Structural network inference from time-series data using a generative model and transfer entropy
•We concentrate on the problem of describing the directed flow of information between nodes based on transfer entropy.•We have developed a weighted directed supergraph based on the von Neumann entropy of a directed graph.•Our model can improve the classification performance on fMRI brain connectivit...
Saved in:
Published in | Pattern recognition letters Vol. 125; pp. 357 - 363 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We concentrate on the problem of describing the directed flow of information between nodes based on transfer entropy.•We have developed a weighted directed supergraph based on the von Neumann entropy of a directed graph.•Our model can improve the classification performance on fMRI brain connectivity data when the training data are limited.
In this paper we develop a novel framework for inferring a generative model of network structure representing the causal relations between data for a set of objects characterized in terms of time series. To do this we make use of transfer entropy as a means of inferring directed information transfer between the time-series data. Transfer entropy allows us to infer directed edges representing the causal relations between pairs of time series, and has thus been used to infer directed graph representations of causal networks for time-series data. We use the expectation maximization algorithm to learn a generative model which captures variations in the causal network over time. We conduct experiments on fMRI brain connectivity data for subjects in different stages of the development of Alzheimer’s disease (AD). Here we use the technique to learn class exemplars for different stages in the development of the disease, together with a normal control class, and demonstrate its utility in both graph multi-class and binary classifications. These experiments are showing the effectiveness of our proposed framework when the amounts of training data are relatively small. |
---|---|
AbstractList | •We concentrate on the problem of describing the directed flow of information between nodes based on transfer entropy.•We have developed a weighted directed supergraph based on the von Neumann entropy of a directed graph.•Our model can improve the classification performance on fMRI brain connectivity data when the training data are limited.
In this paper we develop a novel framework for inferring a generative model of network structure representing the causal relations between data for a set of objects characterized in terms of time series. To do this we make use of transfer entropy as a means of inferring directed information transfer between the time-series data. Transfer entropy allows us to infer directed edges representing the causal relations between pairs of time series, and has thus been used to infer directed graph representations of causal networks for time-series data. We use the expectation maximization algorithm to learn a generative model which captures variations in the causal network over time. We conduct experiments on fMRI brain connectivity data for subjects in different stages of the development of Alzheimer’s disease (AD). Here we use the technique to learn class exemplars for different stages in the development of the disease, together with a normal control class, and demonstrate its utility in both graph multi-class and binary classifications. These experiments are showing the effectiveness of our proposed framework when the amounts of training data are relatively small. |
Author | Zeng, Yangbin Zhang, Zhihong Chen, Guo Hancock, Edwin R. Zhang, Genzhou Wang, Beizhan Zhang, Zhonghao |
Author_xml | – sequence: 1 givenname: Zhihong orcidid: 0000-0002-0542-0640 surname: Zhang fullname: Zhang, Zhihong organization: Xiamen University, Xiamen, China – sequence: 2 givenname: Genzhou surname: Zhang fullname: Zhang, Genzhou organization: State Grid Shaanxi Electric Power Company, Xian, China – sequence: 3 givenname: Zhonghao surname: Zhang fullname: Zhang, Zhonghao organization: State Grid Shaanxi Information and Telecommunication Company, LTD, Xian, China – sequence: 4 givenname: Guo surname: Chen fullname: Chen, Guo organization: State Grid Shaanxi Information and Telecommunication Company, LTD, Xian, China – sequence: 5 givenname: Yangbin surname: Zeng fullname: Zeng, Yangbin organization: Xiamen University, Xiamen, China – sequence: 6 givenname: Beizhan surname: Wang fullname: Wang, Beizhan email: wangbz@xmu.edu.cn organization: Xiamen University, Xiamen, China – sequence: 7 givenname: Edwin R. orcidid: 0000-0003-4496-2028 surname: Hancock fullname: Hancock, Edwin R. organization: University of York, York, UK |
BookMark | eNqFkM1KAzEUhYMo2FbfwEVeYMb8TDKpC0GKf1BwUfcxTe6U1GmmJGmlb29KXbnQ1dmc73DvN0bnYQiA0A0lNSVU3q7rrckRbM0IndZE1CXO0IiqllUtb5pzNCq1tlJSiEs0TmlNCJF8qkboY5HjzuZdND0OkL-G-Il96CBCsIC7OGxw9huoEkQPCTuTDd4lH1bY4BUEiCb7PeDN4KDHJjicowmp8BhCjsP2cIUuOtMnuP7JCVo8Pb7PXqr52_Pr7GFeWU5kroySTdO4ljtDFZ9SxkQnlAQpl8RZuuStUYxLqXhrqRVGLA2TQB11TDnGJ6g5rdo4pBSh09voNyYeNCX66Eiv9cmRPjrSROgSBbv7hVmfy0dDud34_j_4_gRDeWvvIepk_VGb86WatRv83wPf5EOJDQ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3222310 crossref_primary_10_1016_j_asoc_2020_106457 crossref_primary_10_1016_j_patrec_2021_11_004 crossref_primary_10_1016_j_patrec_2019_12_004 crossref_primary_10_1016_j_patcog_2021_108464 |
Cites_doi | 10.1016/j.bbr.2016.06.043 10.1103/PhysRevE.69.066138 10.1002/hbm.23240 10.1016/j.neuroimage.2006.01.038 10.1103/PhysRevLett.99.204101 10.1109/34.954602 10.1016/j.pbiomolbio.2010.11.006 10.1103/PhysRevLett.85.461 10.1016/j.ipm.2009.03.002 10.1103/PhysRevLett.100.158101 10.1002/hbm.23711 10.1103/PhysRevE.93.012306 10.1016/j.patrec.2012.03.016 10.1109/34.491619 10.1109/34.990138 10.3233/JAD-160092 10.2307/1912791 10.1016/j.patcog.2006.01.001 10.1002/j.1538-7305.1948.tb01338.x 10.1109/TBME.2013.2284195 10.1109/TPAMI.2006.125 10.1007/s10827-010-0262-3 10.1103/PhysRevE.89.052804 10.1103/PhysRevE.83.036109 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patrec.2019.05.019 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1872-7344 |
EndPage | 363 |
ExternalDocumentID | 10_1016_j_patrec_2019_05_019 S0167865519301680 |
GroupedDBID | --M .DC .~1 0R~ 123 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL SDF SDG SDP SES SPC SPCBC SST SSV SSZ T5K TN5 UNMZH WH7 XPP ZMT ~G- --K 1B1 29O AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADMXK ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ IHE R2- RPZ SBC SDS SEW SSH VOH WUQ Y6R |
ID | FETCH-LOGICAL-c306t-a86444d73da18391225f586e66b0dc1b37a82366837c1c5a5ba26e1d1d28d23 |
IEDL.DBID | .~1 |
ISSN | 0167-8655 |
IngestDate | Tue Jul 01 02:40:39 EDT 2025 Thu Apr 24 23:07:49 EDT 2025 Fri Feb 23 02:24:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Expectation maximization algorithm Network inference Time series 41A10 65D05 65D17 Supergraph Transfer entropy 41A05 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-a86444d73da18391225f586e66b0dc1b37a82366837c1c5a5ba26e1d1d28d23 |
ORCID | 0000-0003-4496-2028 0000-0002-0542-0640 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1016_j_patrec_2019_05_019 crossref_citationtrail_10_1016_j_patrec_2019_05_019 elsevier_sciencedirect_doi_10_1016_j_patrec_2019_05_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 2019-07-00 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Pattern recognition letters |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Figueiredo, Jain (bib0028) 2002; 24 Lizier (bib0019) 2014 Torsello, Hancock (bib0010) 2006; 28 Chen, Zhang, Zhang, Shen, Lee, Shen (bib0012) 2017; 38 Kraskov, Stögbauer, Grassberger (bib0006) 2004; 69 Han, Escolano, Hancock, Wilson (bib0025) 2012; 33 Lawrence, Lin (bib0007) 1989 Wilson, Hancock (bib0011) 2015 Schreiber (bib0017) 2000; 85 Kraskov (bib0020) 2004 Jorma (bib0024) 1998; 15 Jie, Zhang, Gao, Wang, Wee, Shen (bib0031) 2014; 61 Gold, Rangarajan (bib0033) 1996; 18 Khazaee, Ebrahimzadeh, Babajani-Feremi, Initiative (bib0014) 2017; 322 Martin, Ball, Newman (bib0032) 2016; 93 Vicente, Wibral, Lindner, Pipa (bib0001) 2011; 30 Cover, Thomas (bib0018) 2012 Chen, Zhang, Gao, Wee, Li, Shen, Initiative (bib0013) 2016; 37 Wu, Zeng, Zhang, Hong, Xu, Cui, Bai, Hancock (bib0015) 2018 Shannon (bib0016) 1948; 27 Bridle (bib0029) 1990 Staniek, Lehnertz (bib0003) 2008; 100 Luo, Hancock (bib0022) 2001; 23 Hinrichs, Heinze, Schoenfeld (bib0004) 2006; 31 Grünwald, Myung, Pitt (bib0023) 2005 Zhang, Chen, Shi, Li, Kim, Giannakopoulos, Haller, Shen (bib0030) 2016; 54 Granger (bib0008) 1969 Luo, Wilson, Hancock (bib0009) 2006; 39 Anand, Bianconi, Severini (bib0026) 2011; 83 Ye, Wilson, Comin, Costa, Hancock (bib0027) 2014; 89 Wibral, Rahm, Rieder, Lindner, Vicente, Kaiser (bib0005) 2011; 105 Frenzel, Pompe (bib0021) 2007; 99 Sokolova, Lapalme (bib0002) 2009; 45 Figueiredo (10.1016/j.patrec.2019.05.019_bib0028) 2002; 24 Grünwald (10.1016/j.patrec.2019.05.019_bib0023) 2005 Zhang (10.1016/j.patrec.2019.05.019_bib0030) 2016; 54 Anand (10.1016/j.patrec.2019.05.019_bib0026) 2011; 83 Wilson (10.1016/j.patrec.2019.05.019_sbref0011) 2015 Luo (10.1016/j.patrec.2019.05.019_bib0009) 2006; 39 Bridle (10.1016/j.patrec.2019.05.019_bib0029) 1990 Gold (10.1016/j.patrec.2019.05.019_bib0033) 1996; 18 Shannon (10.1016/j.patrec.2019.05.019_bib0016) 1948; 27 Granger (10.1016/j.patrec.2019.05.019_bib0008) 1969 Khazaee (10.1016/j.patrec.2019.05.019_bib0014) 2017; 322 Sokolova (10.1016/j.patrec.2019.05.019_bib0002) 2009; 45 Chen (10.1016/j.patrec.2019.05.019_bib0013) 2016; 37 Schreiber (10.1016/j.patrec.2019.05.019_bib0017) 2000; 85 Lizier (10.1016/j.patrec.2019.05.019_bib0019) 2014 Frenzel (10.1016/j.patrec.2019.05.019_bib0021) 2007; 99 Hinrichs (10.1016/j.patrec.2019.05.019_bib0004) 2006; 31 Kraskov (10.1016/j.patrec.2019.05.019_bib0006) 2004; 69 Staniek (10.1016/j.patrec.2019.05.019_bib0003) 2008; 100 Wu (10.1016/j.patrec.2019.05.019_bib0015) 2018 Cover (10.1016/j.patrec.2019.05.019_bib0018) 2012 Martin (10.1016/j.patrec.2019.05.019_bib0032) 2016; 93 Wibral (10.1016/j.patrec.2019.05.019_bib0005) 2011; 105 Chen (10.1016/j.patrec.2019.05.019_bib0012) 2017; 38 Lawrence (10.1016/j.patrec.2019.05.019_bib0007) 1989 Han (10.1016/j.patrec.2019.05.019_bib0025) 2012; 33 Jorma (10.1016/j.patrec.2019.05.019_bib0024) 1998; 15 Jie (10.1016/j.patrec.2019.05.019_bib0031) 2014; 61 Torsello (10.1016/j.patrec.2019.05.019_bib0010) 2006; 28 Kraskov (10.1016/j.patrec.2019.05.019_bib0020) 2004 Ye (10.1016/j.patrec.2019.05.019_bib0027) 2014; 89 Vicente (10.1016/j.patrec.2019.05.019_bib0001) 2011; 30 Luo (10.1016/j.patrec.2019.05.019_bib0022) 2001; 23 |
References_xml | – volume: 45 start-page: 427 year: 2009 end-page: 437 ident: bib0002 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf. Process. Manage. – volume: 105 start-page: 80 year: 2011 end-page: 97 ident: bib0005 article-title: Transfer entropy in magnetoencephalographic data: quantifying information flow in cortical and cerebellar networks publication-title: Prog. Biophys. Mol. Biol. – volume: 37 start-page: 3282 year: 2016 end-page: 3296 ident: bib0013 article-title: High-order resting-state functional connectivity network for MCI classification publication-title: Hum. Brain Mapp. – volume: 100 start-page: 158101 year: 2008 ident: bib0003 article-title: Symbolic transfer entropy publication-title: Phys. Rev. Lett. – volume: 85 start-page: 461 year: 2000 ident: bib0017 article-title: Measuring information transfer publication-title: Phys. Rev. Lett. – volume: 93 start-page: 012306 year: 2016 ident: bib0032 article-title: Structural inference for uncertain networks publication-title: Phys. Rev. E – start-page: 161 year: 2014 end-page: 193 ident: bib0019 article-title: Measuring the dynamics of information processing on a local scale in time and space publication-title: Directed information measures in neuroscience – year: 2004 ident: bib0020 publication-title: Synchronization and interdependence maesures and their applications to the electroencephalogram of epilepsy patients and clustering of data – volume: 24 start-page: 381 year: 2002 end-page: 396 ident: bib0028 article-title: Unsupervised learning of finite mixture models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2005 ident: bib0023 article-title: Advances in Minimum Description Length: Theory and Applications – volume: 28 start-page: 954 year: 2006 end-page: 967 ident: bib0010 article-title: Learning shape-classes using a mixture of tree-unions publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 491 year: 2018 end-page: 500 ident: bib0015 article-title: Directed network analysis using transfer entropy component analysis publication-title: Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR) – volume: 23 start-page: 1120 year: 2001 end-page: 1136 ident: bib0022 article-title: Structural graph matching using the em algorithm and singular value decomposition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 61 start-page: 576 year: 2014 end-page: 589 ident: bib0031 article-title: Integration of network topological and connectivity properties for neuroimaging classification publication-title: IEEE Trans. Biomed. Eng. – start-page: 424 year: 1969 end-page: 438 ident: bib0008 article-title: Investigating causal relations by econometric models and cross-spectral methods publication-title: Econometrica – year: 2012 ident: bib0018 article-title: Elements of Information Theory – volume: 33 start-page: 1958 year: 2012 end-page: 1967 ident: bib0025 article-title: Graph characterizations from von Neumann entropy publication-title: Pattern Recognit. Lett. – volume: 38 start-page: 5019 year: 2017 end-page: 5034 ident: bib0012 article-title: Extraction of dynamic functional connectivity from brain grey matter and white matter for mci classification publication-title: Hum. Brain Mapp. – volume: 27 start-page: 379 year: 1948 end-page: 423 ident: bib0016 article-title: A mathematical theory of communication publication-title: Bell Syst. Tech. J. – year: 2015 ident: bib0011 article-title: Generative graph prototypes from information theory publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 31 start-page: 1051 year: 2006 end-page: 1060 ident: bib0004 article-title: Causal visual interactions as revealed by an information theoretic measure and fmri publication-title: Neuroimage – start-page: 255 year: 1989 end-page: 268 ident: bib0007 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics – volume: 18 start-page: 377 year: 1996 end-page: 388 ident: bib0033 article-title: A graduated assignment algorithm for graph matching publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 15 year: 1998 ident: bib0024 article-title: Stochastic Complexity in Statistical Inquiry – volume: 30 start-page: 45 year: 2011 end-page: 67 ident: bib0001 article-title: Transfer entropy model-free measure of effective connectivity for the neurosciences publication-title: J. Comput. Neurosci. – volume: 322 start-page: 339 year: 2017 end-page: 350 ident: bib0014 article-title: Classification of patients with MCI and ad from healthy controls using directed graph measures of resting-state fMRI publication-title: Behav. Brain Res. – volume: 83 start-page: 036109 year: 2011 ident: bib0026 article-title: Shannon and Von Neumann entropy of random networks with heterogeneous expected degree publication-title: Phys. Rev. E – start-page: 211 year: 1990 end-page: 217 ident: bib0029 article-title: Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters publication-title: Advances in neural information processing systems – volume: 54 start-page: 1095 year: 2016 end-page: 1112 ident: bib0030 article-title: Topographical information-based high-order functional connectivity and its application in abnormality detection for mild cognitive impairment publication-title: J. Alzheimers Dis. – volume: 99 start-page: 204101 year: 2007 ident: bib0021 article-title: Partial mutual information for coupling analysis of multivariate time series publication-title: Phys. Rev. Lett. – volume: 69 start-page: 066138 year: 2004 ident: bib0006 article-title: Estimating mutual information publication-title: Phys. Rev. E – volume: 39 start-page: 1188 year: 2006 end-page: 1198 ident: bib0009 article-title: A spectral approach to learning structural variations in graphs publication-title: Pattern Recognit. – volume: 89 start-page: 052804 year: 2014 ident: bib0027 article-title: Approximate Von Neumann entropy for directed graphs publication-title: Phys. Rev. E – volume: 322 start-page: 339 year: 2017 ident: 10.1016/j.patrec.2019.05.019_bib0014 article-title: Classification of patients with MCI and ad from healthy controls using directed graph measures of resting-state fMRI publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2016.06.043 – volume: 69 start-page: 066138 issue: 6 year: 2004 ident: 10.1016/j.patrec.2019.05.019_bib0006 article-title: Estimating mutual information publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.69.066138 – volume: 37 start-page: 3282 issue: 9 year: 2016 ident: 10.1016/j.patrec.2019.05.019_bib0013 article-title: High-order resting-state functional connectivity network for MCI classification publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23240 – volume: 31 start-page: 1051 issue: 3 year: 2006 ident: 10.1016/j.patrec.2019.05.019_bib0004 article-title: Causal visual interactions as revealed by an information theoretic measure and fmri publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.038 – volume: 99 start-page: 204101 issue: 20 year: 2007 ident: 10.1016/j.patrec.2019.05.019_bib0021 article-title: Partial mutual information for coupling analysis of multivariate time series publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.204101 – start-page: 255 year: 1989 ident: 10.1016/j.patrec.2019.05.019_bib0007 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics – volume: 23 start-page: 1120 issue: 10 year: 2001 ident: 10.1016/j.patrec.2019.05.019_bib0022 article-title: Structural graph matching using the em algorithm and singular value decomposition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.954602 – volume: 105 start-page: 80 issue: 1–2 year: 2011 ident: 10.1016/j.patrec.2019.05.019_bib0005 article-title: Transfer entropy in magnetoencephalographic data: quantifying information flow in cortical and cerebellar networks publication-title: Prog. Biophys. Mol. Biol. doi: 10.1016/j.pbiomolbio.2010.11.006 – volume: 85 start-page: 461 issue: 2 year: 2000 ident: 10.1016/j.patrec.2019.05.019_bib0017 article-title: Measuring information transfer publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.461 – volume: 45 start-page: 427 issue: 4 year: 2009 ident: 10.1016/j.patrec.2019.05.019_bib0002 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2009.03.002 – volume: 100 start-page: 158101 issue: 15 year: 2008 ident: 10.1016/j.patrec.2019.05.019_bib0003 article-title: Symbolic transfer entropy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.158101 – start-page: 491 year: 2018 ident: 10.1016/j.patrec.2019.05.019_bib0015 article-title: Directed network analysis using transfer entropy component analysis – volume: 38 start-page: 5019 issue: 10 year: 2017 ident: 10.1016/j.patrec.2019.05.019_bib0012 article-title: Extraction of dynamic functional connectivity from brain grey matter and white matter for mci classification publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23711 – volume: 93 start-page: 012306 issue: 1 year: 2016 ident: 10.1016/j.patrec.2019.05.019_bib0032 article-title: Structural inference for uncertain networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.93.012306 – issue: 1 year: 2015 ident: 10.1016/j.patrec.2019.05.019_sbref0011 article-title: Generative graph prototypes from information theory publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2004 ident: 10.1016/j.patrec.2019.05.019_bib0020 – year: 2012 ident: 10.1016/j.patrec.2019.05.019_bib0018 – volume: 33 start-page: 1958 issue: 15 year: 2012 ident: 10.1016/j.patrec.2019.05.019_bib0025 article-title: Graph characterizations from von Neumann entropy publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2012.03.016 – volume: 18 start-page: 377 issue: 4 year: 1996 ident: 10.1016/j.patrec.2019.05.019_bib0033 article-title: A graduated assignment algorithm for graph matching publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.491619 – volume: 24 start-page: 381 issue: 3 year: 2002 ident: 10.1016/j.patrec.2019.05.019_bib0028 article-title: Unsupervised learning of finite mixture models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.990138 – volume: 54 start-page: 1095 issue: 3 year: 2016 ident: 10.1016/j.patrec.2019.05.019_bib0030 article-title: Topographical information-based high-order functional connectivity and its application in abnormality detection for mild cognitive impairment publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-160092 – volume: 15 year: 1998 ident: 10.1016/j.patrec.2019.05.019_bib0024 – start-page: 161 year: 2014 ident: 10.1016/j.patrec.2019.05.019_bib0019 article-title: Measuring the dynamics of information processing on a local scale in time and space – year: 2005 ident: 10.1016/j.patrec.2019.05.019_bib0023 – start-page: 424 year: 1969 ident: 10.1016/j.patrec.2019.05.019_bib0008 article-title: Investigating causal relations by econometric models and cross-spectral methods publication-title: Econometrica doi: 10.2307/1912791 – volume: 39 start-page: 1188 issue: 6 year: 2006 ident: 10.1016/j.patrec.2019.05.019_bib0009 article-title: A spectral approach to learning structural variations in graphs publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2006.01.001 – volume: 27 start-page: 379 issue: 3 year: 1948 ident: 10.1016/j.patrec.2019.05.019_bib0016 article-title: A mathematical theory of communication publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1948.tb01338.x – volume: 61 start-page: 576 issue: 2 year: 2014 ident: 10.1016/j.patrec.2019.05.019_bib0031 article-title: Integration of network topological and connectivity properties for neuroimaging classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2284195 – volume: 28 start-page: 954 issue: 6 year: 2006 ident: 10.1016/j.patrec.2019.05.019_bib0010 article-title: Learning shape-classes using a mixture of tree-unions publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.125 – volume: 30 start-page: 45 issue: 1 year: 2011 ident: 10.1016/j.patrec.2019.05.019_bib0001 article-title: Transfer entropy model-free measure of effective connectivity for the neurosciences publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-010-0262-3 – volume: 89 start-page: 052804 issue: 5 year: 2014 ident: 10.1016/j.patrec.2019.05.019_bib0027 article-title: Approximate Von Neumann entropy for directed graphs publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.89.052804 – start-page: 211 year: 1990 ident: 10.1016/j.patrec.2019.05.019_bib0029 article-title: Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters – volume: 83 start-page: 036109 issue: 3 year: 2011 ident: 10.1016/j.patrec.2019.05.019_bib0026 article-title: Shannon and Von Neumann entropy of random networks with heterogeneous expected degree publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.83.036109 |
SSID | ssj0006398 |
Score | 2.3206444 |
Snippet | •We concentrate on the problem of describing the directed flow of information between nodes based on transfer entropy.•We have developed a weighted directed... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 357 |
SubjectTerms | Expectation maximization algorithm Network inference Supergraph Time series Transfer entropy |
Title | Structural network inference from time-series data using a generative model and transfer entropy |
URI | https://dx.doi.org/10.1016/j.patrec.2019.05.019 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KvejBR1Wsj5KD19imu9lNj0UsVaGXKvQWs0m2VGRbsBcv_nZndjdaQRS87IsNu0wm8wjffANwqQyGAcZJbmJreexVxDPhHCfel8yZfIBHQltMkvFjfDeTswZch1oYglXWtr-y6aW1rp90a2l2V4tFd0oAeiqrxBAELxXl7XGckpZfvX_BPNADq8DvTW-H8rkS40X7zZ6IDMWg4u8c_OyeNlzOaB9261iRDavfOYCGL1qwF_owsHpZtmBng1TwEJ6mJSUs0WmwogJ5s0Uo62NUTsKooTwn3fOvjCCijNDvc2bYvCShJgvIyhY5zBSOrcvYFj9IG8HL1dsRTEc3D9djXvdR4BYTgjU3CoOe2KWRMxQPCVzCuVSJT5Ks56zIotRQ2_MEc1UrrDQyM_3ECydcX7l-dAzNYln4E2CR9CbxMrU5Zm2Z6uNUmlRiwoQxgfC5aUMUhKdtTTFOnS5edMCSPetK5JpErntS46kN_HPUqqLY-OP9NMyL_qYqGr3AryNP_z3yDLbprsLpnkMTJ9JfYDSyzjqlunVga3h7P558AIjR4T0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1VMAADHwVE-fTAalonceKOqKIqULq0SN2ME7tVEUor0YWF385dEkOREEgsSZTESnS2z--sd-8ALpVBGGCs5CbKMh45FfJUWMtJ9yW1ZtLGI7EtBnHvMboby3ENOj4XhmiVle8vfXrhras7zcqazcVs1hwSgZ7SKhGC4KXCuH09wulLZQyu3r94HrgEKy_wTa_7_LmC5EUbzo6UDEW7FPBs_7w-raw53V3YrsAiuy7_Zw9qLq_Dji_EwKp5WYetFVXBfXgaFpqwpKfB8pLlzWY-r49RPgmjivKcBp97ZcQRZUR_nzLDpoUKNblAVtTIYSa3bFmAW_wg7QTPF28HMOzejDo9XhVS4BlGBEtuFKKeyCahNQSIBM7hiVSxi-O0ZTORhomhuucxBquZyKSRqQliJ6ywgbJBeAhr-Tx3R8BC6UzsZJJNMGxLVYB9aRKJEROCAuEmpgGhN57OKo1xKnXxoj2Z7FmXJtdkct2SGk8N4J-tFqXGxh_vJ75f9LexonEZ-LXl8b9bXsBGb_TQ1_3bwf0JbNKTkrR7CmvYqe4MockyPS-G3gfFT-LL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+network+inference+from+time-series+data+using+a+generative+model+and+transfer+entropy&rft.jtitle=Pattern+recognition+letters&rft.au=Zhang%2C+Zhihong&rft.au=Zhang%2C+Genzhou&rft.au=Zhang%2C+Zhonghao&rft.au=Chen%2C+Guo&rft.date=2019-07-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=125&rft.spage=357&rft.epage=363&rft_id=info:doi/10.1016%2Fj.patrec.2019.05.019&rft.externalDocID=S0167865519301680 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |