YOLO-FaceV2: A scale and occlusion aware face detector
In recent years, face detection algorithms based on deep learning have made great progress. Nevertheless, the effective utilization of face detectors for small and occlusion faces remains challenging, primarily stemming from the limitations in pixel information and the presence of missing features....
Saved in:
Published in | Pattern recognition Vol. 155; p. 110714 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, face detection algorithms based on deep learning have made great progress. Nevertheless, the effective utilization of face detectors for small and occlusion faces remains challenging, primarily stemming from the limitations in pixel information and the presence of missing features. In this paper, we propose a novel real-time face detector, YOLO-FaceV2, built upon the YOLOv5 architecture. Our approach introduces a Receptive Field Enhancement (RFE) module designed to extract multi-scale pixel information and augment the receptive field for accurately detecting small faces. To address issues related to face occlusion, we introduce an attention mechanism termed the Separated and Enhancement Attention Module (SEAM), which effectively focuses on the regions affected by occlusion. Furthermore, we propose a Slide Weight Function (SWF) to mitigate the imbalance between easy and hard samples. The experiments demonstrate that our YOLO-FaceV2 achieves performance exceeding the state-of-the-art on the WiderFace validation dataset. Source code and pre-trained model are available at https://github.com/Krasjet-Yu/YOLO-FaceV2.
•Proposed an YOLO-FaceV2 detector to address face detection.•Good performance under face occlusion and varying scales.•Designed a novel weighting function alleviated the problem of imbalanced samples.•Detection results on the WiderFace validation dataset are 98.6%, 97.9% and 91.9%.•Achieved state-of-the-art performance on the easy and medium subset of WiderFace dataset. |
---|---|
AbstractList | In recent years, face detection algorithms based on deep learning have made great progress. Nevertheless, the effective utilization of face detectors for small and occlusion faces remains challenging, primarily stemming from the limitations in pixel information and the presence of missing features. In this paper, we propose a novel real-time face detector, YOLO-FaceV2, built upon the YOLOv5 architecture. Our approach introduces a Receptive Field Enhancement (RFE) module designed to extract multi-scale pixel information and augment the receptive field for accurately detecting small faces. To address issues related to face occlusion, we introduce an attention mechanism termed the Separated and Enhancement Attention Module (SEAM), which effectively focuses on the regions affected by occlusion. Furthermore, we propose a Slide Weight Function (SWF) to mitigate the imbalance between easy and hard samples. The experiments demonstrate that our YOLO-FaceV2 achieves performance exceeding the state-of-the-art on the WiderFace validation dataset. Source code and pre-trained model are available at https://github.com/Krasjet-Yu/YOLO-FaceV2.
•Proposed an YOLO-FaceV2 detector to address face detection.•Good performance under face occlusion and varying scales.•Designed a novel weighting function alleviated the problem of imbalanced samples.•Detection results on the WiderFace validation dataset are 98.6%, 97.9% and 91.9%.•Achieved state-of-the-art performance on the easy and medium subset of WiderFace dataset. |
ArticleNumber | 110714 |
Author | Liu, Yahui Su, Yongxin Chen, Weijun Yu, Ziping Wang, Xiuying Huang, Hongbo |
Author_xml | – sequence: 1 givenname: Ziping orcidid: 0000-0003-0755-9301 surname: Yu fullname: Yu, Ziping organization: School of Instrument Science and Opto-electronic Engineering, Beijing Information Science and Technology University, Beijing, China – sequence: 2 givenname: Hongbo orcidid: 0000-0002-2963-8257 surname: Huang fullname: Huang, Hongbo email: hhb@bistu.edu.cn organization: Computer School, Beijing Information Science and Technology University, Beijing, China – sequence: 3 givenname: Weijun surname: Chen fullname: Chen, Weijun organization: Data Algorithm NIO, Shanghai, China – sequence: 4 givenname: Yongxin surname: Su fullname: Su, Yongxin organization: School of Mechanical and Electrical Engineering, Beijing Information Science and Technology University, Beijing, China – sequence: 5 givenname: Yahui surname: Liu fullname: Liu, Yahui organization: School of Information Management, Beijing Information Science and Technology University, Beijing, China – sequence: 6 givenname: Xiuying surname: Wang fullname: Wang, Xiuying organization: Computer School, Beijing Information Science and Technology University, Beijing, China |
BookMark | eNqFkMFKxDAURYOM4Iz6By7yA615SZq2sxCGwVFhYDYquApp-iIZajskUfHv7VBXLnT1Nvdc3j0LMuuHHgm5ApYDA3W9zw8m2eE154zLHICVIE_IHKpSZAVIPiNzxgRkgjNxRhYx7hmDMcPnRL3strtsYyw-8yVd0WhNh9T0LR2s7d6jH3pqPk1A6sYMbTGhTUO4IKfOdBEvf-45edrcPq7vs-3u7mG92mZWMJUyo6CxiomirBQI1wrZqLoSDUPnuKnLtpAGalVJqCtoZFMXVQ2oSsfBSVk6cU6WU68NQ4wBnbY-mTR-lYLxnQamjwb0Xk8G9NGAngyMsPwFH4J_M-HrP-xmwnAc9uEx6Gg99hZbH8bxuh383wXf1Yp2qA |
CitedBy_id | crossref_primary_10_3390_pr13020349 crossref_primary_10_3390_agriculture15060617 crossref_primary_10_3390_agronomy15040791 crossref_primary_10_3390_app14167153 crossref_primary_10_1007_s11227_024_06738_x crossref_primary_10_1109_TGRS_2024_3482358 crossref_primary_10_3390_agronomy14091936 crossref_primary_10_3390_app142311088 crossref_primary_10_1109_ACCESS_2024_3416332 crossref_primary_10_1088_2631_8695_adb6f3 crossref_primary_10_1016_j_jksuci_2024_102198 crossref_primary_10_1063_5_0254679 crossref_primary_10_3788_LOP240529 crossref_primary_10_1109_ACCESS_2025_3546946 crossref_primary_10_1109_JSTARS_2024_3494838 crossref_primary_10_1109_JSEN_2024_3425156 crossref_primary_10_1080_10589759_2025_2474103 crossref_primary_10_3390_rs16162953 crossref_primary_10_3390_plants14030365 crossref_primary_10_1364_JOSAA_533407 crossref_primary_10_1117_1_JEI_33_5_053003 crossref_primary_10_3390_jmse12101774 crossref_primary_10_3390_drones8090479 crossref_primary_10_3390_agronomy14081667 crossref_primary_10_1016_j_dibe_2025_100609 crossref_primary_10_3390_fire7090303 crossref_primary_10_1088_1361_6501_ad7e3d crossref_primary_10_1109_TIM_2025_3541692 crossref_primary_10_1109_ACCESS_2025_3545149 crossref_primary_10_3390_rs16224226 crossref_primary_10_1016_j_dsp_2025_105158 crossref_primary_10_1109_ACCESS_2024_3496514 crossref_primary_10_3390_electronics13214184 crossref_primary_10_1109_ACCESS_2024_3520181 crossref_primary_10_3390_app142210713 crossref_primary_10_1109_ACCESS_2025_3550541 crossref_primary_10_1007_s10499_024_01798_5 crossref_primary_10_1016_j_jestch_2024_101893 crossref_primary_10_1088_1402_4896_ad69d5 crossref_primary_10_3390_electronics14030517 crossref_primary_10_1016_j_eswa_2024_125727 crossref_primary_10_3390_s24196495 crossref_primary_10_1016_j_precisioneng_2025_02_020 crossref_primary_10_3390_s25051551 crossref_primary_10_1109_ACCESS_2025_3526974 crossref_primary_10_1109_TIM_2025_3527589 crossref_primary_10_1038_s41598_024_80957_3 crossref_primary_10_3390_fire8030104 crossref_primary_10_1038_s41598_024_72727_y crossref_primary_10_1038_s41598_025_86593_9 crossref_primary_10_1109_ACCESS_2024_3450582 crossref_primary_10_3390_mi15091136 |
Cites_doi | 10.1007/978-3-031-25072-9_15 10.1007/978-3-030-01240-3_21 10.1609/aaai.v33i01.33018231 10.1007/978-3-319-46448-0_2 10.1109/CVPR.2018.00442 10.1109/BTAS.2017.8272675 10.1007/s00371-020-01831-7 10.1109/TPAMI.2016.2577031 10.1109/TPAMI.2020.2997456 10.1016/j.patcog.2023.109553 10.1109/CVPR42600.2020.00525 10.1109/CVPR.2016.89 10.1109/LSP.2016.2603342 10.1109/ICCV.2017.30 10.1109/ICASSP49357.2023.10096516 10.1109/ICCV.2017.522 10.1109/DDCLS49620.2020.9275060 10.1109/CVPR42600.2020.01160 10.1109/CVPR.2018.00244 10.1007/978-3-030-01240-3_49 10.1109/CVPR46437.2021.01350 10.1109/CVPR.2018.00377 10.1109/CVPR.2018.00913 10.1109/TPAMI.2018.2858826 10.1109/CVPR.2015.7299170 10.1109/CVPR.2019.00520 10.1109/ICCV.2019.00615 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2024.110714 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
ExternalDocumentID | 10_1016_j_patcog_2024_110714 S0031320324004655 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-a61bc603578613fd34b6983b0eff2a97d54a196841981b4b95891e67f21f447f3 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Tue Jul 01 02:36:47 EDT 2025 Thu Apr 24 23:12:16 EDT 2025 Sat Aug 03 15:30:37 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | YOLO Occlusion Imbalance problem Face detection Scale-aware |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-a61bc603578613fd34b6983b0eff2a97d54a196841981b4b95891e67f21f447f3 |
ORCID | 0000-0003-0755-9301 0000-0002-2963-8257 |
ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2024_110714 crossref_primary_10_1016_j_patcog_2024_110714 elsevier_sciencedirect_doi_10_1016_j_patcog_2024_110714 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | J. Li, Y. Wang, C. Wang, Y. Tai, J. Qian, J. Yang, C. Wang, J. Li, F. Huang, DSFD: Dual Shot Face Detector, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Long Beach, CA, USA, 2019, pp. 5055–5064. B. Singh, L.S. Davis, An Analysis of Scale Invariance in Object Detection - SNIP, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 3578–3587. S. Zhang, L. Wen, X. Bian, Z. Lei, S.Z. Li, Single-Shot Refinement Neural Network for Object Detection, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 4203–4212. S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, S.Z. Li, S Liu, Huang, Wang (b22) 2018 Z. Li, P. Chao, Y. Gang, X. Zhang, S. Jian, DetNet: A Backbone network for Object Detection, in: Proceedings of the European Conference on Computer Vision, ECCV, Cham, 2018, pp. 339–354. Chen, Huang, Peng, Zhou, Zhang (b5) 2021; 37 Q. Hou, D. Zhou, J. Feng, Coordinate Attention for Efficient Mobile Network Design, in: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Nashville, TN, USA, 2021, pp. 13708–13717. M. Najibi, P. Samangouei, R. Chellappa, L.S. Davis, SSH: Single Stage Headless Face Detector, in: 2017 IEEE International Conference on Computer Vision, ICCV, Venice, Italy, 2017, pp. 4885–4894. Zhou, Zhao, Leng (b20) 2021; 124 Ren, He, Girshick, Sun (b3) 2017; 39 X. Shi, S. Shan, M. Kan, S. Wu, X. Chen, Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 2295–2303. FD: Single Shot Scale-Invariant Face Detector, in: 2017 IEEE International Conference on Computer Vision, ICCV, Venice, Italy, 2017, pp. 192–201. H. Li, Z. Lin, X. Shen, J. Brandt, G. Hua, A convolutional neural network cascade for face detection, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Boston, MA, USA, 2015, pp. 5325–5334. M. Chen, X. Ren, Z. Yan, Real-time Indoor Object Detection Based on Deep Learning and Gradient Harmonizing Mechanism, in: 2020 IEEE 9th Data Driven Control and Learning Systems Conference, DDCLS, Liuzhou, China, 2020, pp. 772–777. Ju, Kittler, Rana, Yang, Feng (b13) 2023; 140 Wang, Xu, Yang, Yu (b12) 2021 J. Deng, J. Guo, E. Ververas, I. Kotsia, S. Zafeiriou, RetinaFace: Single-Shot Multi-Level Face Localisation in the Wild, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Seattle, WA, USA, 2020, pp. 5202–5211. D. Qi, W. Tan, Q. Yao, J. Liu, YOLO5Face: Why Reinventing a Face Detector, in: Computer Vision – ECCV 2022 Workshops, Cham, 2023, pp. 228–244. G. Jocher, YOLOv5 Luo, Li, Urtasun, Zemel (b8) 2016 C. Chi, S. Zhang, J. Xing, Z. Lei, S.Z. Li, X. Zou, Selective refinement network for high performance face detection, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, No. 01, 2019, pp. 8231–8238. A. Shrivastava, A. Gupta, R. Girshick, Training Region-Based Object Detectors with Online Hard Example Mining, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 761–769. . D. Ouyang, S. He, G. Zhang, M. Luo, H. Guo, J. Zhan, Z. Huang, Efficient Multi-Scale Attention Module with Cross-Spatial Learning, in: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, Rhodes Island, Greece, 2023, pp. 1–5. Lin, Goyal, Girshick, He, Dollár (b4) 2020; 42 S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, S.Z. Li, FaceBoxes: A CPU real-time face detector with high accuracy, in: 2017 IEEE International Joint Conference on Biometrics, IJCB, Denver, CO, USA, 2017, pp. 1–9. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S.E. Reed, C.-Y. Fu, A.C. Berg, SSD: Single Shot MultiBox Detector, in: European Conference on Computer Vision, 2015. Y. Li, Y. Chen, N. Wang, Z.-X. Zhang, Scale-Aware Trident Networks for Object Detection, in: 2019 IEEE/CVF International Conference on Computer Vision, ICCV, Seoul, Korea (South), 2019, pp. 6053–6062. S. Liu, L. Qi, H. Qin, J. Shi, J. Jia, Path Aggregation Network for Instance Segmentation, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 8759–8768. Y. Cao, K. Chen, C.C. Loy, D. Lin, Prime Sample Attention in Object Detection, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Seattle, WA, USA, 2020, pp. 11580–11588. Zhang, Chi, Lei, Li (b18) 2021; 43 Zhang, Zhang, Li, Qiao (b1) 2016; 23 Wang, Yuan, Yu (b14) 2017 X. Tang, D.K. Du, Z. He, J. Liu, Pyramidbox: A context-assisted single shot face detector, in: Proceedings of the European Conference on Computer Vision, ECCV, Cham, Cham, 2018, pp. 797–813. Wang (10.1016/j.patcog.2024.110714_b12) 2021 10.1016/j.patcog.2024.110714_b2 10.1016/j.patcog.2024.110714_b7 10.1016/j.patcog.2024.110714_b6 10.1016/j.patcog.2024.110714_b29 10.1016/j.patcog.2024.110714_b28 10.1016/j.patcog.2024.110714_b27 10.1016/j.patcog.2024.110714_b26 10.1016/j.patcog.2024.110714_b9 10.1016/j.patcog.2024.110714_b25 Zhang (10.1016/j.patcog.2024.110714_b18) 2021; 43 10.1016/j.patcog.2024.110714_b24 10.1016/j.patcog.2024.110714_b23 Ren (10.1016/j.patcog.2024.110714_b3) 2017; 39 10.1016/j.patcog.2024.110714_b21 Ju (10.1016/j.patcog.2024.110714_b13) 2023; 140 Liu (10.1016/j.patcog.2024.110714_b22) 2018 Chen (10.1016/j.patcog.2024.110714_b5) 2021; 37 10.1016/j.patcog.2024.110714_b19 Wang (10.1016/j.patcog.2024.110714_b14) 2017 10.1016/j.patcog.2024.110714_b17 10.1016/j.patcog.2024.110714_b16 10.1016/j.patcog.2024.110714_b15 Zhang (10.1016/j.patcog.2024.110714_b1) 2016; 23 Luo (10.1016/j.patcog.2024.110714_b8) 2016 Zhou (10.1016/j.patcog.2024.110714_b20) 2021; 124 Lin (10.1016/j.patcog.2024.110714_b4) 2020; 42 10.1016/j.patcog.2024.110714_b11 10.1016/j.patcog.2024.110714_b33 10.1016/j.patcog.2024.110714_b10 10.1016/j.patcog.2024.110714_b32 10.1016/j.patcog.2024.110714_b31 10.1016/j.patcog.2024.110714_b30 |
References_xml | – volume: 37 start-page: 805 year: 2021 end-page: 813 ident: b5 article-title: YOLO-face: a real-time face detector publication-title: Vis. Comput. – reference: J. Li, Y. Wang, C. Wang, Y. Tai, J. Qian, J. Yang, C. Wang, J. Li, F. Huang, DSFD: Dual Shot Face Detector, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Long Beach, CA, USA, 2019, pp. 5055–5064. – year: 2021 ident: b12 article-title: A normalized Gaussian wasserstein distance for tiny object detection – reference: D. Ouyang, S. He, G. Zhang, M. Luo, H. Guo, J. Zhan, Z. Huang, Efficient Multi-Scale Attention Module with Cross-Spatial Learning, in: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, Rhodes Island, Greece, 2023, pp. 1–5. – volume: 43 start-page: 4008 year: 2021 end-page: 4020 ident: b18 article-title: RefineFace: Refinement neural network for high performance face detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: J. Deng, J. Guo, E. Ververas, I. Kotsia, S. Zafeiriou, RetinaFace: Single-Shot Multi-Level Face Localisation in the Wild, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Seattle, WA, USA, 2020, pp. 5202–5211. – year: 2016 ident: b8 article-title: Understanding the effective receptive field in deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems, Vol. 29 – reference: S. Zhang, L. Wen, X. Bian, Z. Lei, S.Z. Li, Single-Shot Refinement Neural Network for Object Detection, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 4203–4212. – reference: FD: Single Shot Scale-Invariant Face Detector, in: 2017 IEEE International Conference on Computer Vision, ICCV, Venice, Italy, 2017, pp. 192–201. – reference: W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S.E. Reed, C.-Y. Fu, A.C. Berg, SSD: Single Shot MultiBox Detector, in: European Conference on Computer Vision, 2015. – reference: D. Qi, W. Tan, Q. Yao, J. Liu, YOLO5Face: Why Reinventing a Face Detector, in: Computer Vision – ECCV 2022 Workshops, Cham, 2023, pp. 228–244. – reference: M. Chen, X. Ren, Z. Yan, Real-time Indoor Object Detection Based on Deep Learning and Gradient Harmonizing Mechanism, in: 2020 IEEE 9th Data Driven Control and Learning Systems Conference, DDCLS, Liuzhou, China, 2020, pp. 772–777. – volume: 23 start-page: 1499 year: 2016 end-page: 1503 ident: b1 article-title: Joint face detection and alignment using multitask cascaded convolutional networks publication-title: IEEE Signal Process. Lett. – reference: X. Shi, S. Shan, M. Kan, S. Wu, X. Chen, Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 2295–2303. – reference: S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, S.Z. Li, S – reference: Y. Cao, K. Chen, C.C. Loy, D. Lin, Prime Sample Attention in Object Detection, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Seattle, WA, USA, 2020, pp. 11580–11588. – reference: Y. Li, Y. Chen, N. Wang, Z.-X. Zhang, Scale-Aware Trident Networks for Object Detection, in: 2019 IEEE/CVF International Conference on Computer Vision, ICCV, Seoul, Korea (South), 2019, pp. 6053–6062. – volume: 140 year: 2023 ident: b13 article-title: Keep an eye on faces: Robust face detection with heatmap-assisted spatial attention and scale-aware layer attention publication-title: Pattern Recognit. – year: 2017 ident: b14 article-title: Face attention network: An effective face detector for the occluded faces – reference: Z. Li, P. Chao, Y. Gang, X. Zhang, S. Jian, DetNet: A Backbone network for Object Detection, in: Proceedings of the European Conference on Computer Vision, ECCV, Cham, 2018, pp. 339–354. – reference: B. Singh, L.S. Davis, An Analysis of Scale Invariance in Object Detection - SNIP, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 3578–3587. – volume: 42 start-page: 318 year: 2020 end-page: 327 ident: b4 article-title: Focal loss for dense object detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, S.Z. Li, FaceBoxes: A CPU real-time face detector with high accuracy, in: 2017 IEEE International Joint Conference on Biometrics, IJCB, Denver, CO, USA, 2017, pp. 1–9. – reference: H. Li, Z. Lin, X. Shen, J. Brandt, G. Hua, A convolutional neural network cascade for face detection, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Boston, MA, USA, 2015, pp. 5325–5334. – reference: X. Tang, D.K. Du, Z. He, J. Liu, Pyramidbox: A context-assisted single shot face detector, in: Proceedings of the European Conference on Computer Vision, ECCV, Cham, Cham, 2018, pp. 797–813. – reference: C. Chi, S. Zhang, J. Xing, Z. Lei, S.Z. Li, X. Zou, Selective refinement network for high performance face detection, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, No. 01, 2019, pp. 8231–8238. – reference: A. Shrivastava, A. Gupta, R. Girshick, Training Region-Based Object Detectors with Online Hard Example Mining, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 761–769. – reference: Q. Hou, D. Zhou, J. Feng, Coordinate Attention for Efficient Mobile Network Design, in: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Nashville, TN, USA, 2021, pp. 13708–13717. – volume: 39 start-page: 1137 year: 2017 end-page: 1149 ident: b3 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: . – reference: G. Jocher, YOLOv5, – volume: 124 year: 2021 ident: b20 article-title: MTCNet: Multi-task collaboration network for rotation-invariance face detection publication-title: Pattern Recognit. – start-page: 404 year: 2018 end-page: 419 ident: b22 article-title: Receptive field block net for accurate and fast object detection publication-title: Proceedings of the European Conference on Computer Vision – reference: S. Liu, L. Qi, H. Qin, J. Shi, J. Jia, Path Aggregation Network for Instance Segmentation, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 8759–8768. – reference: M. Najibi, P. Samangouei, R. Chellappa, L.S. Davis, SSH: Single Stage Headless Face Detector, in: 2017 IEEE International Conference on Computer Vision, ICCV, Venice, Italy, 2017, pp. 4885–4894. – ident: 10.1016/j.patcog.2024.110714_b33 doi: 10.1007/978-3-031-25072-9_15 – ident: 10.1016/j.patcog.2024.110714_b23 doi: 10.1007/978-3-030-01240-3_21 – ident: 10.1016/j.patcog.2024.110714_b9 doi: 10.1609/aaai.v33i01.33018231 – year: 2017 ident: 10.1016/j.patcog.2024.110714_b14 – ident: 10.1016/j.patcog.2024.110714_b17 doi: 10.1007/978-3-319-46448-0_2 – ident: 10.1016/j.patcog.2024.110714_b19 doi: 10.1109/CVPR.2018.00442 – ident: 10.1016/j.patcog.2024.110714_b7 doi: 10.1109/BTAS.2017.8272675 – ident: 10.1016/j.patcog.2024.110714_b2 – volume: 37 start-page: 805 issue: 4 year: 2021 ident: 10.1016/j.patcog.2024.110714_b5 article-title: YOLO-face: a real-time face detector publication-title: Vis. Comput. doi: 10.1007/s00371-020-01831-7 – year: 2021 ident: 10.1016/j.patcog.2024.110714_b12 – volume: 124 year: 2021 ident: 10.1016/j.patcog.2024.110714_b20 article-title: MTCNet: Multi-task collaboration network for rotation-invariance face detection publication-title: Pattern Recognit. – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 10.1016/j.patcog.2024.110714_b3 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 43 start-page: 4008 issue: 11 year: 2021 ident: 10.1016/j.patcog.2024.110714_b18 article-title: RefineFace: Refinement neural network for high performance face detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2997456 – year: 2016 ident: 10.1016/j.patcog.2024.110714_b8 article-title: Understanding the effective receptive field in deep convolutional neural networks – volume: 140 year: 2023 ident: 10.1016/j.patcog.2024.110714_b13 article-title: Keep an eye on faces: Robust face detection with heatmap-assisted spatial attention and scale-aware layer attention publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2023.109553 – ident: 10.1016/j.patcog.2024.110714_b28 doi: 10.1109/CVPR42600.2020.00525 – ident: 10.1016/j.patcog.2024.110714_b29 doi: 10.1109/CVPR.2016.89 – volume: 23 start-page: 1499 issue: 10 year: 2016 ident: 10.1016/j.patcog.2024.110714_b1 article-title: Joint face detection and alignment using multitask cascaded convolutional networks publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2016.2603342 – ident: 10.1016/j.patcog.2024.110714_b6 doi: 10.1109/ICCV.2017.30 – ident: 10.1016/j.patcog.2024.110714_b32 doi: 10.1109/ICASSP49357.2023.10096516 – ident: 10.1016/j.patcog.2024.110714_b26 doi: 10.1109/ICCV.2017.522 – ident: 10.1016/j.patcog.2024.110714_b10 doi: 10.1109/DDCLS49620.2020.9275060 – ident: 10.1016/j.patcog.2024.110714_b11 doi: 10.1109/CVPR42600.2020.01160 – ident: 10.1016/j.patcog.2024.110714_b16 doi: 10.1109/CVPR.2018.00244 – ident: 10.1016/j.patcog.2024.110714_b27 doi: 10.1007/978-3-030-01240-3_49 – ident: 10.1016/j.patcog.2024.110714_b31 doi: 10.1109/CVPR46437.2021.01350 – start-page: 404 year: 2018 ident: 10.1016/j.patcog.2024.110714_b22 article-title: Receptive field block net for accurate and fast object detection – ident: 10.1016/j.patcog.2024.110714_b25 doi: 10.1109/CVPR.2018.00377 – ident: 10.1016/j.patcog.2024.110714_b30 doi: 10.1109/CVPR.2018.00913 – volume: 42 start-page: 318 issue: 2 year: 2020 ident: 10.1016/j.patcog.2024.110714_b4 article-title: Focal loss for dense object detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2858826 – ident: 10.1016/j.patcog.2024.110714_b15 doi: 10.1109/CVPR.2015.7299170 – ident: 10.1016/j.patcog.2024.110714_b21 doi: 10.1109/CVPR.2019.00520 – ident: 10.1016/j.patcog.2024.110714_b24 doi: 10.1109/ICCV.2019.00615 |
SSID | ssj0017142 |
Score | 2.714636 |
Snippet | In recent years, face detection algorithms based on deep learning have made great progress. Nevertheless, the effective utilization of face detectors for small... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110714 |
SubjectTerms | Face detection Imbalance problem Occlusion Scale-aware YOLO |
Title | YOLO-FaceV2: A scale and occlusion aware face detector |
URI | https://dx.doi.org/10.1016/j.patcog.2024.110714 |
Volume | 155 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KvXjxLT5LDl5jd7PZbNdbKZb6ai9W6mlJsolUyrbULd787Wb2URREweMuE1i-TWYmw8z3AVyEqhDYljQKlaQ8sJx2WKSoDVUaMNSQM1gaeBiKwZjfTsJJA3r1LAy2VVa-v_Tphbeu3rQrNNuL6RRnfJF20ENGOQ9ZwHCCnUe4yy8_1m0eqO9dMoYHPkXrenyu6PFaOHc3f3G3RMaxH76Y5fkpPH0JOf0d2KpyRdItP2cXGibbg-1ah4FUx3IfxPPofkT7UpsndkW65M3hbojMUjLXerbCehiR73JpiHU2JDV5Uao_gHH_-rE3oJUeAtUusc-pFL7SwkN-GheEbRpwJeJOoDxjLZNxlIZcugPV4X7sklGuYlQMNCKyzLcOGRscQjObZ-YIiDCpMczFciM9zpU715oxd3USzGXbQptjCGoYEl2RhaNmxSypu8JekxK8BMFLSvCOga5XLUqyjD_soxrh5NtPT5w__3Xlyb9XnsImPpXjhGfQzJcrc-7yily1io3Tgo3uzd1g-AkUAchn |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB58HPTiW3y7Bz2uTTebTSt4ELVUbeulSj3F3WRXKqUtWhEv_in_oDN5FAVRELwmOyH5dpjHZmY-gL3ApATbmoeB0Vz6TvKKCA13gUl8QRxylo4Gmi1Vv5YXnaAzAe9FLwyVVea2P7PpqbXOr5RyNEvDbpd6fGnsoEcT5TyaApZXVl7a1xfM256Ozk9xk_eFqJ21T-o8pxbgMcbII65V2cTKo1Ev6M9c4kujqhXfeNY5oathEkiNulmRmJOXjTRVIt-zKnSi7KQMnY_PnYRpieaCaBMO3sZ1JUQono0o98ucXq_o10uLyoZoXwf3mJYKSQX4afPQd_7wk4-rLcBcHpyy4-z7F2HC9pdgviB-YLkdWAZ1e9W44jUd2xtxyI7ZE260ZbqfsEEc957pAI7pF_1omcM1LLGj9N_AClz_C0qrMNUf9O0aMGUTawUGD1Z7Uho0JLEQmKspgeG9iu06-AUMUZxPJyeSjF5UlKE9RBl4EYEXZeCtAx9LDbPpHL-sDwuEoy9aFqED-VFy48-SuzBTbzcbUeO8dbkJs3Qn62XcgqnR47PdxqBmZHZSJWJw999a-wElxwIw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLO-FaceV2%3A+A+scale+and+occlusion+aware+face+detector&rft.jtitle=Pattern+recognition&rft.au=Yu%2C+Ziping&rft.au=Huang%2C+Hongbo&rft.au=Chen%2C+Weijun&rft.au=Su%2C+Yongxin&rft.date=2024-11-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=155&rft_id=info:doi/10.1016%2Fj.patcog.2024.110714&rft.externalDocID=S0031320324004655 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |