Vacuum pressure swing adsorption for efficient off-gas recycling: Techno-economic and CO2 abatement study

We suggest a vacuum pressure swing adsorption that uses CuCl/Boehmite adsorbent as a novel material to efficiently recycle a blast furnace gas into the blast furnace and discuss the techno-economic and CO2 abatement impact. To identify the crucial factors of the separation, five cases are simulated:...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 264; p. 126281
Main Authors Kim, Jinsu, Han, Sang Sup, Kim, Jungil, Lee, In-Beum, Oh, Hyunmin, Yoon, Young-Seek
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We suggest a vacuum pressure swing adsorption that uses CuCl/Boehmite adsorbent as a novel material to efficiently recycle a blast furnace gas into the blast furnace and discuss the techno-economic and CO2 abatement impact. To identify the crucial factors of the separation, five cases are simulated: three adsorption pressures at moderate CO purity, and three purity levels at moderate adsorption pressure. Also, the coke-replacement effects are estimated through the blast furnace simulation to consider the economic benefits. The result shows that the energy efficiency of the separation process varied 72–82%, and injection of highly purified off-gas (99% purity) was the most economically profitable, giving 86.7 US-MM$ of net present value. Cost sensitivity showed that the coke price is the most influential, but the adsorbent cost and carbon taxes have relatively little effect. In the best case, the coke-replacement ratio is 0.26kgCoke mgas−3. The suggested process reduces net emission by 0.19tCO2-eq tHM−1, and this corresponds to the 10% of net reduction which is the competitive strategy compared with the renewable hydrogen blast furnace. This study broadened the understanding of the separation process for off-gas recycling, and optimization of the process should be studied further. •CuCl/Boehmite is newly applied to integrate gas separation and recycling with a BF.•The proposed scheme is economically viable and CO purity is the most critical factor.•Exterior carbon flow reduces by 5.2% and net emission reduction is 0.2 tCO2-eq tHM−1.•The annual reduction potential is estimated to be 725.3ktCO2-eq y−1.
AbstractList We suggest a vacuum pressure swing adsorption that uses CuCl/Boehmite adsorbent as a novel material to efficiently recycle a blast furnace gas into the blast furnace and discuss the techno-economic and CO2 abatement impact. To identify the crucial factors of the separation, five cases are simulated: three adsorption pressures at moderate CO purity, and three purity levels at moderate adsorption pressure. Also, the coke-replacement effects are estimated through the blast furnace simulation to consider the economic benefits. The result shows that the energy efficiency of the separation process varied 72–82%, and injection of highly purified off-gas (99% purity) was the most economically profitable, giving 86.7 US-MM$ of net present value. Cost sensitivity showed that the coke price is the most influential, but the adsorbent cost and carbon taxes have relatively little effect. In the best case, the coke-replacement ratio is 0.26kgCoke mgas−3. The suggested process reduces net emission by 0.19tCO2-eq tHM−1, and this corresponds to the 10% of net reduction which is the competitive strategy compared with the renewable hydrogen blast furnace. This study broadened the understanding of the separation process for off-gas recycling, and optimization of the process should be studied further. •CuCl/Boehmite is newly applied to integrate gas separation and recycling with a BF.•The proposed scheme is economically viable and CO purity is the most critical factor.•Exterior carbon flow reduces by 5.2% and net emission reduction is 0.2 tCO2-eq tHM−1.•The annual reduction potential is estimated to be 725.3ktCO2-eq y−1.
ArticleNumber 126281
Author Kim, Jinsu
Yoon, Young-Seek
Oh, Hyunmin
Kim, Jungil
Lee, In-Beum
Han, Sang Sup
Author_xml – sequence: 1
  givenname: Jinsu
  orcidid: 0000-0002-4669-1631
  surname: Kim
  fullname: Kim, Jinsu
  organization: Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
– sequence: 2
  givenname: Sang Sup
  surname: Han
  fullname: Han, Sang Sup
  organization: Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, South Korea
– sequence: 3
  givenname: Jungil
  orcidid: 0000-0002-9263-5278
  surname: Kim
  fullname: Kim, Jungil
  organization: POSCO, 6262, Donghaean-ro, Nam-gu, Pohang, Gyeongbuk, 37877, South Korea
– sequence: 4
  givenname: In-Beum
  surname: Lee
  fullname: Lee, In-Beum
  organization: School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, South Korea
– sequence: 5
  givenname: Hyunmin
  surname: Oh
  fullname: Oh, Hyunmin
  email: min0808@postech.ac.kr
  organization: Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
– sequence: 6
  givenname: Young-Seek
  orcidid: 0000-0002-4005-6901
  surname: Yoon
  fullname: Yoon, Young-Seek
  email: ysyoon@postech.ac.kr
  organization: Graduate Institute of Ferrous & Energy Materials Technology, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
BookMark eNp9kL1qwzAUhTWk0KTtG3TQC9iVZFtYHQol9A8CWUJXoVxdpQqxFCS7xW9fm3TudJf7Hc75VmQRYkBC7jkrOePy4VhiwHQYS8GEKLmQouULsmSVZEVT1-KarHI-MsaaVqkl8Z8GhqGj54Q5Dwlp_vHhQI3NMZ17HwN1MVF0zoPH0NPoXHEwmSaEEU7T6yPdIXyFWCDEEDsP1ARL11tBzd702M1Q7gc73pIrZ04Z7_7uDdm9vuzW78Vm-_axft4UUDHZF0Zx3jYMuKntHuq9kSAZqgoUc9Y6dNDW3NbIGwlVbaVQaLmSTQNcucpWN6S-xEKKOSd0-px8Z9KoOdOzIX3UF0N6NqQvhibs6YLhVO3bY9J5Hgxo_TS11zb6_wN-AdK6d08
CitedBy_id crossref_primary_10_1016_j_jmapro_2023_05_108
crossref_primary_10_3390_pr12051015
crossref_primary_10_1016_j_cej_2023_144579
crossref_primary_10_1016_j_energy_2024_131376
crossref_primary_10_1016_j_energy_2023_129853
crossref_primary_10_1021_acsomega_3c08692
crossref_primary_10_1016_j_enconman_2024_118138
Cites_doi 10.1080/10426910802679485
10.1007/s11663-019-01538-8
10.1126/science.aas9793
10.1039/C6GC02852G
10.2355/isijinternational.55.340
10.1021/acs.iecr.9b04173
10.3989/revmetalm.2002.v38.i4.411
10.3390/s18020625
10.1039/D0GC02969F
10.1016/j.seppur.2020.116651
10.1007/s11705-013-1351-4
10.1016/j.seppur.2022.121827
10.1002/srin.201500054
10.1016/0950-4214(91)80031-Y
10.1016/j.jclepro.2022.131062
10.1016/j.energy.2018.08.114
10.2355/isijinternational.ISIJINT-2016-090
10.1016/j.energy.2021.122908
10.1007/BF03378564
10.1016/j.ijggc.2014.11.007
10.1016/j.seppur.2020.117832
10.2355/isijinternational.46.1759
10.1002/srin.201500372
10.1002/srin.201000103
10.1016/j.jiec.2019.02.019
10.1016/S1006-706X(17)30092-4
10.1021/acs.iecr.0c01752
10.2355/isijinternational.50.931
10.1007/s11431-010-0029-0
10.1179/174328109X439298
10.2355/isijinternational.38.239
10.1038/s41467-021-22245-6
10.1016/j.jhazmat.2017.11.037
10.1051/metal/2009008
10.1016/j.micromeso.2018.10.010
10.1016/j.enconman.2021.114922
10.1016/j.energy.2015.05.093
10.1179/0301923313Z.000000000221
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.energy.2022.126281
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2022_126281
S036054422203167X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AAXKI
AAYXX
ABFNM
ABXDB
ADMUD
AFJKZ
AHHHB
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
G8K
HVGLF
HZ~
R2-
RIG
SAC
SEW
WUQ
ID FETCH-LOGICAL-c306t-a911850c1a4dbc4ba6c60e93c90fddfefc841d4e156c34d629ed19655c19f3d3
IEDL.DBID AIKHN
ISSN 0360-5442
IngestDate Thu Sep 26 17:02:38 EDT 2024
Fri Feb 23 02:39:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Blast furnace gas recirculation
Techno-economic analysis
CO selective Adsorbent
CO2 emission reduction
Vacuum pressure swing adsorption
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-a911850c1a4dbc4ba6c60e93c90fddfefc841d4e156c34d629ed19655c19f3d3
ORCID 0000-0002-9263-5278
0000-0002-4669-1631
0000-0002-4005-6901
ParticipantIDs crossref_primary_10_1016_j_energy_2022_126281
elsevier_sciencedirect_doi_10_1016_j_energy_2022_126281
PublicationCentury 2000
PublicationDate 2023-02-01
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Meijer, Denys, Lasar, Birat, Still, Overmaat (bib24) 2009; 36
Subraveti, Li, Prasad, Rajendran (bib38) 2019; 58
Wang, Ryberg, Yang, Feng, Kara, Hauschild (bib2) 2021; 12
Kim, Kim, Oh, Lee, Lee, Yoon (bib34) 2022; 241
Subraveti, Roussanaly, Anantharaman, Riboldi, Rajendran (bib40) 2021; 256
Pistorius (bib46) 2012
bib29
Net-zero emissions energy systems | Science n.d https://science.sciencemag.org/content/360/6396/eaas9793 (accessed April 19, 2021). https://doi.org/10.1126/science.aas9793.
Zhang, Li, Tang, Bao (bib16) 2010; 53
Lee, Lee, Han (bib45) 2019; 75
Cho, Kim, Beum, Jung, Han (bib26) 2018; 344
Pettersson, Saxén, Deb (bib6) 2009; 24
Chu, Yagi (bib8) 2010; 81
Jin, Jiang, Bao, Lu, Zhang, Zhang (bib11) 2016; 87
Pai, Prasad, Rajendran (bib37) 2020; 241
Zhang, Zhang, Xue, Zou, Qi (bib13) 2016
Oh, Lee, Beum, Kim, Kim, Lee (bib30) 2022
bib41
Jampani, Gibson, Pistorius (bib35) 2019; 50
Kasuya, Tsuji (bib19) 1991; 5
Tsupari, Kärki, Arasto, Lilja, Kinnunen, Sihvonen (bib43) 2015; 32
reduction in the steel Industry (EMECR) 2017. Kobe International Conference center, Kobe, Japan. The Iron and Steel Institute of Japan, ISIJ.
Asen (bib44) 2020
Kim, Son, Han, Yoon, Oh (bib22) 2022; 300
She, An, Wang, Xue, Kong (bib17) 2017; 24
Kim, Lee, Lee, Kim, Oh, Lee (bib28) 2021; 250
Sternberg, Jens, Bardow (bib48) 2017; 19
Iron and steel technology roadmap – analysis. IEA n.d. https://www.iea.org/reports/iron-and-steel-technology-roadmap (accessed March 18, 2021).
Li, Yang, Zhang (bib20) 2013; 7
Afanga, Mirgaux, Patisson (bib9) 2012
U.S. Energy information administration - EIA - independent statistics and analysis n.d. (accessed August 6, 2021).
