematical modeling of the energy consumption and carbon emission for the oxygen blast furnace with top gas recycling publication-title: Steel Res Int doi: 10.1002/srin.201500054 contributor: fullname: Jin – volume: 5 start-page: 242 year: 1991 ident: 10.1016/j.energy.2022.126281_bib19 article-title: High purity CO gas separation by pressure swing adsorption publication-title: Gas Sep Purif doi: 10.1016/0950-4214(91)80031-Y contributor: fullname: Kasuya – year: 2022 ident: 10.1016/j.energy.2022.126281_bib30 article-title: CO recovery from blast furnace gas by vacuum pressure swing adsorption process: experimental and simulation approach publication-title: J Clean Prod doi: 10.1016/j.jclepro.2022.131062 contributor: fullname: Oh – volume: 163 start-page: 144 year: 2018 ident: 10.1016/j.energy.2022.126281_bib14 article-title: Effects of top gas recycling on in-furnace status, productivity, and energy consumption of oxygen blast furnace publication-title: Energy doi: 10.1016/j.energy.2018.08.114 contributor: fullname: Liu – year: 2016 ident: 10.1016/j.energy.2022.126281_bib13 article-title: Unsteady analyses of the top gas recycling oxygen blast furnace publication-title: ISIJ Int doi: 10.2355/isijinternational.ISIJINT-2016-090 contributor: fullname: Zhang – volume: 241 year: 2022 ident: 10.1016/j.energy.2022.126281_bib34 article-title: Techno-economic and environmental impact analysis of tuyere injection of hot reducing gas from low-rank coal gasification in blast furnace publication-title: Energy doi: 10.1016/j.energy.2021.122908 contributor: fullname: Kim – ident: 10.1016/j.energy.2022.126281_bib49 – volume: 19 start-page: 50 year: 1967 ident: 10.1016/j.energy.2022.126281_bib32 article-title: A dual graphic representation of the blast-furnace mass and heat balances publication-title: JOM doi: 10.1007/BF03378564 contributor: fullname: Rist – volume: 32 start-page: 189 year: 2015 ident: 10.1016/j.energy.2022.126281_bib43 article-title: Oxygen blast furnace with CO2 capture and storage at an integrated steel mill–Part II: economic feasibility in comparison with conventional blast furnace highlighting sensitivities publication-title: Int J Greenh Gas Control doi: 10.1016/j.ijggc.2014.11.007 contributor: fullname: Tsupari – volume: 256 year: 2021 ident: 10.1016/j.energy.2022.126281_bib40 article-title: Techno-economic assessment of optimised vacuum swing adsorption for post-combustion CO2 capture from steam-methane reformer flue gas publication-title: Separ Purif Technol doi: 10.1016/j.seppur.2020.117832 contributor: fullname: Subraveti – ident: 10.1016/j.energy.2022.126281_bib1 – volume: 46 start-page: 1759 year: 2006 ident: 10.1016/j.energy.2022.126281_bib5 article-title: Analysis on material and energy balances of ironmaking systems on blast furnace operations with metallic charging, top gas recycling and natural gas injection publication-title: ISIJ Int doi: 10.2355/isijinternational.46.1759 contributor: fullname: Nogami – volume: 87 start-page: 539 year: 2016 ident: 10.1016/j.energy.2022.126281_bib12 article-title: Mathematical simulation on blast furnace operation of coke oven gas injection in combination with top gas recycling publication-title: Steel Res Int doi: 10.1002/srin.201500372 contributor: fullname: Wang – volume: 81 start-page: 1043 year: 2010 ident: 10.1016/j.energy.2022.126281_bib8 article-title: Numerical evaluation of blast furnace performance under top gas recycling and lower temperature operation publication-title: Steel Res Int doi: 10.1002/srin.201000103 contributor: fullname: Chu – ident: 10.1016/j.energy.2022.126281_bib21 – volume: 75 start-page: 77 year: 2019 ident: 10.1016/j.energy.2022.126281_bib45 article-title: Techno-economic analysis of methanol production from joint feedstock of coke oven gas and basic oxygen furnace gas from steel-making publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2019.02.019 contributor: fullname: Lee – volume: 24 start-page: 608 year: 2017 ident: 10.1016/j.energy.2022.126281_bib17 article-title: Numerical analysis of carbon saving potential in a top gas recycling oxygen blast furnace publication-title: J Iron Steel Res Int doi: 10.1016/S1006-706X(17)30092-4 contributor: fullname: She – volume: 59 start-page: 12176 year: 2020 ident: 10.1016/j.energy.2022.126281_bib31 article-title: Experiment and modeling of adsorption of CO from blast furnace gas onto CuCl/boehmite publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.0c01752 contributor: fullname: Oh – volume: 50 start-page: 931 year: 2010 ident: 10.1016/j.energy.2022.126281_bib7 article-title: Optimization of top gas recycling conditions under high oxygen enrichment in the blast furnace publication-title: ISIJ Int doi: 10.2355/isijinternational.50.931 contributor: fullname: Helle – year: 2019 ident: 10.1016/j.energy.2022.126281_bib33 contributor: fullname: Davenport – year: 2012 ident: 10.1016/j.energy.2022.126281_bib9 article-title: Assessment of top gas recycling blast furnace: a technology to reduce CO2 emissions in the steelmaking industry contributor: fullname: Afanga – volume: 53 start-page: 85 year: 2010 ident: 10.1016/j.energy.2022.126281_bib16 article-title: Conceptual design and simulation analysis of thermal behaviors of TGR blast furnace and oxygen blast furnace publication-title: Sci China Ser E Technol Sci doi: 10.1007/s11431-010-0029-0 contributor: fullname: Zhang – volume: 36 start-page: 249 year: 2009 ident: 10.1016/j.energy.2022.126281_bib24 article-title: ULCOS: ultra-low CO2 steelmaking publication-title: Ironmak Steelmak doi: 10.1179/174328109X439298 contributor: fullname: Meijer – volume: 38 start-page: 239 year: 1998 ident: 10.1016/j.energy.2022.126281_bib4 article-title: Prediction of blast furnace performance with top gas recycling publication-title: ISIJ Int doi: 10.2355/isijinternational.38.239 contributor: fullname: Austin – volume: 12 start-page: 2066 year: 2021 ident: 10.1016/j.energy.2022.126281_bib2 article-title: Efficiency stagnation in global steel production urges joint supply- and demand-side mitigation efforts publication-title: Nat Commun doi: 10.1038/s41467-021-22245-6 contributor: fullname: Wang – volume: 344 start-page: 857 year: 2018 ident: 10.1016/j.energy.2022.126281_bib26 article-title: Synthesis of CuCl/Boehmite adsorbents that exhibit high CO selectivity in CO/CO2 separation publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2017.11.037 contributor: fullname: Cho – volume: 106 start-page: 1 year: 2009 ident: 10.1016/j.energy.2022.126281_bib23 article-title: ULCOS-Pilot testing of the low-CO2 Blast Furnace process at the experimental BF in Lulea publication-title: Rev Métall doi: 10.1051/metal/2009008 contributor: fullname: Danloy – volume: 277 start-page: 142 year: 2019 ident: 10.1016/j.energy.2022.126281_bib27 article-title: High CO adsorption capacity, and CO selectivity to CO2, N2, H2, and CH4 of CuCl/bayerite adsorbent publication-title: Microporous Mesoporous Mater doi: 10.1016/j.micromeso.2018.10.010 contributor: fullname: Cho – year: 2020 ident: 10.1016/j.energy.2022.126281_bib44 contributor: fullname: Asen – volume: 250 year: 2021 ident: 10.1016/j.energy.2022.126281_bib28 article-title: An integrative process of blast furnace and SOEC for hydrogen utilization: techno-economic and environmental impact assessment publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114922 contributor: fullname: Kim – volume: 88 start-page: 756 year: 2015 ident: 10.1016/j.energy.2022.126281_bib42 article-title: Economic process design for separation of CO2 from the off-gas in ironmaking and steelmaking plants publication-title: Energy doi: 10.1016/j.energy.2015.05.093 contributor: fullname: Kim – volume: 40 start-page: 483 year: 2013 ident: 10.1016/j.energy.2022.126281_bib10 article-title: Top gas recycling blast furnace developments for ‘green’ and sustainable ironmaking publication-title: Ironmak Steelmak doi: 10.1179/0301923313Z.000000000221 contributor: fullname: Stel |
SSID | ssj0005899 |
Score | 2.4879813 |
Snippet | We suggest a vacuum pressure swing adsorption that uses CuCl/Boehmite adsorbent as a novel material to efficiently recycle a blast furnace gas into the blast... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 126281 |
SubjectTerms | Blast furnace gas recirculation CO selective Adsorbent CO2 emission reduction Techno-economic analysis Vacuum pressure swing adsorption |
Title | Vacuum pressure swing adsorption for efficient off-gas recycling: Techno-economic and CO2 abatement study |
URI | https://dx.doi.org/10.1016/j.energy.2022.126281 |
Volume | 264 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5sPehFtCrWFzl4jd3sZrdZb6W0VIsKPntbsnlIBdvSbREv_nYn-6AK4sHTLkuGLB_JNzNhvgnAWWBsbKwwNJBpQHkaKSqCSFKGb8yaUBvljgaub6LBI78ahaM16FZaGFdWWXJ_wek5W5dfWiWardl43LpH7sV4wx1heE7OParBOrojX9RhvXM5HNysKj1Efo2kG0-dQaWgy8u8TC6xw0TR98-ZH_mC_e6hvnmd_jZsleEi6RR_tANrZtKAjUpNnDVgv7dSquHAcqtmuzB-kmq5fCN5oetybkj2jl6KSJ1N5zlNEAxXick7SKAtmVpLX2RGEI0PJ5d8uSDFsTs15WxETjTp3vpEphiguglJ3px2Dx76vYfugJb3KlCFCcKCSiQ4EXqKSa5TxVMZqcgzcaBiz2ptjVWCM80NpnYq4DryY6Nd48FQsdgGOtiH-mQ6MQdArNAaQ44wDNuWx7YtPF95Ok1VyGwcc9YEWkGZzIruGUlVVvaaFNAnDvqkgL4J7Qrv5McqSJDg_7Q8_LflEWy6K-SLSuxjqC_mS3OCgcYiPYXa-Sc7LZeTew7vnodfsyLXLg |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFL2oXdSNaFWszyzcxk5mMtOJu1JaWh91YZXuhkwepYKtdFrEv_dmHqggLtwNIZcMh-TkJNxzA3AZGCuMjQ0NZBpQnkaKxkEkKcMvZk2ojXJXA_ejaPDEbybhZAO6lRfGpVWW3F9wes7WZUurRLP1Npu1HpF7UW-4KwzP2bknm1BDNSBwddY6w9vB6CvTI86fkXT9qQuoHHR5mpfJLXZ4UPT9K-ZHfsx-36G-7Tr9Xdgp5SLpFH-0Bxtm3oB65SbOGnDY-3KqYcdyqWb7MHuWar1-JXmi63ppSPaOuxSROlssc5ogKFeJyStIYCxZWEunMiOIxoezS06vSXHtTk05GpFzTboPPpEpClQ3IMmL0x7AuN8bdwe0fFeBKjwgrKhEgotDTzHJdap4KiMVeUYESnhWa2usijnT3ODRTgVcR74w2hUeDBUTNtDBIWzNF3NzBMTGWqPkCMOwbbmw7djzlafTVIXMCsFZE2gFZfJWVM9IqrSyl6SAPnHQJwX0TWhXeCc_ZkGCBP9n5PG_Iy-gPhjf3yV3w9HtCWy75-SLrOxT2Fot1-YMRccqPS8n1Scuttd_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vacuum+pressure+swing+adsorption+for+efficient+off-gas+recycling%3A+Techno-economic+and+CO2+abatement+study&rft.jtitle=Energy+%28Oxford%29&rft.au=Kim%2C+Jinsu&rft.au=Han%2C+Sang+Sup&rft.au=Kim%2C+Jungil&rft.au=Lee%2C+In-Beum&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=264&rft_id=info:doi/10.1016%2Fj.energy.2022.126281&rft.externalDocID=S036054422203167X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |