Blind super-resolution network based on local fuzzy discriminative loss for fabric data augmentation

In the field of fabric defect detection, the development of algorithms has been hindered by issues such as poor quality and limited quantity of open-source datasets. Traditional data augmentation methods offer limited improvements in model performance, while generative data augmentation methods are...

Full description

Saved in:
Bibliographic Details
Published inJournal of engineered fibers and fabrics Vol. 20
Main Authors Dai, Ning, Hu, Xiaohan, Xu, Kaixin, Hu, Xudong, Yuan, Yanhong, Cao, Bo, Shi, Luhong
Format Journal Article
LanguageEnglish
Published SAGE Publishing 01.01.2025
Online AccessGet full text

Cover

Loading…
Abstract In the field of fabric defect detection, the development of algorithms has been hindered by issues such as poor quality and limited quantity of open-source datasets. Traditional data augmentation methods offer limited improvements in model performance, while generative data augmentation methods are plagued by difficulties in training generative models, susceptibility to artifacts, and the need for re-labeling. To address these challenges, this paper proposes a blind super-resolution algorithm for fabric defect data augmentation. The model is based on Real-ESRGAN and has been optimized specifically for the resolution degradation module to better adapt to the resolution degradation process in fabric images. Subsequently, a novel loss function named Local Blur Discrimination Loss is designed to address the local blur phenomenon and suppress the generation of fabric artifacts during the super-resolution process. Finally, both subjective evaluations of super-resolution effects and objective comparisons of data augmentation performance were conducted during the experimental phase. The subjective assessments demonstrate that the proposed method outperforms the baseline model. Additionally, in terms of objective performance, augmenting the DAGM2007 dataset using the proposed model, the detection model's accuracy (P) increased by 7.4%, recall (R) increased by 1.0%, and the mean average precision (mAP) increased by 2.5%, surpassing commonly used traditional vision-based data augmentation algorithms.
AbstractList In the field of fabric defect detection, the development of algorithms has been hindered by issues such as poor quality and limited quantity of open-source datasets. Traditional data augmentation methods offer limited improvements in model performance, while generative data augmentation methods are plagued by difficulties in training generative models, susceptibility to artifacts, and the need for re-labeling. To address these challenges, this paper proposes a blind super-resolution algorithm for fabric defect data augmentation. The model is based on Real-ESRGAN and has been optimized specifically for the resolution degradation module to better adapt to the resolution degradation process in fabric images. Subsequently, a novel loss function named Local Blur Discrimination Loss is designed to address the local blur phenomenon and suppress the generation of fabric artifacts during the super-resolution process. Finally, both subjective evaluations of super-resolution effects and objective comparisons of data augmentation performance were conducted during the experimental phase. The subjective assessments demonstrate that the proposed method outperforms the baseline model. Additionally, in terms of objective performance, augmenting the DAGM2007 dataset using the proposed model, the detection model's accuracy (P) increased by 7.4%, recall (R) increased by 1.0%, and the mean average precision (mAP) increased by 2.5%, surpassing commonly used traditional vision-based data augmentation algorithms.
Author Hu, Xiaohan
Yuan, Yanhong
Hu, Xudong
Cao, Bo
Shi, Luhong
Dai, Ning
Xu, Kaixin
Author_xml – sequence: 1
  givenname: Ning
  orcidid: 0000-0003-0984-8895
  surname: Dai
  fullname: Dai, Ning
  organization: Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
– sequence: 2
  givenname: Xiaohan
  surname: Hu
  fullname: Hu, Xiaohan
  organization: Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
– sequence: 3
  givenname: Kaixin
  surname: Xu
  fullname: Xu, Kaixin
  organization: Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
– sequence: 4
  givenname: Xudong
  surname: Hu
  fullname: Hu, Xudong
  organization: Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
– sequence: 5
  givenname: Yanhong
  surname: Yuan
  fullname: Yuan, Yanhong
  organization: Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
– sequence: 6
  givenname: Bo
  surname: Cao
  fullname: Cao, Bo
  organization: Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
– sequence: 7
  givenname: Luhong
  surname: Shi
  fullname: Shi, Luhong
  organization: Zhejiang Kangli Automation Technology Co., Ltd., Shaoxing, Zhejiang Province, China
BookMark eNplkNtKAzEQhoNUsK0-gHd5gdXJbrKHSy0eCgVv9HqZnErqdlOSrdI-vVkrIshczPDP8M3MPyOT3veGkGsGN4xV1S0Tom5yATlnRQpRn5HpqGWjOPlTX5BZjBsA0RQCpkTfd67XNO53JmTBRN_tB-d72pvh04d3KjEaTZPQeYUdtfvj8UC1iyq4retxcB8mtWKk1gdqUQanqMYBKe7XW9MPONIuybnFLpqrnzwnb48Pr4vnbPXytFzcrTJVQDlkmEvDqrIspeLQaIHpI9BQWgmQqzq3BpUSuoZSQlVI0GmKWdZAUfGm4byYk-WJqz1u2l06EcOh9ejab8GHdYthcKozrbbcSJnWcpssA1NjiUrwKteyYSpZOCfsxFIhvReM_eUxaEfL23-WF1_Gp3Z9
Cites_doi 10.1186/s40537-023-00876-4
10.1080/00207543.2021.2010827
10.1016/j.compstruct.2023.117052
10.1109/ICCVW54120.2021.00217
10.1145/3636424
10.1016/j.simpat.2021.102400
10.1109/TPAMI.2016.2577031
10.1186/s40537-019-0197-0
10.1109/CVPR.2016.90
10.1007/978-3-319-46475-6_43
10.1109/ACCESS.2021.3140118
10.1007/978-3-031-29956-8_21
10.1109/CVPR52688.2022.00557
10.1016/j.compscitech.2023.110395
10.1109/TPAMI.2024.3350004
10.1002/mrm.26054
10.1109/SSCI.2018.8628742
10.1109/ACCESS.2024.3371175
10.1016/j.iot.2023.101054
10.1109/ACCESS.2021.3061062
10.3389/fphys.2022.880966
10.1109/CVPRW53098.2021.00054
10.1007/978-3-319-24574-4_28
10.1016/j.jcrysgro.2022.126749
10.1007/s11220-021-00370-2
10.1515/epoly-2022-0071
10.1007/s11042-016-3938-5
10.1016/j.pmatsci.2021.100911
10.1088/1748-0221/18/06/P06007
10.1016/j.aei.2023.102205
10.1038/nature14539
10.1109/CVPR.2018.00262
10.1117/12.2592872
10.1109/TIM.2023.3280519
10.1109/CVPR52688.2022.00197
10.1109/MSP.2023.3262906
10.1109/TAP.2023.3296915
10.1109/TIM.2022.3214285
10.1002/col.22745
10.3788/LOP202158.0210014
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1177/15589250241313158
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-9250
ExternalDocumentID oai_doaj_org_article_df4ebb3064f2410e8a6ac5472db91c31
10_1177_15589250241313158
GroupedDBID 0R~
29K
2WC
54M
5GY
5VS
AASGM
AAYXX
ABQXT
ACDXX
ACHEB
ACROE
ADBBV
ADEBD
ADMLS
ADOGD
AEDFJ
AENEX
AEWDL
AFCOW
AFKRG
AFRWT
AJUZI
ALMA_UNASSIGNED_HOLDINGS
ARTOV
BCNDV
BDDNI
C1A
CITATION
D-I
E3Z
EBS
EJD
GROUPED_DOAJ
H13
HH5
J8X
KQ8
ML~
M~E
OK1
OVT
RNS
ROL
SAFTQ
SAUOL
SCDPB
SCNPE
SFC
TR2
TTC
ID FETCH-LOGICAL-c306t-a2be17666bc409d5a8920d06fb002c82feacc5d806b073b0d4091f19037499443
IEDL.DBID DOA
ISSN 1558-9250
IngestDate Wed Aug 27 01:31:39 EDT 2025
Tue Jul 01 05:21:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-a2be17666bc409d5a8920d06fb002c82feacc5d806b073b0d4091f19037499443
ORCID 0000-0003-0984-8895
OpenAccessLink https://doaj.org/article/df4ebb3064f2410e8a6ac5472db91c31
ParticipantIDs doaj_primary_oai_doaj_org_article_df4ebb3064f2410e8a6ac5472db91c31
crossref_primary_10_1177_15589250241313158
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-00
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-00
PublicationDecade 2020
PublicationTitle Journal of engineered fibers and fabrics
PublicationYear 2025
Publisher SAGE Publishing
Publisher_xml – name: SAGE Publishing
References bibr47-15589250241313158
bibr34-15589250241313158
bibr21-15589250241313158
Yao L (bibr18-15589250241313158) 2023
bibr3-15589250241313158
bibr39-15589250241313158
bibr26-15589250241313158
bibr22-15589250241313158
bibr19-15589250241313158
bibr35-15589250241313158
bibr42-15589250241313158
Andreou I (bibr43-15589250241313158) 2023; 18
Li W (bibr17-15589250241313158) 2023
Wieler M (bibr25-15589250241313158) 2007; 6
bibr5-15589250241313158
bibr15-15589250241313158
bibr23-15589250241313158
Moreau A (bibr50-15589250241313158) 2022
bibr4-15589250241313158
Zheng K (bibr40-15589250241313158) 2023; 5
bibr14-15589250241313158
bibr44-15589250241313158
Xu Y (bibr9-15589250241313158) 2024
bibr11-15589250241313158
bibr24-15589250241313158
bibr6-15589250241313158
bibr16-15589250241313158
Miyato T (bibr33-15589250241313158) 2018; 1802
bibr36-15589250241313158
bibr29-15589250241313158
bibr32-15589250241313158
bibr49-15589250241313158
bibr12-15589250241313158
Wang P (bibr13-15589250241313158) 2022
bibr2-15589250241313158
bibr28-15589250241313158
bibr8-15589250241313158
bibr46-15589250241313158
bibr48-15589250241313158
bibr38-15589250241313158
bibr30-15589250241313158
Wu Y (bibr45-15589250241313158) 2023; 24
bibr20-15589250241313158
bibr7-15589250241313158
Goodfellow I (bibr10-15589250241313158) 2014; 27
bibr41-15589250241313158
bibr1-15589250241313158
bibr31-15589250241313158
bibr51-15589250241313158
bibr27-15589250241313158
bibr37-15589250241313158
References_xml – start-page: 255
  volume-title: IEEE international conference on consumer electronics
  year: 2022
  ident: bibr13-15589250241313158
– ident: bibr23-15589250241313158
  doi: 10.1186/s40537-023-00876-4
– ident: bibr6-15589250241313158
  doi: 10.1080/00207543.2021.2010827
– ident: bibr15-15589250241313158
  doi: 10.1016/j.compstruct.2023.117052
– ident: bibr24-15589250241313158
  doi: 10.1109/ICCVW54120.2021.00217
– ident: bibr30-15589250241313158
  doi: 10.1145/3636424
– volume: 6
  start-page: 11
  volume-title: In DAGM symposium
  year: 2007
  ident: bibr25-15589250241313158
– ident: bibr11-15589250241313158
  doi: 10.1016/j.simpat.2021.102400
– ident: bibr14-15589250241313158
  doi: 10.1109/TPAMI.2016.2577031
– ident: bibr4-15589250241313158
  doi: 10.1186/s40537-019-0197-0
– volume: 27
  start-page: 5
  year: 2014
  ident: bibr10-15589250241313158
  publication-title: Adv Neural Inform Proc Sys
– ident: bibr28-15589250241313158
  doi: 10.1109/CVPR.2016.90
– ident: bibr34-15589250241313158
  doi: 10.1007/978-3-319-46475-6_43
– ident: bibr2-15589250241313158
  doi: 10.1109/ACCESS.2021.3140118
– ident: bibr38-15589250241313158
  doi: 10.1007/978-3-031-29956-8_21
– ident: bibr42-15589250241313158
  doi: 10.1109/CVPR52688.2022.00557
– ident: bibr41-15589250241313158
  doi: 10.1016/j.compscitech.2023.110395
– year: 2023
  ident: bibr17-15589250241313158
  publication-title: IEEE transactions on automation science and engineering
– volume: 5
  start-page: 1924702740
  year: 2023
  ident: bibr40-15589250241313158
  publication-title: J Reinfor Plast Comp
– ident: bibr49-15589250241313158
  doi: 10.1109/TPAMI.2024.3350004
– ident: bibr36-15589250241313158
  doi: 10.1002/mrm.26054
– ident: bibr3-15589250241313158
  doi: 10.1109/SSCI.2018.8628742
– ident: bibr20-15589250241313158
  doi: 10.1109/ACCESS.2024.3371175
– ident: bibr35-15589250241313158
  doi: 10.1016/j.iot.2023.101054
– ident: bibr29-15589250241313158
  doi: 10.1109/ACCESS.2021.3061062
– volume: 1802
  start-page: 05957
  year: 2018
  ident: bibr33-15589250241313158
  publication-title: arXiv preprint arXiv
– ident: bibr44-15589250241313158
  doi: 10.3389/fphys.2022.880966
– ident: bibr46-15589250241313158
  doi: 10.1109/CVPRW53098.2021.00054
– start-page: 137
  year: 2023
  ident: bibr18-15589250241313158
  publication-title: Computer graphics international conference
– volume: 24
  start-page: 2341007
  year: 2023
  ident: bibr45-15589250241313158
  publication-title: Int J Comput Meth
– ident: bibr31-15589250241313158
  doi: 10.1007/978-3-319-24574-4_28
– ident: bibr48-15589250241313158
  doi: 10.1016/j.jcrysgro.2022.126749
– ident: bibr32-15589250241313158
  doi: 10.1007/s11220-021-00370-2
– ident: bibr7-15589250241313158
  doi: 10.1515/epoly-2022-0071
– ident: bibr37-15589250241313158
  doi: 10.1007/s11042-016-3938-5
– ident: bibr22-15589250241313158
  doi: 10.1016/j.pmatsci.2021.100911
– volume: 18
  issue: 06
  year: 2023
  ident: bibr43-15589250241313158
  publication-title: J Instrument
  doi: 10.1088/1748-0221/18/06/P06007
– ident: bibr5-15589250241313158
  doi: 10.1016/j.aei.2023.102205
– ident: bibr1-15589250241313158
  doi: 10.1038/nature14539
– ident: bibr26-15589250241313158
  doi: 10.1109/CVPR.2018.00262
– ident: bibr27-15589250241313158
  doi: 10.1117/12.2592872
– ident: bibr51-15589250241313158
  doi: 10.1109/TIM.2023.3280519
– ident: bibr19-15589250241313158
  doi: 10.1109/CVPR52688.2022.00197
– start-page: 1347
  volume-title: Conference on robot learning
  year: 2022
  ident: bibr50-15589250241313158
– ident: bibr8-15589250241313158
  doi: 10.1109/MSP.2023.3262906
– start-page: 911434727
  year: 2024
  ident: bibr9-15589250241313158
  publication-title: Textile Res J
– ident: bibr16-15589250241313158
– ident: bibr47-15589250241313158
  doi: 10.1109/TAP.2023.3296915
– ident: bibr12-15589250241313158
  doi: 10.1109/TIM.2022.3214285
– ident: bibr21-15589250241313158
  doi: 10.1002/col.22745
– ident: bibr39-15589250241313158
  doi: 10.3788/LOP202158.0210014
SSID ssj0059350
Score 2.3769116
Snippet In the field of fabric defect detection, the development of algorithms has been hindered by issues such as poor quality and limited quantity of open-source...
SourceID doaj
crossref
SourceType Open Website
Index Database
Title Blind super-resolution network based on local fuzzy discriminative loss for fabric data augmentation
URI https://doaj.org/article/df4ebb3064f2410e8a6ac5472db91c31
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWBCskicOHFGiqgqJJio1C3y-cFEqNpmoL-euzhFkRhYUDbHjpI757472_cdY7eZkx6RHARCCwYoyqaiCkELn3swGmjritYhX16L6Sx_nqv5oNQXnQmL9MBRcPcu4CggPzkg2CRem8JYlZfSQZXaLoNaIuZtg6log1WVqe0eJtErIWjqCsGeNpHwovruAxQakPV3qDI5ZAe9O8gf4mscsR3fHLP9AUngCXNj9AQdX7ULvxQYHPdzhTfxADcnHHIcGzpY4qHdbL44JdvGgl1kzvDWasXRPeXBABo-TudCuWnfP_rMo-aUzSZPb49T0ddGEBZlsRZGgiduxwIsRmhOGfy-xCVFINS1WgY0qFY5nRSAPzEkDnulAdE_KzHGyfPsjO02n40_Z7wMtjTaZC5AmlsZqqI06NT5EnAc6GzE7rayqheRAqNOe5bwX4IdsTFJ86cjsVd3DajTutdp_ZdOL_7jIZdsT1Kt3m655Irtrpetv0YHYg033Vz5BqPlw1k
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blind+super-resolution+network+based+on+local+fuzzy+discriminative+loss+for+fabric+data+augmentation&rft.jtitle=Journal+of+engineered+fibers+and+fabrics&rft.au=Ning+Dai&rft.au=Xiaohan+Hu&rft.au=Kaixin+Xu&rft.au=Xudong+Hu&rft.date=2025-01-01&rft.pub=SAGE+Publishing&rft.eissn=1558-9250&rft.volume=20&rft_id=info:doi/10.1177%2F15589250241313158&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_df4ebb3064f2410e8a6ac5472db91c31
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-9250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-9250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-9250&client=summon