Structural network inference from time-series data using a generative model and transfer entropy

•We concentrate on the problem of describing the directed flow of information between nodes based on transfer entropy.•We have developed a weighted directed supergraph based on the von Neumann entropy of a directed graph.•Our model can improve the classification performance on fMRI brain connectivit...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition letters Vol. 125; pp. 357 - 363
Main Authors Zhang, Zhihong, Zhang, Genzhou, Zhang, Zhonghao, Chen, Guo, Zeng, Yangbin, Wang, Beizhan, Hancock, Edwin R.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We concentrate on the problem of describing the directed flow of information between nodes based on transfer entropy.•We have developed a weighted directed supergraph based on the von Neumann entropy of a directed graph.•Our model can improve the classification performance on fMRI brain connectivity data when the training data are limited. In this paper we develop a novel framework for inferring a generative model of network structure representing the causal relations between data for a set of objects characterized in terms of time series. To do this we make use of transfer entropy as a means of inferring directed information transfer between the time-series data. Transfer entropy allows us to infer directed edges representing the causal relations between pairs of time series, and has thus been used to infer directed graph representations of causal networks for time-series data. We use the expectation maximization algorithm to learn a generative model which captures variations in the causal network over time. We conduct experiments on fMRI brain connectivity data for subjects in different stages of the development of Alzheimer’s disease (AD). Here we use the technique to learn class exemplars for different stages in the development of the disease, together with a normal control class, and demonstrate its utility in both graph multi-class and binary classifications. These experiments are showing the effectiveness of our proposed framework when the amounts of training data are relatively small.
AbstractList •We concentrate on the problem of describing the directed flow of information between nodes based on transfer entropy.•We have developed a weighted directed supergraph based on the von Neumann entropy of a directed graph.•Our model can improve the classification performance on fMRI brain connectivity data when the training data are limited. In this paper we develop a novel framework for inferring a generative model of network structure representing the causal relations between data for a set of objects characterized in terms of time series. To do this we make use of transfer entropy as a means of inferring directed information transfer between the time-series data. Transfer entropy allows us to infer directed edges representing the causal relations between pairs of time series, and has thus been used to infer directed graph representations of causal networks for time-series data. We use the expectation maximization algorithm to learn a generative model which captures variations in the causal network over time. We conduct experiments on fMRI brain connectivity data for subjects in different stages of the development of Alzheimer’s disease (AD). Here we use the technique to learn class exemplars for different stages in the development of the disease, together with a normal control class, and demonstrate its utility in both graph multi-class and binary classifications. These experiments are showing the effectiveness of our proposed framework when the amounts of training data are relatively small.
Author Zeng, Yangbin
Zhang, Zhihong
Chen, Guo
Hancock, Edwin R.
Zhang, Genzhou
Wang, Beizhan
Zhang, Zhonghao
Author_xml – sequence: 1
  givenname: Zhihong
  orcidid: 0000-0002-0542-0640
  surname: Zhang
  fullname: Zhang, Zhihong
  organization: Xiamen University, Xiamen, China
– sequence: 2
  givenname: Genzhou
  surname: Zhang
  fullname: Zhang, Genzhou
  organization: State Grid Shaanxi Electric Power Company, Xian, China
– sequence: 3
  givenname: Zhonghao
  surname: Zhang
  fullname: Zhang, Zhonghao
  organization: State Grid Shaanxi Information and Telecommunication Company, LTD, Xian, China
– sequence: 4
  givenname: Guo
  surname: Chen
  fullname: Chen, Guo
  organization: State Grid Shaanxi Information and Telecommunication Company, LTD, Xian, China
– sequence: 5
  givenname: Yangbin
  surname: Zeng
  fullname: Zeng, Yangbin
  organization: Xiamen University, Xiamen, China
– sequence: 6
  givenname: Beizhan
  surname: Wang
  fullname: Wang, Beizhan
  email: wangbz@xmu.edu.cn
  organization: Xiamen University, Xiamen, China
– sequence: 7
  givenname: Edwin R.
  orcidid: 0000-0003-4496-2028
  surname: Hancock
  fullname: Hancock, Edwin R.
  organization: University of York, York, UK
BookMark eNqFkM1KAzEUhYMo2FbfwEVeYMb8TDKpC0GKf1BwUfcxTe6U1GmmJGmlb29KXbnQ1dmc73DvN0bnYQiA0A0lNSVU3q7rrckRbM0IndZE1CXO0IiqllUtb5pzNCq1tlJSiEs0TmlNCJF8qkboY5HjzuZdND0OkL-G-Il96CBCsIC7OGxw9huoEkQPCTuTDd4lH1bY4BUEiCb7PeDN4KDHJjicowmp8BhCjsP2cIUuOtMnuP7JCVo8Pb7PXqr52_Pr7GFeWU5kroySTdO4ljtDFZ9SxkQnlAQpl8RZuuStUYxLqXhrqRVGLA2TQB11TDnGJ6g5rdo4pBSh09voNyYeNCX66Eiv9cmRPjrSROgSBbv7hVmfy0dDud34_j_4_gRDeWvvIepk_VGb86WatRv83wPf5EOJDQ
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3222310
crossref_primary_10_1016_j_asoc_2020_106457
crossref_primary_10_1016_j_patrec_2021_11_004
crossref_primary_10_1016_j_patrec_2019_12_004
crossref_primary_10_1016_j_patcog_2021_108464
Cites_doi 10.1016/j.bbr.2016.06.043
10.1103/PhysRevE.69.066138
10.1002/hbm.23240
10.1016/j.neuroimage.2006.01.038
10.1103/PhysRevLett.99.204101
10.1109/34.954602
10.1016/j.pbiomolbio.2010.11.006
10.1103/PhysRevLett.85.461
10.1016/j.ipm.2009.03.002
10.1103/PhysRevLett.100.158101
10.1002/hbm.23711
10.1103/PhysRevE.93.012306
10.1016/j.patrec.2012.03.016
10.1109/34.491619
10.1109/34.990138
10.3233/JAD-160092
10.2307/1912791
10.1016/j.patcog.2006.01.001
10.1002/j.1538-7305.1948.tb01338.x
10.1109/TBME.2013.2284195
10.1109/TPAMI.2006.125
10.1007/s10827-010-0262-3
10.1103/PhysRevE.89.052804
10.1103/PhysRevE.83.036109
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.patrec.2019.05.019
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 363
ExternalDocumentID 10_1016_j_patrec_2019_05_019
S0167865519301680
GroupedDBID --M
.DC
.~1
0R~
123
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
WH7
XPP
ZMT
~G-
--K
1B1
29O
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADMXK
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
IHE
R2-
RPZ
SBC
SDS
SEW
SSH
VOH
WUQ
Y6R
ID FETCH-LOGICAL-c306t-a86444d73da18391225f586e66b0dc1b37a82366837c1c5a5ba26e1d1d28d23
IEDL.DBID .~1
ISSN 0167-8655
IngestDate Tue Jul 01 02:40:39 EDT 2025
Thu Apr 24 23:07:49 EDT 2025
Fri Feb 23 02:24:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Expectation maximization algorithm
Network inference
Time series
41A10
65D05
65D17
Supergraph
Transfer entropy
41A05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-a86444d73da18391225f586e66b0dc1b37a82366837c1c5a5ba26e1d1d28d23
ORCID 0000-0003-4496-2028
0000-0002-0542-0640
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_patrec_2019_05_019
crossref_citationtrail_10_1016_j_patrec_2019_05_019
elsevier_sciencedirect_doi_10_1016_j_patrec_2019_05_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
2019-07-00
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Pattern recognition letters
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Figueiredo, Jain (bib0028) 2002; 24
Lizier (bib0019) 2014
Torsello, Hancock (bib0010) 2006; 28
Chen, Zhang, Zhang, Shen, Lee, Shen (bib0012) 2017; 38
Kraskov, Stögbauer, Grassberger (bib0006) 2004; 69
Han, Escolano, Hancock, Wilson (bib0025) 2012; 33
Lawrence, Lin (bib0007) 1989
Wilson, Hancock (bib0011) 2015
Schreiber (bib0017) 2000; 85
Kraskov (bib0020) 2004
Jorma (bib0024) 1998; 15
Jie, Zhang, Gao, Wang, Wee, Shen (bib0031) 2014; 61
Gold, Rangarajan (bib0033) 1996; 18
Khazaee, Ebrahimzadeh, Babajani-Feremi, Initiative (bib0014) 2017; 322
Martin, Ball, Newman (bib0032) 2016; 93
Vicente, Wibral, Lindner, Pipa (bib0001) 2011; 30
Cover, Thomas (bib0018) 2012
Chen, Zhang, Gao, Wee, Li, Shen, Initiative (bib0013) 2016; 37
Wu, Zeng, Zhang, Hong, Xu, Cui, Bai, Hancock (bib0015) 2018
Shannon (bib0016) 1948; 27
Bridle (bib0029) 1990
Staniek, Lehnertz (bib0003) 2008; 100
Luo, Hancock (bib0022) 2001; 23
Hinrichs, Heinze, Schoenfeld (bib0004) 2006; 31
Grünwald, Myung, Pitt (bib0023) 2005
Zhang, Chen, Shi, Li, Kim, Giannakopoulos, Haller, Shen (bib0030) 2016; 54
Granger (bib0008) 1969
Luo, Wilson, Hancock (bib0009) 2006; 39
Anand, Bianconi, Severini (bib0026) 2011; 83
Ye, Wilson, Comin, Costa, Hancock (bib0027) 2014; 89
Wibral, Rahm, Rieder, Lindner, Vicente, Kaiser (bib0005) 2011; 105
Frenzel, Pompe (bib0021) 2007; 99
Sokolova, Lapalme (bib0002) 2009; 45
Figueiredo (10.1016/j.patrec.2019.05.019_bib0028) 2002; 24
Grünwald (10.1016/j.patrec.2019.05.019_bib0023) 2005
Zhang (10.1016/j.patrec.2019.05.019_bib0030) 2016; 54
Anand (10.1016/j.patrec.2019.05.019_bib0026) 2011; 83
Wilson (10.1016/j.patrec.2019.05.019_sbref0011) 2015
Luo (10.1016/j.patrec.2019.05.019_bib0009) 2006; 39
Bridle (10.1016/j.patrec.2019.05.019_bib0029) 1990
Gold (10.1016/j.patrec.2019.05.019_bib0033) 1996; 18
Shannon (10.1016/j.patrec.2019.05.019_bib0016) 1948; 27
Granger (10.1016/j.patrec.2019.05.019_bib0008) 1969
Khazaee (10.1016/j.patrec.2019.05.019_bib0014) 2017; 322
Sokolova (10.1016/j.patrec.2019.05.019_bib0002) 2009; 45
Chen (10.1016/j.patrec.2019.05.019_bib0013) 2016; 37
Schreiber (10.1016/j.patrec.2019.05.019_bib0017) 2000; 85
Lizier (10.1016/j.patrec.2019.05.019_bib0019) 2014
Frenzel (10.1016/j.patrec.2019.05.019_bib0021) 2007; 99
Hinrichs (10.1016/j.patrec.2019.05.019_bib0004) 2006; 31
Kraskov (10.1016/j.patrec.2019.05.019_bib0006) 2004; 69
Staniek (10.1016/j.patrec.2019.05.019_bib0003) 2008; 100
Wu (10.1016/j.patrec.2019.05.019_bib0015) 2018
Cover (10.1016/j.patrec.2019.05.019_bib0018) 2012
Martin (10.1016/j.patrec.2019.05.019_bib0032) 2016; 93
Wibral (10.1016/j.patrec.2019.05.019_bib0005) 2011; 105
Chen (10.1016/j.patrec.2019.05.019_bib0012) 2017; 38
Lawrence (10.1016/j.patrec.2019.05.019_bib0007) 1989
Han (10.1016/j.patrec.2019.05.019_bib0025) 2012; 33
Jorma (10.1016/j.patrec.2019.05.019_bib0024) 1998; 15
Jie (10.1016/j.patrec.2019.05.019_bib0031) 2014; 61
Torsello (10.1016/j.patrec.2019.05.019_bib0010) 2006; 28
Kraskov (10.1016/j.patrec.2019.05.019_bib0020) 2004
Ye (10.1016/j.patrec.2019.05.019_bib0027) 2014; 89
Vicente (10.1016/j.patrec.2019.05.019_bib0001) 2011; 30
Luo (10.1016/j.patrec.2019.05.019_bib0022) 2001; 23
References_xml – volume: 45
  start-page: 427
  year: 2009
  end-page: 437
  ident: bib0002
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manage.
– volume: 105
  start-page: 80
  year: 2011
  end-page: 97
  ident: bib0005
  article-title: Transfer entropy in magnetoencephalographic data: quantifying information flow in cortical and cerebellar networks
  publication-title: Prog. Biophys. Mol. Biol.
– volume: 37
  start-page: 3282
  year: 2016
  end-page: 3296
  ident: bib0013
  article-title: High-order resting-state functional connectivity network for MCI classification
  publication-title: Hum. Brain Mapp.
– volume: 100
  start-page: 158101
  year: 2008
  ident: bib0003
  article-title: Symbolic transfer entropy
  publication-title: Phys. Rev. Lett.
– volume: 85
  start-page: 461
  year: 2000
  ident: bib0017
  article-title: Measuring information transfer
  publication-title: Phys. Rev. Lett.
– volume: 93
  start-page: 012306
  year: 2016
  ident: bib0032
  article-title: Structural inference for uncertain networks
  publication-title: Phys. Rev. E
– start-page: 161
  year: 2014
  end-page: 193
  ident: bib0019
  article-title: Measuring the dynamics of information processing on a local scale in time and space
  publication-title: Directed information measures in neuroscience
– year: 2004
  ident: bib0020
  publication-title: Synchronization and interdependence maesures and their applications to the electroencephalogram of epilepsy patients and clustering of data
– volume: 24
  start-page: 381
  year: 2002
  end-page: 396
  ident: bib0028
  article-title: Unsupervised learning of finite mixture models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2005
  ident: bib0023
  article-title: Advances in Minimum Description Length: Theory and Applications
– volume: 28
  start-page: 954
  year: 2006
  end-page: 967
  ident: bib0010
  article-title: Learning shape-classes using a mixture of tree-unions
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 491
  year: 2018
  end-page: 500
  ident: bib0015
  article-title: Directed network analysis using transfer entropy component analysis
  publication-title: Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR)
– volume: 23
  start-page: 1120
  year: 2001
  end-page: 1136
  ident: bib0022
  article-title: Structural graph matching using the em algorithm and singular value decomposition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 61
  start-page: 576
  year: 2014
  end-page: 589
  ident: bib0031
  article-title: Integration of network topological and connectivity properties for neuroimaging classification
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 424
  year: 1969
  end-page: 438
  ident: bib0008
  article-title: Investigating causal relations by econometric models and cross-spectral methods
  publication-title: Econometrica
– year: 2012
  ident: bib0018
  article-title: Elements of Information Theory
– volume: 33
  start-page: 1958
  year: 2012
  end-page: 1967
  ident: bib0025
  article-title: Graph characterizations from von Neumann entropy
  publication-title: Pattern Recognit. Lett.
– volume: 38
  start-page: 5019
  year: 2017
  end-page: 5034
  ident: bib0012
  article-title: Extraction of dynamic functional connectivity from brain grey matter and white matter for mci classification
  publication-title: Hum. Brain Mapp.
– volume: 27
  start-page: 379
  year: 1948
  end-page: 423
  ident: bib0016
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
– year: 2015
  ident: bib0011
  article-title: Generative graph prototypes from information theory
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 31
  start-page: 1051
  year: 2006
  end-page: 1060
  ident: bib0004
  article-title: Causal visual interactions as revealed by an information theoretic measure and fmri
  publication-title: Neuroimage
– start-page: 255
  year: 1989
  end-page: 268
  ident: bib0007
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– volume: 18
  start-page: 377
  year: 1996
  end-page: 388
  ident: bib0033
  article-title: A graduated assignment algorithm for graph matching
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 15
  year: 1998
  ident: bib0024
  article-title: Stochastic Complexity in Statistical Inquiry
– volume: 30
  start-page: 45
  year: 2011
  end-page: 67
  ident: bib0001
  article-title: Transfer entropy model-free measure of effective connectivity for the neurosciences
  publication-title: J. Comput. Neurosci.
– volume: 322
  start-page: 339
  year: 2017
  end-page: 350
  ident: bib0014
  article-title: Classification of patients with MCI and ad from healthy controls using directed graph measures of resting-state fMRI
  publication-title: Behav. Brain Res.
– volume: 83
  start-page: 036109
  year: 2011
  ident: bib0026
  article-title: Shannon and Von Neumann entropy of random networks with heterogeneous expected degree
  publication-title: Phys. Rev. E
– start-page: 211
  year: 1990
  end-page: 217
  ident: bib0029
  article-title: Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters
  publication-title: Advances in neural information processing systems
– volume: 54
  start-page: 1095
  year: 2016
  end-page: 1112
  ident: bib0030
  article-title: Topographical information-based high-order functional connectivity and its application in abnormality detection for mild cognitive impairment
  publication-title: J. Alzheimers Dis.
– volume: 99
  start-page: 204101
  year: 2007
  ident: bib0021
  article-title: Partial mutual information for coupling analysis of multivariate time series
  publication-title: Phys. Rev. Lett.
– volume: 69
  start-page: 066138
  year: 2004
  ident: bib0006
  article-title: Estimating mutual information
  publication-title: Phys. Rev. E
– volume: 39
  start-page: 1188
  year: 2006
  end-page: 1198
  ident: bib0009
  article-title: A spectral approach to learning structural variations in graphs
  publication-title: Pattern Recognit.
– volume: 89
  start-page: 052804
  year: 2014
  ident: bib0027
  article-title: Approximate Von Neumann entropy for directed graphs
  publication-title: Phys. Rev. E
– volume: 322
  start-page: 339
  year: 2017
  ident: 10.1016/j.patrec.2019.05.019_bib0014
  article-title: Classification of patients with MCI and ad from healthy controls using directed graph measures of resting-state fMRI
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2016.06.043
– volume: 69
  start-page: 066138
  issue: 6
  year: 2004
  ident: 10.1016/j.patrec.2019.05.019_bib0006
  article-title: Estimating mutual information
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.066138
– volume: 37
  start-page: 3282
  issue: 9
  year: 2016
  ident: 10.1016/j.patrec.2019.05.019_bib0013
  article-title: High-order resting-state functional connectivity network for MCI classification
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23240
– volume: 31
  start-page: 1051
  issue: 3
  year: 2006
  ident: 10.1016/j.patrec.2019.05.019_bib0004
  article-title: Causal visual interactions as revealed by an information theoretic measure and fmri
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.038
– volume: 99
  start-page: 204101
  issue: 20
  year: 2007
  ident: 10.1016/j.patrec.2019.05.019_bib0021
  article-title: Partial mutual information for coupling analysis of multivariate time series
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.204101
– start-page: 255
  year: 1989
  ident: 10.1016/j.patrec.2019.05.019_bib0007
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– volume: 23
  start-page: 1120
  issue: 10
  year: 2001
  ident: 10.1016/j.patrec.2019.05.019_bib0022
  article-title: Structural graph matching using the em algorithm and singular value decomposition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.954602
– volume: 105
  start-page: 80
  issue: 1–2
  year: 2011
  ident: 10.1016/j.patrec.2019.05.019_bib0005
  article-title: Transfer entropy in magnetoencephalographic data: quantifying information flow in cortical and cerebellar networks
  publication-title: Prog. Biophys. Mol. Biol.
  doi: 10.1016/j.pbiomolbio.2010.11.006
– volume: 85
  start-page: 461
  issue: 2
  year: 2000
  ident: 10.1016/j.patrec.2019.05.019_bib0017
  article-title: Measuring information transfer
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.461
– volume: 45
  start-page: 427
  issue: 4
  year: 2009
  ident: 10.1016/j.patrec.2019.05.019_bib0002
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2009.03.002
– volume: 100
  start-page: 158101
  issue: 15
  year: 2008
  ident: 10.1016/j.patrec.2019.05.019_bib0003
  article-title: Symbolic transfer entropy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.158101
– start-page: 491
  year: 2018
  ident: 10.1016/j.patrec.2019.05.019_bib0015
  article-title: Directed network analysis using transfer entropy component analysis
– volume: 38
  start-page: 5019
  issue: 10
  year: 2017
  ident: 10.1016/j.patrec.2019.05.019_bib0012
  article-title: Extraction of dynamic functional connectivity from brain grey matter and white matter for mci classification
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23711
– volume: 93
  start-page: 012306
  issue: 1
  year: 2016
  ident: 10.1016/j.patrec.2019.05.019_bib0032
  article-title: Structural inference for uncertain networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.93.012306
– issue: 1
  year: 2015
  ident: 10.1016/j.patrec.2019.05.019_sbref0011
  article-title: Generative graph prototypes from information theory
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2004
  ident: 10.1016/j.patrec.2019.05.019_bib0020
– year: 2012
  ident: 10.1016/j.patrec.2019.05.019_bib0018
– volume: 33
  start-page: 1958
  issue: 15
  year: 2012
  ident: 10.1016/j.patrec.2019.05.019_bib0025
  article-title: Graph characterizations from von Neumann entropy
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2012.03.016
– volume: 18
  start-page: 377
  issue: 4
  year: 1996
  ident: 10.1016/j.patrec.2019.05.019_bib0033
  article-title: A graduated assignment algorithm for graph matching
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.491619
– volume: 24
  start-page: 381
  issue: 3
  year: 2002
  ident: 10.1016/j.patrec.2019.05.019_bib0028
  article-title: Unsupervised learning of finite mixture models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.990138
– volume: 54
  start-page: 1095
  issue: 3
  year: 2016
  ident: 10.1016/j.patrec.2019.05.019_bib0030
  article-title: Topographical information-based high-order functional connectivity and its application in abnormality detection for mild cognitive impairment
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-160092
– volume: 15
  year: 1998
  ident: 10.1016/j.patrec.2019.05.019_bib0024
– start-page: 161
  year: 2014
  ident: 10.1016/j.patrec.2019.05.019_bib0019
  article-title: Measuring the dynamics of information processing on a local scale in time and space
– year: 2005
  ident: 10.1016/j.patrec.2019.05.019_bib0023
– start-page: 424
  year: 1969
  ident: 10.1016/j.patrec.2019.05.019_bib0008
  article-title: Investigating causal relations by econometric models and cross-spectral methods
  publication-title: Econometrica
  doi: 10.2307/1912791
– volume: 39
  start-page: 1188
  issue: 6
  year: 2006
  ident: 10.1016/j.patrec.2019.05.019_bib0009
  article-title: A spectral approach to learning structural variations in graphs
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2006.01.001
– volume: 27
  start-page: 379
  issue: 3
  year: 1948
  ident: 10.1016/j.patrec.2019.05.019_bib0016
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume: 61
  start-page: 576
  issue: 2
  year: 2014
  ident: 10.1016/j.patrec.2019.05.019_bib0031
  article-title: Integration of network topological and connectivity properties for neuroimaging classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2284195
– volume: 28
  start-page: 954
  issue: 6
  year: 2006
  ident: 10.1016/j.patrec.2019.05.019_bib0010
  article-title: Learning shape-classes using a mixture of tree-unions
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.125
– volume: 30
  start-page: 45
  issue: 1
  year: 2011
  ident: 10.1016/j.patrec.2019.05.019_bib0001
  article-title: Transfer entropy model-free measure of effective connectivity for the neurosciences
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-010-0262-3
– volume: 89
  start-page: 052804
  issue: 5
  year: 2014
  ident: 10.1016/j.patrec.2019.05.019_bib0027
  article-title: Approximate Von Neumann entropy for directed graphs
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.052804
– start-page: 211
  year: 1990
  ident: 10.1016/j.patrec.2019.05.019_bib0029
  article-title: Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters
– volume: 83
  start-page: 036109
  issue: 3
  year: 2011
  ident: 10.1016/j.patrec.2019.05.019_bib0026
  article-title: Shannon and Von Neumann entropy of random networks with heterogeneous expected degree
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.83.036109
SSID ssj0006398
Score 2.3206444
Snippet •We concentrate on the problem of describing the directed flow of information between nodes based on transfer entropy.•We have developed a weighted directed...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 357
SubjectTerms Expectation maximization algorithm
Network inference
Supergraph
Time series
Transfer entropy
Title Structural network inference from time-series data using a generative model and transfer entropy
URI https://dx.doi.org/10.1016/j.patrec.2019.05.019
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KvejBR1Wsj5KD19imu9lNj0UsVaGXKvQWs0m2VGRbsBcv_nZndjdaQRS87IsNu0wm8wjffANwqQyGAcZJbmJreexVxDPhHCfel8yZfIBHQltMkvFjfDeTswZch1oYglXWtr-y6aW1rp90a2l2V4tFd0oAeiqrxBAELxXl7XGckpZfvX_BPNADq8DvTW-H8rkS40X7zZ6IDMWg4u8c_OyeNlzOaB9261iRDavfOYCGL1qwF_owsHpZtmBng1TwEJ6mJSUs0WmwogJ5s0Uo62NUTsKooTwn3fOvjCCijNDvc2bYvCShJgvIyhY5zBSOrcvYFj9IG8HL1dsRTEc3D9djXvdR4BYTgjU3CoOe2KWRMxQPCVzCuVSJT5Ks56zIotRQ2_MEc1UrrDQyM_3ECydcX7l-dAzNYln4E2CR9CbxMrU5Zm2Z6uNUmlRiwoQxgfC5aUMUhKdtTTFOnS5edMCSPetK5JpErntS46kN_HPUqqLY-OP9NMyL_qYqGr3AryNP_z3yDLbprsLpnkMTJ9JfYDSyzjqlunVga3h7P558AIjR4T0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1VMAADHwVE-fTAalonceKOqKIqULq0SN2ME7tVEUor0YWF385dEkOREEgsSZTESnS2z--sd-8ALpVBGGCs5CbKMh45FfJUWMtJ9yW1ZtLGI7EtBnHvMboby3ENOj4XhmiVle8vfXrhras7zcqazcVs1hwSgZ7SKhGC4KXCuH09wulLZQyu3r94HrgEKy_wTa_7_LmC5EUbzo6UDEW7FPBs_7w-raw53V3YrsAiuy7_Zw9qLq_Dji_EwKp5WYetFVXBfXgaFpqwpKfB8pLlzWY-r49RPgmjivKcBp97ZcQRZUR_nzLDpoUKNblAVtTIYSa3bFmAW_wg7QTPF28HMOzejDo9XhVS4BlGBEtuFKKeyCahNQSIBM7hiVSxi-O0ZTORhomhuucxBquZyKSRqQliJ6ywgbJBeAhr-Tx3R8BC6UzsZJJNMGxLVYB9aRKJEROCAuEmpgGhN57OKo1xKnXxoj2Z7FmXJtdkct2SGk8N4J-tFqXGxh_vJ75f9LexonEZ-LXl8b9bXsBGb_TQ1_3bwf0JbNKTkrR7CmvYqe4MockyPS-G3gfFT-LL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+network+inference+from+time-series+data+using+a+generative+model+and+transfer+entropy&rft.jtitle=Pattern+recognition+letters&rft.au=Zhang%2C+Zhihong&rft.au=Zhang%2C+Genzhou&rft.au=Zhang%2C+Zhonghao&rft.au=Chen%2C+Guo&rft.date=2019-07-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=125&rft.spage=357&rft.epage=363&rft_id=info:doi/10.1016%2Fj.patrec.2019.05.019&rft.externalDocID=S0167865519301680
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon