On positive periodic solutions of the time–space periodic Lotka–Volterra cooperating system in multi-dimensional media

This work is devoted to the study of the time–space periodic reaction–diffusion–advection Lotka–Volterra cooperating system in multi-dimensional media. By using the method of sub-super solutions and its associated iterations, we prove the existence and uniqueness of the positive periodic solution un...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis: real world applications Vol. 72; p. 103866
Main Author Du, Li-Jun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work is devoted to the study of the time–space periodic reaction–diffusion–advection Lotka–Volterra cooperating system in multi-dimensional media. By using the method of sub-super solutions and its associated iterations, we prove the existence and uniqueness of the positive periodic solution under appropriate conditions. Finally, we are able to derive the asymptotic behavior of the solutions to the associated Cauchy problem.
AbstractList This work is devoted to the study of the time–space periodic reaction–diffusion–advection Lotka–Volterra cooperating system in multi-dimensional media. By using the method of sub-super solutions and its associated iterations, we prove the existence and uniqueness of the positive periodic solution under appropriate conditions. Finally, we are able to derive the asymptotic behavior of the solutions to the associated Cauchy problem.
ArticleNumber 103866
Author Du, Li-Jun
Author_xml – sequence: 1
  givenname: Li-Jun
  orcidid: 0000-0002-6476-6633
  surname: Du
  fullname: Du, Li-Jun
  email: dulj20@chd.edu.cn
  organization: School of Science, Chang’an University, Xi’an, Shaanxi 710064, People’s Republic of China
BookMark eNqFkE1OwzAQhS1UJNrCDVj4Ail2nDoOCyRU8SdV6gbYWq5jw5Qkrmy3qKy4AzfkJLgKC8QCVjN6M-9J7xuhQec6g9ApJRNKKD9bTZLgX9UkJzlLEhOcH6AhFaXIpiWtBmkvuMhoTsURGoWwIoSWlNEhelt0eO0CRNgavDYeXA0aB9dsIrguYGdxfDY4Qms-3z_CWukfb3MXX1SSH10TjfcKa-fSUUXonnDYhWhaDB1uN02ErE4RXUihqsGtqUEdo0OrmmBOvucYPVxf3c9us_ni5m52Oc80IzxmijIi6tyKsrJcs6LSU16UtqC0ZpTXVpOSM811vlxWhSGWioIIa3PFSsXssmJjVPS52rsQvLFy7aFVficpkXt-ciV7fnLPT_b8ku38l01DVHsq0Sto_jNf9GaTim3BeBk0mE6n3t7oKGsHfwd8Af6Fldc
CitedBy_id crossref_primary_10_1016_j_nonrwa_2024_104136
Cites_doi 10.1007/s00285-004-0313-3
10.1016/0022-0396(79)90156-6
10.1007/s10231-008-0075-4
10.1007/s002850100106
10.1016/j.jde.2010.05.007
10.1016/j.na.2004.10.008
10.1016/j.nonrwa.2010.06.033
10.1016/j.jfa.2008.06.030
10.4171/jems/47
10.57262/die/1371086981
10.1016/j.matpur.2009.04.002
10.1006/jmaa.1999.6412
10.1016/0362-546X(89)90054-0
10.1016/S0362-546X(00)85031-2
10.1006/jdeq.1999.3655
10.1016/j.jmaa.2004.09.014
10.1016/j.matpur.2004.10.006
10.1007/s10231-006-0015-0
10.1007/s00033-022-01915-5
10.1016/j.jfa.2022.109415
10.1016/S0362-546X(03)00048-8
10.1016/0362-546X(91)90202-C
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nonrwa.2023.103866
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1878-5719
ExternalDocumentID 10_1016_j_nonrwa_2023_103866
S1468121823000366
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J9A
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
XPP
YQT
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-a1308d2f879f6c349c5647f411d316dfc0763c6c2bb94e0f18408ff2a37a3fb93
IEDL.DBID .~1
ISSN 1468-1218
IngestDate Tue Jul 01 04:03:15 EDT 2025
Thu Apr 24 23:12:43 EDT 2025
Fri Feb 23 02:38:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Positive periodic solution
Stability
Cooperating system
Existence
Uniqueness
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-a1308d2f879f6c349c5647f411d316dfc0763c6c2bb94e0f18408ff2a37a3fb93
ORCID 0000-0002-6476-6633
ParticipantIDs crossref_primary_10_1016_j_nonrwa_2023_103866
crossref_citationtrail_10_1016_j_nonrwa_2023_103866
elsevier_sciencedirect_doi_10_1016_j_nonrwa_2023_103866
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Nonlinear analysis: real world applications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Maginu (b17) 1979; 31
Pao (b21) 2005; 304
Hess (b10) 1991
Berestycki, Hamel, Nadin (b24) 2008; 255
Lin, Liu, Pedersen (b15) 2011; 12
Amman (b16) 1978
Berestycki, Rossi (b4) 2006; 8
Brown, Hess (b9) 1991; 16
Nadin (b5) 2009; 4
Du, Li, Shen (b23) 2022; 282
Du, Bao (b22) 2023; 74
Pao (b20) 2005; 60
Zhao (b25) 2003
Hutson, Michaikow, Polacik (b19) 2001; 43
Berestycki, Hamel, Roques (b2) 2005; 84
Berestycki, Hamel, Roques (b1) 2005; 51
Pao (b12) 2000; 40
Ahmad, Lazer (b8) 1989; 13
Nadin (b7) 2009; 92
Wang, Li (b13) 2003; 53
Nadin (b6) 2010; 249
Delgado, López-Gómez, Suárez (b14) 2000; 160
Pao (b11) 1999; 234
López-Gómez (b18) 1992; 5
Berestycki, Hamel, Rossi (b3) 2007; 186
Brown (10.1016/j.nonrwa.2023.103866_b9) 1991; 16
Maginu (10.1016/j.nonrwa.2023.103866_b17) 1979; 31
Pao (10.1016/j.nonrwa.2023.103866_b12) 2000; 40
Amman (10.1016/j.nonrwa.2023.103866_b16) 1978
Pao (10.1016/j.nonrwa.2023.103866_b11) 1999; 234
Hutson (10.1016/j.nonrwa.2023.103866_b19) 2001; 43
Pao (10.1016/j.nonrwa.2023.103866_b20) 2005; 60
López-Gómez (10.1016/j.nonrwa.2023.103866_b18) 1992; 5
Pao (10.1016/j.nonrwa.2023.103866_b21) 2005; 304
Hess (10.1016/j.nonrwa.2023.103866_b10) 1991
Nadin (10.1016/j.nonrwa.2023.103866_b5) 2009; 4
Nadin (10.1016/j.nonrwa.2023.103866_b6) 2010; 249
Zhao (10.1016/j.nonrwa.2023.103866_b25) 2003
Du (10.1016/j.nonrwa.2023.103866_b23) 2022; 282
Berestycki (10.1016/j.nonrwa.2023.103866_b3) 2007; 186
Berestycki (10.1016/j.nonrwa.2023.103866_b24) 2008; 255
Du (10.1016/j.nonrwa.2023.103866_b22) 2023; 74
Delgado (10.1016/j.nonrwa.2023.103866_b14) 2000; 160
Nadin (10.1016/j.nonrwa.2023.103866_b7) 2009; 92
Berestycki (10.1016/j.nonrwa.2023.103866_b2) 2005; 84
Berestycki (10.1016/j.nonrwa.2023.103866_b1) 2005; 51
Ahmad (10.1016/j.nonrwa.2023.103866_b8) 1989; 13
Wang (10.1016/j.nonrwa.2023.103866_b13) 2003; 53
Lin (10.1016/j.nonrwa.2023.103866_b15) 2011; 12
Berestycki (10.1016/j.nonrwa.2023.103866_b4) 2006; 8
References_xml – volume: 43
  start-page: 501
  year: 2001
  end-page: 533
  ident: b19
  article-title: The evolution of dispersal rates in a heterogeneous time-periodic environment
  publication-title: J. Math. Biol.
– volume: 255
  start-page: 2146
  year: 2008
  end-page: 2189
  ident: b24
  article-title: Asymptotic spreading in heterogeneous diffusive excitable media
  publication-title: J. Funct. Anal.
– volume: 74
  start-page: 18
  year: 2023
  ident: b22
  article-title: Spreading properties for a time-space periodic Lotka–Volterra cooperative system in multi-dimensional media
  publication-title: Z. Angew. Math. Phys.
– volume: 234
  start-page: 695
  year: 1999
  end-page: 716
  ident: b11
  article-title: Periodic solutions of parabolic systems with nonlinear boundary conditions
  publication-title: J. Math. Anal. Appl.
– volume: 304
  start-page: 423
  year: 2005
  end-page: 450
  ident: b21
  article-title: Stability and attractivity of periodic solutions of parabolic systems with time delays
  publication-title: J. Math. Anal. Appl.
– year: 1991
  ident: b10
  publication-title: Periodic-Parabolic Boundary Value Problems and Positivity
– volume: 8
  start-page: 195
  year: 2006
  end-page: 215
  ident: b4
  article-title: On the principal eigenvalue of elliptic operators in
  publication-title: J. Eur. Math. Soc.
– volume: 249
  start-page: 1288
  year: 2010
  end-page: 1304
  ident: b6
  article-title: Existence and uniqueness of the solution of a space–time periodic reaction–diffusion equation
  publication-title: J. Differential Equations
– volume: 51
  start-page: 75
  year: 2005
  end-page: 113
  ident: b1
  article-title: Analysis of the periodically fragmented environment model: I- species persistence
  publication-title: J. Math. Biol.
– volume: 5
  start-page: 55
  year: 1992
  end-page: 72
  ident: b18
  article-title: Positive periodic solutions of Lotka–Volterra reaction–diffusion systems
  publication-title: Differential Integral Equations
– volume: 60
  start-page: 1197
  year: 2005
  end-page: 1217
  ident: b20
  article-title: Strongly coupled elliptic systems and applications to Lotka–Volterra models with cross-diffusion
  publication-title: Nonlinear Anal.
– year: 2003
  ident: b25
  article-title: Dynamical Systems in Population Biology
– volume: 13
  start-page: 263
  year: 1989
  end-page: 284
  ident: b8
  article-title: Asymptotic behavior of solutions of periodic competition diffusion system
  publication-title: Nonlinear Anal.
– volume: 40
  start-page: 523
  year: 2000
  end-page: 535
  ident: b12
  article-title: Periodic solutions of systems of parabolic equations in unbounded domains
  publication-title: Nonlinear Anal.
– volume: 12
  start-page: 479
  year: 2011
  end-page: 486
  ident: b15
  article-title: Periodicity and blowup in a two-species cooperating model
  publication-title: Nonlinear Anal. RWA
– start-page: 1
  year: 1978
  end-page: 29
  ident: b16
  article-title: Periodic solutions of semilinear parabolic equations
  publication-title: Nonlinear Anal.
– volume: 84
  start-page: 1101
  year: 2005
  end-page: 1146
  ident: b2
  article-title: Analysis of the periodically fragmented environment model: II- biological invasions and pulsating traveling fronts
  publication-title: J. Math. Pures Appl.
– volume: 92
  start-page: 232
  year: 2009
  end-page: 262
  ident: b7
  article-title: Traveling fronts in space–time periodic media
  publication-title: J. Math. Pures Appl.
– volume: 4
  start-page: 269
  year: 2009
  end-page: 295
  ident: b5
  article-title: The principal eigenvalue of a space–time periodic parabolic operator
  publication-title: Ann. Mat. Pura Appl.
– volume: 53
  start-page: 2115
  year: 2003
  end-page: 2125
  ident: b13
  article-title: On positive solutions of the Lotka–Volterra cooperating models with diffusion
  publication-title: Nonlinear Anal.
– volume: 16
  start-page: 1147
  year: 1991
  end-page: 1158
  ident: b9
  article-title: Positive periodic solutions of predator–prey reaction–diffusion systems
  publication-title: Nonlinear Anal.
– volume: 282
  start-page: 59
  year: 2022
  ident: b23
  article-title: Propagation phenomena for time-space periodic monotone semiflows and applications to cooperative systems in multi-dimensional media
  publication-title: J. Funct. Anal.
– volume: 186
  start-page: 469
  year: 2007
  end-page: 507
  ident: b3
  article-title: Liouville-type result for semilinear elliptic equations in unbounded domains
  publication-title: Ann. Mat. Pura Appl.
– volume: 160
  start-page: 175
  year: 2000
  end-page: 262
  ident: b14
  article-title: On the symbiotic Lotka–Volterra model with diffusion and transport effects
  publication-title: J. Differential Equations
– volume: 31
  start-page: 130
  year: 1979
  end-page: 138
  ident: b17
  article-title: Stability of spatially homogeneous periodic solutions of reaction–diffusion equation
  publication-title: J. Differential Equations
– volume: 51
  start-page: 75
  year: 2005
  ident: 10.1016/j.nonrwa.2023.103866_b1
  article-title: Analysis of the periodically fragmented environment model: I- species persistence
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-004-0313-3
– volume: 31
  start-page: 130
  year: 1979
  ident: 10.1016/j.nonrwa.2023.103866_b17
  article-title: Stability of spatially homogeneous periodic solutions of reaction–diffusion equation
  publication-title: J. Differential Equations
  doi: 10.1016/0022-0396(79)90156-6
– volume: 4
  start-page: 269
  year: 2009
  ident: 10.1016/j.nonrwa.2023.103866_b5
  article-title: The principal eigenvalue of a space–time periodic parabolic operator
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/s10231-008-0075-4
– volume: 43
  start-page: 501
  year: 2001
  ident: 10.1016/j.nonrwa.2023.103866_b19
  article-title: The evolution of dispersal rates in a heterogeneous time-periodic environment
  publication-title: J. Math. Biol.
  doi: 10.1007/s002850100106
– start-page: 1
  year: 1978
  ident: 10.1016/j.nonrwa.2023.103866_b16
  article-title: Periodic solutions of semilinear parabolic equations
  publication-title: Nonlinear Anal.
– volume: 249
  start-page: 1288
  year: 2010
  ident: 10.1016/j.nonrwa.2023.103866_b6
  article-title: Existence and uniqueness of the solution of a space–time periodic reaction–diffusion equation
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2010.05.007
– volume: 60
  start-page: 1197
  year: 2005
  ident: 10.1016/j.nonrwa.2023.103866_b20
  article-title: Strongly coupled elliptic systems and applications to Lotka–Volterra models with cross-diffusion
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2004.10.008
– volume: 12
  start-page: 479
  year: 2011
  ident: 10.1016/j.nonrwa.2023.103866_b15
  article-title: Periodicity and blowup in a two-species cooperating model
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2010.06.033
– volume: 255
  start-page: 2146
  year: 2008
  ident: 10.1016/j.nonrwa.2023.103866_b24
  article-title: Asymptotic spreading in heterogeneous diffusive excitable media
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2008.06.030
– year: 2003
  ident: 10.1016/j.nonrwa.2023.103866_b25
– volume: 8
  start-page: 195
  year: 2006
  ident: 10.1016/j.nonrwa.2023.103866_b4
  article-title: On the principal eigenvalue of elliptic operators in RN and applications
  publication-title: J. Eur. Math. Soc.
  doi: 10.4171/jems/47
– volume: 5
  start-page: 55
  year: 1992
  ident: 10.1016/j.nonrwa.2023.103866_b18
  article-title: Positive periodic solutions of Lotka–Volterra reaction–diffusion systems
  publication-title: Differential Integral Equations
  doi: 10.57262/die/1371086981
– volume: 92
  start-page: 232
  year: 2009
  ident: 10.1016/j.nonrwa.2023.103866_b7
  article-title: Traveling fronts in space–time periodic media
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/j.matpur.2009.04.002
– year: 1991
  ident: 10.1016/j.nonrwa.2023.103866_b10
– volume: 234
  start-page: 695
  year: 1999
  ident: 10.1016/j.nonrwa.2023.103866_b11
  article-title: Periodic solutions of parabolic systems with nonlinear boundary conditions
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1999.6412
– volume: 13
  start-page: 263
  year: 1989
  ident: 10.1016/j.nonrwa.2023.103866_b8
  article-title: Asymptotic behavior of solutions of periodic competition diffusion system
  publication-title: Nonlinear Anal.
  doi: 10.1016/0362-546X(89)90054-0
– volume: 40
  start-page: 523
  year: 2000
  ident: 10.1016/j.nonrwa.2023.103866_b12
  article-title: Periodic solutions of systems of parabolic equations in unbounded domains
  publication-title: Nonlinear Anal.
  doi: 10.1016/S0362-546X(00)85031-2
– volume: 160
  start-page: 175
  year: 2000
  ident: 10.1016/j.nonrwa.2023.103866_b14
  article-title: On the symbiotic Lotka–Volterra model with diffusion and transport effects
  publication-title: J. Differential Equations
  doi: 10.1006/jdeq.1999.3655
– volume: 304
  start-page: 423
  year: 2005
  ident: 10.1016/j.nonrwa.2023.103866_b21
  article-title: Stability and attractivity of periodic solutions of parabolic systems with time delays
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2004.09.014
– volume: 84
  start-page: 1101
  year: 2005
  ident: 10.1016/j.nonrwa.2023.103866_b2
  article-title: Analysis of the periodically fragmented environment model: II- biological invasions and pulsating traveling fronts
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/j.matpur.2004.10.006
– volume: 186
  start-page: 469
  year: 2007
  ident: 10.1016/j.nonrwa.2023.103866_b3
  article-title: Liouville-type result for semilinear elliptic equations in unbounded domains
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/s10231-006-0015-0
– volume: 74
  start-page: 18
  issue: 1
  year: 2023
  ident: 10.1016/j.nonrwa.2023.103866_b22
  article-title: Spreading properties for a time-space periodic Lotka–Volterra cooperative system in multi-dimensional media
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s00033-022-01915-5
– volume: 282
  start-page: 59
  issue: 9
  year: 2022
  ident: 10.1016/j.nonrwa.2023.103866_b23
  article-title: Propagation phenomena for time-space periodic monotone semiflows and applications to cooperative systems in multi-dimensional media
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2022.109415
– volume: 53
  start-page: 2115
  year: 2003
  ident: 10.1016/j.nonrwa.2023.103866_b13
  article-title: On positive solutions of the Lotka–Volterra cooperating models with diffusion
  publication-title: Nonlinear Anal.
  doi: 10.1016/S0362-546X(03)00048-8
– volume: 16
  start-page: 1147
  year: 1991
  ident: 10.1016/j.nonrwa.2023.103866_b9
  article-title: Positive periodic solutions of predator–prey reaction–diffusion systems
  publication-title: Nonlinear Anal.
  doi: 10.1016/0362-546X(91)90202-C
SSID ssj0017131
Score 2.3668952
Snippet This work is devoted to the study of the time–space periodic reaction–diffusion–advection Lotka–Volterra cooperating system in multi-dimensional media. By...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103866
SubjectTerms Cooperating system
Existence
Positive periodic solution
Stability
Uniqueness
Title On positive periodic solutions of the time–space periodic Lotka–Volterra cooperating system in multi-dimensional media
URI https://dx.doi.org/10.1016/j.nonrwa.2023.103866
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1fS8MwEMDDmC_6IP7F-Wfkwde4temS5nEMx9RNRZ3srbRJA1VZx6wKPojfwW_oJzHXtGWCKPhUGi5QLsddjt79DqFDobQDv7dMWhJyAhGDhJ6QRMaux7VgXFLoRh6ds8HYO510JjXUK3thoKyy8P3Wp-feulhpFdpszZKkdQ1NQw4AyGlOVQHstudxsPKjt6rMwzFJmFN2GIF02T6X13iZDHv-AvQhl-ak8JyV-EN4Wgg5_TW0WtwVcdd-zjqqxdMNtDKqQKuPm-j1Yopt3dVzjAFanKpE4sqecKqxkcYwQf7z_cN4D7kgNkyz-9As36bwy3weYpmmM4Asm3CGLeIZJ1Oc1xwSBWMALMID5-0mW2jcP77pDUgxToFIkxdkJDThyleu9rnQTFJzIh1mzsNzHEUdprRsG18jmXSjSHhxW0Pu52vthpSHVEeCbqO6UVi8g7ATxZxStx3JUAJxzVdM-8oXJr_pMKFFA9FSi4EsWOMw8uIhKIvK7gKr-wB0H1jdNxCpds0sa-MPeV4eUPDNZgITDn7dufvvnXtoGd5sCeA-qmfzp_jAXEuyqJnbXRMtdXtXw0t4npwNzr8A15znsg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTsMwDI7GOAAHxK8YvzlwLVubLm2OaGIasI0DG-JWpWkjFdA6jQISB8Q78IY8CXbTVkNCIHFNbalyHDtWPn8m5FhE2sbnLShLpGdhxrCkK5SlYsf1tOCeYtiNPBjy3ti9uG3f1kin7IVBWGUR-01Mz6N1sdIsrNmcJknzGpuGbCQgZzmrCl8giy4cXxxjcPJW4TxsqMLsssUIxcv-uRzkBSX27AXphxyWU4XnZIk_5Ke5nNNdI6vFZZGemv9ZJ7V4skFWBhXT6uMmeb2aUAO8eo4pshanUaJo5VA01RSkKY6Q_3z_gPCh5sT6aXYvYfkmxTfzmaQqTafIsgz5jBqOZ5pMaA46tCKcA2A4PGjeb7JFxt2zUadnFfMULAWFQWZJyFd-5GjfE5orBlvS5rAhrm1HzOaRVi0INoorJwyFG7c0Fn--1o5knmQ6FGyb1MFg8Q6hdhh7jDmtUEmFlGt-xLUf-QIKnDYXWjQIK60YqIJsHGdePAQlquwuMLYP0PaBsX2DWJXW1JBt_CHvlRsUfHOaAPLBr5q7_9Y8Iku90aAf9M-Hl3tkGb8YPOA-qWezp_gA7ihZeJj74Bfxo-er
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+positive+periodic+solutions+of+the+time%E2%80%93space+periodic+Lotka%E2%80%93Volterra+cooperating+system+in+multi-dimensional+media&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Du%2C+Li-Jun&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=1468-1218&rft.eissn=1878-5719&rft.volume=72&rft_id=info:doi/10.1016%2Fj.nonrwa.2023.103866&rft.externalDocID=S1468121823000366
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon