An optimized lead-free formamidinium Sn-based perovskite solar cell design for high power conversion efficiency by SCAPS simulation
An organic-inorganic perovskite formamidinium tin iodide (HC(NH2)2SnI3– FASnI3) is used as light absorbing layer in photovoltaics due to its lead-free nature, wider bandgap of 1.41 eV and better temperature stability than CH3NH3SnI3. In the present investigations, SCAPS simulation with comparison to...
Saved in:
Published in | Optical materials Vol. 108; p. 110213 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An organic-inorganic perovskite formamidinium tin iodide (HC(NH2)2SnI3– FASnI3) is used as light absorbing layer in photovoltaics due to its lead-free nature, wider bandgap of 1.41 eV and better temperature stability than CH3NH3SnI3. In the present investigations, SCAPS simulation with comparison to the experimental as well as simulation data for FASnI3-based solar cell device is accomplished for high power conversion efficiency with proper optimization. The variation in the device design key parameters such as absorber, hole transport layer and electron transport layer thickness including defect density, doping concentration in absorber, carriers capture cross sections and interfacial defects are examined with their impact on device performance. The preliminary structure of device is based on the reported experimental and simulation work with the efficiency of 1.75% and 1.66%, respectively. After the SCAPS simulation with the optimization of basic parameters in this work, the final optimized performance parameters of the solar cell device are found to be enhanced with short-circuit current density (Jsc) of 31.20 mA/cm2, open-circuit voltage (Voc) of 1.81 V, fill factor (%FF) of 33.72% and power conversion efficiency (%PCE) of 19.08%.
[Display omitted]
•Physics behind the performance parameters in (HC(NH2)2SnI3– FASnI3) PSC device.•Comparison FASnI3-based PSC performance with reported experimental and SCAPS simulation results.•Study the effect on the device with the variation of basic parameters of cell.•Final optimized parameters achieved: Jsc-31.20 mA/cm2, Voc-1.81 V, FF-33.72% and PCE-19.08%. |
---|---|
AbstractList | An organic-inorganic perovskite formamidinium tin iodide (HC(NH2)2SnI3– FASnI3) is used as light absorbing layer in photovoltaics due to its lead-free nature, wider bandgap of 1.41 eV and better temperature stability than CH3NH3SnI3. In the present investigations, SCAPS simulation with comparison to the experimental as well as simulation data for FASnI3-based solar cell device is accomplished for high power conversion efficiency with proper optimization. The variation in the device design key parameters such as absorber, hole transport layer and electron transport layer thickness including defect density, doping concentration in absorber, carriers capture cross sections and interfacial defects are examined with their impact on device performance. The preliminary structure of device is based on the reported experimental and simulation work with the efficiency of 1.75% and 1.66%, respectively. After the SCAPS simulation with the optimization of basic parameters in this work, the final optimized performance parameters of the solar cell device are found to be enhanced with short-circuit current density (Jsc) of 31.20 mA/cm2, open-circuit voltage (Voc) of 1.81 V, fill factor (%FF) of 33.72% and power conversion efficiency (%PCE) of 19.08%.
[Display omitted]
•Physics behind the performance parameters in (HC(NH2)2SnI3– FASnI3) PSC device.•Comparison FASnI3-based PSC performance with reported experimental and SCAPS simulation results.•Study the effect on the device with the variation of basic parameters of cell.•Final optimized parameters achieved: Jsc-31.20 mA/cm2, Voc-1.81 V, FF-33.72% and PCE-19.08%. |
ArticleNumber | 110213 |
Author | Anshul, Avneesh Kumar, Arvind Kumar, Manish Raj, Abhishek |
Author_xml | – sequence: 1 givenname: Manish surname: Kumar fullname: Kumar, Manish email: manishphy2007@gmail.com, mkumar2@arsd.du.ac.in organization: Experimental Research Laboratory, Department of Physics, ARSD College, University of Delhi, New Delhi, 110021, India – sequence: 2 givenname: Abhishek surname: Raj fullname: Raj, Abhishek organization: CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India – sequence: 3 givenname: Arvind surname: Kumar fullname: Kumar, Arvind organization: Experimental Research Laboratory, Department of Physics, ARSD College, University of Delhi, New Delhi, 110021, India – sequence: 4 givenname: Avneesh surname: Anshul fullname: Anshul, Avneesh email: avneesh.anshul@gmail.com organization: CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India |
BookMark | eNqFkE1LAzEQhoMoWD_-gYf8ga1JdjfbehBK8QsKCtVzyCaTdupuUpK1Uq_-cbfWkwc9DczMM8z7nJBDHzwQcsHZkDMuL1fDsO5a3Q0FE32LM8HzAzLgoyrPuCjFIRmwsSizvJDVMTlJacUYE6WUA_I58bSHscUPsLQBbTMXAagLsdUtWvT41tK5z2qd-oU1xLBJr9gBTaHRkRpoGmoh4cLvGLrExZKuwzv0o-A3EBMGT8E5NAjebGm9pfPp5GlOE7Zvje768Rk5crpJcP5TT8nL7c3z9D6bPd49TCezzORMdplmldM1k9I6MeKFqYtiLCEvhZaytlWfEGBcSO6YgVoXNS91DYW2PLd8BFDlp6TY3zUxpBTBqXXEVset4kztRKqV2otUO5FqL7LHrn5hBrvvx7uosfkPvt7D0AfbIESVvkWAxQimUzbg3we-AIsvltc |
CitedBy_id | crossref_primary_10_1007_s11664_025_11740_x crossref_primary_10_1116_6_0000718 crossref_primary_10_1002_zaac_202300045 crossref_primary_10_1016_j_egyr_2025_01_019 crossref_primary_10_1002_ep_14242 crossref_primary_10_1016_j_optmat_2021_111193 crossref_primary_10_1080_15567036_2024_2402924 crossref_primary_10_1039_D3RA04134D crossref_primary_10_3390_en14217211 crossref_primary_10_1088_1361_6641_ac01fd crossref_primary_10_1016_j_mtcomm_2024_108695 crossref_primary_10_1002_ente_202200635 crossref_primary_10_3390_en16020900 crossref_primary_10_1007_s11664_023_10267_3 crossref_primary_10_1039_D2CP05226A crossref_primary_10_1016_j_mtcomm_2025_112297 crossref_primary_10_1149_2162_8777_aca0c1 crossref_primary_10_1088_1402_4896_acd903 crossref_primary_10_1016_j_cplett_2022_140295 crossref_primary_10_1007_s12596_022_00946_5 crossref_primary_10_1016_j_matchemphys_2022_126978 crossref_primary_10_1021_acs_energyfuels_3c04392 crossref_primary_10_1063_5_0108459 crossref_primary_10_1002_pssa_202300732 crossref_primary_10_1088_1402_4896_ada4e8 crossref_primary_10_1016_j_mseb_2023_116757 crossref_primary_10_1016_j_matpr_2022_10_006 crossref_primary_10_1038_s41598_023_37018_y crossref_primary_10_1038_s41598_023_42447_w crossref_primary_10_1088_1402_4896_ad604b crossref_primary_10_1007_s10470_022_02114_y crossref_primary_10_1016_j_optmat_2021_111891 crossref_primary_10_1007_s42341_022_00412_w crossref_primary_10_1007_s12633_023_02811_x crossref_primary_10_1016_j_micrna_2023_207739 crossref_primary_10_1016_j_solener_2023_112256 crossref_primary_10_1098_rsos_221127 crossref_primary_10_1007_s12596_024_02374_z crossref_primary_10_32604_jrm_2022_019649 crossref_primary_10_1007_s11664_024_11638_0 crossref_primary_10_1007_s10853_024_10090_z crossref_primary_10_1002_adts_202400129 crossref_primary_10_3390_ma15144761 crossref_primary_10_1016_j_optmat_2021_111812 crossref_primary_10_1016_j_optmat_2021_110964 crossref_primary_10_1016_j_jpcs_2024_112139 crossref_primary_10_1016_j_matpr_2021_04_581 crossref_primary_10_1016_j_mseb_2024_117536 crossref_primary_10_3390_nano12213885 crossref_primary_10_1680_jemmr_22_00059 crossref_primary_10_1016_j_cinorg_2024_100083 crossref_primary_10_1016_j_optmat_2021_111362 crossref_primary_10_1007_s12648_024_03365_3 crossref_primary_10_1007_s12648_024_03206_3 crossref_primary_10_1007_s11664_023_10235_x crossref_primary_10_3390_ma17051064 crossref_primary_10_1016_j_optmat_2022_112517 crossref_primary_10_1016_j_optmat_2021_111432 crossref_primary_10_1002_adts_202400270 crossref_primary_10_1007_s10854_023_10171_w crossref_primary_10_1016_j_optmat_2021_111952 crossref_primary_10_3390_cryst12010068 crossref_primary_10_1007_s11051_023_05702_9 crossref_primary_10_1016_j_egyr_2022_03_183 crossref_primary_10_1016_j_mseb_2024_117268 crossref_primary_10_1007_s11814_024_00304_0 crossref_primary_10_1039_D3NJ04832B crossref_primary_10_1038_s41598_024_66485_0 crossref_primary_10_1016_j_ceramint_2022_02_051 crossref_primary_10_1021_acsaelm_4c01301 crossref_primary_10_1088_1402_4896_ad9221 crossref_primary_10_1007_s11664_024_11488_w crossref_primary_10_1016_j_mtcomm_2023_106354 crossref_primary_10_1016_j_heliyon_2023_e19808 crossref_primary_10_1109_TED_2021_3066454 crossref_primary_10_1016_j_mtcomm_2023_107841 crossref_primary_10_29130_dubited_831732 crossref_primary_10_2139_ssrn_4095867 crossref_primary_10_3390_nano11092321 crossref_primary_10_1016_j_optmat_2020_110751 crossref_primary_10_1016_j_matpr_2020_11_035 crossref_primary_10_1016_j_ijhydene_2023_07_099 crossref_primary_10_1016_j_solmat_2021_111184 crossref_primary_10_1016_j_optmat_2024_115125 crossref_primary_10_1007_s11082_021_03175_5 crossref_primary_10_1016_j_chphi_2024_100651 crossref_primary_10_1016_j_jpcs_2024_112247 crossref_primary_10_1016_j_rio_2023_100444 crossref_primary_10_1007_s12633_022_02163_y crossref_primary_10_1002_er_7942 crossref_primary_10_1007_s12596_025_02628_4 crossref_primary_10_1016_j_optmat_2022_112427 crossref_primary_10_1016_j_optmat_2020_110565 crossref_primary_10_1016_j_rio_2025_100783 crossref_primary_10_1002_masy_202100464 crossref_primary_10_1016_j_micrna_2024_207816 crossref_primary_10_1016_j_rinma_2025_100665 crossref_primary_10_1016_j_solmat_2023_112426 crossref_primary_10_1063_5_0088099 crossref_primary_10_1016_j_cplett_2023_140809 crossref_primary_10_1039_D4RA00634H crossref_primary_10_1016_j_ijleo_2023_171474 crossref_primary_10_1049_ote2_12104 crossref_primary_10_3390_en16114402 crossref_primary_10_3390_mi13122201 crossref_primary_10_1016_j_solener_2021_10_007 crossref_primary_10_1149_2162_8777_ac936e crossref_primary_10_15251_JOR_2024_202_187 crossref_primary_10_3934_energy_2023034 crossref_primary_10_1016_j_optmat_2023_113822 crossref_primary_10_1016_j_optmat_2022_112036 crossref_primary_10_1002_adts_202200800 crossref_primary_10_1016_j_ijleo_2023_170819 crossref_primary_10_1016_j_physb_2024_416572 crossref_primary_10_1007_s11082_021_02918_8 crossref_primary_10_1007_s11082_022_03954_8 crossref_primary_10_1016_j_mseb_2022_115909 crossref_primary_10_15251_JOR_2022_183_395 crossref_primary_10_1088_2053_1591_abf080 crossref_primary_10_1016_j_matpr_2021_03_610 crossref_primary_10_3390_molecules27227927 crossref_primary_10_1021_acs_energyfuels_3c02397 crossref_primary_10_1088_1361_651X_ad5a2b |
Cites_doi | 10.1039/C4EE01076K 10.1038/nphoton.2014.82 10.1002/advs.201700204 10.1038/ncomms13831 10.1155/2018/8148072 10.1038/nphoton.2014.284 10.1016/j.optmat.2020.109738 10.1088/1674-1056/25/10/108802 10.1080/14686996.2018.1460176 10.1063/1.1525866 10.1038/sdata.2017.57 10.1038/s41467-019-08918-3 10.1038/s41578-019-0097-0 10.1021/acsenergylett.8b00687 10.1002/adfm.201808059 10.1016/j.mattod.2014.07.007 10.1002/adma.201401991 10.1039/C5TA00190K 10.1021/acsenergylett.7b00236 10.1039/C6EE02100J 10.1007/s11082-019-1802-3 10.1021/acsenergylett.8b00645 10.1021/acs.jpcc.6b10136 10.1016/j.optmat.2019.109631 10.1016/j.spmi.2019.04.007 10.1021/acsenergylett.7b00276 10.1038/nmat4572 10.1016/S0169-4332(03)00624-X 10.1039/C9EE00453J 10.1021/ja809598r 10.1021/acs.jpclett.5b01645 10.1039/C6NR01927G 10.1021/acs.jpclett.7b00045 10.1038/nphoton.2013.342 10.1016/S0040-6090(99)00825-1 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.optmat.2020.110213 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-1252 |
ExternalDocumentID | 10_1016_j_optmat_2020_110213 S0925346720305565 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNEU ABTAH ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-a07fab066df2814cb4496e352a66bd7092ee9461f0ceba4b15abe4ad13d18ee73 |
IEDL.DBID | .~1 |
ISSN | 0925-3467 |
IngestDate | Thu Apr 24 23:02:57 EDT 2025 Tue Jul 01 03:49:57 EDT 2025 Fri Feb 23 02:46:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | I–V characteristics SCAPS simulation Hole transport layer Electron transport layer Power conversion efficiency Lead-free perovskite solar cell |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-a07fab066df2814cb4496e352a66bd7092ee9461f0ceba4b15abe4ad13d18ee73 |
ParticipantIDs | crossref_primary_10_1016_j_optmat_2020_110213 crossref_citationtrail_10_1016_j_optmat_2020_110213 elsevier_sciencedirect_doi_10_1016_j_optmat_2020_110213 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationTitle | Optical materials |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sun, Li, Ye, Rao, Yan, Peng, Li, Liu, Wang, Chen, Xiao, Bian, Huang (bib1) 2016; 8 Rai, Pandey, Dwivedi (bib21) 2020; 100 Kang, Zandi, Gorji (bib39) 2019; 51 Burgelman, Nollet, Degrave (bib22) 2000; 361–362 Stamate (bib25) 2003; 218 Poplavskyy, Nelson (bib32) 2003; 93 Zhang, Hao, Li, Zhou, Wei, Lin (bib9) 2018; 19 Hao, Stoumpos, Cao, Chang, Kanatzidis (bib14) 2014; 8 Kayesh, Chowdhury, Matsuishi, Kaneko, Kazaoui, Lee, Noda, Islam (bib18) 2018; 3 Ke, Stoumpos, Spanopoulos, Chen, Wasielewski, Kanatzidis (bib17) 2018; 3 Babayigit, Ethirajan, Muller, Conings (bib8) 2016; 15 Calado, Telford, Bryant, Li, Nelson, O'Regan (bib27) Dec 22 2016; 7 Akhiro, Kenjiro, Yasuo, Tsutomu (bib4) 2009; 131 NREL (bib5) 2020 Hui-Jing, Wei-Chao, Jian-Zhuo (bib23) 2016; 25 Liu, Kelly (bib33) 2013; 8 Abuhelaiqa, Paek, Lee, Cho, Heo, Oveisi, Huckaba, Kanda, Kim, Zhang, Humphry-Baker, Kinge, Asiri, Nazeeruddin (bib11) 2019; 12 Zhao, Gu, Li, Sun, Ye, Rao (bib34) 2017; 4 Momblona, Gil-Escrig, Bandiello, Hutter, Sessolo, Lederer, Blochwitz-Nimoth, Bolink (bib2) 2016; 9 Ke, Kanatzidis (bib10) 2019; 10 Noel, Stranks, Abate, Wehrenfennig, Guarnera, Haghighirad, Sadhanala, Eperon, Pathak, Johnston, Petrozza, Herz, Snaith (bib13) 2014; 7 (bib24) 1996 Kumar, Dharani, Leong, Boix, Prabhakar, Baikie, Shi, Ding, Ramesh, Asta, Graetzel, Mhaisalkar, Mathews (bib15) 2014; 26 Ozawa, Yamamoto, Yukawa, Liu, Emori, Inoue (bib28) 2016; 120 Park (bib3) 2015; 18 Nayak, Mahesh, Snaith, Cahen (bib6) 2019; 4 Lin, Armin, Nagiri, Burn, Meredith (bib31) 2014; 9 Herz (bib36) 2017; 2 Zhou, Zhou, Tian, Zhu, Tu (bib7) 2018; 2018 Sherkar, Momblona, Gil-Escrig, Avila, Sessolo, Bolink (bib37) 2017; 2 Abdelaziz, Zekry, Shaker, Abouelatta (bib20) 2020; 101 Zekry, Shaker, Salem (bib38) 2018 (bib26) 2016 Ravishankar, Almora, Echeverria-Arrondo, Ghahremanirad, Aranda, Guerrero (bib30) 2017; 8 Hima, Lakhdar, Benhaoua, Saadoune, Kemerchou, Rogti (bib19) 2019; 129 van Reenen, Kemerink, Snaith (bib29) Oct 1 2015; 6 Kim, Huan, Krishnan, Ramprasad (bib35) 2017; 4 Koh, Krishnamoorthy, Yantara, Shi, Leong, Boix, Grimsdale, Mhaisalkar, Mathews (bib16) 2015; 3 Liu, Tu, Hu, Huang, Meng, Yang, Duan, Tan, Li, Chen (bib12) 2019; 29 Liu (10.1016/j.optmat.2020.110213_bib33) 2013; 8 Sun (10.1016/j.optmat.2020.110213_bib1) 2016; 8 Abdelaziz (10.1016/j.optmat.2020.110213_bib20) 2020; 101 Park (10.1016/j.optmat.2020.110213_bib3) 2015; 18 (10.1016/j.optmat.2020.110213_bib26) 2016 Hao (10.1016/j.optmat.2020.110213_bib14) 2014; 8 Sherkar (10.1016/j.optmat.2020.110213_bib37) 2017; 2 van Reenen (10.1016/j.optmat.2020.110213_bib29) 2015; 6 Noel (10.1016/j.optmat.2020.110213_bib13) 2014; 7 Momblona (10.1016/j.optmat.2020.110213_bib2) 2016; 9 Nayak (10.1016/j.optmat.2020.110213_bib6) 2019; 4 Zekry (10.1016/j.optmat.2020.110213_bib38) 2018 Ke (10.1016/j.optmat.2020.110213_bib10) 2019; 10 Stamate (10.1016/j.optmat.2020.110213_bib25) 2003; 218 Herz (10.1016/j.optmat.2020.110213_bib36) 2017; 2 Akhiro (10.1016/j.optmat.2020.110213_bib4) 2009; 131 Ravishankar (10.1016/j.optmat.2020.110213_bib30) 2017; 8 Babayigit (10.1016/j.optmat.2020.110213_bib8) 2016; 15 Zhao (10.1016/j.optmat.2020.110213_bib34) 2017; 4 Lin (10.1016/j.optmat.2020.110213_bib31) 2014; 9 Ke (10.1016/j.optmat.2020.110213_bib17) 2018; 3 Kumar (10.1016/j.optmat.2020.110213_bib15) 2014; 26 Hima (10.1016/j.optmat.2020.110213_bib19) 2019; 129 (10.1016/j.optmat.2020.110213_bib24) 1996 Calado (10.1016/j.optmat.2020.110213_bib27) 2016; 7 Burgelman (10.1016/j.optmat.2020.110213_bib22) 2000; 361–362 Poplavskyy (10.1016/j.optmat.2020.110213_bib32) 2003; 93 Zhou (10.1016/j.optmat.2020.110213_bib7) 2018; 2018 Koh (10.1016/j.optmat.2020.110213_bib16) 2015; 3 Rai (10.1016/j.optmat.2020.110213_bib21) 2020; 100 Liu (10.1016/j.optmat.2020.110213_bib12) 2019; 29 Kim (10.1016/j.optmat.2020.110213_bib35) 2017; 4 Kayesh (10.1016/j.optmat.2020.110213_bib18) 2018; 3 Zhang (10.1016/j.optmat.2020.110213_bib9) 2018; 19 Hui-Jing (10.1016/j.optmat.2020.110213_bib23) 2016; 25 Ozawa (10.1016/j.optmat.2020.110213_bib28) 2016; 120 Abuhelaiqa (10.1016/j.optmat.2020.110213_bib11) 2019; 12 NREL (10.1016/j.optmat.2020.110213_bib5) Kang (10.1016/j.optmat.2020.110213_bib39) 2019; 51 |
References_xml | – volume: 2018 year: 2018 ident: bib7 article-title: Perovskite-based solar cells: materials, methods, and future perspectives publication-title: J. Nanomater. – volume: 19 start-page: 425 year: 2018 end-page: 442 ident: bib9 article-title: Perovskite solar cells: must lead be replaced–and can it be done? publication-title: Sci. Technol. Adv. Mater. – volume: 4 start-page: 269 year: 2019 end-page: 285 ident: bib6 article-title: Photovoltaic solar cell technologies: analysing the state of the art publication-title: Nat. Rev. Mater. – volume: 218 start-page: 318 year: 2003 end-page: 323 ident: bib25 article-title: On the dielectric properties of dc magnetron TiO2 thin films publication-title: Appl. Surf. Sci. – volume: 9 start-page: 3456 year: 2016 end-page: 3463 ident: bib2 article-title: Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers publication-title: Energy Environ. Sci. – volume: 2 start-page: 1214 year: 2017 end-page: 1222 ident: bib37 article-title: Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions publication-title: ACS Energy Lett. – volume: 3 start-page: 1470 year: 2018 end-page: 1476 ident: bib17 article-title: Diammonium cations in the FASnI publication-title: ACS Energy Lett. – volume: 361–362 start-page: 527 year: 2000 end-page: 532 ident: bib22 article-title: Modelling polycrystalline semiconductor solar cells publication-title: Thin Solid Films – volume: 9 start-page: 106 year: 2014 end-page: 112 ident: bib31 article-title: Electro-optics of perovskite solar cells publication-title: Nat. Photon. – volume: 10 start-page: 1 year: 2019 end-page: 4 ident: bib10 article-title: Prospects for low-toxicity lead-free perovskite solar cells publication-title: Nat. Commun. – start-page: 5 year: 2016 end-page: 10 ident: bib26 article-title: Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations publication-title: IEEE 43rd Photovoltaic Specialists Conference (PVSC) June – volume: 8 start-page: 915 year: 2017 end-page: 921 ident: bib30 article-title: Surface polarization model for the dynamic hysteresis of perovskite solar cells publication-title: J. Phys. Chem. Lett. – volume: 51 start-page: 91 year: 2019 ident: bib39 article-title: Simulation analysis of graphene contacted perovskite solar cells using SCAPS-1D publication-title: Opt. Quant. Electron. – volume: 8 start-page: 133 year: 2013 ident: bib33 article-title: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques publication-title: Nat. Photon. – volume: 18 start-page: 65 year: 2015 end-page: 72 ident: bib3 article-title: Perovskite solar cells: an emerging photovoltaic technology publication-title: Mater. Today – volume: 100 start-page: 109631 year: 2020 ident: bib21 article-title: Modeling of highly efficient and low cost CH3NH3Pb(I publication-title: Opt. Mater. (Amst). – year: 2020 ident: bib5 – volume: 8 start-page: 10806 year: 2016 end-page: 10813 ident: bib1 article-title: High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer publication-title: Nanoscale – volume: 29 start-page: 1808059 year: 2019 ident: bib12 article-title: Enhanced hole transportation for inverted tin‐based perovskite solar cells with high performance and stability publication-title: Adv. Funct. Mater. – volume: 26 start-page: 7122 year: 2014 end-page: 7127 ident: bib15 article-title: Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation publication-title: Adv. Mater. – volume: 3 start-page: 1584 year: 2018 end-page: 1589 ident: bib18 article-title: Enhanced photovoltaic performance of FASnI publication-title: ACS Energy Lett. – volume: 4 start-page: 1700204 year: 2017 ident: bib34 article-title: Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12 publication-title: Adv. Sci. – volume: 2 start-page: 1539 year: 2017 end-page: 1548 ident: bib36 article-title: Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits publication-title: ACS Energy Lett. – start-page: 13 year: 1996 end-page: 17 ident: bib24 publication-title: Numerical Modelling of AC-Characteristics of CdTe and CIS Solar Cells, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference – volume: 93 start-page: 341 year: 2003 end-page: 346 ident: bib32 article-title: Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound publication-title: Appl. Phys. – start-page: 3 year: 2018 end-page: 56 ident: bib38 article-title: Chapter 1 - solar cells and arrays: principles, analysis, and design publication-title: Advances in Renewable Energies and Power Technologies – volume: 120 start-page: 29283 year: 2016 end-page: 29289 ident: bib28 article-title: What determines the lifetime of photoexcited carriers on TiO2 surfaces? publication-title: J. Phys. Chem. C – volume: 7 start-page: 13831 year: Dec 22 2016 ident: bib27 article-title: Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis publication-title: Nat. Commun. – volume: 7 start-page: 3061 year: 2014 end-page: 3068 ident: bib13 article-title: Lead-free organic-inorganic tin halide perovskites for photovoltaic applications publication-title: Energy Environ. Sci. – volume: 15 start-page: 247 year: 2016 end-page: 251 ident: bib8 article-title: Toxicity of organometal halide perovskite solar cells publication-title: Nat. Mater. – volume: 12 start-page: 1910 year: 2019 end-page: 1917 ident: bib11 article-title: Stable perovskite solar cells using tin acetylacetonate based electron transporting layers publication-title: Energy Environ. Sci. – volume: 101 start-page: 109738 year: 2020 ident: bib20 article-title: Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation publication-title: Opt. Mater. (Amst). – volume: 129 start-page: 240 year: 2019 end-page: 246 ident: bib19 article-title: An optimized perovskite solar cell designs for high conversion efficiency publication-title: Superlattice. Microst. – volume: 4 start-page: 170057 year: 2017 ident: bib35 article-title: A hybrid organic-inorganic perovskite dataset publication-title: Sci. Data – volume: 8 start-page: 489 year: 2014 end-page: 494 ident: bib14 article-title: Lead-free solid-state organic-inorganic halide perovskite solar cells publication-title: Nat. Photon. – volume: 3 start-page: 14996 year: 2015 end-page: 15000 ident: bib16 article-title: Formamidinium tin-based perovskite with low Eg for photovoltaic applications publication-title: J. Mater. Chem. A. – volume: 131 start-page: 6050 year: 2009 end-page: 6051 ident: bib4 article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 108802 year: 2016 ident: bib23 article-title: Device simulation of lead-free CH publication-title: Chin. Phys. B – volume: 6 start-page: 3808 year: Oct 1 2015 end-page: 3814 ident: bib29 article-title: Modeling anomalous hysteresis in perovskite solar cells publication-title: J. Phys. Chem. Lett. – volume: 7 start-page: 3061 year: 2014 ident: 10.1016/j.optmat.2020.110213_bib13 article-title: Lead-free organic-inorganic tin halide perovskites for photovoltaic applications publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01076K – volume: 8 start-page: 489 year: 2014 ident: 10.1016/j.optmat.2020.110213_bib14 article-title: Lead-free solid-state organic-inorganic halide perovskite solar cells publication-title: Nat. Photon. doi: 10.1038/nphoton.2014.82 – volume: 4 start-page: 1700204 issue: 11 year: 2017 ident: 10.1016/j.optmat.2020.110213_bib34 article-title: Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12 publication-title: Adv. Sci. doi: 10.1002/advs.201700204 – volume: 7 start-page: 13831 year: 2016 ident: 10.1016/j.optmat.2020.110213_bib27 article-title: Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis publication-title: Nat. Commun. doi: 10.1038/ncomms13831 – volume: 2018 year: 2018 ident: 10.1016/j.optmat.2020.110213_bib7 article-title: Perovskite-based solar cells: materials, methods, and future perspectives publication-title: J. Nanomater. doi: 10.1155/2018/8148072 – volume: 9 start-page: 106 year: 2014 ident: 10.1016/j.optmat.2020.110213_bib31 article-title: Electro-optics of perovskite solar cells publication-title: Nat. Photon. doi: 10.1038/nphoton.2014.284 – volume: 101 start-page: 109738 year: 2020 ident: 10.1016/j.optmat.2020.110213_bib20 article-title: Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation publication-title: Opt. Mater. (Amst). doi: 10.1016/j.optmat.2020.109738 – start-page: 5 year: 2016 ident: 10.1016/j.optmat.2020.110213_bib26 article-title: Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations – ident: 10.1016/j.optmat.2020.110213_bib5 – volume: 25 start-page: 108802 issue: 10 year: 2016 ident: 10.1016/j.optmat.2020.110213_bib23 article-title: Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency publication-title: Chin. Phys. B doi: 10.1088/1674-1056/25/10/108802 – volume: 19 start-page: 425 year: 2018 ident: 10.1016/j.optmat.2020.110213_bib9 article-title: Perovskite solar cells: must lead be replaced–and can it be done? publication-title: Sci. Technol. Adv. Mater. doi: 10.1080/14686996.2018.1460176 – volume: 93 start-page: 341 issue: 1 year: 2003 ident: 10.1016/j.optmat.2020.110213_bib32 article-title: Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound publication-title: Appl. Phys. doi: 10.1063/1.1525866 – volume: 4 start-page: 170057 year: 2017 ident: 10.1016/j.optmat.2020.110213_bib35 article-title: A hybrid organic-inorganic perovskite dataset publication-title: Sci. Data doi: 10.1038/sdata.2017.57 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.optmat.2020.110213_bib10 article-title: Prospects for low-toxicity lead-free perovskite solar cells publication-title: Nat. Commun. doi: 10.1038/s41467-019-08918-3 – start-page: 3 year: 2018 ident: 10.1016/j.optmat.2020.110213_bib38 article-title: Chapter 1 - solar cells and arrays: principles, analysis, and design – volume: 4 start-page: 269 year: 2019 ident: 10.1016/j.optmat.2020.110213_bib6 article-title: Photovoltaic solar cell technologies: analysing the state of the art publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0097-0 – volume: 3 start-page: 1470 year: 2018 ident: 10.1016/j.optmat.2020.110213_bib17 article-title: Diammonium cations in the FASnI3 perovskite structure lead to lower dark currents and more efficient solar cells publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00687 – volume: 29 start-page: 1808059 year: 2019 ident: 10.1016/j.optmat.2020.110213_bib12 article-title: Enhanced hole transportation for inverted tin‐based perovskite solar cells with high performance and stability publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808059 – volume: 18 start-page: 65 year: 2015 ident: 10.1016/j.optmat.2020.110213_bib3 article-title: Perovskite solar cells: an emerging photovoltaic technology publication-title: Mater. Today doi: 10.1016/j.mattod.2014.07.007 – volume: 26 start-page: 7122 year: 2014 ident: 10.1016/j.optmat.2020.110213_bib15 article-title: Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation publication-title: Adv. Mater. doi: 10.1002/adma.201401991 – volume: 3 start-page: 14996 year: 2015 ident: 10.1016/j.optmat.2020.110213_bib16 article-title: Formamidinium tin-based perovskite with low Eg for photovoltaic applications publication-title: J. Mater. Chem. A. doi: 10.1039/C5TA00190K – volume: 2 start-page: 1214 issue: 5 year: 2017 ident: 10.1016/j.optmat.2020.110213_bib37 article-title: Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00236 – volume: 9 start-page: 3456 year: 2016 ident: 10.1016/j.optmat.2020.110213_bib2 article-title: Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers publication-title: Energy Environ. Sci. doi: 10.1039/C6EE02100J – volume: 51 start-page: 91 year: 2019 ident: 10.1016/j.optmat.2020.110213_bib39 article-title: Simulation analysis of graphene contacted perovskite solar cells using SCAPS-1D publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-019-1802-3 – volume: 3 start-page: 1584 year: 2018 ident: 10.1016/j.optmat.2020.110213_bib18 article-title: Enhanced photovoltaic performance of FASnI3 -based perovskite solar cells with hydrazinium chloride coadditive publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00645 – volume: 120 start-page: 29283 year: 2016 ident: 10.1016/j.optmat.2020.110213_bib28 article-title: What determines the lifetime of photoexcited carriers on TiO2 surfaces? publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b10136 – volume: 100 start-page: 109631 year: 2020 ident: 10.1016/j.optmat.2020.110213_bib21 article-title: Modeling of highly efficient and low cost CH3NH3Pb(I1-xClx)3 based perovskite solar cell by numerical simulation publication-title: Opt. Mater. (Amst). doi: 10.1016/j.optmat.2019.109631 – volume: 129 start-page: 240 year: 2019 ident: 10.1016/j.optmat.2020.110213_bib19 article-title: An optimized perovskite solar cell designs for high conversion efficiency publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2019.04.007 – volume: 2 start-page: 1539 issue: 7 year: 2017 ident: 10.1016/j.optmat.2020.110213_bib36 article-title: Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00276 – volume: 15 start-page: 247 year: 2016 ident: 10.1016/j.optmat.2020.110213_bib8 article-title: Toxicity of organometal halide perovskite solar cells publication-title: Nat. Mater. doi: 10.1038/nmat4572 – volume: 218 start-page: 318 issue: 1 year: 2003 ident: 10.1016/j.optmat.2020.110213_bib25 article-title: On the dielectric properties of dc magnetron TiO2 thin films publication-title: Appl. Surf. Sci. doi: 10.1016/S0169-4332(03)00624-X – volume: 12 start-page: 1910 year: 2019 ident: 10.1016/j.optmat.2020.110213_bib11 article-title: Stable perovskite solar cells using tin acetylacetonate based electron transporting layers publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00453J – start-page: 13 year: 1996 ident: 10.1016/j.optmat.2020.110213_bib24 – volume: 131 start-page: 6050 year: 2009 ident: 10.1016/j.optmat.2020.110213_bib4 article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 6 start-page: 3808 year: 2015 ident: 10.1016/j.optmat.2020.110213_bib29 article-title: Modeling anomalous hysteresis in perovskite solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01645 – volume: 8 start-page: 10806 year: 2016 ident: 10.1016/j.optmat.2020.110213_bib1 article-title: High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer publication-title: Nanoscale doi: 10.1039/C6NR01927G – volume: 8 start-page: 915 issue: Mar 2 year: 2017 ident: 10.1016/j.optmat.2020.110213_bib30 article-title: Surface polarization model for the dynamic hysteresis of perovskite solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b00045 – volume: 8 start-page: 133 year: 2013 ident: 10.1016/j.optmat.2020.110213_bib33 article-title: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques publication-title: Nat. Photon. doi: 10.1038/nphoton.2013.342 – volume: 361–362 start-page: 527 year: 2000 ident: 10.1016/j.optmat.2020.110213_bib22 article-title: Modelling polycrystalline semiconductor solar cells publication-title: Thin Solid Films doi: 10.1016/S0040-6090(99)00825-1 |
SSID | ssj0002566 |
Score | 2.6180067 |
Snippet | An organic-inorganic perovskite formamidinium tin iodide (HC(NH2)2SnI3– FASnI3) is used as light absorbing layer in photovoltaics due to its lead-free nature,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110213 |
SubjectTerms | Electron transport layer Hole transport layer I–V characteristics Lead-free perovskite solar cell Power conversion efficiency SCAPS simulation |
Title | An optimized lead-free formamidinium Sn-based perovskite solar cell design for high power conversion efficiency by SCAPS simulation |
URI | https://dx.doi.org/10.1016/j.optmat.2020.110213 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEG5EEfay-GR9Ugev7STpTrpzHAZlVBRhFLyF7nQNZHHi4IyCHrz4x-3qJD5AVthjQlUIXZV65asqxg600pmzEXKdiJRL53JuhVM8RZei1UaVgnqHzy-y4bU8vUlvFtig64UhWGVr-xubHqx1e6fXnmZvWlW9UZQnqfDfedKMuaJGcykVafnhywfMw7v08L_SE3Oi7trnAsbrbjr3caHPEpOAh09i8b17-uRyjlfY7zZWhH7zOqtsAes1thwwm-Vsnb32a_CPribVMzq49cLi43tECGHopPJOqXqYwKjm5Kkc0ETwxxkVa2FG-SxQzR5cQHAQD9DkYpjS1jQIWPRQSAMMMyaoQRPsE4wG_csRzKpJu_Vrg10fH10NhrzdqcBLnxzMuYnU2FgfZ7hxomNZWinzDH0UZrLMOuWPCTGXWTyOSrRG2jg1FqVxsXCxRlRiky3WdzX-YWByY6RQqrQ-q9FRbnRuY6NNnmSiTKXcYqI7yqJsB47T3ovbokOW_S0aARQkgKIRwBbj71zTZuDGD_Sqk1LxRXEK7xP-ybn935w77BddNZi-XbY4v3_APR-bzO1-UL59ttQ_ORtevAHEGuZH |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-EL2IT3w7B69x2yZt0uOyKOsTYRW8laSZhcpuXdxV0IMX_7hJ2voAUfDazpSSSeaVb2YIOZBCJkYHSGXEYsqNSalmRtAYTYxaKpEzVzt8cZl0b_jpbXw7RTpNLYyDVda6v9LpXlvXT1r1arZGRdHqBWkUM3vOo6rNVTxNZrk9vm6MweHrJ87D2nR_YWmpqSNv6uc8yOt-NLGOoQ0TIw-Ij0L2s336YnOOl8hi7SxCu_qfZTKF5QqZ86DNfLxK3tol2E8Xw-IFDQystGj_ARG8HzosrFUqHofQK6kzVQZcS_CnscvWwtgFtOCS9mA8hMPxgGtdDCM3Ng08GN1n0gB9kwlXoQn6GXqd9lUPxsWwHvu1Rm6Oj647XVoPVaC5jQ4mVAWir7R1NEw_kiHPNedpgtYNU0mijbDLhJjyJOwHOWrFdRgrjVyZkJlQIgq2TmbK-xI3CKhUKc6EyLUNa2SQKpnqUEmVRgnLY843CWuWMsvrjuNu8MUga6Bld1klgMwJIKsEsEnoB9eo6rjxB71opJR92zmZNQq_cm79m3OfzHevL86z85PLs22y4N5UAL8dMjN5eMRd66hM9J7fiO8X5ufV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+lead-free+formamidinium+Sn-based+perovskite+solar+cell+design+for+high+power+conversion+efficiency+by+SCAPS+simulation&rft.jtitle=Optical+materials&rft.au=Kumar%2C+Manish&rft.au=Raj%2C+Abhishek&rft.au=Kumar%2C+Arvind&rft.au=Anshul%2C+Avneesh&rft.date=2020-10-01&rft.issn=0925-3467&rft.volume=108&rft.spage=110213&rft_id=info:doi/10.1016%2Fj.optmat.2020.110213&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optmat_2020_110213 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-3467&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-3467&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-3467&client=summon |