Babich, Gudenau, Mavrommatis, Froechling, Formoso, Cores (bib15) 2002; 38
Cho, Kim, Park, Jung, Beum, Cho (bib27) 2019; 277
Danloy, Berthelemot, Grant, Borlée, Sert, Van der Stel (bib23) 2009; 106
Davenport, Cameron, Sukhram, Lefebvre (bib33) 2019
Junjie (bib25) 2018; 3
Rist, Meysson (bib32) 1967; 19
Lee, Lee, Ryu, Park, Lee, Lee (bib47) 2021; 23
Kim, Lee, Lee, Lee, Park, Han (bib42) 2015; 88
Suzuki, Hayashi, Kuribara, Nakagaki, Kasahara (bib36) 2015; 55
Tang Wei, Geng Yunfeng, Lü Changzhong, Li Tengjiao, Zhang Jiaping, Xie Youchang. Enrichment of CO from blast furnace gas by VPSA using adsorbent PU-1. International Conference on energy and material efficiency and CO
Zhang, Jiang, Yin, Xiao, Zhao (bib39) 2018; 18
Helle, Helle, Saxén, Pettersson (bib7) 2010; 50
Stel, van der, Louwerse, Sert, Hirsch, Eklund, Pettersson (bib10) 2013; 40
Koizumu, Fujita, Sakuraya (bib18) 1986; 18
Nogami, Yagi, Kitamura, Austin (bib5) 2006; 46
Austin, Nogami, Yagi (bib4) 1998; 38
Wang, Chu, Guo, Zhao, Feng, Liu (bib12) 2016; 87
Liu, Jiang, Zhang, Lu, He, Wang (bib14) 2018; 163
Oh, Beum, Yoon, Kim, Han, Kim (bib31) 2020; 59
Junjie (10.1016/j.energy.2022.126281_bib25) 2018; 3
Oh (10.1016/j.energy.2022.126281_bib30) 2022
Zhang (10.1016/j.energy.2022.126281_bib39) 2018; 18
10.1016/j.energy.2022.126281_bib49
Zhang (10.1016/j.energy.2022.126281_bib13) 2016
Asen (10.1016/j.energy.2022.126281_bib44) 2020
Pettersson (10.1016/j.energy.2022.126281_bib6) 2009; 24
Kim (10.1016/j.energy.2022.126281_bib34) 2022; 241
Lee (10.1016/j.energy.2022.126281_bib45) 2019; 75
Subraveti (10.1016/j.energy.2022.126281_bib38) 2019; 58
Subraveti (10.1016/j.energy.2022.126281_bib40) 2021; 256
Kim (10.1016/j.energy.2022.126281_bib42) 2015; 88
Stel (10.1016/j.energy.2022.126281_bib10) 2013; 40
Suzuki (10.1016/j.energy.2022.126281_bib36) 2015; 55
Rist (10.1016/j.energy.2022.126281_bib32) 1967; 19
Tsupari (10.1016/j.energy.2022.126281_bib43) 2015; 32
Kasuya (10.1016/j.energy.2022.126281_bib19) 1991; 5
Jampani (10.1016/j.energy.2022.126281_bib35) 2019; 50
Sternberg (10.1016/j.energy.2022.126281_bib48) 2017; 19
Liu (10.1016/j.energy.2022.126281_bib14) 2018; 163
Zhang (10.1016/j.energy.2022.126281_bib16) 2010; 53
Nogami (10.1016/j.energy.2022.126281_bib5) 2006; 46
Davenport (10.1016/j.energy.2022.126281_bib33) 2019
Wang (10.1016/j.energy.2022.126281_bib2) 2021; 12
Meijer (10.1016/j.energy.2022.126281_bib24) 2009; 36
10.1016/j.energy.2022.126281_bib3
10.1016/j.energy.2022.126281_bib1
Oh (10.1016/j.energy.2022.126281_bib31) 2020; 59
Helle (10.1016/j.energy.2022.126281_bib7) 2010; 50
Li (10.1016/j.energy.2022.126281_bib20) 2013; 7
Kim (10.1016/j.energy.2022.126281_bib22) 2022; 300
Chu (10.1016/j.energy.2022.126281_bib8) 2010; 81
Koizumu (10.1016/j.energy.2022.126281_bib18) 1986; 18
Danloy (10.1016/j.energy.2022.126281_bib23) 2009; 106
Lee (10.1016/j.energy.2022.126281_bib47) 2021; 23
Kim (10.1016/j.energy.2022.126281_bib28) 2021; 250
Babich (10.1016/j.energy.2022.126281_bib15) 2002; 38
She (10.1016/j.energy.2022.126281_bib17) 2017; 24
Wang (10.1016/j.energy.2022.126281_bib12) 2016; 87
Pistorius (10.1016/j.energy.2022.126281_bib46) 2012
Jin (10.1016/j.energy.2022.126281_bib11) 2016; 87
Cho (10.1016/j.energy.2022.126281_bib27) 2019; 277
Pai (10.1016/j.energy.2022.126281_bib37) 2020; 241
Cho (10.1016/j.energy.2022.126281_bib26) 2018; 344
Austin (10.1016/j.energy.2022.126281_bib4) 1998; 38
Afanga (10.1016/j.energy.2022.126281_bib9) 2012
10.1016/j.energy.2022.126281_bib21
References_xml – volume: 88
  start-page: 756
  year: 2015
  end-page: 764
  ident: bib42
  article-title: Economic process design for separation of CO
  publication-title: Energy
  contributor:
    fullname: Han
– volume: 75
  start-page: 77
  year: 2019
  end-page: 85
  ident: bib45
  article-title: Techno-economic analysis of methanol production from joint feedstock of coke oven gas and basic oxygen furnace gas from steel-making
  publication-title: J Ind Eng Chem
  contributor:
    fullname: Han
– year: 2019
  ident: bib33
  article-title: Blast furnace ironmaking: analysis, control and optimization
  contributor:
    fullname: Lefebvre
– volume: 87
  start-page: 320
  year: 2016
  end-page: 329
  ident: bib11
  article-title: Mathematical modeling of the energy consumption and carbon emission for the oxygen blast furnace with top gas recycling
  publication-title: Steel Res Int
  contributor:
    fullname: Zhang
– volume: 19
  start-page: 2244
  year: 2017
  end-page: 2259
  ident: bib48
  article-title: Life cycle assessment of CO
  publication-title: Green Chem
  contributor:
    fullname: Bardow
– volume: 18
  start-page: 284
  year: 1986
  end-page: 288
  ident: bib18
  article-title: Installation and operation of high purity CO gas recovery plant
  publication-title: Kawasaki Steel Giho
  contributor:
    fullname: Sakuraya
– volume: 250
  year: 2021
  ident: bib28
  article-title: An integrative process of blast furnace and SOEC for hydrogen utilization: techno-economic and environmental impact assessment
  publication-title: Energy Convers Manag
  contributor:
    fullname: Lee
– volume: 53
  start-page: 85
  year: 2010
  end-page: 92
  ident: bib16
  article-title: Conceptual design and simulation analysis of thermal behaviors of TGR blast furnace and oxygen blast furnace
  publication-title: Sci China Ser E Technol Sci
  contributor:
    fullname: Bao
– year: 2012
  ident: bib46
  article-title: Partially reduced feedstocks and blast furnace ironmaking carbon intensity
  publication-title: Int. Smelt. Technol. Symp. Inc. 6th Adv. Sulfide Smelt. Symp.
  contributor:
    fullname: Pistorius
– volume: 50
  start-page: 931
  year: 2010
  end-page: 938
  ident: bib7
  article-title: Optimization of top gas recycling conditions under high oxygen enrichment in the blast furnace
  publication-title: ISIJ Int
  contributor:
    fullname: Pettersson
– year: 2016
  ident: bib13
  article-title: Unsteady analyses of the top gas recycling oxygen blast furnace
  publication-title: ISIJ Int
  contributor:
    fullname: Qi
– volume: 7
  start-page: 472
  year: 2013
  end-page: 481
  ident: bib20
  article-title: Enrichment of CO from syngas with Cu (I) Y adsorbent by five-bed VPSA
  publication-title: Front Chem Sci Eng
  contributor:
    fullname: Zhang
– ident: bib41
– volume: 40
  start-page: 483
  year: 2013
  end-page: 489
  ident: bib10
  article-title: Top gas recycling blast furnace developments for ‘green’ and sustainable ironmaking
  publication-title: Ironmak Steelmak
  contributor:
    fullname: Pettersson
– volume: 19
  start-page: 50
  year: 1967
  end-page: 59
  ident: bib32
  article-title: A dual graphic representation of the blast-furnace mass and heat balances
  publication-title: JOM
  contributor:
    fullname: Meysson
– volume: 38
  start-page: 239
  year: 1998
  end-page: 245
  ident: bib4
  article-title: Prediction of blast furnace performance with top gas recycling
  publication-title: ISIJ Int
  contributor:
    fullname: Yagi
– volume: 3
  start-page: 15
  year: 2018
  ident: bib25
  article-title: Progress and future of breakthrough low-carbon steelmaking technology (ULCOS) of EU
  publication-title: Int J Miner Process Extr Metall
  contributor:
    fullname: Junjie
– volume: 344
  start-page: 857
  year: 2018
  end-page: 864
  ident: bib26
  article-title: Synthesis of CuCl/Boehmite adsorbents that exhibit high CO selectivity in CO/CO
  publication-title: J Hazard Mater
  contributor:
    fullname: Han
– ident: bib29
– volume: 241
  year: 2022
  ident: bib34
  article-title: Techno-economic and environmental impact analysis of tuyere injection of hot reducing gas from low-rank coal gasification in blast furnace
  publication-title: Energy
  contributor:
    fullname: Yoon
– year: 2020
  ident: bib44
  article-title: Carbon taxes in Europe
  contributor:
    fullname: Asen
– volume: 38
  start-page: 288
  year: 2002
  end-page: 305
  ident: bib15
  article-title: Choice of technological regimes of a blast furnace operation with injection of hot reducing gases
  publication-title: Rev Metal (Madr)
  contributor:
    fullname: Cores
– volume: 300
  year: 2022
  ident: bib22
  article-title: Computational-cost-efficient surrogate model of vacuum pressure swing adsorption for CO separation process optimization
  publication-title: Separ Purif Technol
  contributor:
    fullname: Oh
– volume: 23
  start-page: 2397
  year: 2021
  end-page: 2410
  ident: bib47
  article-title: Catholyte-free electroreduction of CO
  publication-title: Green Chem
  contributor:
    fullname: Lee
– volume: 256
  year: 2021
  ident: bib40
  article-title: Techno-economic assessment of optimised vacuum swing adsorption for post-combustion CO
  publication-title: Separ Purif Technol
  contributor:
    fullname: Rajendran
– volume: 58
  start-page: 20412
  year: 2019
  end-page: 20422
  ident: bib38
  article-title: Machine learning-based multiobjective optimization of pressure swing adsorption
  publication-title: Ind Eng Chem Res
  contributor:
    fullname: Rajendran
– volume: 24
  start-page: 343
  year: 2009
  end-page: 349
  ident: bib6
  article-title: Genetic algorithm-based multicriteria optimization of ironmaking in the blast furnace
  publication-title: Mater Manuf Process
  contributor:
    fullname: Deb
– volume: 163
  start-page: 144
  year: 2018
  end-page: 150
  ident: bib14
  article-title: Effects of top gas recycling on in-furnace status, productivity, and energy consumption of oxygen blast furnace
  publication-title: Energy
  contributor:
    fullname: Wang
– volume: 55
  start-page: 340
  year: 2015
  end-page: 347
  ident: bib36
  article-title: Quantitative evaluation of CO
  publication-title: ISIJ Int
  contributor:
    fullname: Kasahara
– year: 2022
  ident: bib30
  article-title: CO recovery from blast furnace gas by vacuum pressure swing adsorption process: experimental and simulation approach
  publication-title: J Clean Prod
  contributor:
    fullname: Lee
– year: 2012
  ident: bib9
  article-title: Assessment of top gas recycling blast furnace: a technology to reduce CO
  publication-title: Carbon Manag. Technol. Conf., carbon Management technology Conference
  contributor:
    fullname: Patisson
– volume: 59
  start-page: 12176
  year: 2020
  end-page: 12185
  ident: bib31
  article-title: Experiment and modeling of adsorption of CO from blast furnace gas onto CuCl/boehmite
  publication-title: Ind Eng Chem Res
  contributor:
    fullname: Kim
– volume: 32
  start-page: 189
  year: 2015
  end-page: 196
  ident: bib43
  article-title: Oxygen blast furnace with CO
  publication-title: Int J Greenh Gas Control
  contributor:
    fullname: Sihvonen
– volume: 12
  start-page: 2066
  year: 2021
  ident: bib2
  article-title: Efficiency stagnation in global steel production urges joint supply- and demand-side mitigation efforts
  publication-title: Nat Commun
  contributor:
    fullname: Hauschild
– volume: 241
  year: 2020
  ident: bib37
  article-title: Experimentally validated machine learning frameworks for accelerated prediction of cyclic steady state and optimization of pressure swing adsorption processes
  publication-title: Separ Purif Technol
  contributor:
    fullname: Rajendran
– volume: 277
  start-page: 142
  year: 2019
  end-page: 148
  ident: bib27
  article-title: High CO adsorption capacity, and CO selectivity to CO
  publication-title: Microporous Mesoporous Mater
  contributor:
    fullname: Cho
– volume: 81
  start-page: 1043
  year: 2010
  end-page: 1050
  ident: bib8
  article-title: Numerical evaluation of blast furnace performance under top gas recycling and lower temperature operation
  publication-title: Steel Res Int
  contributor:
    fullname: Yagi
– volume: 5
  start-page: 242
  year: 1991
  end-page: 246
  ident: bib19
  article-title: High purity CO gas separation by pressure swing adsorption
  publication-title: Gas Sep Purif
  contributor:
    fullname: Tsuji
– volume: 24
  start-page: 608
  year: 2017
  end-page: 616
  ident: bib17
  article-title: Numerical analysis of carbon saving potential in a top gas recycling oxygen blast furnace
  publication-title: J Iron Steel Res Int
  contributor:
    fullname: Kong
– volume: 46
  start-page: 1759
  year: 2006
  end-page: 1766
  ident: bib5
  article-title: Analysis on material and energy balances of ironmaking systems on blast furnace operations with metallic charging, top gas recycling and natural gas injection
  publication-title: ISIJ Int
  contributor:
    fullname: Austin
– volume: 36
  start-page: 249
  year: 2009
  end-page: 251
  ident: bib24
  article-title: ULCOS: ultra-low CO2 steelmaking
  publication-title: Ironmak Steelmak
  contributor:
    fullname: Overmaat
– volume: 50
  start-page: 1290
  year: 2019
  end-page: 1299
  ident: bib35
  article-title: Increased use of natural gas in blast furnace ironmaking: mass and energy balance calculations
  publication-title: Metall Mater Trans B
  contributor:
    fullname: Pistorius
– volume: 106
  start-page: 1
  year: 2009
  end-page: 8
  ident: bib23
  article-title: ULCOS-Pilot testing of the low-CO
  publication-title: Rev Métall
  contributor:
    fullname: Van der Stel
– volume: 18
  start-page: 625
  year: 2018
  ident: bib39
  article-title: The prediction of the gas utilization ratio based on TS fuzzy neural network and particle swarm optimization
  publication-title: Sensors
  contributor:
    fullname: Zhao
– volume: 87
  start-page: 539
  year: 2016
  end-page: 549
  ident: bib12
  article-title: Mathematical simulation on blast furnace operation of coke oven gas injection in combination with top gas recycling
  publication-title: Steel Res Int
  contributor:
    fullname: Liu
– volume: 24
  start-page: 343
  year: 2009
  ident: 10.1016/j.energy.2022.126281_bib6
  article-title: Genetic algorithm-based multicriteria optimization of ironmaking in the blast furnace
  publication-title: Mater Manuf Process
  doi: 10.1080/10426910802679485
  contributor:
    fullname: Pettersson
– volume: 50
  start-page: 1290
  year: 2019
  ident: 10.1016/j.energy.2022.126281_bib35
  article-title: Increased use of natural gas in blast furnace ironmaking: mass and energy balance calculations
  publication-title: Metall Mater Trans B
  doi: 10.1007/s11663-019-01538-8
  contributor:
    fullname: Jampani
– ident: 10.1016/j.energy.2022.126281_bib3
  doi: 10.1126/science.aas9793
– volume: 18
  start-page: 284
  year: 1986
  ident: 10.1016/j.energy.2022.126281_bib18
  article-title: Installation and operation of high purity CO gas recovery plant
  publication-title: Kawasaki Steel Giho
  contributor:
    fullname: Koizumu
– volume: 19
  start-page: 2244
  year: 2017
  ident: 10.1016/j.energy.2022.126281_bib48
  article-title: Life cycle assessment of CO2-based C1-chemicals
  publication-title: Green Chem
  doi: 10.1039/C6GC02852G
  contributor:
    fullname: Sternberg
– volume: 55
  start-page: 340
  year: 2015
  ident: 10.1016/j.energy.2022.126281_bib36
  article-title: Quantitative evaluation of CO2 emission reduction of active carbon recycling energy system for ironmaking by modeling with aspen plus
  publication-title: ISIJ Int
  doi: 10.2355/isijinternational.55.340
  contributor:
    fullname: Suzuki
– volume: 58
  start-page: 20412
  year: 2019
  ident: 10.1016/j.energy.2022.126281_bib38
  article-title: Machine learning-based multiobjective optimization of pressure swing adsorption
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.9b04173
  contributor:
    fullname: Subraveti
– volume: 38
  start-page: 288
  year: 2002
  ident: 10.1016/j.energy.2022.126281_bib15
  article-title: Choice of technological regimes of a blast furnace operation with injection of hot reducing gases
  publication-title: Rev Metal (Madr)
  doi: 10.3989/revmetalm.2002.v38.i4.411
  contributor:
    fullname: Babich
– volume: 18
  start-page: 625
  year: 2018
  ident: 10.1016/j.energy.2022.126281_bib39
  article-title: The prediction of the gas utilization ratio based on TS fuzzy neural network and particle swarm optimization
  publication-title: Sensors
  doi: 10.3390/s18020625
  contributor:
    fullname: Zhang
– volume: 23
  start-page: 2397
  year: 2021
  ident: 10.1016/j.energy.2022.126281_bib47
  article-title: Catholyte-free electroreduction of CO2 for sustainable production of CO: concept, process development, techno-economic analysis, and CO2 reduction assessment
  publication-title: Green Chem
  doi: 10.1039/D0GC02969F
  contributor:
    fullname: Lee
– year: 2012
  ident: 10.1016/j.energy.2022.126281_bib46
  article-title: Partially reduced feedstocks and blast furnace ironmaking carbon intensity
  contributor:
    fullname: Pistorius
– volume: 3
  start-page: 15
  year: 2018
  ident: 10.1016/j.energy.2022.126281_bib25
  article-title: Progress and future of breakthrough low-carbon steelmaking technology (ULCOS) of EU
  publication-title: Int J Miner Process Extr Metall
  contributor:
    fullname: Junjie
– volume: 241
  year: 2020
  ident: 10.1016/j.energy.2022.126281_bib37
  article-title: Experimentally validated machine learning frameworks for accelerated prediction of cyclic steady state and optimization of pressure swing adsorption processes
  publication-title: Separ Purif Technol
  doi: 10.1016/j.seppur.2020.116651
  contributor:
    fullname: Pai
– volume: 7
  start-page: 472
  year: 2013
  ident: 10.1016/j.energy.2022.126281_bib20
  article-title: Enrichment of CO from syngas with Cu (I) Y adsorbent by five-bed VPSA
  publication-title: Front Chem Sci Eng
  doi: 10.1007/s11705-013-1351-4
  contributor:
    fullname: Li
– volume: 300
  year: 2022
  ident: 10.1016/j.energy.2022.126281_bib22
  article-title: Computational-cost-efficient surrogate model of vacuum pressure swing adsorption for CO separation process optimization
  publication-title: Separ Purif Technol
  doi: 10.1016/j.seppur.2022.121827
  contributor:
    fullname: Kim
– volume: 87
  start-page: 320
  year: 2016
  ident: 10.1016/j.energy.2022.126281_bib11
  article-title: Mathematical modeling of the energy consumption and carbon emission for the oxygen blast furnace with top gas recycling
  publication-title: Steel Res Int
  doi: 10.1002/srin.201500054
  contributor:
    fullname: Jin
– volume: 5
  start-page: 242
  year: 1991
  ident: 10.1016/j.energy.2022.126281_bib19
  article-title: High purity CO gas separation by pressure swing adsorption
  publication-title: Gas Sep Purif
  doi: 10.1016/0950-4214(91)80031-Y
  contributor:
    fullname: Kasuya
– year: 2022
  ident: 10.1016/j.energy.2022.126281_bib30
  article-title: CO recovery from blast furnace gas by vacuum pressure swing adsorption process: experimental and simulation approach
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2022.131062
  contributor:
    fullname: Oh
– volume: 163
  start-page: 144
  year: 2018
  ident: 10.1016/j.energy.2022.126281_bib14
  article-title: Effects of top gas recycling on in-furnace status, productivity, and energy consumption of oxygen blast furnace
  publication-title: Energy
  doi: 10.1016/j.energy.2018.08.114
  contributor:
    fullname: Liu
– year: 2016
  ident: 10.1016/j.energy.2022.126281_bib13
  article-title: Unsteady analyses of the top gas recycling oxygen blast furnace
  publication-title: ISIJ Int
  doi: 10.2355/isijinternational.ISIJINT-2016-090
  contributor:
    fullname: Zhang
– volume: 241
  year: 2022
  ident: 10.1016/j.energy.2022.126281_bib34
  article-title: Techno-economic and environmental impact analysis of tuyere injection of hot reducing gas from low-rank coal gasification in blast furnace
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122908
  contributor:
    fullname: Kim
– ident: 10.1016/j.energy.2022.126281_bib49
– volume: 19
  start-page: 50
  year: 1967
  ident: 10.1016/j.energy.2022.126281_bib32
  article-title: A dual graphic representation of the blast-furnace mass and heat balances
  publication-title: JOM
  doi: 10.1007/BF03378564
  contributor:
    fullname: Rist
– volume: 32
  start-page: 189
  year: 2015
  ident: 10.1016/j.energy.2022.126281_bib43
  article-title: Oxygen blast furnace with CO2 capture and storage at an integrated steel mill–Part II: economic feasibility in comparison with conventional blast furnace highlighting sensitivities
  publication-title: Int J Greenh Gas Control
  doi: 10.1016/j.ijggc.2014.11.007
  contributor:
    fullname: Tsupari
– volume: 256
  year: 2021
  ident: 10.1016/j.energy.2022.126281_bib40
  article-title: Techno-economic assessment of optimised vacuum swing adsorption for post-combustion CO2 capture from steam-methane reformer flue gas
  publication-title: Separ Purif Technol
  doi: 10.1016/j.seppur.2020.117832
  contributor:
    fullname: Subraveti
– ident: 10.1016/j.energy.2022.126281_bib1
– volume: 46
  start-page: 1759
  year: 2006
  ident: 10.1016/j.energy.2022.126281_bib5
  article-title: Analysis on material and energy balances of ironmaking systems on blast furnace operations with metallic charging, top gas recycling and natural gas injection
  publication-title: ISIJ Int
  doi: 10.2355/isijinternational.46.1759
  contributor:
    fullname: Nogami
– volume: 87
  start-page: 539
  year: 2016
  ident: 10.1016/j.energy.2022.126281_bib12
  article-title: Mathematical simulation on blast furnace operation of coke oven gas injection in combination with top gas recycling
  publication-title: Steel Res Int
  doi: 10.1002/srin.201500372
  contributor:
    fullname: Wang
– volume: 81
  start-page: 1043
  year: 2010
  ident: 10.1016/j.energy.2022.126281_bib8
  article-title: Numerical evaluation of blast furnace performance under top gas recycling and lower temperature operation
  publication-title: Steel Res Int
  doi: 10.1002/srin.201000103
  contributor:
    fullname: Chu
– ident: 10.1016/j.energy.2022.126281_bib21
– volume: 75
  start-page: 77
  year: 2019
  ident: 10.1016/j.energy.2022.126281_bib45
  article-title: Techno-economic analysis of methanol production from joint feedstock of coke oven gas and basic oxygen furnace gas from steel-making
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2019.02.019
  contributor:
    fullname: Lee
– volume: 24
  start-page: 608
  year: 2017
  ident: 10.1016/j.energy.2022.126281_bib17
  article-title: Numerical analysis of carbon saving potential in a top gas recycling oxygen blast furnace
  publication-title: J Iron Steel Res Int
  doi: 10.1016/S1006-706X(17)30092-4
  contributor:
    fullname: She
– volume: 59
  start-page: 12176
  year: 2020
  ident: 10.1016/j.energy.2022.126281_bib31
  article-title: Experiment and modeling of adsorption of CO from blast furnace gas onto CuCl/boehmite
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.0c01752
  contributor:
    fullname: Oh
– volume: 50
  start-page: 931
  year: 2010
  ident: 10.1016/j.energy.2022.126281_bib7
  article-title: Optimization of top gas recycling conditions under high oxygen enrichment in the blast furnace
  publication-title: ISIJ Int
  doi: 10.2355/isijinternational.50.931
  contributor:
    fullname: Helle
– year: 2019
  ident: 10.1016/j.energy.2022.126281_bib33
  contributor:
    fullname: Davenport
– year: 2012
  ident: 10.1016/j.energy.2022.126281_bib9
  article-title: Assessment of top gas recycling blast furnace: a technology to reduce CO2 emissions in the steelmaking industry
  contributor:
    fullname: Afanga
– volume: 53
  start-page: 85
  year: 2010
  ident: 10.1016/j.energy.2022.126281_bib16
  article-title: Conceptual design and simulation analysis of thermal behaviors of TGR blast furnace and oxygen blast furnace
  publication-title: Sci China Ser E Technol Sci
  doi: 10.1007/s11431-010-0029-0
  contributor:
    fullname: Zhang
– volume: 36
  start-page: 249
  year: 2009
  ident: 10.1016/j.energy.2022.126281_bib24
  article-title: ULCOS: ultra-low CO2 steelmaking
  publication-title: Ironmak Steelmak
  doi: 10.1179/174328109X439298
  contributor:
    fullname: Meijer
– volume: 38
  start-page: 239
  year: 1998
  ident: 10.1016/j.energy.2022.126281_bib4
  article-title: Prediction of blast furnace performance with top gas recycling
  publication-title: ISIJ Int
  doi: 10.2355/isijinternational.38.239
  contributor:
    fullname: Austin
– volume: 12
  start-page: 2066
  year: 2021
  ident: 10.1016/j.energy.2022.126281_bib2
  article-title: Efficiency stagnation in global steel production urges joint supply- and demand-side mitigation efforts
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-22245-6
  contributor:
    fullname: Wang
– volume: 344
  start-page: 857
  year: 2018
  ident: 10.1016/j.energy.2022.126281_bib26
  article-title: Synthesis of CuCl/Boehmite adsorbents that exhibit high CO selectivity in CO/CO2 separation
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2017.11.037
  contributor:
    fullname: Cho
– volume: 106
  start-page: 1
  year: 2009
  ident: 10.1016/j.energy.2022.126281_bib23
  article-title: ULCOS-Pilot testing of the low-CO2 Blast Furnace process at the experimental BF in Lulea
  publication-title: Rev Métall
  doi: 10.1051/metal/2009008
  contributor:
    fullname: Danloy
– volume: 277
  start-page: 142
  year: 2019
  ident: 10.1016/j.energy.2022.126281_bib27
  article-title: High CO adsorption capacity, and CO selectivity to CO2, N2, H2, and CH4 of CuCl/bayerite adsorbent
  publication-title: Microporous Mesoporous Mater
  doi: 10.1016/j.micromeso.2018.10.010
  contributor:
    fullname: Cho
– year: 2020
  ident: 10.1016/j.energy.2022.126281_bib44
  contributor:
    fullname: Asen
– volume: 250
  year: 2021
  ident: 10.1016/j.energy.2022.126281_bib28
  article-title: An integrative process of blast furnace and SOEC for hydrogen utilization: techno-economic and environmental impact assessment
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.114922
  contributor:
    fullname: Kim
– volume: 88
  start-page: 756
  year: 2015
  ident: 10.1016/j.energy.2022.126281_bib42
  article-title: Economic process design for separation of CO2 from the off-gas in ironmaking and steelmaking plants
  publication-title: Energy
  doi: 10.1016/j.energy.2015.05.093
  contributor:
    fullname: Kim
– volume: 40
  start-page: 483
  year: 2013
  ident: 10.1016/j.energy.2022.126281_bib10
  article-title: Top gas recycling blast furnace developments for ‘green’ and sustainable ironmaking
  publication-title: Ironmak Steelmak
  doi: 10.1179/0301923313Z.000000000221
  contributor:
    fullname: Stel
SSID ssj0005899
Score 2.4879813
Snippet We suggest a vacuum pressure swing adsorption that uses CuCl/Boehmite adsorbent as a novel material to efficiently recycle a blast furnace gas into the blast...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 126281
SubjectTerms Blast furnace gas recirculation
CO selective Adsorbent
CO2 emission reduction
Techno-economic analysis
Vacuum pressure swing adsorption
Title Vacuum pressure swing adsorption for efficient off-gas recycling: Techno-economic and CO2 abatement study
URI https://dx.doi.org/10.1016/j.energy.2022.126281
Volume 264
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5sPehFtCrWFzl4jd3sZrdZb6W0VIsKPntbsnlIBdvSbREv_nYn-6AK4sHTLkuGLB_JNzNhvgnAWWBsbKwwNJBpQHkaKSqCSFKGb8yaUBvljgaub6LBI78ahaM16FZaGFdWWXJ_wek5W5dfWiWardl43LpH7sV4wx1heE7OParBOrojX9RhvXM5HNysKj1Efo2kG0-dQaWgy8u8TC6xw0TR98-ZH_mC_e6hvnmd_jZsleEi6RR_tANrZtKAjUpNnDVgv7dSquHAcqtmuzB-kmq5fCN5oetybkj2jl6KSJ1N5zlNEAxXick7SKAtmVpLX2RGEI0PJ5d8uSDFsTs15WxETjTp3vpEphiguglJ3px2Dx76vYfugJb3KlCFCcKCSiQ4EXqKSa5TxVMZqcgzcaBiz2ptjVWCM80NpnYq4DryY6Nd48FQsdgGOtiH-mQ6MQdArNAaQ44wDNuWx7YtPF95Ok1VyGwcc9YEWkGZzIruGUlVVvaaFNAnDvqkgL4J7Qrv5McqSJDg_7Q8_LflEWy6K-SLSuxjqC_mS3OCgcYiPYXa-Sc7LZeTew7vnodfsyLXLg
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFL2oXdSNaFWszyzcxk5mMtOJu1JaWh91YZXuhkwepYKtdFrEv_dmHqggLtwNIZcMh-TkJNxzA3AZGCuMjQ0NZBpQnkaKxkEkKcMvZk2ojXJXA_ejaPDEbybhZAO6lRfGpVWW3F9wes7WZUurRLP1Npu1HpF7UW-4KwzP2bknm1BDNSBwddY6w9vB6CvTI86fkXT9qQuoHHR5mpfJLXZ4UPT9K-ZHfsx-36G-7Tr9Xdgp5SLpFH-0Bxtm3oB65SbOGnDY-3KqYcdyqWb7MHuWar1-JXmi63ppSPaOuxSROlssc5ogKFeJyStIYCxZWEunMiOIxoezS06vSXHtTk05GpFzTboPPpEpClQ3IMmL0x7AuN8bdwe0fFeBKjwgrKhEgotDTzHJdap4KiMVeUYESnhWa2usijnT3ODRTgVcR74w2hUeDBUTNtDBIWzNF3NzBMTGWqPkCMOwbbmw7djzlafTVIXMCsFZE2gFZfJWVM9IqrSyl6SAPnHQJwX0TWhXeCc_ZkGCBP9n5PG_Iy-gPhjf3yV3w9HtCWy75-SLrOxT2Fot1-YMRccqPS8n1Scuttd_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vacuum+pressure+swing+adsorption+for+efficient+off-gas+recycling%3A+Techno-economic+and+CO2+abatement+study&rft.jtitle=Energy+%28Oxford%29&rft.au=Kim%2C+Jinsu&rft.au=Han%2C+Sang+Sup&rft.au=Kim%2C+Jungil&rft.au=Lee%2C+In-Beum&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=264&rft_id=info:doi/10.1016%2Fj.energy.2022.126281&rft.externalDocID=S036054422203167X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon