On positive periodic solutions of the time–space periodic Lotka–Volterra cooperating system in multi-dimensional media
This work is devoted to the study of the time–space periodic reaction–diffusion–advection Lotka–Volterra cooperating system in multi-dimensional media. By using the method of sub-super solutions and its associated iterations, we prove the existence and uniqueness of the positive periodic solution un...
Saved in:
Published in | Nonlinear analysis: real world applications Vol. 72; p. 103866 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work is devoted to the study of the time–space periodic reaction–diffusion–advection Lotka–Volterra cooperating system in multi-dimensional media. By using the method of sub-super solutions and its associated iterations, we prove the existence and uniqueness of the positive periodic solution under appropriate conditions. Finally, we are able to derive the asymptotic behavior of the solutions to the associated Cauchy problem. |
---|---|
AbstractList | This work is devoted to the study of the time–space periodic reaction–diffusion–advection Lotka–Volterra cooperating system in multi-dimensional media. By using the method of sub-super solutions and its associated iterations, we prove the existence and uniqueness of the positive periodic solution under appropriate conditions. Finally, we are able to derive the asymptotic behavior of the solutions to the associated Cauchy problem. |
ArticleNumber | 103866 |
Author | Du, Li-Jun |
Author_xml | – sequence: 1 givenname: Li-Jun orcidid: 0000-0002-6476-6633 surname: Du fullname: Du, Li-Jun email: dulj20@chd.edu.cn organization: School of Science, Chang’an University, Xi’an, Shaanxi 710064, People’s Republic of China |
BookMark | eNqFkE1OwzAQhS1UJNrCDVj4Ail2nDoOCyRU8SdV6gbYWq5jw5Qkrmy3qKy4AzfkJLgKC8QCVjN6M-9J7xuhQec6g9ApJRNKKD9bTZLgX9UkJzlLEhOcH6AhFaXIpiWtBmkvuMhoTsURGoWwIoSWlNEhelt0eO0CRNgavDYeXA0aB9dsIrguYGdxfDY4Qms-3z_CWukfb3MXX1SSH10TjfcKa-fSUUXonnDYhWhaDB1uN02ErE4RXUihqsGtqUEdo0OrmmBOvucYPVxf3c9us_ni5m52Oc80IzxmijIi6tyKsrJcs6LSU16UtqC0ZpTXVpOSM811vlxWhSGWioIIa3PFSsXssmJjVPS52rsQvLFy7aFVficpkXt-ciV7fnLPT_b8ku38l01DVHsq0Sto_jNf9GaTim3BeBk0mE6n3t7oKGsHfwd8Af6Fldc |
CitedBy_id | crossref_primary_10_1016_j_nonrwa_2024_104136 |
Cites_doi | 10.1007/s00285-004-0313-3 10.1016/0022-0396(79)90156-6 10.1007/s10231-008-0075-4 10.1007/s002850100106 10.1016/j.jde.2010.05.007 10.1016/j.na.2004.10.008 10.1016/j.nonrwa.2010.06.033 10.1016/j.jfa.2008.06.030 10.4171/jems/47 10.57262/die/1371086981 10.1016/j.matpur.2009.04.002 10.1006/jmaa.1999.6412 10.1016/0362-546X(89)90054-0 10.1016/S0362-546X(00)85031-2 10.1006/jdeq.1999.3655 10.1016/j.jmaa.2004.09.014 10.1016/j.matpur.2004.10.006 10.1007/s10231-006-0015-0 10.1007/s00033-022-01915-5 10.1016/j.jfa.2022.109415 10.1016/S0362-546X(03)00048-8 10.1016/0362-546X(91)90202-C |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nonrwa.2023.103866 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1878-5719 |
ExternalDocumentID | 10_1016_j_nonrwa_2023_103866 S1468121823000366 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29N 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W J9A JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSW SSZ T5K XPP YQT ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-a1308d2f879f6c349c5647f411d316dfc0763c6c2bb94e0f18408ff2a37a3fb93 |
IEDL.DBID | .~1 |
ISSN | 1468-1218 |
IngestDate | Tue Jul 01 04:03:15 EDT 2025 Thu Apr 24 23:12:43 EDT 2025 Fri Feb 23 02:38:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Positive periodic solution Stability Cooperating system Existence Uniqueness |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-a1308d2f879f6c349c5647f411d316dfc0763c6c2bb94e0f18408ff2a37a3fb93 |
ORCID | 0000-0002-6476-6633 |
ParticipantIDs | crossref_primary_10_1016_j_nonrwa_2023_103866 crossref_citationtrail_10_1016_j_nonrwa_2023_103866 elsevier_sciencedirect_doi_10_1016_j_nonrwa_2023_103866 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationTitle | Nonlinear analysis: real world applications |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Maginu (b17) 1979; 31 Pao (b21) 2005; 304 Hess (b10) 1991 Berestycki, Hamel, Nadin (b24) 2008; 255 Lin, Liu, Pedersen (b15) 2011; 12 Amman (b16) 1978 Berestycki, Rossi (b4) 2006; 8 Brown, Hess (b9) 1991; 16 Nadin (b5) 2009; 4 Du, Li, Shen (b23) 2022; 282 Du, Bao (b22) 2023; 74 Pao (b20) 2005; 60 Zhao (b25) 2003 Hutson, Michaikow, Polacik (b19) 2001; 43 Berestycki, Hamel, Roques (b2) 2005; 84 Berestycki, Hamel, Roques (b1) 2005; 51 Pao (b12) 2000; 40 Ahmad, Lazer (b8) 1989; 13 Nadin (b7) 2009; 92 Wang, Li (b13) 2003; 53 Nadin (b6) 2010; 249 Delgado, López-Gómez, Suárez (b14) 2000; 160 Pao (b11) 1999; 234 López-Gómez (b18) 1992; 5 Berestycki, Hamel, Rossi (b3) 2007; 186 Brown (10.1016/j.nonrwa.2023.103866_b9) 1991; 16 Maginu (10.1016/j.nonrwa.2023.103866_b17) 1979; 31 Pao (10.1016/j.nonrwa.2023.103866_b12) 2000; 40 Amman (10.1016/j.nonrwa.2023.103866_b16) 1978 Pao (10.1016/j.nonrwa.2023.103866_b11) 1999; 234 Hutson (10.1016/j.nonrwa.2023.103866_b19) 2001; 43 Pao (10.1016/j.nonrwa.2023.103866_b20) 2005; 60 López-Gómez (10.1016/j.nonrwa.2023.103866_b18) 1992; 5 Pao (10.1016/j.nonrwa.2023.103866_b21) 2005; 304 Hess (10.1016/j.nonrwa.2023.103866_b10) 1991 Nadin (10.1016/j.nonrwa.2023.103866_b5) 2009; 4 Nadin (10.1016/j.nonrwa.2023.103866_b6) 2010; 249 Zhao (10.1016/j.nonrwa.2023.103866_b25) 2003 Du (10.1016/j.nonrwa.2023.103866_b23) 2022; 282 Berestycki (10.1016/j.nonrwa.2023.103866_b3) 2007; 186 Berestycki (10.1016/j.nonrwa.2023.103866_b24) 2008; 255 Du (10.1016/j.nonrwa.2023.103866_b22) 2023; 74 Delgado (10.1016/j.nonrwa.2023.103866_b14) 2000; 160 Nadin (10.1016/j.nonrwa.2023.103866_b7) 2009; 92 Berestycki (10.1016/j.nonrwa.2023.103866_b2) 2005; 84 Berestycki (10.1016/j.nonrwa.2023.103866_b1) 2005; 51 Ahmad (10.1016/j.nonrwa.2023.103866_b8) 1989; 13 Wang (10.1016/j.nonrwa.2023.103866_b13) 2003; 53 Lin (10.1016/j.nonrwa.2023.103866_b15) 2011; 12 Berestycki (10.1016/j.nonrwa.2023.103866_b4) 2006; 8 |
References_xml | – volume: 43 start-page: 501 year: 2001 end-page: 533 ident: b19 article-title: The evolution of dispersal rates in a heterogeneous time-periodic environment publication-title: J. Math. Biol. – volume: 255 start-page: 2146 year: 2008 end-page: 2189 ident: b24 article-title: Asymptotic spreading in heterogeneous diffusive excitable media publication-title: J. Funct. Anal. – volume: 74 start-page: 18 year: 2023 ident: b22 article-title: Spreading properties for a time-space periodic Lotka–Volterra cooperative system in multi-dimensional media publication-title: Z. Angew. Math. Phys. – volume: 234 start-page: 695 year: 1999 end-page: 716 ident: b11 article-title: Periodic solutions of parabolic systems with nonlinear boundary conditions publication-title: J. Math. Anal. Appl. – volume: 304 start-page: 423 year: 2005 end-page: 450 ident: b21 article-title: Stability and attractivity of periodic solutions of parabolic systems with time delays publication-title: J. Math. Anal. Appl. – year: 1991 ident: b10 publication-title: Periodic-Parabolic Boundary Value Problems and Positivity – volume: 8 start-page: 195 year: 2006 end-page: 215 ident: b4 article-title: On the principal eigenvalue of elliptic operators in publication-title: J. Eur. Math. Soc. – volume: 249 start-page: 1288 year: 2010 end-page: 1304 ident: b6 article-title: Existence and uniqueness of the solution of a space–time periodic reaction–diffusion equation publication-title: J. Differential Equations – volume: 51 start-page: 75 year: 2005 end-page: 113 ident: b1 article-title: Analysis of the periodically fragmented environment model: I- species persistence publication-title: J. Math. Biol. – volume: 5 start-page: 55 year: 1992 end-page: 72 ident: b18 article-title: Positive periodic solutions of Lotka–Volterra reaction–diffusion systems publication-title: Differential Integral Equations – volume: 60 start-page: 1197 year: 2005 end-page: 1217 ident: b20 article-title: Strongly coupled elliptic systems and applications to Lotka–Volterra models with cross-diffusion publication-title: Nonlinear Anal. – year: 2003 ident: b25 article-title: Dynamical Systems in Population Biology – volume: 13 start-page: 263 year: 1989 end-page: 284 ident: b8 article-title: Asymptotic behavior of solutions of periodic competition diffusion system publication-title: Nonlinear Anal. – volume: 40 start-page: 523 year: 2000 end-page: 535 ident: b12 article-title: Periodic solutions of systems of parabolic equations in unbounded domains publication-title: Nonlinear Anal. – volume: 12 start-page: 479 year: 2011 end-page: 486 ident: b15 article-title: Periodicity and blowup in a two-species cooperating model publication-title: Nonlinear Anal. RWA – start-page: 1 year: 1978 end-page: 29 ident: b16 article-title: Periodic solutions of semilinear parabolic equations publication-title: Nonlinear Anal. – volume: 84 start-page: 1101 year: 2005 end-page: 1146 ident: b2 article-title: Analysis of the periodically fragmented environment model: II- biological invasions and pulsating traveling fronts publication-title: J. Math. Pures Appl. – volume: 92 start-page: 232 year: 2009 end-page: 262 ident: b7 article-title: Traveling fronts in space–time periodic media publication-title: J. Math. Pures Appl. – volume: 4 start-page: 269 year: 2009 end-page: 295 ident: b5 article-title: The principal eigenvalue of a space–time periodic parabolic operator publication-title: Ann. Mat. Pura Appl. – volume: 53 start-page: 2115 year: 2003 end-page: 2125 ident: b13 article-title: On positive solutions of the Lotka–Volterra cooperating models with diffusion publication-title: Nonlinear Anal. – volume: 16 start-page: 1147 year: 1991 end-page: 1158 ident: b9 article-title: Positive periodic solutions of predator–prey reaction–diffusion systems publication-title: Nonlinear Anal. – volume: 282 start-page: 59 year: 2022 ident: b23 article-title: Propagation phenomena for time-space periodic monotone semiflows and applications to cooperative systems in multi-dimensional media publication-title: J. Funct. Anal. – volume: 186 start-page: 469 year: 2007 end-page: 507 ident: b3 article-title: Liouville-type result for semilinear elliptic equations in unbounded domains publication-title: Ann. Mat. Pura Appl. – volume: 160 start-page: 175 year: 2000 end-page: 262 ident: b14 article-title: On the symbiotic Lotka–Volterra model with diffusion and transport effects publication-title: J. Differential Equations – volume: 31 start-page: 130 year: 1979 end-page: 138 ident: b17 article-title: Stability of spatially homogeneous periodic solutions of reaction–diffusion equation publication-title: J. Differential Equations – volume: 51 start-page: 75 year: 2005 ident: 10.1016/j.nonrwa.2023.103866_b1 article-title: Analysis of the periodically fragmented environment model: I- species persistence publication-title: J. Math. Biol. doi: 10.1007/s00285-004-0313-3 – volume: 31 start-page: 130 year: 1979 ident: 10.1016/j.nonrwa.2023.103866_b17 article-title: Stability of spatially homogeneous periodic solutions of reaction–diffusion equation publication-title: J. Differential Equations doi: 10.1016/0022-0396(79)90156-6 – volume: 4 start-page: 269 year: 2009 ident: 10.1016/j.nonrwa.2023.103866_b5 article-title: The principal eigenvalue of a space–time periodic parabolic operator publication-title: Ann. Mat. Pura Appl. doi: 10.1007/s10231-008-0075-4 – volume: 43 start-page: 501 year: 2001 ident: 10.1016/j.nonrwa.2023.103866_b19 article-title: The evolution of dispersal rates in a heterogeneous time-periodic environment publication-title: J. Math. Biol. doi: 10.1007/s002850100106 – start-page: 1 year: 1978 ident: 10.1016/j.nonrwa.2023.103866_b16 article-title: Periodic solutions of semilinear parabolic equations publication-title: Nonlinear Anal. – volume: 249 start-page: 1288 year: 2010 ident: 10.1016/j.nonrwa.2023.103866_b6 article-title: Existence and uniqueness of the solution of a space–time periodic reaction–diffusion equation publication-title: J. Differential Equations doi: 10.1016/j.jde.2010.05.007 – volume: 60 start-page: 1197 year: 2005 ident: 10.1016/j.nonrwa.2023.103866_b20 article-title: Strongly coupled elliptic systems and applications to Lotka–Volterra models with cross-diffusion publication-title: Nonlinear Anal. doi: 10.1016/j.na.2004.10.008 – volume: 12 start-page: 479 year: 2011 ident: 10.1016/j.nonrwa.2023.103866_b15 article-title: Periodicity and blowup in a two-species cooperating model publication-title: Nonlinear Anal. RWA doi: 10.1016/j.nonrwa.2010.06.033 – volume: 255 start-page: 2146 year: 2008 ident: 10.1016/j.nonrwa.2023.103866_b24 article-title: Asymptotic spreading in heterogeneous diffusive excitable media publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2008.06.030 – year: 2003 ident: 10.1016/j.nonrwa.2023.103866_b25 – volume: 8 start-page: 195 year: 2006 ident: 10.1016/j.nonrwa.2023.103866_b4 article-title: On the principal eigenvalue of elliptic operators in RN and applications publication-title: J. Eur. Math. Soc. doi: 10.4171/jems/47 – volume: 5 start-page: 55 year: 1992 ident: 10.1016/j.nonrwa.2023.103866_b18 article-title: Positive periodic solutions of Lotka–Volterra reaction–diffusion systems publication-title: Differential Integral Equations doi: 10.57262/die/1371086981 – volume: 92 start-page: 232 year: 2009 ident: 10.1016/j.nonrwa.2023.103866_b7 article-title: Traveling fronts in space–time periodic media publication-title: J. Math. Pures Appl. doi: 10.1016/j.matpur.2009.04.002 – year: 1991 ident: 10.1016/j.nonrwa.2023.103866_b10 – volume: 234 start-page: 695 year: 1999 ident: 10.1016/j.nonrwa.2023.103866_b11 article-title: Periodic solutions of parabolic systems with nonlinear boundary conditions publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.1999.6412 – volume: 13 start-page: 263 year: 1989 ident: 10.1016/j.nonrwa.2023.103866_b8 article-title: Asymptotic behavior of solutions of periodic competition diffusion system publication-title: Nonlinear Anal. doi: 10.1016/0362-546X(89)90054-0 – volume: 40 start-page: 523 year: 2000 ident: 10.1016/j.nonrwa.2023.103866_b12 article-title: Periodic solutions of systems of parabolic equations in unbounded domains publication-title: Nonlinear Anal. doi: 10.1016/S0362-546X(00)85031-2 – volume: 160 start-page: 175 year: 2000 ident: 10.1016/j.nonrwa.2023.103866_b14 article-title: On the symbiotic Lotka–Volterra model with diffusion and transport effects publication-title: J. Differential Equations doi: 10.1006/jdeq.1999.3655 – volume: 304 start-page: 423 year: 2005 ident: 10.1016/j.nonrwa.2023.103866_b21 article-title: Stability and attractivity of periodic solutions of parabolic systems with time delays publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2004.09.014 – volume: 84 start-page: 1101 year: 2005 ident: 10.1016/j.nonrwa.2023.103866_b2 article-title: Analysis of the periodically fragmented environment model: II- biological invasions and pulsating traveling fronts publication-title: J. Math. Pures Appl. doi: 10.1016/j.matpur.2004.10.006 – volume: 186 start-page: 469 year: 2007 ident: 10.1016/j.nonrwa.2023.103866_b3 article-title: Liouville-type result for semilinear elliptic equations in unbounded domains publication-title: Ann. Mat. Pura Appl. doi: 10.1007/s10231-006-0015-0 – volume: 74 start-page: 18 issue: 1 year: 2023 ident: 10.1016/j.nonrwa.2023.103866_b22 article-title: Spreading properties for a time-space periodic Lotka–Volterra cooperative system in multi-dimensional media publication-title: Z. Angew. Math. Phys. doi: 10.1007/s00033-022-01915-5 – volume: 282 start-page: 59 issue: 9 year: 2022 ident: 10.1016/j.nonrwa.2023.103866_b23 article-title: Propagation phenomena for time-space periodic monotone semiflows and applications to cooperative systems in multi-dimensional media publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2022.109415 – volume: 53 start-page: 2115 year: 2003 ident: 10.1016/j.nonrwa.2023.103866_b13 article-title: On positive solutions of the Lotka–Volterra cooperating models with diffusion publication-title: Nonlinear Anal. doi: 10.1016/S0362-546X(03)00048-8 – volume: 16 start-page: 1147 year: 1991 ident: 10.1016/j.nonrwa.2023.103866_b9 article-title: Positive periodic solutions of predator–prey reaction–diffusion systems publication-title: Nonlinear Anal. doi: 10.1016/0362-546X(91)90202-C |
SSID | ssj0017131 |
Score | 2.3668952 |
Snippet | This work is devoted to the study of the time–space periodic reaction–diffusion–advection Lotka–Volterra cooperating system in multi-dimensional media. By... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103866 |
SubjectTerms | Cooperating system Existence Positive periodic solution Stability Uniqueness |
Title | On positive periodic solutions of the time–space periodic Lotka–Volterra cooperating system in multi-dimensional media |
URI | https://dx.doi.org/10.1016/j.nonrwa.2023.103866 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1fS8MwEMDDmC_6IP7F-Wfkwde4temS5nEMx9RNRZ3srbRJA1VZx6wKPojfwW_oJzHXtGWCKPhUGi5QLsddjt79DqFDobQDv7dMWhJyAhGDhJ6QRMaux7VgXFLoRh6ds8HYO510JjXUK3thoKyy8P3Wp-feulhpFdpszZKkdQ1NQw4AyGlOVQHstudxsPKjt6rMwzFJmFN2GIF02T6X13iZDHv-AvQhl-ak8JyV-EN4Wgg5_TW0WtwVcdd-zjqqxdMNtDKqQKuPm-j1Yopt3dVzjAFanKpE4sqecKqxkcYwQf7z_cN4D7kgNkyz-9As36bwy3weYpmmM4Asm3CGLeIZJ1Oc1xwSBWMALMID5-0mW2jcP77pDUgxToFIkxdkJDThyleu9rnQTFJzIh1mzsNzHEUdprRsG18jmXSjSHhxW0Pu52vthpSHVEeCbqO6UVi8g7ATxZxStx3JUAJxzVdM-8oXJr_pMKFFA9FSi4EsWOMw8uIhKIvK7gKr-wB0H1jdNxCpds0sa-MPeV4eUPDNZgITDn7dufvvnXtoGd5sCeA-qmfzp_jAXEuyqJnbXRMtdXtXw0t4npwNzr8A15znsg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTsMwDI7GOAAHxK8YvzlwLVubLm2OaGIasI0DG-JWpWkjFdA6jQISB8Q78IY8CXbTVkNCIHFNbalyHDtWPn8m5FhE2sbnLShLpGdhxrCkK5SlYsf1tOCeYtiNPBjy3ti9uG3f1kin7IVBWGUR-01Mz6N1sdIsrNmcJknzGpuGbCQgZzmrCl8giy4cXxxjcPJW4TxsqMLsssUIxcv-uRzkBSX27AXphxyWU4XnZIk_5Ke5nNNdI6vFZZGemv9ZJ7V4skFWBhXT6uMmeb2aUAO8eo4pshanUaJo5VA01RSkKY6Q_3z_gPCh5sT6aXYvYfkmxTfzmaQqTafIsgz5jBqOZ5pMaA46tCKcA2A4PGjeb7JFxt2zUadnFfMULAWFQWZJyFd-5GjfE5orBlvS5rAhrm1HzOaRVi0INoorJwyFG7c0Fn--1o5knmQ6FGyb1MFg8Q6hdhh7jDmtUEmFlGt-xLUf-QIKnDYXWjQIK60YqIJsHGdePAQlquwuMLYP0PaBsX2DWJXW1JBt_CHvlRsUfHOaAPLBr5q7_9Y8Iku90aAf9M-Hl3tkGb8YPOA-qWezp_gA7ihZeJj74Bfxo-er |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+positive+periodic+solutions+of+the+time%E2%80%93space+periodic+Lotka%E2%80%93Volterra+cooperating+system+in+multi-dimensional+media&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Du%2C+Li-Jun&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=1468-1218&rft.eissn=1878-5719&rft.volume=72&rft_id=info:doi/10.1016%2Fj.nonrwa.2023.103866&rft.externalDocID=S1468121823000366 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon |