Ab initio studies of the effects of Mn and intrinsic vacancy on the electronic, optical, water splitting properties of hematite Fe2O3 monolayer
Hematite (Fe2O3) is a prevalent mineral known for its utility as an optoelectronic and photocatalytic material. It boasts abundant reserves, cost-effectiveness, and widespread use in optoelectronic and photocatalytic applications. Recently, the discovery of Fe2O3 monolayers has expanded its potentia...
Saved in:
Published in | Optical materials Vol. 148; p. 114898 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0925-3467 |
DOI | 10.1016/j.optmat.2024.114898 |
Cover
Loading…
Abstract | Hematite (Fe2O3) is a prevalent mineral known for its utility as an optoelectronic and photocatalytic material. It boasts abundant reserves, cost-effectiveness, and widespread use in optoelectronic and photocatalytic applications. Recently, the discovery of Fe2O3 monolayers has expanded its potential as a promising material in the same domains. The foundational attributes for its applications are rooted in its electronic and optical properties. In this study, we used density functional theory, specifically the Meta-GGA + U approach, to explore the electronic and optical properties of monolayer Fe2O3 doped with Mn and subject to Mn adsorption. Additionally, we examine the properties of Mn-doped Fe2O3 monolayers containing intrinsic vacancies. Our computational analysis reveals that the incorporation of Mn as a dopant, along with adsorption configuration, leads to a reduction in the band gap of the Fe2O3 monolayer. This effect is further observed in Mn-doped Fe2O3 monolayers containing intrinsic vacancies. Notably, the introduction of intrinsic vacancies involving both Fe and O contributes to a decrease in the band gap, concurrently enhancing the optical characteristics of the Fe2O3 monolayer. Remarkably, these alterations induce energy bands and intrinsic vacancies that improve optical properties within the visible and near-UV regions. Our investigation also proposes a potential application (water splitting) for the Fe2O3 monolayer. Through our comprehensive exploration, we not only underscore the promising prospects of Mn-doped and -adsorbed Fe2O3 monolayers in future applications but also catalyze further research endeavors in this domain.
•SCAN Meta-GGA plus U method was used to guarantee the accuracy and efficiency of this study.•Mn and intrinsic vacancy were used to modulate the electronic and optical properties in Fe2O3 monolayer.•Mn-adsorbed Fe2O3 and (Fe,Mn)2O3 monolayer with O vacancy performs better in the solar energy region.•Mn modified Fe2O3 monolayer can serve as a potential platform for photoelectric devices, photocatalyst. |
---|---|
AbstractList | Hematite (Fe2O3) is a prevalent mineral known for its utility as an optoelectronic and photocatalytic material. It boasts abundant reserves, cost-effectiveness, and widespread use in optoelectronic and photocatalytic applications. Recently, the discovery of Fe2O3 monolayers has expanded its potential as a promising material in the same domains. The foundational attributes for its applications are rooted in its electronic and optical properties. In this study, we used density functional theory, specifically the Meta-GGA + U approach, to explore the electronic and optical properties of monolayer Fe2O3 doped with Mn and subject to Mn adsorption. Additionally, we examine the properties of Mn-doped Fe2O3 monolayers containing intrinsic vacancies. Our computational analysis reveals that the incorporation of Mn as a dopant, along with adsorption configuration, leads to a reduction in the band gap of the Fe2O3 monolayer. This effect is further observed in Mn-doped Fe2O3 monolayers containing intrinsic vacancies. Notably, the introduction of intrinsic vacancies involving both Fe and O contributes to a decrease in the band gap, concurrently enhancing the optical characteristics of the Fe2O3 monolayer. Remarkably, these alterations induce energy bands and intrinsic vacancies that improve optical properties within the visible and near-UV regions. Our investigation also proposes a potential application (water splitting) for the Fe2O3 monolayer. Through our comprehensive exploration, we not only underscore the promising prospects of Mn-doped and -adsorbed Fe2O3 monolayers in future applications but also catalyze further research endeavors in this domain.
•SCAN Meta-GGA plus U method was used to guarantee the accuracy and efficiency of this study.•Mn and intrinsic vacancy were used to modulate the electronic and optical properties in Fe2O3 monolayer.•Mn-adsorbed Fe2O3 and (Fe,Mn)2O3 monolayer with O vacancy performs better in the solar energy region.•Mn modified Fe2O3 monolayer can serve as a potential platform for photoelectric devices, photocatalyst. |
ArticleNumber | 114898 |
Author | Pan, Zilong Tian, Bowen Ren, Jianfei Zhang, Jiying Su, Yanan Wang, Qingbo Wang, Shan |
Author_xml | – sequence: 1 givenname: Shan surname: Wang fullname: Wang, Shan organization: School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan, 430074, China – sequence: 2 givenname: Jianfei surname: Ren fullname: Ren, Jianfei organization: School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan, 430074, China – sequence: 3 givenname: Zilong surname: Pan fullname: Pan, Zilong organization: School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan, 430074, China – sequence: 4 givenname: Yanan surname: Su fullname: Su, Yanan organization: School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan, 430074, China – sequence: 5 givenname: Bowen surname: Tian fullname: Tian, Bowen organization: School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan, 430074, China – sequence: 6 givenname: Jiying surname: Zhang fullname: Zhang, Jiying organization: State Key Laboratory of Precision Blasting, Jianghan University, Wuhan, 430056, China – sequence: 7 givenname: Qingbo surname: Wang fullname: Wang, Qingbo email: qingbowang@cug.edu.cn organization: School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan, 430074, China |
BookMark | eNqFkEtOxDAQRL0Aie8NWPgAzOBP4iQskBDiJ4HYwNpynDb0KGNHtgHNKbgyhrBiAatWS1XVXW-PbPnggZAjzpaccXWyWoYpr01eCiaqJedV27VbZJd1ol7ISjU7ZC-lFWNM1Ertko_znqLHjIGm_DogJBoczS9AwTmw-Xu999T4oehyRJ_Q0jdjjbcbGvwsHYsyBo_2mJbraM14TN9NhkjTNGLO6J_pFMMEMf9ceIHyI2agVyAeJF0HH0azgXhAtp0ZExz-zH3ydHX5eHGzuHu4vr04v1tYyVReGNkDN0PXqVZYVYlOVqWvUFa03LWW951g0tTOqGZoODS1bKTojVOuHlzf9XKfVHOujSGlCE5PEdcmbjRn-gukXukZpP4CqWeQxXb6y2YxlyKhoDE4_mc-m81Qir0hRJ0sgrcwYCwA9RDw74BPPT2YOA |
CitedBy_id | crossref_primary_10_1088_1402_4896_ad7dba |
Cites_doi | 10.1021/jp9003196 10.1016/j.jallcom.2022.165896 10.1016/j.fuel.2021.121302 10.1038/s41467-021-23536-8 10.1029/2008GB003376 10.1038/s41565-018-0134-y 10.1103/PhysRevB.39.3168 10.1016/j.apsusc.2019.143845 10.1038/s41467-020-20510-8 10.1103/PhysRevB.44.8301 10.1021/acssensors.8b01077 10.1021/acsami.9b00969 10.1021/acs.jpcc.9b01550 10.1021/acsami.6b04378 10.1021/acssuschemeng.8b04454 10.1038/nature11458 10.1016/j.eneco.2022.106060 10.1039/D3SC00180F 10.1007/s11356-022-23026-4 10.1126/science.1157189 10.1002/solr.202000403 10.1039/C7TC02287E 10.1021/acsaem.1c03543 10.1021/acs.nanolett.6b05143 10.1002/adfm.202108977 10.1021/acsami.2c00175 10.1016/j.snb.2022.133088 10.1103/PhysRevLett.69.1272 10.1103/PhysRevB.80.195314 10.1007/s10957-014-0528-4 10.1039/C8NH00154E 10.1039/C9CP02792K 10.1088/1361-6463/ac6135 10.1016/j.optmat.2021.111707 10.1039/C5NH00098J 10.1016/j.ijhydene.2021.10.240 10.1016/j.physrep.2019.12.006 10.1016/j.optmat.2023.114151 10.1016/j.apcatb.2021.121000 10.1016/j.apcata.2015.03.023 10.1016/j.jenvman.2023.117706 10.1021/acs.jctc.7b00365 10.1016/j.commatsci.2019.02.006 10.1016/j.ijhydene.2022.03.208 10.1016/j.optmat.2022.113418 10.1016/j.jallcom.2022.165787 10.1002/advs.202000058 10.1016/j.carbon.2020.06.082 10.1021/acs.jpcc.6b00374 10.1002/adma.201901996 10.1016/j.renene.2018.10.067 10.1016/j.optmat.2020.110727 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.optmat.2024.114898 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
ExternalDocumentID | 10_1016_j_optmat_2024_114898 S0925346724000752 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABJNI ABMAC ABNEU ABTAH ABXDB ABXRA ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFFNX AFJKZ AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZY4 ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-a3be1ad99682c64293420226c281f8c1b9203a5fa67d71e753732baf6f5dfb9b3 |
IEDL.DBID | .~1 |
ISSN | 0925-3467 |
IngestDate | Tue Jul 01 03:50:20 EDT 2025 Thu Apr 24 23:11:51 EDT 2025 Sat Jan 04 15:43:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electronic property Ab initio study Optical property Fe2O3 monolayer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-a3be1ad99682c64293420226c281f8c1b9203a5fa67d71e753732baf6f5dfb9b3 |
ParticipantIDs | crossref_primary_10_1016_j_optmat_2024_114898 crossref_citationtrail_10_1016_j_optmat_2024_114898 elsevier_sciencedirect_doi_10_1016_j_optmat_2024_114898 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationTitle | Optical materials |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Tian, Yao, Wu, Jiang (bib8) 2019; 4 Jiang, Zhou, Yang, Wang, Yu, Chen, Zhao, Yuan, Chu, Li (bib9) 2022; 32 Koshi, Murthy, Chakraborty, Lee, Bhattacharjee (bib43) 2022; 5 Li, Ma, Jiang, Yao, Deng, Qiu, Shi, Zhou, Huang (bib5) 2022; 14 Tang, Liu (bib42) 2016; 120 Tahir, Zahid, Jillani, Tahir, Yaseen, Abbas, Abdul Shakoor, Hussain, Shahid (bib33) 2023; 337 Su, Wang, Wang, Hao, Fang, Wan, Chen, He, Zhang, Wang (bib30) 2023; 149 Wang, Lv, Dong, Wu, Cheng, Scott, Xu, Hao, Du (bib47) 2019; 7 Froyen (bib40) 1989; 39 Wang, Zhao, Lin, Yao, He, Ran, Guo, Li (bib4) 2022; 920 Tamirat, Rick, Dubale, Su, Hwang (bib13) 2016; 1 Jing, Ma, Li, Heine (bib53) 2017; 17 Buda, Kohanoff, Parrinello (bib48) 1992; 69 Zhuang, Yan, Wen, Zhuang, Yu (bib26) 2021; 5 Jiang, Kuklin, Baev, Ge, Ågren, Zhang, Prasad (bib28) 2020; 848 Wan, Hu, Liu, Zhang, Chen, Zhang, Ma (bib18) 2023; 14 Rauch, Pacyna (bib11) 2009; 23 Xu, Wang, Zheng, Wu, Xu (bib1) 2019; 11 Mishra, Chun (bib17) 2015; 498 Sakkaki, Saghai, Darvish, Khatir (bib25) 2021; 122 Segall, Lindan, Probert, Pickard, Hasnip, Clark, Payne (bib37) 2002; 14 Eggleston (bib12) 2008; 320 Begum, Gruner, Pentcheva (bib36) 2019; 3 Peiponen, Vartiainen (bib49) 1991; 44 Sheikh, Nag (bib32) 2019; 123 Liu, Lusk, Ely (bib54) 2009; 113 Nair, Gummaluri, Matham, Vijayan (bib34) 2022; 55 Carvalho, Piropo, Lima, Lalic (bib31) 2023; 143 Kharadi, Mittal, Saha (bib22) 2023; 136 Rashid, Talik, Chiu, Sim, Nakajima, Pan, Yang, Rahman (bib51) 2019; 498 Bafekry, Yagmurcukardes, Shahrokhi, Ghergherehchi (bib24) 2020; 168 Novoselov, Fal′ko, Colombo, Gellert, Schwab, Kim (bib23) 2012; 490 Wang, Gao, Li, Zhang, Niu, Zheng (bib10) 2016; 8 Lee, Yoon, Kim (bib27) 2018; 3 Zhang, Kong (bib2) 2022; 111 Xue, Zhang, Shen, Li, Liu, Jia, Guan (bib16) 2022; 918 Zhang, Li, Chen, Zhao, Huang, Ouyang (bib35) 2021; 112 Arsad, Hannan, Al-Shetwi, Mansur, Muttaqi, Dong, Blaabjerg (bib6) 2022; 47 Kou, Dai (bib38) 2015; 165 Yi, Hu, Su, Islam, Miao, Liu (bib46) 2017; 5 Raizada, Nguyen, Patial, Singh, Bajpai, Nguyen, Nguyen, Nguyen, Khan, Rangabhashiyam, Kim, Le (bib57) 2021; 303 Sheetz, Ponomareva, Richter, Andriotis, Menon (bib44) 2009; 80 Gao, Shen, Ma, Wu, Zhou (bib52) 2019; 21 Li, Wan, Triana, Chen, Zhao, Mavrokefalos, Patzke (bib14) 2021; 12 Wang, Wang, Pei, Li, Yang, Yu, Dong (bib15) 2023; 378 Li, Wang, Wang, Yuan, Song, Lou, Liu, Huang, Liu, Lei, Yin, Wang (bib45) 2021; 12 Song, Yu, Tang, Yang, Lu (bib56) 2022; 12 Bhuiyan, Kahouli, Hamaguchi, Zhang (bib3) 2023; 30 Tan, Jiang, Wang, Yao, Zhang (bib20) 2020; 7 Karayel, Javani, Dincer (bib7) 2022; 47 Rani, Ravi, Yuvakkumar, Ravichandran, Ameen, AlNadhary (bib19) 2019; 133 Tang, Meng, Deng, Bao (bib21) 2019; 31 Wang, Yu, Rösner, Katsnelson, Lin, Yuan (bib50) 2022; 12 Puthirath Balan, Radhakrishnan, Woellner, Sinha, Deng, Reyes, Rao, Paulose, Neupane, Apte, Kochat, Vajtai, Harutyunyan, Chu, Costin, Galvao, Martí, van Aken, Varghese, Tiwary, Malie Madom Ramaswamy Iyer, Ajayan (bib29) 2018; 13 Choudhary, Tavazza (bib41) 2019; 161 Li, Chu, Wang, Dang, Liu, Ma, Li, Wang (bib55) 2022; 304 Hostaš, Řezáč (bib39) 2017; 13 Buda (10.1016/j.optmat.2024.114898_bib48) 1992; 69 Wang (10.1016/j.optmat.2024.114898_bib10) 2016; 8 Rauch (10.1016/j.optmat.2024.114898_bib11) 2009; 23 Rani (10.1016/j.optmat.2024.114898_bib19) 2019; 133 Wang (10.1016/j.optmat.2024.114898_bib47) 2019; 7 Bafekry (10.1016/j.optmat.2024.114898_bib24) 2020; 168 Xu (10.1016/j.optmat.2024.114898_bib1) 2019; 11 Rashid (10.1016/j.optmat.2024.114898_bib51) 2019; 498 Novoselov (10.1016/j.optmat.2024.114898_bib23) 2012; 490 Zhuang (10.1016/j.optmat.2024.114898_bib26) 2021; 5 Tan (10.1016/j.optmat.2024.114898_bib20) 2020; 7 Sakkaki (10.1016/j.optmat.2024.114898_bib25) 2021; 122 Wang (10.1016/j.optmat.2024.114898_bib15) 2023; 378 Jiang (10.1016/j.optmat.2024.114898_bib9) 2022; 32 Karayel (10.1016/j.optmat.2024.114898_bib7) 2022; 47 Carvalho (10.1016/j.optmat.2024.114898_bib31) 2023; 143 Jing (10.1016/j.optmat.2024.114898_bib53) 2017; 17 Tamirat (10.1016/j.optmat.2024.114898_bib13) 2016; 1 Zhang (10.1016/j.optmat.2024.114898_bib2) 2022; 111 Nair (10.1016/j.optmat.2024.114898_bib34) 2022; 55 Arsad (10.1016/j.optmat.2024.114898_bib6) 2022; 47 Froyen (10.1016/j.optmat.2024.114898_bib40) 1989; 39 Kou (10.1016/j.optmat.2024.114898_bib38) 2015; 165 Li (10.1016/j.optmat.2024.114898_bib55) 2022; 304 Segall (10.1016/j.optmat.2024.114898_bib37) 2002; 14 Eggleston (10.1016/j.optmat.2024.114898_bib12) 2008; 320 Mishra (10.1016/j.optmat.2024.114898_bib17) 2015; 498 Bhuiyan (10.1016/j.optmat.2024.114898_bib3) 2023; 30 Hostaš (10.1016/j.optmat.2024.114898_bib39) 2017; 13 Lee (10.1016/j.optmat.2024.114898_bib27) 2018; 3 Raizada (10.1016/j.optmat.2024.114898_bib57) 2021; 303 Liu (10.1016/j.optmat.2024.114898_bib54) 2009; 113 Kharadi (10.1016/j.optmat.2024.114898_bib22) 2023; 136 Tang (10.1016/j.optmat.2024.114898_bib21) 2019; 31 Wan (10.1016/j.optmat.2024.114898_bib18) 2023; 14 Sheikh (10.1016/j.optmat.2024.114898_bib32) 2019; 123 Zhang (10.1016/j.optmat.2024.114898_bib35) 2021; 112 Tahir (10.1016/j.optmat.2024.114898_bib33) 2023; 337 Choudhary (10.1016/j.optmat.2024.114898_bib41) 2019; 161 Li (10.1016/j.optmat.2024.114898_bib45) 2021; 12 Song (10.1016/j.optmat.2024.114898_bib56) 2022; 12 Sheetz (10.1016/j.optmat.2024.114898_bib44) 2009; 80 Yi (10.1016/j.optmat.2024.114898_bib46) 2017; 5 Wang (10.1016/j.optmat.2024.114898_bib4) 2022; 920 Tang (10.1016/j.optmat.2024.114898_bib42) 2016; 120 Jiang (10.1016/j.optmat.2024.114898_bib28) 2020; 848 Begum (10.1016/j.optmat.2024.114898_bib36) 2019; 3 Koshi (10.1016/j.optmat.2024.114898_bib43) 2022; 5 Wang (10.1016/j.optmat.2024.114898_bib50) 2022; 12 Tian (10.1016/j.optmat.2024.114898_bib8) 2019; 4 Li (10.1016/j.optmat.2024.114898_bib14) 2021; 12 Xue (10.1016/j.optmat.2024.114898_bib16) 2022; 918 Peiponen (10.1016/j.optmat.2024.114898_bib49) 1991; 44 Gao (10.1016/j.optmat.2024.114898_bib52) 2019; 21 Li (10.1016/j.optmat.2024.114898_bib5) 2022; 14 Puthirath Balan (10.1016/j.optmat.2024.114898_bib29) 2018; 13 Su (10.1016/j.optmat.2024.114898_bib30) 2023; 149 |
References_xml | – volume: 920 year: 2022 ident: bib4 article-title: Facet-dependent photocatalytic and photoelectric properties of CQDs/TiO publication-title: J. Alloys Compd. – volume: 21 start-page: 15372 year: 2019 end-page: 15379 ident: bib52 article-title: Investigation on photocatalytic mechanism of graphitic SiC (g-SiC)/MoS publication-title: Phys. Chem. Chem. Phys. – volume: 1 start-page: 243 year: 2016 end-page: 267 ident: bib13 article-title: Using hematite for photoelectrochemical water splitting: a review of current progress and challenges publication-title: Nanoscale Horiz – volume: 47 start-page: 17285 year: 2022 end-page: 17312 ident: bib6 article-title: Hydrogen energy storage integrated hybrid renewable energy systems: a review analysis for future research directions publication-title: Int. J. Hydrogen Energy – volume: 133 start-page: 566 year: 2019 end-page: 574 ident: bib19 article-title: Sn doped alpha-Fe publication-title: Renew. Energy – volume: 136 year: 2023 ident: bib22 article-title: Structural, electronic and optical properties of fluorinated bilayer silicene publication-title: Opt. Mater. – volume: 12 start-page: 3129 year: 2021 ident: bib45 article-title: Dirac cone, flat band and saddle point in kagome magnet YMn publication-title: Nat. Commun. – volume: 7 start-page: 3010 year: 2019 end-page: 3017 ident: bib47 article-title: Boosting visible-light-driven photo-oxidation of BiOCl by promoted charge separation via vacancy engineering publication-title: ACS Sustain. Chem. Eng. – volume: 31 year: 2019 ident: bib21 article-title: Confinement catalysis with 2D materials for energy conversion publication-title: Adv. Mater. – volume: 14 start-page: 2717 year: 2002 end-page: 2744 ident: bib37 article-title: First-principles simulation: ideas, illustrations and the CASTEP code publication-title: J. Phys. – volume: 39 start-page: 3168 year: 1989 end-page: 3172 ident: bib40 article-title: Brillouin-zone integration by Fourier quadrature: special points for superlattice and supercell calculations publication-title: Phys. Rev. B – volume: 5 year: 2021 ident: bib26 article-title: Two-dimensional transition metal oxides and chalcogenides for advanced photocatalysis: progress, challenges, and opportunities publication-title: Sol. RRL – volume: 14 start-page: 2776 year: 2023 end-page: 2798 ident: bib18 article-title: Advanced hematite nanomaterials for newly emerging applications publication-title: Chem. Sci. – volume: 5 start-page: 8498 year: 2017 end-page: 8503 ident: bib46 article-title: A CNH monolayer: a direct gap 2D semiconductor with anisotropic electronic and optical properties publication-title: J. Mater. Chem. C – volume: 378 year: 2023 ident: bib15 article-title: One-step fabrication of TiO publication-title: Sens. Actuators, B – volume: 122 year: 2021 ident: bib25 article-title: Electronic and optical properties of passivated graphene nanomeshes: an ab initio study publication-title: Opt. Mater. – volume: 498 start-page: 126 year: 2015 end-page: 141 ident: bib17 article-title: α-Fe publication-title: Appl. Catal. – volume: 3 start-page: 2045 year: 2018 end-page: 2060 ident: bib27 article-title: Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing publication-title: ACS Sens. – volume: 23 start-page: GB2001 year: 2009 ident: bib11 article-title: Earth's global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles publication-title: Global Biogeochem. Cycles – volume: 165 start-page: 209 year: 2015 end-page: 224 ident: bib38 article-title: A modified self-scaling memoryless Broyden–Fletcher–Goldfarb–Shanno Method for unconstrained optimization publication-title: J. Optim. Theor. Appl. – volume: 304 year: 2022 ident: bib55 article-title: Pd single-atom decorated CdS nanocatalyst for highly efficient overall water splitting under simulated solar light publication-title: Appl. Catal. B Environ. – volume: 123 start-page: 9420 year: 2019 end-page: 9427 ident: bib32 article-title: Mn doping in centimeter-sized layered 2D butylammonium lead bromide (Ba publication-title: J. Phys. Chem. C – volume: 12 year: 2022 ident: bib56 article-title: Halogen-doped carbon dots on amorphous cobalt phosphide as robust electrocatalysts for overall water splitting publication-title: Adv. Energy Mater. – volume: 120 start-page: 6642 year: 2016 end-page: 6650 ident: bib42 article-title: Reactivity of the Fe publication-title: J. Phys. Chem. C – volume: 168 start-page: 220 year: 2020 end-page: 229 ident: bib24 article-title: Electro-optical properties of monolayer and bilayer boron-doped C publication-title: Carbon – volume: 14 start-page: 14331 year: 2022 end-page: 14341 ident: bib5 article-title: High performance of room-temperature NbSe publication-title: ACS Appl. Mater. Interfaces – volume: 69 start-page: 1272 year: 1992 end-page: 1275 ident: bib48 article-title: Optical properties of porous silicon: a first-principles study publication-title: Phys. Rev. Lett. – volume: 490 start-page: 192 year: 2012 end-page: 200 ident: bib23 article-title: A roadmap for graphene publication-title: Nature – volume: 13 start-page: 602 year: 2018 end-page: 609 ident: bib29 article-title: Exfoliation of a non-van der Waals material from iron ore hematite publication-title: Nat. Nanotechnol. – volume: 498 year: 2019 ident: bib51 article-title: Influence of different morphology of carbon nanostructures on the structural and optical properties of decorated single crystalline hematite nanocubes for photoelectrochemical applications publication-title: Appl. Surf. Sci. – volume: 11 start-page: 14457 year: 2019 end-page: 14462 ident: bib1 article-title: New Family of Two-dimensional ternary photoelectric materials publication-title: ACS Appl. Mater. Interfaces – volume: 80 year: 2009 ident: bib44 article-title: Defect-induced optical absorption in the visible range in ZnO nanowires publication-title: Phys. Rev. B – volume: 44 start-page: 8301 year: 1991 end-page: 8303 ident: bib49 article-title: Kramers-Kronig relations in optical data inversion publication-title: Phys. Rev. B – volume: 32 year: 2022 ident: bib9 article-title: Near-infrared light responsive TiO publication-title: Adv. Funct. Mater. – volume: 4 start-page: 10 year: 2019 end-page: 25 ident: bib8 article-title: NIR light-activated upconversion semiconductor photocatalysts publication-title: Nanoscale Horiz – volume: 3 year: 2019 ident: bib36 article-title: Role of the exchange-correlation functional on the structural, electronic, and optical properties of cubic and tetragonal SrTiO publication-title: Phys. Rev. Mater. – volume: 47 start-page: 19354 year: 2022 end-page: 19364 ident: bib7 article-title: Green hydrogen production potential for Turkey with solar energy publication-title: Int. J. Hydrogen Energy – volume: 848 start-page: 1 year: 2020 end-page: 58 ident: bib28 article-title: Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications publication-title: Phys. Rep. – volume: 161 start-page: 300 year: 2019 end-page: 308 ident: bib41 article-title: Convergence and machine learning predictions of Monkhorst-Pack k-points and plane-wave cut-off in high-throughput DFT calculations publication-title: Comput. Mater. Sci. – volume: 13 start-page: 3575 year: 2017 end-page: 3585 ident: bib39 article-title: Accurate DFT-D3 calculations in a small basis set publication-title: J. Chem. Theor. Comput. – volume: 320 start-page: 184 year: 2008 end-page: 185 ident: bib12 article-title: Toward new uses for hematite publication-title: Science – volume: 337 year: 2023 ident: bib33 article-title: Impact of alternate Mn doping in ternary nanocomposites on their structural, optical and antimicrobial properties: comparative analysis of photocatalytic degradation and antibacterial activity publication-title: J. Environ. Manag. – volume: 112 year: 2021 ident: bib35 article-title: Effects of irradiation defects on the electronic structure and optical properties of LiI scintillator publication-title: Opt. Mater. – volume: 113 start-page: 13715 year: 2009 end-page: 13722 ident: bib54 article-title: Influence of nickel vatalyst geometry on the dissociation barriers of H publication-title: J. Phys. Chem. C – volume: 30 start-page: 13162 year: 2023 end-page: 13173 ident: bib3 article-title: The role of green energy deployment and economic growth in carbon dioxide emissions: evidence from the Chinese economy publication-title: Environ. Sci. Pollut. Res. – volume: 17 start-page: 1833 year: 2017 end-page: 1838 ident: bib53 article-title: GeP publication-title: Nano Lett. – volume: 918 year: 2022 ident: bib16 article-title: In-situ construction of photoanode with Fe publication-title: J. Alloys Compd. – volume: 143 year: 2023 ident: bib31 article-title: Structural, electronic and optical properties of the YVO4:Eu publication-title: Opt. Mater. – volume: 55 year: 2022 ident: bib34 article-title: A review on optical bandgap engineering in TiO publication-title: J. Phys. D – volume: 111 year: 2022 ident: bib2 article-title: Green energy transition and sustainable development of energy firms: an assessment of renewable energy policy publication-title: Energy Econ. – volume: 12 start-page: 255 year: 2021 ident: bib14 article-title: Reaction kinetics and interplay of two different surface states on hematite photoanodes for water oxidation publication-title: Nat. Commun. – volume: 303 year: 2021 ident: bib57 article-title: Toward practical solar-driven photocatalytic water splitting on two-dimensional MoS publication-title: Fuel – volume: 7 year: 2020 ident: bib20 article-title: 2D Material Optoelectronics for information functional device applications: status and challenges publication-title: Adv. Sci. – volume: 12 year: 2022 ident: bib50 article-title: Polarization-dependent selection rules and optical spectrum atlas of twisted bilayer graphene quantum dots publication-title: Phys. Rev. X – volume: 8 start-page: 15820 year: 2016 end-page: 15827 ident: bib10 article-title: Doping Zn publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 1159 year: 2022 end-page: 1168 ident: bib43 article-title: Probing photoexcited charge carrier trapping and defect formation in synergistic doping of SrTiO publication-title: ACS Appl. Energy Mater. – volume: 149 year: 2023 ident: bib30 article-title: The electronic, optical and water splitting properties in two-dimensional hematite Fe publication-title: Physica – volume: 113 start-page: 13715 year: 2009 ident: 10.1016/j.optmat.2024.114898_bib54 article-title: Influence of nickel vatalyst geometry on the dissociation barriers of H2 and CH4: Ni13 versus Ni(111) publication-title: J. Phys. Chem. C doi: 10.1021/jp9003196 – volume: 920 year: 2022 ident: 10.1016/j.optmat.2024.114898_bib4 article-title: Facet-dependent photocatalytic and photoelectric properties of CQDs/TiO2 composites under visible irradiation publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.165896 – volume: 303 year: 2021 ident: 10.1016/j.optmat.2024.114898_bib57 article-title: Toward practical solar-driven photocatalytic water splitting on two-dimensional MoS2 based solid-state Z-scheme and S-scheme heterostructure publication-title: Fuel doi: 10.1016/j.fuel.2021.121302 – volume: 12 start-page: 3129 year: 2021 ident: 10.1016/j.optmat.2024.114898_bib45 article-title: Dirac cone, flat band and saddle point in kagome magnet YMn6Sn6 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23536-8 – volume: 23 start-page: GB2001 year: 2009 ident: 10.1016/j.optmat.2024.114898_bib11 article-title: Earth's global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles publication-title: Global Biogeochem. Cycles doi: 10.1029/2008GB003376 – volume: 13 start-page: 602 year: 2018 ident: 10.1016/j.optmat.2024.114898_bib29 article-title: Exfoliation of a non-van der Waals material from iron ore hematite publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0134-y – volume: 39 start-page: 3168 year: 1989 ident: 10.1016/j.optmat.2024.114898_bib40 article-title: Brillouin-zone integration by Fourier quadrature: special points for superlattice and supercell calculations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.39.3168 – volume: 498 year: 2019 ident: 10.1016/j.optmat.2024.114898_bib51 article-title: Influence of different morphology of carbon nanostructures on the structural and optical properties of decorated single crystalline hematite nanocubes for photoelectrochemical applications publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.143845 – volume: 12 start-page: 255 year: 2021 ident: 10.1016/j.optmat.2024.114898_bib14 article-title: Reaction kinetics and interplay of two different surface states on hematite photoanodes for water oxidation publication-title: Nat. Commun. doi: 10.1038/s41467-020-20510-8 – volume: 44 start-page: 8301 year: 1991 ident: 10.1016/j.optmat.2024.114898_bib49 article-title: Kramers-Kronig relations in optical data inversion publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.44.8301 – volume: 3 start-page: 2045 year: 2018 ident: 10.1016/j.optmat.2024.114898_bib27 article-title: Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing publication-title: ACS Sens. doi: 10.1021/acssensors.8b01077 – volume: 11 start-page: 14457 year: 2019 ident: 10.1016/j.optmat.2024.114898_bib1 article-title: New Family of Two-dimensional ternary photoelectric materials publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b00969 – volume: 123 start-page: 9420 year: 2019 ident: 10.1016/j.optmat.2024.114898_bib32 article-title: Mn doping in centimeter-sized layered 2D butylammonium lead bromide (Ba2PbBr4) single crystals and their optical properties publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b01550 – volume: 8 start-page: 15820 year: 2016 ident: 10.1016/j.optmat.2024.114898_bib10 article-title: Doping Zn2+ in CuS Nanoflowers into Chemically Homogeneous Zn0.49Cu0.50S1.01 Superlattice crystal structure as high-efficiency n-type photoelectric semiconductors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b04378 – volume: 7 start-page: 3010 year: 2019 ident: 10.1016/j.optmat.2024.114898_bib47 article-title: Boosting visible-light-driven photo-oxidation of BiOCl by promoted charge separation via vacancy engineering publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b04454 – volume: 490 start-page: 192 year: 2012 ident: 10.1016/j.optmat.2024.114898_bib23 article-title: A roadmap for graphene publication-title: Nature doi: 10.1038/nature11458 – volume: 111 year: 2022 ident: 10.1016/j.optmat.2024.114898_bib2 article-title: Green energy transition and sustainable development of energy firms: an assessment of renewable energy policy publication-title: Energy Econ. doi: 10.1016/j.eneco.2022.106060 – volume: 14 start-page: 2776 year: 2023 ident: 10.1016/j.optmat.2024.114898_bib18 article-title: Advanced hematite nanomaterials for newly emerging applications publication-title: Chem. Sci. doi: 10.1039/D3SC00180F – volume: 30 start-page: 13162 year: 2023 ident: 10.1016/j.optmat.2024.114898_bib3 article-title: The role of green energy deployment and economic growth in carbon dioxide emissions: evidence from the Chinese economy publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-022-23026-4 – volume: 320 start-page: 184 year: 2008 ident: 10.1016/j.optmat.2024.114898_bib12 article-title: Toward new uses for hematite publication-title: Science doi: 10.1126/science.1157189 – volume: 5 year: 2021 ident: 10.1016/j.optmat.2024.114898_bib26 article-title: Two-dimensional transition metal oxides and chalcogenides for advanced photocatalysis: progress, challenges, and opportunities publication-title: Sol. RRL doi: 10.1002/solr.202000403 – volume: 5 start-page: 8498 year: 2017 ident: 10.1016/j.optmat.2024.114898_bib46 article-title: A CNH monolayer: a direct gap 2D semiconductor with anisotropic electronic and optical properties publication-title: J. Mater. Chem. C doi: 10.1039/C7TC02287E – volume: 5 start-page: 1159 year: 2022 ident: 10.1016/j.optmat.2024.114898_bib43 article-title: Probing photoexcited charge carrier trapping and defect formation in synergistic doping of SrTiO3 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c03543 – volume: 12 year: 2022 ident: 10.1016/j.optmat.2024.114898_bib50 article-title: Polarization-dependent selection rules and optical spectrum atlas of twisted bilayer graphene quantum dots publication-title: Phys. Rev. X – volume: 14 start-page: 2717 year: 2002 ident: 10.1016/j.optmat.2024.114898_bib37 article-title: First-principles simulation: ideas, illustrations and the CASTEP code publication-title: J. Phys. – volume: 17 start-page: 1833 year: 2017 ident: 10.1016/j.optmat.2024.114898_bib53 article-title: GeP3: a small indirect band gap 2D crystal with high carrier mobility and strong interlayer quantum confinement publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05143 – volume: 32 year: 2022 ident: 10.1016/j.optmat.2024.114898_bib9 article-title: Near-infrared light responsive TiO2 for efficient solar energy utilization publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202108977 – volume: 14 start-page: 14331 year: 2022 ident: 10.1016/j.optmat.2024.114898_bib5 article-title: High performance of room-temperature NbSe2 terahertz photoelectric detector publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c00175 – volume: 378 year: 2023 ident: 10.1016/j.optmat.2024.114898_bib15 article-title: One-step fabrication of TiO2@polyoxometalates@α-Fe2O3 one-dimensional tandem heterojunctions for conductometric acetone sensors publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2022.133088 – volume: 69 start-page: 1272 year: 1992 ident: 10.1016/j.optmat.2024.114898_bib48 article-title: Optical properties of porous silicon: a first-principles study publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.1272 – volume: 80 year: 2009 ident: 10.1016/j.optmat.2024.114898_bib44 article-title: Defect-induced optical absorption in the visible range in ZnO nanowires publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.195314 – volume: 165 start-page: 209 year: 2015 ident: 10.1016/j.optmat.2024.114898_bib38 article-title: A modified self-scaling memoryless Broyden–Fletcher–Goldfarb–Shanno Method for unconstrained optimization publication-title: J. Optim. Theor. Appl. doi: 10.1007/s10957-014-0528-4 – volume: 4 start-page: 10 year: 2019 ident: 10.1016/j.optmat.2024.114898_bib8 article-title: NIR light-activated upconversion semiconductor photocatalysts publication-title: Nanoscale Horiz doi: 10.1039/C8NH00154E – volume: 21 start-page: 15372 year: 2019 ident: 10.1016/j.optmat.2024.114898_bib52 article-title: Investigation on photocatalytic mechanism of graphitic SiC (g-SiC)/MoS2 van der Waals heterostructured photocatalysts for overall water splitting publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP02792K – volume: 55 year: 2022 ident: 10.1016/j.optmat.2024.114898_bib34 article-title: A review on optical bandgap engineering in TiO2 nanostructures via doping and intrinsic vacancy modulation towards visible light applications publication-title: J. Phys. D doi: 10.1088/1361-6463/ac6135 – volume: 3 year: 2019 ident: 10.1016/j.optmat.2024.114898_bib36 article-title: Role of the exchange-correlation functional on the structural, electronic, and optical properties of cubic and tetragonal SrTiO3 including many-body effects publication-title: Phys. Rev. Mater. – volume: 122 year: 2021 ident: 10.1016/j.optmat.2024.114898_bib25 article-title: Electronic and optical properties of passivated graphene nanomeshes: an ab initio study publication-title: Opt. Mater. doi: 10.1016/j.optmat.2021.111707 – volume: 1 start-page: 243 year: 2016 ident: 10.1016/j.optmat.2024.114898_bib13 article-title: Using hematite for photoelectrochemical water splitting: a review of current progress and challenges publication-title: Nanoscale Horiz doi: 10.1039/C5NH00098J – volume: 47 start-page: 19354 year: 2022 ident: 10.1016/j.optmat.2024.114898_bib7 article-title: Green hydrogen production potential for Turkey with solar energy publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.10.240 – volume: 848 start-page: 1 year: 2020 ident: 10.1016/j.optmat.2024.114898_bib28 article-title: Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications publication-title: Phys. Rep. doi: 10.1016/j.physrep.2019.12.006 – volume: 143 year: 2023 ident: 10.1016/j.optmat.2024.114898_bib31 article-title: Structural, electronic and optical properties of the YVO4:Eu3+ red phosphor publication-title: Opt. Mater. doi: 10.1016/j.optmat.2023.114151 – volume: 304 year: 2022 ident: 10.1016/j.optmat.2024.114898_bib55 article-title: Pd single-atom decorated CdS nanocatalyst for highly efficient overall water splitting under simulated solar light publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.121000 – volume: 498 start-page: 126 year: 2015 ident: 10.1016/j.optmat.2024.114898_bib17 article-title: α-Fe2O3 as a photocatalytic material: a review publication-title: Appl. Catal. doi: 10.1016/j.apcata.2015.03.023 – volume: 337 year: 2023 ident: 10.1016/j.optmat.2024.114898_bib33 article-title: Impact of alternate Mn doping in ternary nanocomposites on their structural, optical and antimicrobial properties: comparative analysis of photocatalytic degradation and antibacterial activity publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2023.117706 – volume: 13 start-page: 3575 year: 2017 ident: 10.1016/j.optmat.2024.114898_bib39 article-title: Accurate DFT-D3 calculations in a small basis set publication-title: J. Chem. Theor. Comput. doi: 10.1021/acs.jctc.7b00365 – volume: 161 start-page: 300 year: 2019 ident: 10.1016/j.optmat.2024.114898_bib41 article-title: Convergence and machine learning predictions of Monkhorst-Pack k-points and plane-wave cut-off in high-throughput DFT calculations publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2019.02.006 – volume: 47 start-page: 17285 year: 2022 ident: 10.1016/j.optmat.2024.114898_bib6 article-title: Hydrogen energy storage integrated hybrid renewable energy systems: a review analysis for future research directions publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.03.208 – volume: 136 year: 2023 ident: 10.1016/j.optmat.2024.114898_bib22 article-title: Structural, electronic and optical properties of fluorinated bilayer silicene publication-title: Opt. Mater. doi: 10.1016/j.optmat.2022.113418 – volume: 918 year: 2022 ident: 10.1016/j.optmat.2024.114898_bib16 article-title: In-situ construction of photoanode with Fe2O3/Fe3O4 heterojunction nanotube array to facilitate charge separation for efficient water splitting publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.165787 – volume: 7 year: 2020 ident: 10.1016/j.optmat.2024.114898_bib20 article-title: 2D Material Optoelectronics for information functional device applications: status and challenges publication-title: Adv. Sci. doi: 10.1002/advs.202000058 – volume: 168 start-page: 220 year: 2020 ident: 10.1016/j.optmat.2024.114898_bib24 article-title: Electro-optical properties of monolayer and bilayer boron-doped C3N: tunable electronic structure via strain engineering and electric field publication-title: Carbon doi: 10.1016/j.carbon.2020.06.082 – volume: 120 start-page: 6642 year: 2016 ident: 10.1016/j.optmat.2024.114898_bib42 article-title: Reactivity of the Fe2O3(0001) surface for methane oxidation: a GGA + U study publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b00374 – volume: 31 year: 2019 ident: 10.1016/j.optmat.2024.114898_bib21 article-title: Confinement catalysis with 2D materials for energy conversion publication-title: Adv. Mater. doi: 10.1002/adma.201901996 – volume: 12 year: 2022 ident: 10.1016/j.optmat.2024.114898_bib56 article-title: Halogen-doped carbon dots on amorphous cobalt phosphide as robust electrocatalysts for overall water splitting publication-title: Adv. Energy Mater. – volume: 149 year: 2023 ident: 10.1016/j.optmat.2024.114898_bib30 article-title: The electronic, optical and water splitting properties in two-dimensional hematite Fe2O3 semiconductors with uniaxial, biaxial strain studied by first principles publication-title: Physica – volume: 133 start-page: 566 year: 2019 ident: 10.1016/j.optmat.2024.114898_bib19 article-title: Sn doped alpha-Fe2O3 (Sn=0,10,20,30 wt%) photoanodes for photoelectrochemical water splitting applications publication-title: Renew. Energy doi: 10.1016/j.renene.2018.10.067 – volume: 112 year: 2021 ident: 10.1016/j.optmat.2024.114898_bib35 article-title: Effects of irradiation defects on the electronic structure and optical properties of LiI scintillator publication-title: Opt. Mater. doi: 10.1016/j.optmat.2020.110727 |
SSID | ssj0002566 |
Score | 2.4050066 |
Snippet | Hematite (Fe2O3) is a prevalent mineral known for its utility as an optoelectronic and photocatalytic material. It boasts abundant reserves,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 114898 |
SubjectTerms | Ab initio study Electronic property Fe2O3 monolayer Optical property |
Title | Ab initio studies of the effects of Mn and intrinsic vacancy on the electronic, optical, water splitting properties of hematite Fe2O3 monolayer |
URI | https://dx.doi.org/10.1016/j.optmat.2024.114898 |
Volume | 148 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DEXwRP3F-jDz4uLi2Sb8ex3BMZfNBB3srSZPARNrSVX3zX_Bf9tK0U0EUfEy5oyF3vd9d88sFoQvGNXhtyonSkSRMaUk4FBokki6gPwfEp-bs8HQWTObsZuEvOmjUnoUxtMom9tuYXkfr5smgWc1BsVwO7p3Y8yl854YFCcBn4jBjofHyy7dPmgdAer1fCcLESLfH52qOV15UkBdClegx0zQ3iqOf4ekL5Ix30U6TK-Khnc4e6qhsH23VnM10dYDehwIvDfcnxyvLBsS5xpDQ4YakYYbTDPNMglxVLjPQwy88NQEV55kVXV-D08cwT2OyPn6FBLTEK8hPa1Y0Lswf-7Jq3mDbvFYKj5V3RzH4MZTHkLkfovn46mE0Ic39CiSFQqEinArlcgkVT-SlUIfElMFKeEHqRa6OUlfEngPm0jwIZegqKGxC6gmuA-1LLWJBj9BGlmfqGGHJZMCVTx0ZGsxXAuwv_UgzRwnhctFFtF3WJG2aj5s7MJ6SlmX2mFhjJMYYiTVGF5G1VmGbb_whH7YWS745UQL48Kvmyb81T9G2GVki9xnaqMpndQ55SiV6tSP20Obw-nYy-wB47-pe |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jQ_RF_MT5mQcfF7Y2_XwcwzHdhw9usLeSNAlMpB1d1T_Df9lLkw4FUfCx7R0Nuev97tJfLgjdekyB16aMSBUJ4kklCINCg0TCAfRngPhU7x2ezoLRwntY-ssGGtR7YTSt0sZ-E9OraG3vdO1sdterVfepF7s-he9csyAB-CAOt3R3Kr-JWv378Wi2DciA6tUvS5AnWqHeQVfRvPJ1CakhFIqup_vmRnH0M0J9QZ3hAdq36SLumxEdoobMjtBORdtMN8foo8_xStN_crwxhECcKww5HbY8DX05zTDLBMiVxSoDPfzGUh1TcZ4Z0e1JOB0M49RW6-B3yEELvIEUtSJG47VetC9K-wbT6bWUeCjdR4rBlaFChuT9BC2Gd_PBiNgjFkgKtUJJGOXSYQKKnshNoRSJqQcz4QapGzkqSh0euz2wmGJBKEJHQm0TUpczFShfKB5zeoqaWZ7JM4SFJwImfdoToYZ9ycEFhB8pryc5dxhvI1pPa5La_uP6GIyXpCaaPSfGGIk2RmKM0UZkq7U2_Tf-kA9riyXf_CgBiPhV8_zfmjdodzSfTpLJ_Wx8gfb0E8PrvkTNsniVV5C2lPzauuUngErtDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ab+initio+studies+of+the+effects+of+Mn+and+intrinsic+vacancy+on+the+electronic%2C+optical%2C+water+splitting+properties+of+hematite+Fe2O3+monolayer&rft.jtitle=Optical+materials&rft.au=Wang%2C+Shan&rft.au=Ren%2C+Jianfei&rft.au=Pan%2C+Zilong&rft.au=Su%2C+Yanan&rft.date=2024-02-01&rft.pub=Elsevier+B.V&rft.issn=0925-3467&rft.volume=148&rft_id=info:doi/10.1016%2Fj.optmat.2024.114898&rft.externalDocID=S0925346724000752 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-3467&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-3467&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-3467&client=summon |