Underwater scene prior inspired deep underwater image and video enhancement
•Underwater image and video synthesis approach is desired by data-driven methods.•Underwater scene prior is helpful for underwater image and video enhancement.•Light-weight network structure can be easily extended to underwater video. In underwater scenes, wavelength-dependent light absorption and s...
Saved in:
Published in | Pattern recognition Vol. 98; p. 107038 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Underwater image and video synthesis approach is desired by data-driven methods.•Underwater scene prior is helpful for underwater image and video enhancement.•Light-weight network structure can be easily extended to underwater video.
In underwater scenes, wavelength-dependent light absorption and scattering degrade the visibility of images and videos. The degraded underwater images and videos affect the accuracy of pattern recognition, visual understanding, and key feature extraction in underwater scenes. In this paper, we propose an underwater image enhancement convolutional neural network (CNN) model based on underwater scene prior, called UWCNN. Instead of estimating the parameters of underwater imaging model, the proposed UWCNN model directly reconstructs the clear latent underwater image, which benefits from the underwater scene prior which can be used to synthesize underwater image training data. Besides, based on the light-weight network structure and effective training data, our UWCNN model can be easily extended to underwater videos for frame-by-frame enhancement. Specifically, combining an underwater imaging physical model with optical properties of underwater scenes, we first synthesize underwater image degradation datasets which cover a diverse set of water types and degradation levels. Then, a light-weight CNN model is designed for enhancing each underwater scene type, which is trained by the corresponding training data. At last, this UWCNN model is directly extended to underwater video enhancement. Experiments on real-world and synthetic underwater images and videos demonstrate that our method generalizes well to different underwater scenes. |
---|---|
AbstractList | •Underwater image and video synthesis approach is desired by data-driven methods.•Underwater scene prior is helpful for underwater image and video enhancement.•Light-weight network structure can be easily extended to underwater video.
In underwater scenes, wavelength-dependent light absorption and scattering degrade the visibility of images and videos. The degraded underwater images and videos affect the accuracy of pattern recognition, visual understanding, and key feature extraction in underwater scenes. In this paper, we propose an underwater image enhancement convolutional neural network (CNN) model based on underwater scene prior, called UWCNN. Instead of estimating the parameters of underwater imaging model, the proposed UWCNN model directly reconstructs the clear latent underwater image, which benefits from the underwater scene prior which can be used to synthesize underwater image training data. Besides, based on the light-weight network structure and effective training data, our UWCNN model can be easily extended to underwater videos for frame-by-frame enhancement. Specifically, combining an underwater imaging physical model with optical properties of underwater scenes, we first synthesize underwater image degradation datasets which cover a diverse set of water types and degradation levels. Then, a light-weight CNN model is designed for enhancing each underwater scene type, which is trained by the corresponding training data. At last, this UWCNN model is directly extended to underwater video enhancement. Experiments on real-world and synthetic underwater images and videos demonstrate that our method generalizes well to different underwater scenes. |
ArticleNumber | 107038 |
Author | Li, Chongyi Anwar, Saeed Porikli, Fatih |
Author_xml | – sequence: 1 givenname: Chongyi orcidid: 0000-0003-2609-2460 surname: Li fullname: Li, Chongyi email: lichongyi@tju.edu.cn organization: Department of Computer Science, City University of Hong Kong (CityU), Hong Kong – sequence: 2 givenname: Saeed surname: Anwar fullname: Anwar, Saeed organization: Data61, CSIRO, ACT 2601, Australia – sequence: 3 givenname: Fatih surname: Porikli fullname: Porikli, Fatih organization: Research School of Engineering, The Australian National University, Canberra, ACT 0200, Australia |
BookMark | eNqFkE1LAzEQhoNUsK3-Aw_5A1vzsd3NehCk-IUFL_YcpslsTWmzSxIr_ntTVhA86GlgZt4XnmdCRr7zSMglZzPOeHW1nfWQTLeZCcabvKqZVCdkzFUtizkvxYiMGZO8kILJMzKJccsYr_NhTJ5X3mL4gISBRoMeaR9cF6jzsXcBLbWIPX3_eXJ72CAFb-nBWewo-jfwBvfo0zk5bWEX8eJ7Tsnq_u518VgsXx6eFrfLwkhWpQJKVc3rqjaqZaWESgFXaIWVpoayWfN1KyUYqFA0KtMpyxEaBYKBMIxVXE7J9dBrQhdjwFYblyC5zqcAbqc500cteqsHLfqoRQ9acrj8Fc7Aewif_8VuhhhmsIPDoKNxmMFttmSStp37u-ALAsGBOw |
CitedBy_id | crossref_primary_10_18287_2412_6179_CO_754 crossref_primary_10_1109_TCSVT_2024_3497594 crossref_primary_10_1016_j_engstruct_2024_119037 crossref_primary_10_1016_j_jvcir_2024_104355 crossref_primary_10_1109_LGRS_2023_3299613 crossref_primary_10_1007_s13042_023_01984_6 crossref_primary_10_1109_TGRS_2022_3223083 crossref_primary_10_1016_j_compeleceng_2022_108029 crossref_primary_10_1016_j_optcom_2023_130064 crossref_primary_10_1109_ACCESS_2025_3536173 crossref_primary_10_1364_OE_499684 crossref_primary_10_1007_s11760_023_02591_2 crossref_primary_10_1016_j_engappai_2023_107219 crossref_primary_10_3390_jmse11020447 crossref_primary_10_1016_j_engappai_2023_107462 crossref_primary_10_1109_TIP_2022_3190209 crossref_primary_10_1007_s10846_024_02065_8 crossref_primary_10_1109_TCSVT_2022_3174817 crossref_primary_10_1109_TIM_2024_3366583 crossref_primary_10_1109_TIP_2022_3177129 crossref_primary_10_3390_jmse12071217 crossref_primary_10_1016_j_asoc_2022_109973 crossref_primary_10_3390_jmse12071216 crossref_primary_10_1016_j_eswa_2024_125350 crossref_primary_10_1016_j_knosys_2024_112049 crossref_primary_10_1016_j_knosys_2024_112048 crossref_primary_10_1109_TGRS_2024_3485030 crossref_primary_10_1016_j_image_2021_116408 crossref_primary_10_1016_j_jvcir_2024_104240 crossref_primary_10_1109_TIM_2023_3307754 crossref_primary_10_1016_j_eswa_2025_126616 crossref_primary_10_1631_FITEE_2000190 crossref_primary_10_1049_ipr2_12061 crossref_primary_10_1007_s40009_022_01157_z crossref_primary_10_1007_s00530_024_01432_7 crossref_primary_10_1364_AO_424917 crossref_primary_10_1016_j_image_2024_117200 crossref_primary_10_3390_electronics12112352 crossref_primary_10_1109_TCSVT_2024_3465875 crossref_primary_10_1016_j_optlastec_2024_112375 crossref_primary_10_1109_TIM_2022_3212986 crossref_primary_10_1049_iet_ipr_2019_1677 crossref_primary_10_1109_TCSVT_2022_3190057 crossref_primary_10_5753_reic_2024_4671 crossref_primary_10_1109_LSP_2024_3470752 crossref_primary_10_3390_rs14174297 crossref_primary_10_1016_j_jvcir_2024_104131 crossref_primary_10_1007_s11760_022_02322_z crossref_primary_10_1007_s12541_023_00771_1 crossref_primary_10_1117_1_JEI_31_5_053012 crossref_primary_10_1007_s11042_022_12135_4 crossref_primary_10_1109_TIP_2023_3309408 crossref_primary_10_1049_ipr2_13161 crossref_primary_10_1109_TGRS_2023_3293912 crossref_primary_10_1109_JOE_2023_3245686 crossref_primary_10_1109_JOE_2022_3152519 crossref_primary_10_1007_s11760_024_03004_8 crossref_primary_10_1016_j_displa_2022_102359 crossref_primary_10_1109_JOE_2023_3310079 crossref_primary_10_1016_j_eswa_2023_120842 crossref_primary_10_1016_j_image_2023_117032 crossref_primary_10_1016_j_neucom_2024_128286 crossref_primary_10_1007_s00371_021_02305_0 crossref_primary_10_1007_s11042_022_12267_7 crossref_primary_10_1109_TIM_2024_3480228 crossref_primary_10_1364_OE_432756 crossref_primary_10_1145_3688802 crossref_primary_10_1016_j_jvcir_2024_104386 crossref_primary_10_1109_TCSVT_2023_3289566 crossref_primary_10_1007_s11042_023_15419_5 crossref_primary_10_1109_TIM_2022_3189630 crossref_primary_10_1109_TMM_2024_3387760 crossref_primary_10_1155_2022_2254077 crossref_primary_10_1016_j_cag_2022_08_003 crossref_primary_10_1007_s11760_023_02985_2 crossref_primary_10_1007_s13042_024_02379_x crossref_primary_10_1016_j_knosys_2022_109751 crossref_primary_10_3390_s21093289 crossref_primary_10_3390_jmse12112080 crossref_primary_10_1109_JOE_2022_3192047 crossref_primary_10_1016_j_eswa_2023_120856 crossref_primary_10_1016_j_fmre_2021_03_002 crossref_primary_10_1007_s11042_022_14228_6 crossref_primary_10_1016_j_imavis_2024_104995 crossref_primary_10_3233_JIFS_211680 crossref_primary_10_1016_j_asoc_2024_112308 crossref_primary_10_1364_JOSAA_502703 crossref_primary_10_1007_s00138_023_01478_z crossref_primary_10_1109_ACCESS_2020_3019767 crossref_primary_10_1364_OE_509344 crossref_primary_10_3390_s24227411 crossref_primary_10_1016_j_neucom_2024_129270 crossref_primary_10_3390_electronics13010196 crossref_primary_10_1364_OE_523951 crossref_primary_10_1016_j_compag_2021_106182 crossref_primary_10_1016_j_ijleo_2023_170926 crossref_primary_10_1016_j_displa_2022_102174 crossref_primary_10_1007_s11042_023_16995_2 crossref_primary_10_3390_electronics13010199 crossref_primary_10_3390_sym14030558 crossref_primary_10_1007_s10489_023_04502_x crossref_primary_10_1109_TGRS_2023_3338611 crossref_primary_10_1109_TGRS_2021_3110575 crossref_primary_10_1016_j_eswa_2024_125271 crossref_primary_10_1109_ACCESS_2024_3478788 crossref_primary_10_3390_math12131933 crossref_primary_10_1016_j_neucom_2024_129274 crossref_primary_10_1007_s13042_022_01659_8 crossref_primary_10_1007_s44295_023_00015_y crossref_primary_10_1016_j_jvcir_2024_104166 crossref_primary_10_1016_j_jvcir_2024_104163 crossref_primary_10_1016_j_engappai_2023_106457 crossref_primary_10_1016_j_patcog_2025_111411 crossref_primary_10_1109_TCSVT_2022_3164918 crossref_primary_10_1109_LSP_2023_3255005 crossref_primary_10_3390_app12115420 crossref_primary_10_3390_app10186392 crossref_primary_10_1007_s11042_023_14871_7 crossref_primary_10_1016_j_displa_2023_102586 crossref_primary_10_1007_s11760_023_02864_w crossref_primary_10_1007_s11554_023_01387_4 crossref_primary_10_1016_j_jvcir_2024_104051 crossref_primary_10_1016_j_jvcir_2024_104052 crossref_primary_10_1109_ACCESS_2024_3524593 crossref_primary_10_1007_s11227_024_06719_0 crossref_primary_10_1109_JSEN_2023_3313108 crossref_primary_10_1109_TIP_2022_3196815 crossref_primary_10_3390_app12104898 crossref_primary_10_1109_LRA_2021_3070253 crossref_primary_10_1109_TCSVT_2023_3299314 crossref_primary_10_1117_1_JEI_32_4_043025 crossref_primary_10_1145_3489520 crossref_primary_10_1016_j_inffus_2024_102809 crossref_primary_10_1088_1361_6501_ac16ef crossref_primary_10_1109_JOE_2023_3245760 crossref_primary_10_1016_j_oceaneng_2024_118367 crossref_primary_10_1109_ACCESS_2024_3400533 crossref_primary_10_1016_j_image_2024_117154 crossref_primary_10_1016_j_aej_2024_01_009 crossref_primary_10_1109_TCI_2024_3420881 crossref_primary_10_1016_j_inffus_2024_102927 crossref_primary_10_1016_j_image_2022_116805 crossref_primary_10_1007_s00371_024_03630_w crossref_primary_10_1016_j_jvcir_2024_104065 crossref_primary_10_1364_AO_433558 crossref_primary_10_1007_s00371_024_03421_3 crossref_primary_10_3389_fmars_2025_1555128 crossref_primary_10_3390_jimaging9100214 crossref_primary_10_1016_j_engappai_2023_107766 crossref_primary_10_1016_j_image_2021_116622 crossref_primary_10_1117_1_JEI_33_1_013007 crossref_primary_10_1016_j_apm_2023_02_004 crossref_primary_10_1109_TCSVT_2023_3328272 crossref_primary_10_1007_s00371_024_03785_6 crossref_primary_10_1007_s11704_022_1205_7 crossref_primary_10_1080_1206212X_2025_2466197 crossref_primary_10_1007_s12145_024_01620_z crossref_primary_10_1016_j_eswa_2023_122710 crossref_primary_10_1016_j_neucom_2020_07_130 crossref_primary_10_1088_1361_6501_acb72d crossref_primary_10_1007_s12145_024_01226_5 crossref_primary_10_1049_ipr2_12210 crossref_primary_10_1007_s00371_024_03377_4 crossref_primary_10_3390_jmse13020231 crossref_primary_10_1016_j_cag_2023_01_009 crossref_primary_10_1109_JOE_2021_3064093 crossref_primary_10_1109_JOE_2022_3223733 crossref_primary_10_1016_j_eswa_2025_126561 crossref_primary_10_1109_TGRS_2024_3477911 crossref_primary_10_1016_j_engappai_2023_106532 crossref_primary_10_1002_rob_22525 crossref_primary_10_1364_AO_431712 crossref_primary_10_1049_ipr2_12341 crossref_primary_10_3390_app15020641 crossref_primary_10_1007_s00371_025_03866_0 crossref_primary_10_1016_j_image_2021_116248 crossref_primary_10_1145_3578584 crossref_primary_10_1109_JSEN_2023_3251326 crossref_primary_10_1109_TCSVT_2024_3378252 crossref_primary_10_3390_s22249600 crossref_primary_10_1007_s11227_022_04720_z crossref_primary_10_1364_AO_452318 crossref_primary_10_1109_TCYB_2024_3482174 crossref_primary_10_1364_OE_453387 crossref_primary_10_1088_1361_6501_ad4dca crossref_primary_10_1002_col_22728 crossref_primary_10_3390_electronics13224451 crossref_primary_10_1109_LGRS_2020_3023805 crossref_primary_10_3390_electronics11182894 crossref_primary_10_1016_j_patcog_2022_109041 crossref_primary_10_3390_w16050626 crossref_primary_10_1117_1_JEI_33_2_023024 crossref_primary_10_1016_j_engappai_2023_106743 crossref_primary_10_1016_j_neucom_2024_127909 crossref_primary_10_1109_TETCI_2024_3369321 crossref_primary_10_1145_3390462 crossref_primary_10_1364_OE_468633 crossref_primary_10_1016_j_image_2022_116855 crossref_primary_10_1364_AO_420962 crossref_primary_10_1016_j_compeleceng_2021_106981 crossref_primary_10_1016_j_knosys_2022_110041 crossref_primary_10_3390_app13179956 crossref_primary_10_1002_int_22806 crossref_primary_10_1007_s00371_023_03215_z crossref_primary_10_1016_j_engappai_2022_105489 crossref_primary_10_1016_j_image_2022_116848 crossref_primary_10_1109_TIM_2023_3295026 crossref_primary_10_1109_TMM_2024_3371218 crossref_primary_10_1007_s10489_024_06224_0 crossref_primary_10_3390_s22093550 crossref_primary_10_1016_j_compeleceng_2022_107909 crossref_primary_10_1016_j_image_2020_116088 crossref_primary_10_3390_app13169419 crossref_primary_10_1145_3709003 crossref_primary_10_1016_j_birob_2024_100169 crossref_primary_10_1016_j_dsp_2025_105048 crossref_primary_10_1016_j_isprsjprs_2024_06_009 crossref_primary_10_1109_TIM_2024_3378290 crossref_primary_10_1109_TBC_2022_3227424 crossref_primary_10_3390_s24092684 crossref_primary_10_3389_fmars_2023_1161399 crossref_primary_10_1080_13682199_2024_2439731 crossref_primary_10_1016_j_compag_2021_106585 crossref_primary_10_1109_TCSVT_2024_3451553 crossref_primary_10_1016_j_cviu_2024_104225 crossref_primary_10_46604_aiti_2022_8938 crossref_primary_10_1016_j_image_2022_116797 crossref_primary_10_1364_AO_452345 crossref_primary_10_1109_ACCESS_2023_3291449 crossref_primary_10_1016_j_neucom_2024_127926 crossref_primary_10_1007_s10489_024_05538_3 crossref_primary_10_1016_j_physleta_2024_130001 crossref_primary_10_1016_j_ndteint_2024_103198 crossref_primary_10_1016_j_dsp_2022_103660 crossref_primary_10_1142_S0219467823500316 crossref_primary_10_1016_j_engappai_2023_106731 crossref_primary_10_1016_j_engappai_2023_106972 crossref_primary_10_1007_s11263_024_02065_z crossref_primary_10_1109_TCE_2024_3476033 crossref_primary_10_1109_JOE_2024_3458348 crossref_primary_10_1109_MRA_2024_3351487 crossref_primary_10_1109_TCSVT_2023_3297524 crossref_primary_10_1016_j_aei_2024_102723 crossref_primary_10_3390_s21093268 crossref_primary_10_1109_ACCESS_2020_3006359 crossref_primary_10_1007_s11760_023_02695_9 crossref_primary_10_1109_TGRS_2024_3358892 crossref_primary_10_1007_s11431_023_2614_8 crossref_primary_10_1016_j_image_2020_116030 crossref_primary_10_1109_TCSVT_2023_3253898 crossref_primary_10_1016_j_image_2022_116670 crossref_primary_10_1109_TCSVT_2024_3466925 crossref_primary_10_1364_OL_457964 crossref_primary_10_1016_j_eswa_2024_126075 crossref_primary_10_1109_TCSVT_2024_3417000 crossref_primary_10_1007_s00371_022_02580_5 crossref_primary_10_1016_j_eswa_2023_122693 crossref_primary_10_1016_j_image_2023_116939 crossref_primary_10_1117_1_OE_62_11_113108 crossref_primary_10_1016_j_patcog_2024_110435 crossref_primary_10_1109_LRA_2022_3156176 crossref_primary_10_1109_TIM_2024_3396850 crossref_primary_10_1002_cav_2098 crossref_primary_10_3390_electronics12051227 crossref_primary_10_1142_S0219467823500444 crossref_primary_10_1016_j_optcom_2025_131695 crossref_primary_10_1016_j_imavis_2024_105256 crossref_primary_10_32604_csse_2023_027187 crossref_primary_10_1109_ACCESS_2024_3404613 crossref_primary_10_1109_JOE_2024_3474919 crossref_primary_10_32604_cmes_2022_019447 crossref_primary_10_53433_yyufbed_1249102 crossref_primary_10_1007_s10462_024_10960_7 crossref_primary_10_1016_j_engappai_2021_104171 crossref_primary_10_1007_s11760_023_02718_5 crossref_primary_10_1007_s00138_024_01651_y crossref_primary_10_1109_TIP_2022_3196546 crossref_primary_10_3390_math12223553 crossref_primary_10_1016_j_compag_2021_106497 crossref_primary_10_1109_ACCESS_2024_3435569 crossref_primary_10_1109_TCSVT_2020_3035108 crossref_primary_10_1016_j_jvcir_2024_104224 crossref_primary_10_1364_OE_538120 crossref_primary_10_1016_j_jvcir_2024_104101 crossref_primary_10_1109_ACCESS_2020_2997408 crossref_primary_10_1109_TETCI_2023_3322424 crossref_primary_10_3390_jmse12020358 crossref_primary_10_1016_j_sigpro_2024_109408 crossref_primary_10_1007_s11042_023_14594_9 crossref_primary_10_1016_j_image_2021_116225 crossref_primary_10_1016_j_cviu_2024_104251 crossref_primary_10_1109_JOE_2022_3140563 crossref_primary_10_1007_s11760_021_01969_4 crossref_primary_10_1016_j_image_2025_117281 crossref_primary_10_1016_j_imavis_2024_105361 crossref_primary_10_1109_TCSVT_2022_3225376 crossref_primary_10_1371_journal_pone_0299110 crossref_primary_10_1016_j_optlastec_2024_111957 crossref_primary_10_1007_s10334_023_01127_6 crossref_primary_10_1002_rob_22378 crossref_primary_10_1016_j_engappai_2023_105952 crossref_primary_10_1109_TMM_2022_3152390 crossref_primary_10_1007_s11263_024_01987_y crossref_primary_10_1080_09500340_2024_2362893 crossref_primary_10_1371_journal_pone_0275107 crossref_primary_10_1371_journal_pone_0279945 crossref_primary_10_1109_OJCS_2024_3492698 crossref_primary_10_1109_TIP_2021_3076367 crossref_primary_10_1177_14759217241228780 crossref_primary_10_1016_j_oceaneng_2025_120389 crossref_primary_10_1109_TIM_2023_3298395 crossref_primary_10_3390_s23135774 crossref_primary_10_1049_ipr2_12845 crossref_primary_10_1007_s11042_024_20091_4 crossref_primary_10_1109_TCSVT_2023_3328785 crossref_primary_10_1109_TCSVT_2022_3208100 crossref_primary_10_3390_electronics14061203 crossref_primary_10_3390_rs16203773 crossref_primary_10_1016_j_compag_2022_107186 crossref_primary_10_1016_j_autcon_2025_106102 crossref_primary_10_1007_s11431_024_2824_x crossref_primary_10_1016_j_imavis_2024_105389 crossref_primary_10_1109_JOE_2024_3463840 crossref_primary_10_1007_s11042_020_09460_x crossref_primary_10_1109_TGRS_2023_3339216 crossref_primary_10_3390_s23031212 crossref_primary_10_1364_OE_427839 crossref_primary_10_1364_OPTICA_494868 crossref_primary_10_1007_s11042_023_14470_6 crossref_primary_10_1016_j_inffus_2025_102977 crossref_primary_10_3390_jmse10020241 crossref_primary_10_1109_LRA_2024_3426382 crossref_primary_10_1109_TCSVT_2023_3237993 crossref_primary_10_1007_s12596_023_01344_1 crossref_primary_10_3389_fmars_2022_964600 crossref_primary_10_1016_j_ecoinf_2024_102631 crossref_primary_10_1007_s13042_023_01959_7 crossref_primary_10_1109_ACCESS_2020_3002883 crossref_primary_10_3389_fmars_2023_1132500 crossref_primary_10_3390_jmse13010127 crossref_primary_10_1016_j_sigpro_2024_109690 crossref_primary_10_1016_j_asoc_2023_110698 crossref_primary_10_1109_JOE_2024_3463838 crossref_primary_10_1109_ACCESS_2020_3009161 crossref_primary_10_1109_TGRS_2020_3033407 crossref_primary_10_3389_fmars_2024_1378817 crossref_primary_10_1049_ipr2_12745 crossref_primary_10_1109_JOE_2024_3428624 crossref_primary_10_1109_TCSVT_2024_3482548 crossref_primary_10_1109_LSP_2021_3072563 crossref_primary_10_1109_ACCESS_2022_3201555 crossref_primary_10_1109_LSP_2021_3099746 crossref_primary_10_1016_j_knosys_2024_111977 crossref_primary_10_1016_j_patcog_2023_110222 crossref_primary_10_1007_s11042_024_18686_y crossref_primary_10_1016_j_optlaseng_2024_108590 crossref_primary_10_1016_j_patcog_2024_110529 crossref_primary_10_1016_j_engappai_2024_109006 crossref_primary_10_1016_j_image_2022_116684 crossref_primary_10_1007_s00530_023_01224_5 crossref_primary_10_1016_j_engappai_2023_105946 crossref_primary_10_1016_j_image_2020_115952 crossref_primary_10_1016_j_sigpro_2024_109569 crossref_primary_10_1007_s11042_021_11269_1 crossref_primary_10_1109_TCSVT_2023_3305777 crossref_primary_10_1364_OE_494638 crossref_primary_10_1016_j_neucom_2023_02_018 crossref_primary_10_11834_jig_230323 crossref_primary_10_3390_biomimetics8030275 crossref_primary_10_1016_j_engappai_2024_109437 crossref_primary_10_3390_info13040187 crossref_primary_10_3390_s24185893 crossref_primary_10_1364_OE_482489 crossref_primary_10_3788_LOP223047 crossref_primary_10_1088_1755_1315_809_1_012012 crossref_primary_10_1109_TCSVT_2024_3412748 crossref_primary_10_3390_fractalfract7010070 crossref_primary_10_1109_TGRS_2023_3340244 crossref_primary_10_1117_1_JEI_33_5_053053 crossref_primary_10_1109_TCYB_2020_2969255 crossref_primary_10_1007_s42979_024_02847_9 crossref_primary_10_1088_1361_6501_abaa1d crossref_primary_10_1364_OE_525348 crossref_primary_10_1109_JOE_2022_3190517 crossref_primary_10_1109_TIM_2024_3417543 crossref_primary_10_1109_TGRS_2024_3363037 crossref_primary_10_1016_j_engappai_2024_108585 crossref_primary_10_1016_j_patcog_2022_108822 crossref_primary_10_1109_ACCESS_2023_3240648 crossref_primary_10_1016_j_optlaseng_2020_106115 crossref_primary_10_1117_1_JEI_33_6_063018 crossref_primary_10_1109_JOE_2023_3275615 crossref_primary_10_3390_rs17050759 crossref_primary_10_7717_peerj_cs_2392 crossref_primary_10_1007_s00138_025_01662_3 crossref_primary_10_1007_s11042_023_15153_y crossref_primary_10_1016_j_image_2020_115921 crossref_primary_10_1016_j_inffus_2024_102494 crossref_primary_10_1007_s11042_023_15652_y crossref_primary_10_1007_s10489_022_03275_z crossref_primary_10_3389_fmars_2023_1138013 crossref_primary_10_1109_JOE_2021_3104055 crossref_primary_10_3389_fmars_2023_1242041 crossref_primary_10_1007_s00530_023_01246_z crossref_primary_10_1016_j_isprsjprs_2022_12_007 crossref_primary_10_1016_j_patcog_2022_108716 crossref_primary_10_1109_JOE_2023_3297731 crossref_primary_10_1109_TGRS_2024_3353371 crossref_primary_10_3390_s24061937 crossref_primary_10_1049_ipr2_12544 crossref_primary_10_1155_2022_8330985 crossref_primary_10_1109_TGRS_2024_3358828 crossref_primary_10_1364_OE_462861 crossref_primary_10_1109_JAS_2023_123771 crossref_primary_10_1007_s11042_023_16967_6 crossref_primary_10_1364_OE_512397 crossref_primary_10_1016_j_engappai_2022_104759 crossref_primary_10_1016_j_engappai_2023_105905 crossref_primary_10_1007_s11760_025_03829_x crossref_primary_10_1109_LSP_2020_3048619 crossref_primary_10_1364_OE_428626 crossref_primary_10_1016_j_patrec_2022_12_019 crossref_primary_10_1016_j_knosys_2024_111786 crossref_primary_10_1109_ACCESS_2019_2959560 crossref_primary_10_3390_jmse12101790 crossref_primary_10_1109_JSTARS_2023_3344453 crossref_primary_10_1007_s11042_023_15542_3 crossref_primary_10_3390_jmse12071055 crossref_primary_10_3390_jmse12071175 crossref_primary_10_1109_TIP_2023_3276332 crossref_primary_10_1117_1_JEI_31_6_063039 crossref_primary_10_1016_j_neunet_2024_106809 crossref_primary_10_1109_TCSVT_2023_3290363 crossref_primary_10_3390_jmse9060570 crossref_primary_10_1016_j_isprsjprs_2023_01_007 crossref_primary_10_1109_TGRS_2023_3315772 crossref_primary_10_1142_S021800142454003X crossref_primary_10_1016_j_jvcir_2021_103136 crossref_primary_10_3390_drones8090486 crossref_primary_10_1007_s00371_022_02510_5 crossref_primary_10_1007_s12145_024_01279_6 crossref_primary_10_1080_09500340_2022_2090628 crossref_primary_10_1109_JOE_2024_3429653 crossref_primary_10_1007_s12559_023_10197_6 crossref_primary_10_3390_jmse12091467 crossref_primary_10_1109_TIP_2023_3286263 crossref_primary_10_1109_TIP_2023_3334556 crossref_primary_10_1109_TCSVT_2021_3074197 crossref_primary_10_1016_j_patcog_2023_109775 crossref_primary_10_1109_ACCESS_2024_3474031 crossref_primary_10_1016_j_patcog_2023_109774 crossref_primary_10_3390_jmse11030662 crossref_primary_10_1016_j_engappai_2023_107069 crossref_primary_10_3390_jmse12091472 crossref_primary_10_1016_j_patcog_2022_108983 crossref_primary_10_1016_j_image_2020_115892 crossref_primary_10_1016_j_patcog_2021_108324 crossref_primary_10_1007_s12145_024_01573_3 crossref_primary_10_1016_j_neucom_2022_07_036 crossref_primary_10_1007_s44295_024_00021_8 crossref_primary_10_1016_j_aej_2024_08_047 crossref_primary_10_1364_OE_432900 crossref_primary_10_3390_app14114395 crossref_primary_10_3390_s24020356 crossref_primary_10_1364_OE_463865 crossref_primary_10_3390_s23042169 crossref_primary_10_3390_s22062168 crossref_primary_10_1016_j_eswa_2024_125539 crossref_primary_10_1109_TMM_2024_3521739 crossref_primary_10_1007_s11760_024_03047_x crossref_primary_10_1109_TCYB_2024_3365693 crossref_primary_10_1109_TIP_2023_3244647 crossref_primary_10_1007_s12204_024_2735_y crossref_primary_10_1109_TGRS_2024_3422667 crossref_primary_10_1109_THMS_2023_3261341 crossref_primary_10_1049_ipr2_12901 crossref_primary_10_1007_s11042_023_17180_1 crossref_primary_10_1016_j_engappai_2023_106196 crossref_primary_10_1007_s11554_020_01052_0 crossref_primary_10_1364_AO_431299 crossref_primary_10_1007_s11042_023_15708_z crossref_primary_10_1109_LSP_2023_3281255 crossref_primary_10_1007_s11263_023_01853_3 crossref_primary_10_1016_j_patcog_2021_108342 crossref_primary_10_3390_jmse10091289 crossref_primary_10_1109_ACCESS_2020_3040505 crossref_primary_10_1109_ACCESS_2023_3339817 crossref_primary_10_1016_j_neucom_2020_05_108 crossref_primary_10_1016_j_autcon_2020_103424 crossref_primary_10_1016_j_engappai_2024_108561 crossref_primary_10_1109_TCSVT_2022_3212788 crossref_primary_10_1109_ACCESS_2024_3465550 crossref_primary_10_1016_j_autcon_2024_105727 crossref_primary_10_1109_JSEN_2024_3488495 crossref_primary_10_1007_s11042_023_14687_5 crossref_primary_10_1007_s11760_024_03080_w crossref_primary_10_1109_LGRS_2019_2950056 crossref_primary_10_1155_2022_3903453 crossref_primary_10_3390_electronics12234882 crossref_primary_10_1016_j_patcog_2025_111388 crossref_primary_10_1016_j_jvcir_2023_103863 crossref_primary_10_1016_j_displa_2025_103023 crossref_primary_10_1109_TMM_2024_3374598 crossref_primary_10_1016_j_dib_2024_110723 crossref_primary_10_1016_j_displa_2022_102337 crossref_primary_10_1109_TGRS_2022_3205061 crossref_primary_10_1016_j_neucom_2021_07_003 crossref_primary_10_1016_j_neucom_2025_129553 crossref_primary_10_1016_j_neunet_2023_11_008 crossref_primary_10_1109_LSP_2023_3338055 crossref_primary_10_1109_TCSVT_2024_3455353 crossref_primary_10_1007_s11042_020_10273_1 crossref_primary_10_1007_s11760_024_03343_6 crossref_primary_10_1016_j_image_2020_115978 crossref_primary_10_1371_journal_pone_0272666 crossref_primary_10_1007_s10489_020_01931_w crossref_primary_10_1016_j_eswa_2024_125549 crossref_primary_10_1007_s11063_023_11407_w crossref_primary_10_1109_ACCESS_2024_3449136 crossref_primary_10_3390_jmse11040787 crossref_primary_10_1016_j_jvcir_2023_103979 crossref_primary_10_1007_s11042_020_10426_2 crossref_primary_10_1007_s00138_024_01647_8 crossref_primary_10_1109_ACCESS_2024_3436073 crossref_primary_10_3390_jmse11061221 crossref_primary_10_1016_j_displa_2023_102505 crossref_primary_10_1145_3624983 crossref_primary_10_1016_j_inffus_2024_102770 crossref_primary_10_1109_ACCESS_2020_3034275 crossref_primary_10_1007_s11045_021_00795_8 crossref_primary_10_1109_JOE_2023_3302888 crossref_primary_10_1109_TMM_2021_3115442 crossref_primary_10_1109_LSP_2022_3232035 crossref_primary_10_1109_TCSVT_2021_3115791 crossref_primary_10_1117_1_JEI_31_6_063017 crossref_primary_10_1016_j_optlastec_2025_112545 crossref_primary_10_1177_17298806231199845 crossref_primary_10_3390_rs15010039 crossref_primary_10_1364_AO_456368 crossref_primary_10_1016_j_asoc_2024_112000 crossref_primary_10_1109_TIP_2019_2955241 crossref_primary_10_3390_electronics13142817 crossref_primary_10_1016_j_engappai_2024_108411 crossref_primary_10_1049_ipr2_12702 crossref_primary_10_1016_j_optlaseng_2025_108865 crossref_primary_10_1109_JOE_2023_3317903 crossref_primary_10_1080_13682199_2023_2239012 crossref_primary_10_1142_S0218213023500501 crossref_primary_10_1007_s00371_024_03611_z crossref_primary_10_3788_LOP222442 crossref_primary_10_1109_LSP_2020_3042126 crossref_primary_10_1016_j_engappai_2024_108884 crossref_primary_10_1016_j_jvcir_2022_103587 crossref_primary_10_1007_s00138_023_01384_4 crossref_primary_10_3390_jmse12081383 crossref_primary_10_1109_TIP_2022_3216208 crossref_primary_10_1109_TPAMI_2022_3226276 crossref_primary_10_3390_jmse11030604 |
Cites_doi | 10.1109/TPAMI.2018.2819173 10.1109/TIP.2017.2787612 10.1109/TIP.2016.2612882 10.1109/TIP.2011.2179666 10.1109/JOE.2015.2469915 10.1016/j.patcog.2018.08.018 10.1109/LSP.2018.2792050 10.1016/j.patcog.2006.05.036 10.1016/j.patcog.2017.10.013 10.1109/TIP.2018.2887029 10.1016/j.patcog.2019.01.006 10.1016/j.jvcir.2014.11.006 10.1016/j.patcog.2016.06.008 10.1016/j.patcog.2018.08.015 10.1016/j.patcog.2016.07.026 10.1109/TPAMI.2010.168 10.1109/TIP.2017.2663846 10.1109/TIP.2015.2491020 10.1109/TIP.2017.2759252 10.1016/j.patcog.2010.02.007 10.1117/1.JEI.24.3.033023 10.1109/TIP.2003.819861 10.1016/j.patrec.2017.05.023 10.1109/MCG.2016.26 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2019.107038 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
ExternalDocumentID | 10_1016_j_patcog_2019_107038 S0031320319303401 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-a4865767c8f043a68a18ed2d3c7a49b1bf33aca6e2980168d1ea98a20a2c00613 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Tue Jul 01 02:36:30 EDT 2025 Thu Apr 24 23:00:08 EDT 2025 Fri Feb 23 02:25:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Underwater image synthesis Pattern recognition Underwater image and video enhancement and restoration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-a4865767c8f043a68a18ed2d3c7a49b1bf33aca6e2980168d1ea98a20a2c00613 |
ORCID | 0000-0003-2609-2460 |
ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2019_107038 crossref_primary_10_1016_j_patcog_2019_107038 elsevier_sciencedirect_doi_10_1016_j_patcog_2019_107038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lore, Akintayo, Sarkar (bib0003) 2017; 61 Ancuti, Ancuti (bib0014) 2012 Li, Guo, Guo, Cong, Gong (bib0015) 2017; 94 Wang, Xu, Shen, Zhu (bib0004) 2018 Yang, Yan, Lu, Jia, Xie, Gao (bib0005) 2019; 86 Wang, Guo, Cheng, Borji (bib0034) 2018 Zhou, Yuan (bib0035) 2019; 86 Li, Cong, Hou, Zhang, Qian, Kwong (bib0036) 2019 Li, Guo (bib0013) 2015; 24 Li, Guo, Chen, Tang, Pang, Wang (bib0024) 2016 Huang, He, Fan, Zhang (bib0031) 2010; 43 Galdran, Pardo, Picn, Alvarez-Gila (bib0021) 2015; 26 Yang, Sowmya (bib0039) 2015; 24 Shen, Xu, Kautz, Yang (bib0030) 2018 Li, Guo, Guo, Han, Fu, Cong (bib0029) 2019 Berman, Treibitz, Avidan (bib0009) 2017 Guo, Li, Guo, Cong, Fu, Han (bib0007) 2019; 28 Li, Skinner, Eustice, Roberson (bib0027) 2017; 3 Sheinin, Schechner (bib0028) 2017 Guo, Li, Zhuang (bib0017) 2019 Wang, Shen (bib0010) 2018; 27 Gu, Wang, Kuen, Ma, Shahroudy, Shuai, Liu, Wang, Cai, Chen (bib0012) 2018; 77 Peng, Cosman (bib0026) 2017; 26 Lopes, de Aguiar, Souza, Oliveira-Santos (bib0032) 2017; 61 Song, Wang, Zhao, Lam (bib0011) 2018 Chiang, Chen (bib0020) 2012; 21 Huang, Liu, van der Matten, Weinberger (bib0033) 2017 Ancuti, Ancuti, Vleeschouwer (bib0018) 2018; 27 Akkaynak, Treibitz (bib0001) 2018 He, Sun, Tang (bib0023) 2011; 33 Chikkerur, Cartwright, Govindaraju (bib0002) 2007; 40 Li, Guo, Cong, Pang, Wang (bib0025) 2016; 25 Silberman, Hoiem, Kohli, Fergus (bib0037) 2012 Drews, Nascimento, Botelho, Campos (bib0022) 2016; 36 Li, Guo, Guo (bib0016) 2018; 25 Wu, Shen, Hengel (bib0008) 2019; 90 Wang, Bovik, Sherikh, Simoncelli (bib0038) 2004; 13 Wang, Shen, Porikli, Yang (bib0006) 2019; 41 Li, Guo, Ren, Cong, Hou, Kwong (bib0019) 2019 Panetta, Gao, Agaian (bib0040) 2016; 41 Peng (10.1016/j.patcog.2019.107038_bib0026) 2017; 26 Li (10.1016/j.patcog.2019.107038_bib0025) 2016; 25 Yang (10.1016/j.patcog.2019.107038_bib0005) 2019; 86 Li (10.1016/j.patcog.2019.107038_bib0027) 2017; 3 Huang (10.1016/j.patcog.2019.107038_bib0033) 2017 Galdran (10.1016/j.patcog.2019.107038_bib0021) 2015; 26 Huang (10.1016/j.patcog.2019.107038_bib0031) 2010; 43 Li (10.1016/j.patcog.2019.107038_sbref0019) 2019 Wang (10.1016/j.patcog.2019.107038_bib0038) 2004; 13 Ancuti (10.1016/j.patcog.2019.107038_bib0014) 2012 Wu (10.1016/j.patcog.2019.107038_bib0008) 2019; 90 Li (10.1016/j.patcog.2019.107038_bib0016) 2018; 25 Drews (10.1016/j.patcog.2019.107038_bib0022) 2016; 36 Silberman (10.1016/j.patcog.2019.107038_bib0037) 2012 Berman (10.1016/j.patcog.2019.107038_bib0009) 2017 Sheinin (10.1016/j.patcog.2019.107038_bib0028) 2017 Lore (10.1016/j.patcog.2019.107038_bib0003) 2017; 61 Song (10.1016/j.patcog.2019.107038_bib0011) 2018 Wang (10.1016/j.patcog.2019.107038_bib0006) 2019; 41 He (10.1016/j.patcog.2019.107038_bib0023) 2011; 33 Li (10.1016/j.patcog.2019.107038_bib0015) 2017; 94 Lopes (10.1016/j.patcog.2019.107038_bib0032) 2017; 61 Li (10.1016/j.patcog.2019.107038_bib0036) 2019 Li (10.1016/j.patcog.2019.107038_bib0024) 2016 Panetta (10.1016/j.patcog.2019.107038_bib0040) 2016; 41 Ancuti (10.1016/j.patcog.2019.107038_bib0018) 2018; 27 Chiang (10.1016/j.patcog.2019.107038_bib0020) 2012; 21 Li (10.1016/j.patcog.2019.107038_bib0029) 2019 Chikkerur (10.1016/j.patcog.2019.107038_bib0002) 2007; 40 Wang (10.1016/j.patcog.2019.107038_bib0004) 2018 Gu (10.1016/j.patcog.2019.107038_bib0012) 2018; 77 Zhou (10.1016/j.patcog.2019.107038_bib0035) 2019; 86 Guo (10.1016/j.patcog.2019.107038_bib0017) 2019 Wang (10.1016/j.patcog.2019.107038_bib0010) 2018; 27 Wang (10.1016/j.patcog.2019.107038_bib0034) 2018 Li (10.1016/j.patcog.2019.107038_bib0013) 2015; 24 Shen (10.1016/j.patcog.2019.107038_bib0030) 2018 Yang (10.1016/j.patcog.2019.107038_bib0039) 2015; 24 Akkaynak (10.1016/j.patcog.2019.107038_bib0001) 2018 Guo (10.1016/j.patcog.2019.107038_bib0007) 2019; 28 |
References_xml | – start-page: 6723 year: 2018 end-page: 6732 ident: bib0001 article-title: A revised underwater image formation publication-title: Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR) – volume: 21 start-page: 1756 year: 2012 end-page: 1769 ident: bib0020 article-title: Underwater image enhancement by wavelength compensation and dehazing publication-title: IEEE Trans. Image Process. – start-page: 715 year: 2018 end-page: 731 ident: bib0011 article-title: Pyramid dilated deeper convlstm for video salient object detection publication-title: Proc. Eur. Conf. Comput. Vis. (ECCV) – start-page: 1993 year: 2016 end-page: 1997 ident: bib0024 article-title: Underwater image restoration based on minimum information loss principle and optical properties of underwater imaging publication-title: Proc. IEEE Int. Conf. Image Process. (ICIP) – start-page: 4271 year: 2018 end-page: 4280 ident: bib0004 article-title: Attentive fashion grammar network for fashion landmark detection and clothing category classification publication-title: Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR) – start-page: 746 year: 2012 end-page: 760 ident: bib0037 article-title: Indoor segmentation and support inference from rgbd images publication-title: Proc. Eur. Conf. Comput. Vis. (ECCV) – volume: 94 start-page: 62 year: 2017 end-page: 67 ident: bib0015 article-title: A hybrid method for underwater image correction publication-title: Pattern Recognit. Lett. – volume: 28 start-page: 2545 year: 2019 end-page: 2557 ident: bib0007 article-title: Hierarchical features driven residual learning for depth map super-resolution publication-title: IEEE Trans. Image Process. – volume: 24 year: 2015 ident: bib0013 article-title: Underwater image enhancement by dehazing and color correction publication-title: J. Electron. Imag. – start-page: 4700 year: 2017 end-page: 4708 ident: bib0033 article-title: Densely connected convolutional networks publication-title: Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR) – volume: 61 start-page: 610 year: 2017 end-page: 628 ident: bib0032 article-title: Facial expression recognition with convolutional neural networks: croping with few data and the training sample order publication-title: Pattern Recognit. – start-page: 1 year: 2019 ident: bib0036 article-title: Nested network with two-stream pyramid for salient object detection in optical remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 26 start-page: 132 year: 2015 end-page: 145 ident: bib0021 article-title: Automatic red-channel underwater image restoration publication-title: Vis. Commun. Image Rep. – volume: 40 start-page: 198 year: 2007 end-page: 211 ident: bib0002 article-title: Fingerprint enhancement using stft analysis publication-title: Pattern Recognit. – volume: 27 start-page: 2368 year: 2018 end-page: 2378 ident: bib0010 article-title: Deep visual attention prediction publication-title: IEEE Trans. Image Process. – volume: 77 start-page: 354 year: 2018 end-page: 377 ident: bib0012 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognit. – start-page: 1 year: 2019 ident: bib0029 article-title: Pdr-net: perception-inspired single image dehazing network with refinement publication-title: IEEE Trans. Multimed. – volume: 86 start-page: 143 year: 2019 end-page: 155 ident: bib0005 article-title: Attentive driven person re-identification publication-title: Pattern Recognit. – volume: 86 start-page: 99 year: 2019 end-page: 111 ident: bib0035 article-title: Multi-label learning of part detectors for occluded pedestrian detection publication-title: Pattern Recognit. – volume: 27 start-page: 379 year: 2018 end-page: 393 ident: bib0018 article-title: Color balance and fusion for underwater image enhancement publication-title: IEEE Trans. Image Process. – start-page: 4894 year: 2018 end-page: 4903 ident: bib0034 article-title: Revisiting video saliency: a large-scale benchmark and a new model publication-title: Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR) – start-page: 8260 year: 2018 end-page: 8269 ident: bib0030 article-title: Deep semantic face deblurring publication-title: Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR) – volume: 90 start-page: 119 year: 2019 end-page: 133 ident: bib0008 article-title: Wider or deeper: revisiting the resnet model for visual recognition publication-title: Pattern Recognit. – volume: 3 start-page: 387 year: 2017 end-page: 394 ident: bib0027 article-title: Watergan: unsupervised generative network to enable real-time color correction of monocular underwater images publication-title: IEEE Robot. Autom. Lett. – volume: 26 start-page: 1579 year: 2017 end-page: 1594 ident: bib0026 article-title: Underwater image restoration based on image blurriness and light absorption publication-title: IEEE Trans. Image Process. – volume: 41 start-page: 541 year: 2016 end-page: 551 ident: bib0040 article-title: Human-visual-system-inspired underwater image quality measures publication-title: IEEE J. Ocean. Eng. – volume: 25 start-page: 323 year: 2018 end-page: 327 ident: bib0016 article-title: Emerging from water: underwater image color correction based on weakly supervised color transfer publication-title: IEEE Signal Process. Lett. – start-page: 1 year: 2019 end-page: 9 ident: bib0017 article-title: Underwater image enhancement using a multiscale dense generative adversarial network publication-title: IEEE J. Ocean. Engineer. – volume: 36 start-page: 24 year: 2016 end-page: 35 ident: bib0022 article-title: Underwater depth estimation and image restoration based on single images publication-title: IEEE Comput. Graph. Appl. – volume: 61 start-page: 650 year: 2017 end-page: 662 ident: bib0003 article-title: Llnet: a deep autoencoder approach to natural low-light image enhancement publication-title: Pattern Recognit. – start-page: 1 year: 2017 end-page: 11 ident: bib0009 article-title: Diving into haze-lines: color restoration of underwater images publication-title: Proc. Brit. Mach. Vis. Conf. (BMVC) – volume: 25 start-page: 5664 year: 2016 end-page: 5677 ident: bib0025 article-title: Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior publication-title: IEEE Trans. Image Process. – volume: 41 start-page: 985 year: 2019 end-page: 998 ident: bib0006 article-title: Semi-supervised video object segmentation with super-trajectories publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1436 year: 2017 end-page: 1443 ident: bib0028 article-title: The next best underwater view publication-title: Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR) – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: bib0038 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – start-page: 81 year: 2012 end-page: 88 ident: bib0014 article-title: Enhancing underwater images and videos by fusion publication-title: Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR) – volume: 43 start-page: 2532 year: 2010 end-page: 2543 ident: bib0031 article-title: Super-resolution of human face image using canonical correlation analysis publication-title: Pattern Recognit. – volume: 33 start-page: 2341 year: 2011 end-page: 2343 ident: bib0023 article-title: Single image haze removal using dark channel prior publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 24 start-page: 6062 year: 2015 end-page: 6071 ident: bib0039 article-title: An underwater color image quality evaluation metric publication-title: IEEE Trans. Image Process. – year: 2019 ident: bib0019 publication-title: An underwater image enhancement benchmark dataset and beyond – volume: 41 start-page: 985 issue: 4 year: 2019 ident: 10.1016/j.patcog.2019.107038_bib0006 article-title: Semi-supervised video object segmentation with super-trajectories publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2819173 – volume: 27 start-page: 2368 issue: 5 year: 2018 ident: 10.1016/j.patcog.2019.107038_bib0010 article-title: Deep visual attention prediction publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2787612 – volume: 25 start-page: 5664 issue: 12 year: 2016 ident: 10.1016/j.patcog.2019.107038_bib0025 article-title: Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2612882 – start-page: 4700 year: 2017 ident: 10.1016/j.patcog.2019.107038_bib0033 article-title: Densely connected convolutional networks – start-page: 1 year: 2019 ident: 10.1016/j.patcog.2019.107038_bib0036 article-title: Nested network with two-stream pyramid for salient object detection in optical remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 21 start-page: 1756 issue: 4 year: 2012 ident: 10.1016/j.patcog.2019.107038_bib0020 article-title: Underwater image enhancement by wavelength compensation and dehazing publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2179666 – start-page: 1 year: 2017 ident: 10.1016/j.patcog.2019.107038_bib0009 article-title: Diving into haze-lines: color restoration of underwater images – volume: 41 start-page: 541 issue: 3 year: 2016 ident: 10.1016/j.patcog.2019.107038_bib0040 article-title: Human-visual-system-inspired underwater image quality measures publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2015.2469915 – volume: 86 start-page: 99 year: 2019 ident: 10.1016/j.patcog.2019.107038_bib0035 article-title: Multi-label learning of part detectors for occluded pedestrian detection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.08.018 – start-page: 715 year: 2018 ident: 10.1016/j.patcog.2019.107038_bib0011 article-title: Pyramid dilated deeper convlstm for video salient object detection – volume: 25 start-page: 323 issue: 3 year: 2018 ident: 10.1016/j.patcog.2019.107038_bib0016 article-title: Emerging from water: underwater image color correction based on weakly supervised color transfer publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2018.2792050 – volume: 40 start-page: 198 issue: 1 year: 2007 ident: 10.1016/j.patcog.2019.107038_bib0002 article-title: Fingerprint enhancement using stft analysis publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2006.05.036 – volume: 77 start-page: 354 year: 2018 ident: 10.1016/j.patcog.2019.107038_bib0012 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.10.013 – volume: 28 start-page: 2545 issue: 5 year: 2019 ident: 10.1016/j.patcog.2019.107038_bib0007 article-title: Hierarchical features driven residual learning for depth map super-resolution publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2887029 – volume: 90 start-page: 119 year: 2019 ident: 10.1016/j.patcog.2019.107038_bib0008 article-title: Wider or deeper: revisiting the resnet model for visual recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.01.006 – volume: 26 start-page: 132 year: 2015 ident: 10.1016/j.patcog.2019.107038_bib0021 article-title: Automatic red-channel underwater image restoration publication-title: Vis. Commun. Image Rep. doi: 10.1016/j.jvcir.2014.11.006 – volume: 61 start-page: 650 year: 2017 ident: 10.1016/j.patcog.2019.107038_bib0003 article-title: Llnet: a deep autoencoder approach to natural low-light image enhancement publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.06.008 – volume: 86 start-page: 143 year: 2019 ident: 10.1016/j.patcog.2019.107038_bib0005 article-title: Attentive driven person re-identification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.08.015 – start-page: 1436 year: 2017 ident: 10.1016/j.patcog.2019.107038_bib0028 article-title: The next best underwater view – year: 2019 ident: 10.1016/j.patcog.2019.107038_sbref0019 publication-title: An underwater image enhancement benchmark dataset and beyond – volume: 61 start-page: 610 issue: 1 year: 2017 ident: 10.1016/j.patcog.2019.107038_bib0032 article-title: Facial expression recognition with convolutional neural networks: croping with few data and the training sample order publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.07.026 – start-page: 4894 year: 2018 ident: 10.1016/j.patcog.2019.107038_bib0034 article-title: Revisiting video saliency: a large-scale benchmark and a new model – start-page: 1 year: 2019 ident: 10.1016/j.patcog.2019.107038_bib0017 article-title: Underwater image enhancement using a multiscale dense generative adversarial network publication-title: IEEE J. Ocean. Engineer. – volume: 33 start-page: 2341 issue: 12 year: 2011 ident: 10.1016/j.patcog.2019.107038_bib0023 article-title: Single image haze removal using dark channel prior publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.168 – volume: 3 start-page: 387 issue: 1 year: 2017 ident: 10.1016/j.patcog.2019.107038_bib0027 article-title: Watergan: unsupervised generative network to enable real-time color correction of monocular underwater images publication-title: IEEE Robot. Autom. Lett. – start-page: 6723 year: 2018 ident: 10.1016/j.patcog.2019.107038_bib0001 article-title: A revised underwater image formation – start-page: 81 year: 2012 ident: 10.1016/j.patcog.2019.107038_bib0014 article-title: Enhancing underwater images and videos by fusion – start-page: 4271 year: 2018 ident: 10.1016/j.patcog.2019.107038_bib0004 article-title: Attentive fashion grammar network for fashion landmark detection and clothing category classification – volume: 26 start-page: 1579 issue: 4 year: 2017 ident: 10.1016/j.patcog.2019.107038_bib0026 article-title: Underwater image restoration based on image blurriness and light absorption publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2663846 – start-page: 746 year: 2012 ident: 10.1016/j.patcog.2019.107038_bib0037 article-title: Indoor segmentation and support inference from rgbd images – volume: 24 start-page: 6062 issue: 12 year: 2015 ident: 10.1016/j.patcog.2019.107038_bib0039 article-title: An underwater color image quality evaluation metric publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2491020 – start-page: 1993 year: 2016 ident: 10.1016/j.patcog.2019.107038_bib0024 article-title: Underwater image restoration based on minimum information loss principle and optical properties of underwater imaging – volume: 27 start-page: 379 issue: 1 year: 2018 ident: 10.1016/j.patcog.2019.107038_bib0018 article-title: Color balance and fusion for underwater image enhancement publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2759252 – volume: 43 start-page: 2532 issue: 7 year: 2010 ident: 10.1016/j.patcog.2019.107038_bib0031 article-title: Super-resolution of human face image using canonical correlation analysis publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2010.02.007 – volume: 24 issue: 3 year: 2015 ident: 10.1016/j.patcog.2019.107038_bib0013 article-title: Underwater image enhancement by dehazing and color correction publication-title: J. Electron. Imag. doi: 10.1117/1.JEI.24.3.033023 – start-page: 1 year: 2019 ident: 10.1016/j.patcog.2019.107038_bib0029 article-title: Pdr-net: perception-inspired single image dehazing network with refinement publication-title: IEEE Trans. Multimed. – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.1016/j.patcog.2019.107038_bib0038 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 94 start-page: 62 year: 2017 ident: 10.1016/j.patcog.2019.107038_bib0015 article-title: A hybrid method for underwater image correction publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2017.05.023 – volume: 36 start-page: 24 issue: 2 year: 2016 ident: 10.1016/j.patcog.2019.107038_bib0022 article-title: Underwater depth estimation and image restoration based on single images publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/MCG.2016.26 – start-page: 8260 year: 2018 ident: 10.1016/j.patcog.2019.107038_bib0030 article-title: Deep semantic face deblurring |
SSID | ssj0017142 |
Score | 2.7120047 |
Snippet | •Underwater image and video synthesis approach is desired by data-driven methods.•Underwater scene prior is helpful for underwater image and video... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107038 |
SubjectTerms | Deep learning Pattern recognition Underwater image and video enhancement and restoration Underwater image synthesis |
Title | Underwater scene prior inspired deep underwater image and video enhancement |
URI | https://dx.doi.org/10.1016/j.patcog.2019.107038 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VsLDwRpRH5YHVtImdxB6riqpQ0YlK3SLbcSAIkqhqxcZvx5dHAQmBxHrySdGX8-dzct8dwFUQpYFWNqWaaUk58wUV2O6OG-2F1mdSWxQ438_CyZzfLYJFB0atFgbLKhvurzm9YuvG0m_Q7JdZhhpfbDuIKhxHw7zScHEeYZRfv2_KPHC-d90xnHkUV7fyuarGq3R0VzxigZd0Jhf84ufj6cuRM96H3SZXJMP6cQ6gY_ND2GvnMJBmWx7BtBpe9KbQiM2ZLCmXWbEkWY6_0W1CEmtLsv5clL06FiEqTwiq8Api8yd8-fih8Bjm45uH0YQ2QxKocdn-iiouQndniIxIB5ypUChP2MRPmIkUl9rTKWPKKIe7dIdRKBLPKimUP1C-wfyFncBWXuT2FEgkI81YIFLuWZ5aLpUvE8-wQIci0Ex2gbXYxKbpII6DLF7itlTsOa4RjRHRuEa0C3TjVdYdNP5YH7Wwx98iIXYk_6vn2b89z2HHx3t0VY19AVur5dpeumRjpXtVNPVge3g7ncw-AMnz07s |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMsDCG1GeHmAMENtJ7IEB8VChwFQktmAnDgRBGpVWFQt_ij-IL48CEgIJidWyI-fL5btz8t0dwLYXJJ5WJnE009LhjApHYLk7HmnXN5RJbTDB-fLKb1_z8xvvpgFvdS4Myior7i85vWDramSvQnMvT1PM8cWyg5iFY2nYHhMqZWXHvIzsue354OzYPuQdSk9Pukdtp2ot4EQ2Rh44igvfRtpBJJJ9zpQvlCtMTGMWBYpL7eqEMRUpu1tpKdwXsWuUFIruKxqh12f2uhMwyS1dYNuE3dexrgQbipclypnr4PbqfL1CVJZbfu3doaJM2iH7tonv_eEnH3c6BzNVcEoOy_ufh4bJFmC2bvxAKh5YhE7RLWmkcBCrQRmS99Nen6QZ_rc3MYmNycnwY1L6ZGmLqCwmmPbXIya7R2vDL5NLcP0v0C1DM-tlZgVIIAPNmCcS7hqeGC4VlbEbMU_7wtNMtoDV2IRRVbIcO2c8hrU27SEsEQ0R0bBEtAXOeFVeluz4ZX5Qwx5-Mb3QepUfV67-eeUWTLW7lxfhxdlVZw2mKR7iCyn4OjQH_aHZsJHOQG8WlkXg9r9N-R0LMg6s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Underwater+scene+prior+inspired+deep+underwater+image+and+video+enhancement&rft.jtitle=Pattern+recognition&rft.au=Li%2C+Chongyi&rft.au=Anwar%2C+Saeed&rft.au=Porikli%2C+Fatih&rft.date=2020-02-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=98&rft_id=info:doi/10.1016%2Fj.patcog.2019.107038&rft.externalDocID=S0031320319303401 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |