YOLO-FaceV2: A scale and occlusion aware face detector

In recent years, face detection algorithms based on deep learning have made great progress. Nevertheless, the effective utilization of face detectors for small and occlusion faces remains challenging, primarily stemming from the limitations in pixel information and the presence of missing features....

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 155; p. 110714
Main Authors Yu, Ziping, Huang, Hongbo, Chen, Weijun, Su, Yongxin, Liu, Yahui, Wang, Xiuying
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, face detection algorithms based on deep learning have made great progress. Nevertheless, the effective utilization of face detectors for small and occlusion faces remains challenging, primarily stemming from the limitations in pixel information and the presence of missing features. In this paper, we propose a novel real-time face detector, YOLO-FaceV2, built upon the YOLOv5 architecture. Our approach introduces a Receptive Field Enhancement (RFE) module designed to extract multi-scale pixel information and augment the receptive field for accurately detecting small faces. To address issues related to face occlusion, we introduce an attention mechanism termed the Separated and Enhancement Attention Module (SEAM), which effectively focuses on the regions affected by occlusion. Furthermore, we propose a Slide Weight Function (SWF) to mitigate the imbalance between easy and hard samples. The experiments demonstrate that our YOLO-FaceV2 achieves performance exceeding the state-of-the-art on the WiderFace validation dataset. Source code and pre-trained model are available at https://github.com/Krasjet-Yu/YOLO-FaceV2. •Proposed an YOLO-FaceV2 detector to address face detection.•Good performance under face occlusion and varying scales.•Designed a novel weighting function alleviated the problem of imbalanced samples.•Detection results on the WiderFace validation dataset are 98.6%, 97.9% and 91.9%.•Achieved state-of-the-art performance on the easy and medium subset of WiderFace dataset.
AbstractList In recent years, face detection algorithms based on deep learning have made great progress. Nevertheless, the effective utilization of face detectors for small and occlusion faces remains challenging, primarily stemming from the limitations in pixel information and the presence of missing features. In this paper, we propose a novel real-time face detector, YOLO-FaceV2, built upon the YOLOv5 architecture. Our approach introduces a Receptive Field Enhancement (RFE) module designed to extract multi-scale pixel information and augment the receptive field for accurately detecting small faces. To address issues related to face occlusion, we introduce an attention mechanism termed the Separated and Enhancement Attention Module (SEAM), which effectively focuses on the regions affected by occlusion. Furthermore, we propose a Slide Weight Function (SWF) to mitigate the imbalance between easy and hard samples. The experiments demonstrate that our YOLO-FaceV2 achieves performance exceeding the state-of-the-art on the WiderFace validation dataset. Source code and pre-trained model are available at https://github.com/Krasjet-Yu/YOLO-FaceV2. •Proposed an YOLO-FaceV2 detector to address face detection.•Good performance under face occlusion and varying scales.•Designed a novel weighting function alleviated the problem of imbalanced samples.•Detection results on the WiderFace validation dataset are 98.6%, 97.9% and 91.9%.•Achieved state-of-the-art performance on the easy and medium subset of WiderFace dataset.
ArticleNumber 110714
Author Liu, Yahui
Su, Yongxin
Chen, Weijun
Yu, Ziping
Wang, Xiuying
Huang, Hongbo
Author_xml – sequence: 1
  givenname: Ziping
  orcidid: 0000-0003-0755-9301
  surname: Yu
  fullname: Yu, Ziping
  organization: School of Instrument Science and Opto-electronic Engineering, Beijing Information Science and Technology University, Beijing, China
– sequence: 2
  givenname: Hongbo
  orcidid: 0000-0002-2963-8257
  surname: Huang
  fullname: Huang, Hongbo
  email: hhb@bistu.edu.cn
  organization: Computer School, Beijing Information Science and Technology University, Beijing, China
– sequence: 3
  givenname: Weijun
  surname: Chen
  fullname: Chen, Weijun
  organization: Data Algorithm NIO, Shanghai, China
– sequence: 4
  givenname: Yongxin
  surname: Su
  fullname: Su, Yongxin
  organization: School of Mechanical and Electrical Engineering, Beijing Information Science and Technology University, Beijing, China
– sequence: 5
  givenname: Yahui
  surname: Liu
  fullname: Liu, Yahui
  organization: School of Information Management, Beijing Information Science and Technology University, Beijing, China
– sequence: 6
  givenname: Xiuying
  surname: Wang
  fullname: Wang, Xiuying
  organization: Computer School, Beijing Information Science and Technology University, Beijing, China
BookMark eNqFkMFKxDAURYOM4Iz6By7yA615SZq2sxCGwVFhYDYquApp-iIZajskUfHv7VBXLnT1Nvdc3j0LMuuHHgm5ApYDA3W9zw8m2eE154zLHICVIE_IHKpSZAVIPiNzxgRkgjNxRhYx7hmDMcPnRL3strtsYyw-8yVd0WhNh9T0LR2s7d6jH3pqPk1A6sYMbTGhTUO4IKfOdBEvf-45edrcPq7vs-3u7mG92mZWMJUyo6CxiomirBQI1wrZqLoSDUPnuKnLtpAGalVJqCtoZFMXVQ2oSsfBSVk6cU6WU68NQ4wBnbY-mTR-lYLxnQamjwb0Xk8G9NGAngyMsPwFH4J_M-HrP-xmwnAc9uEx6Gg99hZbH8bxuh383wXf1Yp2qA
CitedBy_id crossref_primary_10_3390_pr13020349
crossref_primary_10_3390_agriculture15060617
crossref_primary_10_3390_agronomy15040791
crossref_primary_10_3390_app14167153
crossref_primary_10_1007_s11227_024_06738_x
crossref_primary_10_1109_TGRS_2024_3482358
crossref_primary_10_3390_agronomy14091936
crossref_primary_10_3390_app142311088
crossref_primary_10_1109_ACCESS_2024_3416332
crossref_primary_10_1088_2631_8695_adb6f3
crossref_primary_10_1016_j_jksuci_2024_102198
crossref_primary_10_1063_5_0254679
crossref_primary_10_3788_LOP240529
crossref_primary_10_1109_ACCESS_2025_3546946
crossref_primary_10_1109_JSTARS_2024_3494838
crossref_primary_10_1109_JSEN_2024_3425156
crossref_primary_10_1080_10589759_2025_2474103
crossref_primary_10_3390_rs16162953
crossref_primary_10_3390_plants14030365
crossref_primary_10_1364_JOSAA_533407
crossref_primary_10_1117_1_JEI_33_5_053003
crossref_primary_10_3390_jmse12101774
crossref_primary_10_3390_drones8090479
crossref_primary_10_3390_agronomy14081667
crossref_primary_10_1016_j_dibe_2025_100609
crossref_primary_10_3390_fire7090303
crossref_primary_10_1088_1361_6501_ad7e3d
crossref_primary_10_1109_TIM_2025_3541692
crossref_primary_10_1109_ACCESS_2025_3545149
crossref_primary_10_3390_rs16224226
crossref_primary_10_1016_j_dsp_2025_105158
crossref_primary_10_1109_ACCESS_2024_3496514
crossref_primary_10_3390_electronics13214184
crossref_primary_10_1109_ACCESS_2024_3520181
crossref_primary_10_3390_app142210713
crossref_primary_10_1109_ACCESS_2025_3550541
crossref_primary_10_1007_s10499_024_01798_5
crossref_primary_10_1016_j_jestch_2024_101893
crossref_primary_10_1088_1402_4896_ad69d5
crossref_primary_10_3390_electronics14030517
crossref_primary_10_1016_j_eswa_2024_125727
crossref_primary_10_3390_s24196495
crossref_primary_10_1016_j_precisioneng_2025_02_020
crossref_primary_10_3390_s25051551
crossref_primary_10_1109_ACCESS_2025_3526974
crossref_primary_10_1109_TIM_2025_3527589
crossref_primary_10_1038_s41598_024_80957_3
crossref_primary_10_3390_fire8030104
crossref_primary_10_1038_s41598_024_72727_y
crossref_primary_10_1038_s41598_025_86593_9
crossref_primary_10_1109_ACCESS_2024_3450582
crossref_primary_10_3390_mi15091136
Cites_doi 10.1007/978-3-031-25072-9_15
10.1007/978-3-030-01240-3_21
10.1609/aaai.v33i01.33018231
10.1007/978-3-319-46448-0_2
10.1109/CVPR.2018.00442
10.1109/BTAS.2017.8272675
10.1007/s00371-020-01831-7
10.1109/TPAMI.2016.2577031
10.1109/TPAMI.2020.2997456
10.1016/j.patcog.2023.109553
10.1109/CVPR42600.2020.00525
10.1109/CVPR.2016.89
10.1109/LSP.2016.2603342
10.1109/ICCV.2017.30
10.1109/ICASSP49357.2023.10096516
10.1109/ICCV.2017.522
10.1109/DDCLS49620.2020.9275060
10.1109/CVPR42600.2020.01160
10.1109/CVPR.2018.00244
10.1007/978-3-030-01240-3_49
10.1109/CVPR46437.2021.01350
10.1109/CVPR.2018.00377
10.1109/CVPR.2018.00913
10.1109/TPAMI.2018.2858826
10.1109/CVPR.2015.7299170
10.1109/CVPR.2019.00520
10.1109/ICCV.2019.00615
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2024.110714
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2024_110714
S0031320324004655
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-a61bc603578613fd34b6983b0eff2a97d54a196841981b4b95891e67f21f447f3
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Tue Jul 01 02:36:47 EDT 2025
Thu Apr 24 23:12:16 EDT 2025
Sat Aug 03 15:30:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords YOLO
Occlusion
Imbalance problem
Face detection
Scale-aware
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-a61bc603578613fd34b6983b0eff2a97d54a196841981b4b95891e67f21f447f3
ORCID 0000-0003-0755-9301
0000-0002-2963-8257
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2024_110714
crossref_primary_10_1016_j_patcog_2024_110714
elsevier_sciencedirect_doi_10_1016_j_patcog_2024_110714
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References J. Li, Y. Wang, C. Wang, Y. Tai, J. Qian, J. Yang, C. Wang, J. Li, F. Huang, DSFD: Dual Shot Face Detector, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Long Beach, CA, USA, 2019, pp. 5055–5064.
B. Singh, L.S. Davis, An Analysis of Scale Invariance in Object Detection - SNIP, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 3578–3587.
S. Zhang, L. Wen, X. Bian, Z. Lei, S.Z. Li, Single-Shot Refinement Neural Network for Object Detection, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 4203–4212.
S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, S.Z. Li, S
Liu, Huang, Wang (b22) 2018
Z. Li, P. Chao, Y. Gang, X. Zhang, S. Jian, DetNet: A Backbone network for Object Detection, in: Proceedings of the European Conference on Computer Vision, ECCV, Cham, 2018, pp. 339–354.
Chen, Huang, Peng, Zhou, Zhang (b5) 2021; 37
Q. Hou, D. Zhou, J. Feng, Coordinate Attention for Efficient Mobile Network Design, in: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Nashville, TN, USA, 2021, pp. 13708–13717.
M. Najibi, P. Samangouei, R. Chellappa, L.S. Davis, SSH: Single Stage Headless Face Detector, in: 2017 IEEE International Conference on Computer Vision, ICCV, Venice, Italy, 2017, pp. 4885–4894.
Zhou, Zhao, Leng (b20) 2021; 124
Ren, He, Girshick, Sun (b3) 2017; 39
X. Shi, S. Shan, M. Kan, S. Wu, X. Chen, Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 2295–2303.
FD: Single Shot Scale-Invariant Face Detector, in: 2017 IEEE International Conference on Computer Vision, ICCV, Venice, Italy, 2017, pp. 192–201.
H. Li, Z. Lin, X. Shen, J. Brandt, G. Hua, A convolutional neural network cascade for face detection, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Boston, MA, USA, 2015, pp. 5325–5334.
M. Chen, X. Ren, Z. Yan, Real-time Indoor Object Detection Based on Deep Learning and Gradient Harmonizing Mechanism, in: 2020 IEEE 9th Data Driven Control and Learning Systems Conference, DDCLS, Liuzhou, China, 2020, pp. 772–777.
Ju, Kittler, Rana, Yang, Feng (b13) 2023; 140
Wang, Xu, Yang, Yu (b12) 2021
J. Deng, J. Guo, E. Ververas, I. Kotsia, S. Zafeiriou, RetinaFace: Single-Shot Multi-Level Face Localisation in the Wild, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Seattle, WA, USA, 2020, pp. 5202–5211.
D. Qi, W. Tan, Q. Yao, J. Liu, YOLO5Face: Why Reinventing a Face Detector, in: Computer Vision – ECCV 2022 Workshops, Cham, 2023, pp. 228–244.
G. Jocher, YOLOv5
Luo, Li, Urtasun, Zemel (b8) 2016
C. Chi, S. Zhang, J. Xing, Z. Lei, S.Z. Li, X. Zou, Selective refinement network for high performance face detection, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, No. 01, 2019, pp. 8231–8238.
A. Shrivastava, A. Gupta, R. Girshick, Training Region-Based Object Detectors with Online Hard Example Mining, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 761–769.
.
D. Ouyang, S. He, G. Zhang, M. Luo, H. Guo, J. Zhan, Z. Huang, Efficient Multi-Scale Attention Module with Cross-Spatial Learning, in: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, Rhodes Island, Greece, 2023, pp. 1–5.
Lin, Goyal, Girshick, He, Dollár (b4) 2020; 42
S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, S.Z. Li, FaceBoxes: A CPU real-time face detector with high accuracy, in: 2017 IEEE International Joint Conference on Biometrics, IJCB, Denver, CO, USA, 2017, pp. 1–9.
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S.E. Reed, C.-Y. Fu, A.C. Berg, SSD: Single Shot MultiBox Detector, in: European Conference on Computer Vision, 2015.
Y. Li, Y. Chen, N. Wang, Z.-X. Zhang, Scale-Aware Trident Networks for Object Detection, in: 2019 IEEE/CVF International Conference on Computer Vision, ICCV, Seoul, Korea (South), 2019, pp. 6053–6062.
S. Liu, L. Qi, H. Qin, J. Shi, J. Jia, Path Aggregation Network for Instance Segmentation, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 8759–8768.
Y. Cao, K. Chen, C.C. Loy, D. Lin, Prime Sample Attention in Object Detection, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Seattle, WA, USA, 2020, pp. 11580–11588.
Zhang, Chi, Lei, Li (b18) 2021; 43
Zhang, Zhang, Li, Qiao (b1) 2016; 23
Wang, Yuan, Yu (b14) 2017
X. Tang, D.K. Du, Z. He, J. Liu, Pyramidbox: A context-assisted single shot face detector, in: Proceedings of the European Conference on Computer Vision, ECCV, Cham, Cham, 2018, pp. 797–813.
Wang (10.1016/j.patcog.2024.110714_b12) 2021
10.1016/j.patcog.2024.110714_b2
10.1016/j.patcog.2024.110714_b7
10.1016/j.patcog.2024.110714_b6
10.1016/j.patcog.2024.110714_b29
10.1016/j.patcog.2024.110714_b28
10.1016/j.patcog.2024.110714_b27
10.1016/j.patcog.2024.110714_b26
10.1016/j.patcog.2024.110714_b9
10.1016/j.patcog.2024.110714_b25
Zhang (10.1016/j.patcog.2024.110714_b18) 2021; 43
10.1016/j.patcog.2024.110714_b24
10.1016/j.patcog.2024.110714_b23
Ren (10.1016/j.patcog.2024.110714_b3) 2017; 39
10.1016/j.patcog.2024.110714_b21
Ju (10.1016/j.patcog.2024.110714_b13) 2023; 140
Liu (10.1016/j.patcog.2024.110714_b22) 2018
Chen (10.1016/j.patcog.2024.110714_b5) 2021; 37
10.1016/j.patcog.2024.110714_b19
Wang (10.1016/j.patcog.2024.110714_b14) 2017
10.1016/j.patcog.2024.110714_b17
10.1016/j.patcog.2024.110714_b16
10.1016/j.patcog.2024.110714_b15
Zhang (10.1016/j.patcog.2024.110714_b1) 2016; 23
Luo (10.1016/j.patcog.2024.110714_b8) 2016
Zhou (10.1016/j.patcog.2024.110714_b20) 2021; 124
Lin (10.1016/j.patcog.2024.110714_b4) 2020; 42
10.1016/j.patcog.2024.110714_b11
10.1016/j.patcog.2024.110714_b33
10.1016/j.patcog.2024.110714_b10
10.1016/j.patcog.2024.110714_b32
10.1016/j.patcog.2024.110714_b31
10.1016/j.patcog.2024.110714_b30
References_xml – volume: 37
  start-page: 805
  year: 2021
  end-page: 813
  ident: b5
  article-title: YOLO-face: a real-time face detector
  publication-title: Vis. Comput.
– reference: J. Li, Y. Wang, C. Wang, Y. Tai, J. Qian, J. Yang, C. Wang, J. Li, F. Huang, DSFD: Dual Shot Face Detector, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Long Beach, CA, USA, 2019, pp. 5055–5064.
– year: 2021
  ident: b12
  article-title: A normalized Gaussian wasserstein distance for tiny object detection
– reference: D. Ouyang, S. He, G. Zhang, M. Luo, H. Guo, J. Zhan, Z. Huang, Efficient Multi-Scale Attention Module with Cross-Spatial Learning, in: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, Rhodes Island, Greece, 2023, pp. 1–5.
– volume: 43
  start-page: 4008
  year: 2021
  end-page: 4020
  ident: b18
  article-title: RefineFace: Refinement neural network for high performance face detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: J. Deng, J. Guo, E. Ververas, I. Kotsia, S. Zafeiriou, RetinaFace: Single-Shot Multi-Level Face Localisation in the Wild, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Seattle, WA, USA, 2020, pp. 5202–5211.
– year: 2016
  ident: b8
  article-title: Understanding the effective receptive field in deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems, Vol. 29
– reference: S. Zhang, L. Wen, X. Bian, Z. Lei, S.Z. Li, Single-Shot Refinement Neural Network for Object Detection, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 4203–4212.
– reference: FD: Single Shot Scale-Invariant Face Detector, in: 2017 IEEE International Conference on Computer Vision, ICCV, Venice, Italy, 2017, pp. 192–201.
– reference: W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S.E. Reed, C.-Y. Fu, A.C. Berg, SSD: Single Shot MultiBox Detector, in: European Conference on Computer Vision, 2015.
– reference: D. Qi, W. Tan, Q. Yao, J. Liu, YOLO5Face: Why Reinventing a Face Detector, in: Computer Vision – ECCV 2022 Workshops, Cham, 2023, pp. 228–244.
– reference: M. Chen, X. Ren, Z. Yan, Real-time Indoor Object Detection Based on Deep Learning and Gradient Harmonizing Mechanism, in: 2020 IEEE 9th Data Driven Control and Learning Systems Conference, DDCLS, Liuzhou, China, 2020, pp. 772–777.
– volume: 23
  start-page: 1499
  year: 2016
  end-page: 1503
  ident: b1
  article-title: Joint face detection and alignment using multitask cascaded convolutional networks
  publication-title: IEEE Signal Process. Lett.
– reference: X. Shi, S. Shan, M. Kan, S. Wu, X. Chen, Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 2295–2303.
– reference: S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, S.Z. Li, S
– reference: Y. Cao, K. Chen, C.C. Loy, D. Lin, Prime Sample Attention in Object Detection, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Seattle, WA, USA, 2020, pp. 11580–11588.
– reference: Y. Li, Y. Chen, N. Wang, Z.-X. Zhang, Scale-Aware Trident Networks for Object Detection, in: 2019 IEEE/CVF International Conference on Computer Vision, ICCV, Seoul, Korea (South), 2019, pp. 6053–6062.
– volume: 140
  year: 2023
  ident: b13
  article-title: Keep an eye on faces: Robust face detection with heatmap-assisted spatial attention and scale-aware layer attention
  publication-title: Pattern Recognit.
– year: 2017
  ident: b14
  article-title: Face attention network: An effective face detector for the occluded faces
– reference: Z. Li, P. Chao, Y. Gang, X. Zhang, S. Jian, DetNet: A Backbone network for Object Detection, in: Proceedings of the European Conference on Computer Vision, ECCV, Cham, 2018, pp. 339–354.
– reference: B. Singh, L.S. Davis, An Analysis of Scale Invariance in Object Detection - SNIP, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 3578–3587.
– volume: 42
  start-page: 318
  year: 2020
  end-page: 327
  ident: b4
  article-title: Focal loss for dense object detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, S.Z. Li, FaceBoxes: A CPU real-time face detector with high accuracy, in: 2017 IEEE International Joint Conference on Biometrics, IJCB, Denver, CO, USA, 2017, pp. 1–9.
– reference: H. Li, Z. Lin, X. Shen, J. Brandt, G. Hua, A convolutional neural network cascade for face detection, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Boston, MA, USA, 2015, pp. 5325–5334.
– reference: X. Tang, D.K. Du, Z. He, J. Liu, Pyramidbox: A context-assisted single shot face detector, in: Proceedings of the European Conference on Computer Vision, ECCV, Cham, Cham, 2018, pp. 797–813.
– reference: C. Chi, S. Zhang, J. Xing, Z. Lei, S.Z. Li, X. Zou, Selective refinement network for high performance face detection, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, No. 01, 2019, pp. 8231–8238.
– reference: A. Shrivastava, A. Gupta, R. Girshick, Training Region-Based Object Detectors with Online Hard Example Mining, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 761–769.
– reference: Q. Hou, D. Zhou, J. Feng, Coordinate Attention for Efficient Mobile Network Design, in: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Nashville, TN, USA, 2021, pp. 13708–13717.
– volume: 39
  start-page: 1137
  year: 2017
  end-page: 1149
  ident: b3
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: .
– reference: G. Jocher, YOLOv5,
– volume: 124
  year: 2021
  ident: b20
  article-title: MTCNet: Multi-task collaboration network for rotation-invariance face detection
  publication-title: Pattern Recognit.
– start-page: 404
  year: 2018
  end-page: 419
  ident: b22
  article-title: Receptive field block net for accurate and fast object detection
  publication-title: Proceedings of the European Conference on Computer Vision
– reference: S. Liu, L. Qi, H. Qin, J. Shi, J. Jia, Path Aggregation Network for Instance Segmentation, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 8759–8768.
– reference: M. Najibi, P. Samangouei, R. Chellappa, L.S. Davis, SSH: Single Stage Headless Face Detector, in: 2017 IEEE International Conference on Computer Vision, ICCV, Venice, Italy, 2017, pp. 4885–4894.
– ident: 10.1016/j.patcog.2024.110714_b33
  doi: 10.1007/978-3-031-25072-9_15
– ident: 10.1016/j.patcog.2024.110714_b23
  doi: 10.1007/978-3-030-01240-3_21
– ident: 10.1016/j.patcog.2024.110714_b9
  doi: 10.1609/aaai.v33i01.33018231
– year: 2017
  ident: 10.1016/j.patcog.2024.110714_b14
– ident: 10.1016/j.patcog.2024.110714_b17
  doi: 10.1007/978-3-319-46448-0_2
– ident: 10.1016/j.patcog.2024.110714_b19
  doi: 10.1109/CVPR.2018.00442
– ident: 10.1016/j.patcog.2024.110714_b7
  doi: 10.1109/BTAS.2017.8272675
– ident: 10.1016/j.patcog.2024.110714_b2
– volume: 37
  start-page: 805
  issue: 4
  year: 2021
  ident: 10.1016/j.patcog.2024.110714_b5
  article-title: YOLO-face: a real-time face detector
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01831-7
– year: 2021
  ident: 10.1016/j.patcog.2024.110714_b12
– volume: 124
  year: 2021
  ident: 10.1016/j.patcog.2024.110714_b20
  article-title: MTCNet: Multi-task collaboration network for rotation-invariance face detection
  publication-title: Pattern Recognit.
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 10.1016/j.patcog.2024.110714_b3
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 43
  start-page: 4008
  issue: 11
  year: 2021
  ident: 10.1016/j.patcog.2024.110714_b18
  article-title: RefineFace: Refinement neural network for high performance face detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2997456
– year: 2016
  ident: 10.1016/j.patcog.2024.110714_b8
  article-title: Understanding the effective receptive field in deep convolutional neural networks
– volume: 140
  year: 2023
  ident: 10.1016/j.patcog.2024.110714_b13
  article-title: Keep an eye on faces: Robust face detection with heatmap-assisted spatial attention and scale-aware layer attention
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.109553
– ident: 10.1016/j.patcog.2024.110714_b28
  doi: 10.1109/CVPR42600.2020.00525
– ident: 10.1016/j.patcog.2024.110714_b29
  doi: 10.1109/CVPR.2016.89
– volume: 23
  start-page: 1499
  issue: 10
  year: 2016
  ident: 10.1016/j.patcog.2024.110714_b1
  article-title: Joint face detection and alignment using multitask cascaded convolutional networks
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2603342
– ident: 10.1016/j.patcog.2024.110714_b6
  doi: 10.1109/ICCV.2017.30
– ident: 10.1016/j.patcog.2024.110714_b32
  doi: 10.1109/ICASSP49357.2023.10096516
– ident: 10.1016/j.patcog.2024.110714_b26
  doi: 10.1109/ICCV.2017.522
– ident: 10.1016/j.patcog.2024.110714_b10
  doi: 10.1109/DDCLS49620.2020.9275060
– ident: 10.1016/j.patcog.2024.110714_b11
  doi: 10.1109/CVPR42600.2020.01160
– ident: 10.1016/j.patcog.2024.110714_b16
  doi: 10.1109/CVPR.2018.00244
– ident: 10.1016/j.patcog.2024.110714_b27
  doi: 10.1007/978-3-030-01240-3_49
– ident: 10.1016/j.patcog.2024.110714_b31
  doi: 10.1109/CVPR46437.2021.01350
– start-page: 404
  year: 2018
  ident: 10.1016/j.patcog.2024.110714_b22
  article-title: Receptive field block net for accurate and fast object detection
– ident: 10.1016/j.patcog.2024.110714_b25
  doi: 10.1109/CVPR.2018.00377
– ident: 10.1016/j.patcog.2024.110714_b30
  doi: 10.1109/CVPR.2018.00913
– volume: 42
  start-page: 318
  issue: 2
  year: 2020
  ident: 10.1016/j.patcog.2024.110714_b4
  article-title: Focal loss for dense object detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2858826
– ident: 10.1016/j.patcog.2024.110714_b15
  doi: 10.1109/CVPR.2015.7299170
– ident: 10.1016/j.patcog.2024.110714_b21
  doi: 10.1109/CVPR.2019.00520
– ident: 10.1016/j.patcog.2024.110714_b24
  doi: 10.1109/ICCV.2019.00615
SSID ssj0017142
Score 2.714636
Snippet In recent years, face detection algorithms based on deep learning have made great progress. Nevertheless, the effective utilization of face detectors for small...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110714
SubjectTerms Face detection
Imbalance problem
Occlusion
Scale-aware
YOLO
Title YOLO-FaceV2: A scale and occlusion aware face detector
URI https://dx.doi.org/10.1016/j.patcog.2024.110714
Volume 155
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KvXjxLT5LDl5jd7PZbNdbKZb6ai9W6mlJsolUyrbULd787Wb2URREweMuE1i-TWYmw8z3AVyEqhDYljQKlaQ8sJx2WKSoDVUaMNSQM1gaeBiKwZjfTsJJA3r1LAy2VVa-v_Tphbeu3rQrNNuL6RRnfJF20ENGOQ9ZwHCCnUe4yy8_1m0eqO9dMoYHPkXrenyu6PFaOHc3f3G3RMaxH76Y5fkpPH0JOf0d2KpyRdItP2cXGibbg-1ah4FUx3IfxPPofkT7UpsndkW65M3hbojMUjLXerbCehiR73JpiHU2JDV5Uao_gHH_-rE3oJUeAtUusc-pFL7SwkN-GheEbRpwJeJOoDxjLZNxlIZcugPV4X7sklGuYlQMNCKyzLcOGRscQjObZ-YIiDCpMczFciM9zpU715oxd3USzGXbQptjCGoYEl2RhaNmxSypu8JekxK8BMFLSvCOga5XLUqyjD_soxrh5NtPT5w__3Xlyb9XnsImPpXjhGfQzJcrc-7yily1io3Tgo3uzd1g-AkUAchn
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB58HPTiW3y7Bz2uTTebTSt4ELVUbeulSj3F3WRXKqUtWhEv_in_oDN5FAVRELwmOyH5dpjHZmY-gL3ApATbmoeB0Vz6TvKKCA13gUl8QRxylo4Gmi1Vv5YXnaAzAe9FLwyVVea2P7PpqbXOr5RyNEvDbpd6fGnsoEcT5TyaApZXVl7a1xfM256Ozk9xk_eFqJ21T-o8pxbgMcbII65V2cTKo1Ev6M9c4kujqhXfeNY5oathEkiNulmRmJOXjTRVIt-zKnSi7KQMnY_PnYRpieaCaBMO3sZ1JUQono0o98ucXq_o10uLyoZoXwf3mJYKSQX4afPQd_7wk4-rLcBcHpyy4-z7F2HC9pdgviB-YLkdWAZ1e9W44jUd2xtxyI7ZE260ZbqfsEEc957pAI7pF_1omcM1LLGj9N_AClz_C0qrMNUf9O0aMGUTawUGD1Z7Uho0JLEQmKspgeG9iu06-AUMUZxPJyeSjF5UlKE9RBl4EYEXZeCtAx9LDbPpHL-sDwuEoy9aFqED-VFy48-SuzBTbzcbUeO8dbkJs3Qn62XcgqnR47PdxqBmZHZSJWJw999a-wElxwIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLO-FaceV2%3A+A+scale+and+occlusion+aware+face+detector&rft.jtitle=Pattern+recognition&rft.au=Yu%2C+Ziping&rft.au=Huang%2C+Hongbo&rft.au=Chen%2C+Weijun&rft.au=Su%2C+Yongxin&rft.date=2024-11-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=155&rft_id=info:doi/10.1016%2Fj.patcog.2024.110714&rft.externalDocID=S0031320324004655
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon