Blind super-resolution network based on local fuzzy discriminative loss for fabric data augmentation
In the field of fabric defect detection, the development of algorithms has been hindered by issues such as poor quality and limited quantity of open-source datasets. Traditional data augmentation methods offer limited improvements in model performance, while generative data augmentation methods are...
Saved in:
Published in | Journal of engineered fibers and fabrics Vol. 20 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
SAGE Publishing
01.01.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | In the field of fabric defect detection, the development of algorithms has been hindered by issues such as poor quality and limited quantity of open-source datasets. Traditional data augmentation methods offer limited improvements in model performance, while generative data augmentation methods are plagued by difficulties in training generative models, susceptibility to artifacts, and the need for re-labeling. To address these challenges, this paper proposes a blind super-resolution algorithm for fabric defect data augmentation. The model is based on Real-ESRGAN and has been optimized specifically for the resolution degradation module to better adapt to the resolution degradation process in fabric images. Subsequently, a novel loss function named Local Blur Discrimination Loss is designed to address the local blur phenomenon and suppress the generation of fabric artifacts during the super-resolution process. Finally, both subjective evaluations of super-resolution effects and objective comparisons of data augmentation performance were conducted during the experimental phase. The subjective assessments demonstrate that the proposed method outperforms the baseline model. Additionally, in terms of objective performance, augmenting the DAGM2007 dataset using the proposed model, the detection model's accuracy (P) increased by 7.4%, recall (R) increased by 1.0%, and the mean average precision (mAP) increased by 2.5%, surpassing commonly used traditional vision-based data augmentation algorithms. |
---|---|
AbstractList | In the field of fabric defect detection, the development of algorithms has been hindered by issues such as poor quality and limited quantity of open-source datasets. Traditional data augmentation methods offer limited improvements in model performance, while generative data augmentation methods are plagued by difficulties in training generative models, susceptibility to artifacts, and the need for re-labeling. To address these challenges, this paper proposes a blind super-resolution algorithm for fabric defect data augmentation. The model is based on Real-ESRGAN and has been optimized specifically for the resolution degradation module to better adapt to the resolution degradation process in fabric images. Subsequently, a novel loss function named Local Blur Discrimination Loss is designed to address the local blur phenomenon and suppress the generation of fabric artifacts during the super-resolution process. Finally, both subjective evaluations of super-resolution effects and objective comparisons of data augmentation performance were conducted during the experimental phase. The subjective assessments demonstrate that the proposed method outperforms the baseline model. Additionally, in terms of objective performance, augmenting the DAGM2007 dataset using the proposed model, the detection model's accuracy (P) increased by 7.4%, recall (R) increased by 1.0%, and the mean average precision (mAP) increased by 2.5%, surpassing commonly used traditional vision-based data augmentation algorithms. |
Author | Hu, Xiaohan Yuan, Yanhong Hu, Xudong Cao, Bo Shi, Luhong Dai, Ning Xu, Kaixin |
Author_xml | – sequence: 1 givenname: Ning orcidid: 0000-0003-0984-8895 surname: Dai fullname: Dai, Ning organization: Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China – sequence: 2 givenname: Xiaohan surname: Hu fullname: Hu, Xiaohan organization: Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China – sequence: 3 givenname: Kaixin surname: Xu fullname: Xu, Kaixin organization: Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China – sequence: 4 givenname: Xudong surname: Hu fullname: Hu, Xudong organization: Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China – sequence: 5 givenname: Yanhong surname: Yuan fullname: Yuan, Yanhong organization: Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China – sequence: 6 givenname: Bo surname: Cao fullname: Cao, Bo organization: Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China – sequence: 7 givenname: Luhong surname: Shi fullname: Shi, Luhong organization: Zhejiang Kangli Automation Technology Co., Ltd., Shaoxing, Zhejiang Province, China |
BookMark | eNplkNtKAzEQhoNUsK0-gHd5gdXJbrKHSy0eCgVv9HqZnErqdlOSrdI-vVkrIshczPDP8M3MPyOT3veGkGsGN4xV1S0Tom5yATlnRQpRn5HpqGWjOPlTX5BZjBsA0RQCpkTfd67XNO53JmTBRN_tB-d72pvh04d3KjEaTZPQeYUdtfvj8UC1iyq4retxcB8mtWKk1gdqUQanqMYBKe7XW9MPONIuybnFLpqrnzwnb48Pr4vnbPXytFzcrTJVQDlkmEvDqrIspeLQaIHpI9BQWgmQqzq3BpUSuoZSQlVI0GmKWdZAUfGm4byYk-WJqz1u2l06EcOh9ejab8GHdYthcKozrbbcSJnWcpssA1NjiUrwKteyYSpZOCfsxFIhvReM_eUxaEfL23-WF1_Gp3Z9 |
Cites_doi | 10.1186/s40537-023-00876-4 10.1080/00207543.2021.2010827 10.1016/j.compstruct.2023.117052 10.1109/ICCVW54120.2021.00217 10.1145/3636424 10.1016/j.simpat.2021.102400 10.1109/TPAMI.2016.2577031 10.1186/s40537-019-0197-0 10.1109/CVPR.2016.90 10.1007/978-3-319-46475-6_43 10.1109/ACCESS.2021.3140118 10.1007/978-3-031-29956-8_21 10.1109/CVPR52688.2022.00557 10.1016/j.compscitech.2023.110395 10.1109/TPAMI.2024.3350004 10.1002/mrm.26054 10.1109/SSCI.2018.8628742 10.1109/ACCESS.2024.3371175 10.1016/j.iot.2023.101054 10.1109/ACCESS.2021.3061062 10.3389/fphys.2022.880966 10.1109/CVPRW53098.2021.00054 10.1007/978-3-319-24574-4_28 10.1016/j.jcrysgro.2022.126749 10.1007/s11220-021-00370-2 10.1515/epoly-2022-0071 10.1007/s11042-016-3938-5 10.1016/j.pmatsci.2021.100911 10.1088/1748-0221/18/06/P06007 10.1016/j.aei.2023.102205 10.1038/nature14539 10.1109/CVPR.2018.00262 10.1117/12.2592872 10.1109/TIM.2023.3280519 10.1109/CVPR52688.2022.00197 10.1109/MSP.2023.3262906 10.1109/TAP.2023.3296915 10.1109/TIM.2022.3214285 10.1002/col.22745 10.3788/LOP202158.0210014 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1177/15589250241313158 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-9250 |
ExternalDocumentID | oai_doaj_org_article_df4ebb3064f2410e8a6ac5472db91c31 10_1177_15589250241313158 |
GroupedDBID | 0R~ 29K 2WC 54M 5GY 5VS AASGM AAYXX ABQXT ACDXX ACHEB ACROE ADBBV ADEBD ADMLS ADOGD AEDFJ AENEX AEWDL AFCOW AFKRG AFRWT AJUZI ALMA_UNASSIGNED_HOLDINGS ARTOV BCNDV BDDNI C1A CITATION D-I E3Z EBS EJD GROUPED_DOAJ H13 HH5 J8X KQ8 ML~ M~E OK1 OVT RNS ROL SAFTQ SAUOL SCDPB SCNPE SFC TR2 TTC |
ID | FETCH-LOGICAL-c306t-a2be17666bc409d5a8920d06fb002c82feacc5d806b073b0d4091f19037499443 |
IEDL.DBID | DOA |
ISSN | 1558-9250 |
IngestDate | Wed Aug 27 01:31:39 EDT 2025 Tue Jul 01 05:21:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-a2be17666bc409d5a8920d06fb002c82feacc5d806b073b0d4091f19037499443 |
ORCID | 0000-0003-0984-8895 |
OpenAccessLink | https://doaj.org/article/df4ebb3064f2410e8a6ac5472db91c31 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_df4ebb3064f2410e8a6ac5472db91c31 crossref_primary_10_1177_15589250241313158 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-00 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-00 |
PublicationDecade | 2020 |
PublicationTitle | Journal of engineered fibers and fabrics |
PublicationYear | 2025 |
Publisher | SAGE Publishing |
Publisher_xml | – name: SAGE Publishing |
References | bibr47-15589250241313158 bibr34-15589250241313158 bibr21-15589250241313158 Yao L (bibr18-15589250241313158) 2023 bibr3-15589250241313158 bibr39-15589250241313158 bibr26-15589250241313158 bibr22-15589250241313158 bibr19-15589250241313158 bibr35-15589250241313158 bibr42-15589250241313158 Andreou I (bibr43-15589250241313158) 2023; 18 Li W (bibr17-15589250241313158) 2023 Wieler M (bibr25-15589250241313158) 2007; 6 bibr5-15589250241313158 bibr15-15589250241313158 bibr23-15589250241313158 Moreau A (bibr50-15589250241313158) 2022 bibr4-15589250241313158 Zheng K (bibr40-15589250241313158) 2023; 5 bibr14-15589250241313158 bibr44-15589250241313158 Xu Y (bibr9-15589250241313158) 2024 bibr11-15589250241313158 bibr24-15589250241313158 bibr6-15589250241313158 bibr16-15589250241313158 Miyato T (bibr33-15589250241313158) 2018; 1802 bibr36-15589250241313158 bibr29-15589250241313158 bibr32-15589250241313158 bibr49-15589250241313158 bibr12-15589250241313158 Wang P (bibr13-15589250241313158) 2022 bibr2-15589250241313158 bibr28-15589250241313158 bibr8-15589250241313158 bibr46-15589250241313158 bibr48-15589250241313158 bibr38-15589250241313158 bibr30-15589250241313158 Wu Y (bibr45-15589250241313158) 2023; 24 bibr20-15589250241313158 bibr7-15589250241313158 Goodfellow I (bibr10-15589250241313158) 2014; 27 bibr41-15589250241313158 bibr1-15589250241313158 bibr31-15589250241313158 bibr51-15589250241313158 bibr27-15589250241313158 bibr37-15589250241313158 |
References_xml | – start-page: 255 volume-title: IEEE international conference on consumer electronics year: 2022 ident: bibr13-15589250241313158 – ident: bibr23-15589250241313158 doi: 10.1186/s40537-023-00876-4 – ident: bibr6-15589250241313158 doi: 10.1080/00207543.2021.2010827 – ident: bibr15-15589250241313158 doi: 10.1016/j.compstruct.2023.117052 – ident: bibr24-15589250241313158 doi: 10.1109/ICCVW54120.2021.00217 – ident: bibr30-15589250241313158 doi: 10.1145/3636424 – volume: 6 start-page: 11 volume-title: In DAGM symposium year: 2007 ident: bibr25-15589250241313158 – ident: bibr11-15589250241313158 doi: 10.1016/j.simpat.2021.102400 – ident: bibr14-15589250241313158 doi: 10.1109/TPAMI.2016.2577031 – ident: bibr4-15589250241313158 doi: 10.1186/s40537-019-0197-0 – volume: 27 start-page: 5 year: 2014 ident: bibr10-15589250241313158 publication-title: Adv Neural Inform Proc Sys – ident: bibr28-15589250241313158 doi: 10.1109/CVPR.2016.90 – ident: bibr34-15589250241313158 doi: 10.1007/978-3-319-46475-6_43 – ident: bibr2-15589250241313158 doi: 10.1109/ACCESS.2021.3140118 – ident: bibr38-15589250241313158 doi: 10.1007/978-3-031-29956-8_21 – ident: bibr42-15589250241313158 doi: 10.1109/CVPR52688.2022.00557 – ident: bibr41-15589250241313158 doi: 10.1016/j.compscitech.2023.110395 – year: 2023 ident: bibr17-15589250241313158 publication-title: IEEE transactions on automation science and engineering – volume: 5 start-page: 1924702740 year: 2023 ident: bibr40-15589250241313158 publication-title: J Reinfor Plast Comp – ident: bibr49-15589250241313158 doi: 10.1109/TPAMI.2024.3350004 – ident: bibr36-15589250241313158 doi: 10.1002/mrm.26054 – ident: bibr3-15589250241313158 doi: 10.1109/SSCI.2018.8628742 – ident: bibr20-15589250241313158 doi: 10.1109/ACCESS.2024.3371175 – ident: bibr35-15589250241313158 doi: 10.1016/j.iot.2023.101054 – ident: bibr29-15589250241313158 doi: 10.1109/ACCESS.2021.3061062 – volume: 1802 start-page: 05957 year: 2018 ident: bibr33-15589250241313158 publication-title: arXiv preprint arXiv – ident: bibr44-15589250241313158 doi: 10.3389/fphys.2022.880966 – ident: bibr46-15589250241313158 doi: 10.1109/CVPRW53098.2021.00054 – start-page: 137 year: 2023 ident: bibr18-15589250241313158 publication-title: Computer graphics international conference – volume: 24 start-page: 2341007 year: 2023 ident: bibr45-15589250241313158 publication-title: Int J Comput Meth – ident: bibr31-15589250241313158 doi: 10.1007/978-3-319-24574-4_28 – ident: bibr48-15589250241313158 doi: 10.1016/j.jcrysgro.2022.126749 – ident: bibr32-15589250241313158 doi: 10.1007/s11220-021-00370-2 – ident: bibr7-15589250241313158 doi: 10.1515/epoly-2022-0071 – ident: bibr37-15589250241313158 doi: 10.1007/s11042-016-3938-5 – ident: bibr22-15589250241313158 doi: 10.1016/j.pmatsci.2021.100911 – volume: 18 issue: 06 year: 2023 ident: bibr43-15589250241313158 publication-title: J Instrument doi: 10.1088/1748-0221/18/06/P06007 – ident: bibr5-15589250241313158 doi: 10.1016/j.aei.2023.102205 – ident: bibr1-15589250241313158 doi: 10.1038/nature14539 – ident: bibr26-15589250241313158 doi: 10.1109/CVPR.2018.00262 – ident: bibr27-15589250241313158 doi: 10.1117/12.2592872 – ident: bibr51-15589250241313158 doi: 10.1109/TIM.2023.3280519 – ident: bibr19-15589250241313158 doi: 10.1109/CVPR52688.2022.00197 – start-page: 1347 volume-title: Conference on robot learning year: 2022 ident: bibr50-15589250241313158 – ident: bibr8-15589250241313158 doi: 10.1109/MSP.2023.3262906 – start-page: 911434727 year: 2024 ident: bibr9-15589250241313158 publication-title: Textile Res J – ident: bibr16-15589250241313158 – ident: bibr47-15589250241313158 doi: 10.1109/TAP.2023.3296915 – ident: bibr12-15589250241313158 doi: 10.1109/TIM.2022.3214285 – ident: bibr21-15589250241313158 doi: 10.1002/col.22745 – ident: bibr39-15589250241313158 doi: 10.3788/LOP202158.0210014 |
SSID | ssj0059350 |
Score | 2.3769116 |
Snippet | In the field of fabric defect detection, the development of algorithms has been hindered by issues such as poor quality and limited quantity of open-source... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
Title | Blind super-resolution network based on local fuzzy discriminative loss for fabric data augmentation |
URI | https://doaj.org/article/df4ebb3064f2410e8a6ac5472db91c31 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWBCskicOHFGiqgqJJio1C3y-cFEqNpmoL-euzhFkRhYUDbHjpI757472_cdY7eZkx6RHARCCwYoyqaiCkELn3swGmjritYhX16L6Sx_nqv5oNQXnQmL9MBRcPcu4CggPzkg2CRem8JYlZfSQZXaLoNaIuZtg6log1WVqe0eJtErIWjqCsGeNpHwovruAxQakPV3qDI5ZAe9O8gf4mscsR3fHLP9AUngCXNj9AQdX7ULvxQYHPdzhTfxADcnHHIcGzpY4qHdbL44JdvGgl1kzvDWasXRPeXBABo-TudCuWnfP_rMo-aUzSZPb49T0ddGEBZlsRZGgiduxwIsRmhOGfy-xCVFINS1WgY0qFY5nRSAPzEkDnulAdE_KzHGyfPsjO02n40_Z7wMtjTaZC5AmlsZqqI06NT5EnAc6GzE7rayqheRAqNOe5bwX4IdsTFJ86cjsVd3DajTutdp_ZdOL_7jIZdsT1Kt3m655Irtrpetv0YHYg033Vz5BqPlw1k |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blind+super-resolution+network+based+on+local+fuzzy+discriminative+loss+for+fabric+data+augmentation&rft.jtitle=Journal+of+engineered+fibers+and+fabrics&rft.au=Ning+Dai&rft.au=Xiaohan+Hu&rft.au=Kaixin+Xu&rft.au=Xudong+Hu&rft.date=2025-01-01&rft.pub=SAGE+Publishing&rft.eissn=1558-9250&rft.volume=20&rft_id=info:doi/10.1177%2F15589250241313158&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_df4ebb3064f2410e8a6ac5472db91c31 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-9250&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-9250&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-9250&client=summon |