An optimized lead-free formamidinium Sn-based perovskite solar cell design for high power conversion efficiency by SCAPS simulation

An organic-inorganic perovskite formamidinium tin iodide (HC(NH2)2SnI3– FASnI3) is used as light absorbing layer in photovoltaics due to its lead-free nature, wider bandgap of 1.41 eV and better temperature stability than CH3NH3SnI3. In the present investigations, SCAPS simulation with comparison to...

Full description

Saved in:
Bibliographic Details
Published inOptical materials Vol. 108; p. 110213
Main Authors Kumar, Manish, Raj, Abhishek, Kumar, Arvind, Anshul, Avneesh
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An organic-inorganic perovskite formamidinium tin iodide (HC(NH2)2SnI3– FASnI3) is used as light absorbing layer in photovoltaics due to its lead-free nature, wider bandgap of 1.41 eV and better temperature stability than CH3NH3SnI3. In the present investigations, SCAPS simulation with comparison to the experimental as well as simulation data for FASnI3-based solar cell device is accomplished for high power conversion efficiency with proper optimization. The variation in the device design key parameters such as absorber, hole transport layer and electron transport layer thickness including defect density, doping concentration in absorber, carriers capture cross sections and interfacial defects are examined with their impact on device performance. The preliminary structure of device is based on the reported experimental and simulation work with the efficiency of 1.75% and 1.66%, respectively. After the SCAPS simulation with the optimization of basic parameters in this work, the final optimized performance parameters of the solar cell device are found to be enhanced with short-circuit current density (Jsc) of 31.20 mA/cm2, open-circuit voltage (Voc) of 1.81 V, fill factor (%FF) of 33.72% and power conversion efficiency (%PCE) of 19.08%. [Display omitted] •Physics behind the performance parameters in (HC(NH2)2SnI3– FASnI3) PSC device.•Comparison FASnI3-based PSC performance with reported experimental and SCAPS simulation results.•Study the effect on the device with the variation of basic parameters of cell.•Final optimized parameters achieved: Jsc-31.20 mA/cm2, Voc-1.81 V, FF-33.72% and PCE-19.08%.
AbstractList An organic-inorganic perovskite formamidinium tin iodide (HC(NH2)2SnI3– FASnI3) is used as light absorbing layer in photovoltaics due to its lead-free nature, wider bandgap of 1.41 eV and better temperature stability than CH3NH3SnI3. In the present investigations, SCAPS simulation with comparison to the experimental as well as simulation data for FASnI3-based solar cell device is accomplished for high power conversion efficiency with proper optimization. The variation in the device design key parameters such as absorber, hole transport layer and electron transport layer thickness including defect density, doping concentration in absorber, carriers capture cross sections and interfacial defects are examined with their impact on device performance. The preliminary structure of device is based on the reported experimental and simulation work with the efficiency of 1.75% and 1.66%, respectively. After the SCAPS simulation with the optimization of basic parameters in this work, the final optimized performance parameters of the solar cell device are found to be enhanced with short-circuit current density (Jsc) of 31.20 mA/cm2, open-circuit voltage (Voc) of 1.81 V, fill factor (%FF) of 33.72% and power conversion efficiency (%PCE) of 19.08%. [Display omitted] •Physics behind the performance parameters in (HC(NH2)2SnI3– FASnI3) PSC device.•Comparison FASnI3-based PSC performance with reported experimental and SCAPS simulation results.•Study the effect on the device with the variation of basic parameters of cell.•Final optimized parameters achieved: Jsc-31.20 mA/cm2, Voc-1.81 V, FF-33.72% and PCE-19.08%.
ArticleNumber 110213
Author Anshul, Avneesh
Kumar, Arvind
Kumar, Manish
Raj, Abhishek
Author_xml – sequence: 1
  givenname: Manish
  surname: Kumar
  fullname: Kumar, Manish
  email: manishphy2007@gmail.com, mkumar2@arsd.du.ac.in
  organization: Experimental Research Laboratory, Department of Physics, ARSD College, University of Delhi, New Delhi, 110021, India
– sequence: 2
  givenname: Abhishek
  surname: Raj
  fullname: Raj, Abhishek
  organization: CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
– sequence: 3
  givenname: Arvind
  surname: Kumar
  fullname: Kumar, Arvind
  organization: Experimental Research Laboratory, Department of Physics, ARSD College, University of Delhi, New Delhi, 110021, India
– sequence: 4
  givenname: Avneesh
  surname: Anshul
  fullname: Anshul, Avneesh
  email: avneesh.anshul@gmail.com
  organization: CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
BookMark eNqFkE1LAzEQhoMoWD_-gYf8ga1JdjfbehBK8QsKCtVzyCaTdupuUpK1Uq_-cbfWkwc9DczMM8z7nJBDHzwQcsHZkDMuL1fDsO5a3Q0FE32LM8HzAzLgoyrPuCjFIRmwsSizvJDVMTlJacUYE6WUA_I58bSHscUPsLQBbTMXAagLsdUtWvT41tK5z2qd-oU1xLBJr9gBTaHRkRpoGmoh4cLvGLrExZKuwzv0o-A3EBMGT8E5NAjebGm9pfPp5GlOE7Zvje768Rk5crpJcP5TT8nL7c3z9D6bPd49TCezzORMdplmldM1k9I6MeKFqYtiLCEvhZaytlWfEGBcSO6YgVoXNS91DYW2PLd8BFDlp6TY3zUxpBTBqXXEVset4kztRKqV2otUO5FqL7LHrn5hBrvvx7uosfkPvt7D0AfbIESVvkWAxQimUzbg3we-AIsvltc
CitedBy_id crossref_primary_10_1007_s11664_025_11740_x
crossref_primary_10_1116_6_0000718
crossref_primary_10_1002_zaac_202300045
crossref_primary_10_1016_j_egyr_2025_01_019
crossref_primary_10_1002_ep_14242
crossref_primary_10_1016_j_optmat_2021_111193
crossref_primary_10_1080_15567036_2024_2402924
crossref_primary_10_1039_D3RA04134D
crossref_primary_10_3390_en14217211
crossref_primary_10_1088_1361_6641_ac01fd
crossref_primary_10_1016_j_mtcomm_2024_108695
crossref_primary_10_1002_ente_202200635
crossref_primary_10_3390_en16020900
crossref_primary_10_1007_s11664_023_10267_3
crossref_primary_10_1039_D2CP05226A
crossref_primary_10_1016_j_mtcomm_2025_112297
crossref_primary_10_1149_2162_8777_aca0c1
crossref_primary_10_1088_1402_4896_acd903
crossref_primary_10_1016_j_cplett_2022_140295
crossref_primary_10_1007_s12596_022_00946_5
crossref_primary_10_1016_j_matchemphys_2022_126978
crossref_primary_10_1021_acs_energyfuels_3c04392
crossref_primary_10_1063_5_0108459
crossref_primary_10_1002_pssa_202300732
crossref_primary_10_1088_1402_4896_ada4e8
crossref_primary_10_1016_j_mseb_2023_116757
crossref_primary_10_1016_j_matpr_2022_10_006
crossref_primary_10_1038_s41598_023_37018_y
crossref_primary_10_1038_s41598_023_42447_w
crossref_primary_10_1088_1402_4896_ad604b
crossref_primary_10_1007_s10470_022_02114_y
crossref_primary_10_1016_j_optmat_2021_111891
crossref_primary_10_1007_s42341_022_00412_w
crossref_primary_10_1007_s12633_023_02811_x
crossref_primary_10_1016_j_micrna_2023_207739
crossref_primary_10_1016_j_solener_2023_112256
crossref_primary_10_1098_rsos_221127
crossref_primary_10_1007_s12596_024_02374_z
crossref_primary_10_32604_jrm_2022_019649
crossref_primary_10_1007_s11664_024_11638_0
crossref_primary_10_1007_s10853_024_10090_z
crossref_primary_10_1002_adts_202400129
crossref_primary_10_3390_ma15144761
crossref_primary_10_1016_j_optmat_2021_111812
crossref_primary_10_1016_j_optmat_2021_110964
crossref_primary_10_1016_j_jpcs_2024_112139
crossref_primary_10_1016_j_matpr_2021_04_581
crossref_primary_10_1016_j_mseb_2024_117536
crossref_primary_10_3390_nano12213885
crossref_primary_10_1680_jemmr_22_00059
crossref_primary_10_1016_j_cinorg_2024_100083
crossref_primary_10_1016_j_optmat_2021_111362
crossref_primary_10_1007_s12648_024_03365_3
crossref_primary_10_1007_s12648_024_03206_3
crossref_primary_10_1007_s11664_023_10235_x
crossref_primary_10_3390_ma17051064
crossref_primary_10_1016_j_optmat_2022_112517
crossref_primary_10_1016_j_optmat_2021_111432
crossref_primary_10_1002_adts_202400270
crossref_primary_10_1007_s10854_023_10171_w
crossref_primary_10_1016_j_optmat_2021_111952
crossref_primary_10_3390_cryst12010068
crossref_primary_10_1007_s11051_023_05702_9
crossref_primary_10_1016_j_egyr_2022_03_183
crossref_primary_10_1016_j_mseb_2024_117268
crossref_primary_10_1007_s11814_024_00304_0
crossref_primary_10_1039_D3NJ04832B
crossref_primary_10_1038_s41598_024_66485_0
crossref_primary_10_1016_j_ceramint_2022_02_051
crossref_primary_10_1021_acsaelm_4c01301
crossref_primary_10_1088_1402_4896_ad9221
crossref_primary_10_1007_s11664_024_11488_w
crossref_primary_10_1016_j_mtcomm_2023_106354
crossref_primary_10_1016_j_heliyon_2023_e19808
crossref_primary_10_1109_TED_2021_3066454
crossref_primary_10_1016_j_mtcomm_2023_107841
crossref_primary_10_29130_dubited_831732
crossref_primary_10_2139_ssrn_4095867
crossref_primary_10_3390_nano11092321
crossref_primary_10_1016_j_optmat_2020_110751
crossref_primary_10_1016_j_matpr_2020_11_035
crossref_primary_10_1016_j_ijhydene_2023_07_099
crossref_primary_10_1016_j_solmat_2021_111184
crossref_primary_10_1016_j_optmat_2024_115125
crossref_primary_10_1007_s11082_021_03175_5
crossref_primary_10_1016_j_chphi_2024_100651
crossref_primary_10_1016_j_jpcs_2024_112247
crossref_primary_10_1016_j_rio_2023_100444
crossref_primary_10_1007_s12633_022_02163_y
crossref_primary_10_1002_er_7942
crossref_primary_10_1007_s12596_025_02628_4
crossref_primary_10_1016_j_optmat_2022_112427
crossref_primary_10_1016_j_optmat_2020_110565
crossref_primary_10_1016_j_rio_2025_100783
crossref_primary_10_1002_masy_202100464
crossref_primary_10_1016_j_micrna_2024_207816
crossref_primary_10_1016_j_rinma_2025_100665
crossref_primary_10_1016_j_solmat_2023_112426
crossref_primary_10_1063_5_0088099
crossref_primary_10_1016_j_cplett_2023_140809
crossref_primary_10_1039_D4RA00634H
crossref_primary_10_1016_j_ijleo_2023_171474
crossref_primary_10_1049_ote2_12104
crossref_primary_10_3390_en16114402
crossref_primary_10_3390_mi13122201
crossref_primary_10_1016_j_solener_2021_10_007
crossref_primary_10_1149_2162_8777_ac936e
crossref_primary_10_15251_JOR_2024_202_187
crossref_primary_10_3934_energy_2023034
crossref_primary_10_1016_j_optmat_2023_113822
crossref_primary_10_1016_j_optmat_2022_112036
crossref_primary_10_1002_adts_202200800
crossref_primary_10_1016_j_ijleo_2023_170819
crossref_primary_10_1016_j_physb_2024_416572
crossref_primary_10_1007_s11082_021_02918_8
crossref_primary_10_1007_s11082_022_03954_8
crossref_primary_10_1016_j_mseb_2022_115909
crossref_primary_10_15251_JOR_2022_183_395
crossref_primary_10_1088_2053_1591_abf080
crossref_primary_10_1016_j_matpr_2021_03_610
crossref_primary_10_3390_molecules27227927
crossref_primary_10_1021_acs_energyfuels_3c02397
crossref_primary_10_1088_1361_651X_ad5a2b
Cites_doi 10.1039/C4EE01076K
10.1038/nphoton.2014.82
10.1002/advs.201700204
10.1038/ncomms13831
10.1155/2018/8148072
10.1038/nphoton.2014.284
10.1016/j.optmat.2020.109738
10.1088/1674-1056/25/10/108802
10.1080/14686996.2018.1460176
10.1063/1.1525866
10.1038/sdata.2017.57
10.1038/s41467-019-08918-3
10.1038/s41578-019-0097-0
10.1021/acsenergylett.8b00687
10.1002/adfm.201808059
10.1016/j.mattod.2014.07.007
10.1002/adma.201401991
10.1039/C5TA00190K
10.1021/acsenergylett.7b00236
10.1039/C6EE02100J
10.1007/s11082-019-1802-3
10.1021/acsenergylett.8b00645
10.1021/acs.jpcc.6b10136
10.1016/j.optmat.2019.109631
10.1016/j.spmi.2019.04.007
10.1021/acsenergylett.7b00276
10.1038/nmat4572
10.1016/S0169-4332(03)00624-X
10.1039/C9EE00453J
10.1021/ja809598r
10.1021/acs.jpclett.5b01645
10.1039/C6NR01927G
10.1021/acs.jpclett.7b00045
10.1038/nphoton.2013.342
10.1016/S0040-6090(99)00825-1
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.optmat.2020.110213
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-1252
ExternalDocumentID 10_1016_j_optmat_2020_110213
S0925346720305565
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-a07fab066df2814cb4496e352a66bd7092ee9461f0ceba4b15abe4ad13d18ee73
IEDL.DBID .~1
ISSN 0925-3467
IngestDate Thu Apr 24 23:02:57 EDT 2025
Tue Jul 01 03:49:57 EDT 2025
Fri Feb 23 02:46:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords I–V characteristics
SCAPS simulation
Hole transport layer
Electron transport layer
Power conversion efficiency
Lead-free perovskite solar cell
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-a07fab066df2814cb4496e352a66bd7092ee9461f0ceba4b15abe4ad13d18ee73
ParticipantIDs crossref_primary_10_1016_j_optmat_2020_110213
crossref_citationtrail_10_1016_j_optmat_2020_110213
elsevier_sciencedirect_doi_10_1016_j_optmat_2020_110213
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle Optical materials
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sun, Li, Ye, Rao, Yan, Peng, Li, Liu, Wang, Chen, Xiao, Bian, Huang (bib1) 2016; 8
Rai, Pandey, Dwivedi (bib21) 2020; 100
Kang, Zandi, Gorji (bib39) 2019; 51
Burgelman, Nollet, Degrave (bib22) 2000; 361–362
Stamate (bib25) 2003; 218
Poplavskyy, Nelson (bib32) 2003; 93
Zhang, Hao, Li, Zhou, Wei, Lin (bib9) 2018; 19
Hao, Stoumpos, Cao, Chang, Kanatzidis (bib14) 2014; 8
Kayesh, Chowdhury, Matsuishi, Kaneko, Kazaoui, Lee, Noda, Islam (bib18) 2018; 3
Ke, Stoumpos, Spanopoulos, Chen, Wasielewski, Kanatzidis (bib17) 2018; 3
Babayigit, Ethirajan, Muller, Conings (bib8) 2016; 15
Calado, Telford, Bryant, Li, Nelson, O'Regan (bib27) Dec 22 2016; 7
Akhiro, Kenjiro, Yasuo, Tsutomu (bib4) 2009; 131
NREL (bib5) 2020
Hui-Jing, Wei-Chao, Jian-Zhuo (bib23) 2016; 25
Liu, Kelly (bib33) 2013; 8
Abuhelaiqa, Paek, Lee, Cho, Heo, Oveisi, Huckaba, Kanda, Kim, Zhang, Humphry-Baker, Kinge, Asiri, Nazeeruddin (bib11) 2019; 12
Zhao, Gu, Li, Sun, Ye, Rao (bib34) 2017; 4
Momblona, Gil-Escrig, Bandiello, Hutter, Sessolo, Lederer, Blochwitz-Nimoth, Bolink (bib2) 2016; 9
Ke, Kanatzidis (bib10) 2019; 10
Noel, Stranks, Abate, Wehrenfennig, Guarnera, Haghighirad, Sadhanala, Eperon, Pathak, Johnston, Petrozza, Herz, Snaith (bib13) 2014; 7
(bib24) 1996
Kumar, Dharani, Leong, Boix, Prabhakar, Baikie, Shi, Ding, Ramesh, Asta, Graetzel, Mhaisalkar, Mathews (bib15) 2014; 26
Ozawa, Yamamoto, Yukawa, Liu, Emori, Inoue (bib28) 2016; 120
Park (bib3) 2015; 18
Nayak, Mahesh, Snaith, Cahen (bib6) 2019; 4
Lin, Armin, Nagiri, Burn, Meredith (bib31) 2014; 9
Herz (bib36) 2017; 2
Zhou, Zhou, Tian, Zhu, Tu (bib7) 2018; 2018
Sherkar, Momblona, Gil-Escrig, Avila, Sessolo, Bolink (bib37) 2017; 2
Abdelaziz, Zekry, Shaker, Abouelatta (bib20) 2020; 101
Zekry, Shaker, Salem (bib38) 2018
(bib26) 2016
Ravishankar, Almora, Echeverria-Arrondo, Ghahremanirad, Aranda, Guerrero (bib30) 2017; 8
Hima, Lakhdar, Benhaoua, Saadoune, Kemerchou, Rogti (bib19) 2019; 129
van Reenen, Kemerink, Snaith (bib29) Oct 1 2015; 6
Kim, Huan, Krishnan, Ramprasad (bib35) 2017; 4
Koh, Krishnamoorthy, Yantara, Shi, Leong, Boix, Grimsdale, Mhaisalkar, Mathews (bib16) 2015; 3
Liu, Tu, Hu, Huang, Meng, Yang, Duan, Tan, Li, Chen (bib12) 2019; 29
Liu (10.1016/j.optmat.2020.110213_bib33) 2013; 8
Sun (10.1016/j.optmat.2020.110213_bib1) 2016; 8
Abdelaziz (10.1016/j.optmat.2020.110213_bib20) 2020; 101
Park (10.1016/j.optmat.2020.110213_bib3) 2015; 18
(10.1016/j.optmat.2020.110213_bib26) 2016
Hao (10.1016/j.optmat.2020.110213_bib14) 2014; 8
Sherkar (10.1016/j.optmat.2020.110213_bib37) 2017; 2
van Reenen (10.1016/j.optmat.2020.110213_bib29) 2015; 6
Noel (10.1016/j.optmat.2020.110213_bib13) 2014; 7
Momblona (10.1016/j.optmat.2020.110213_bib2) 2016; 9
Nayak (10.1016/j.optmat.2020.110213_bib6) 2019; 4
Zekry (10.1016/j.optmat.2020.110213_bib38) 2018
Ke (10.1016/j.optmat.2020.110213_bib10) 2019; 10
Stamate (10.1016/j.optmat.2020.110213_bib25) 2003; 218
Herz (10.1016/j.optmat.2020.110213_bib36) 2017; 2
Akhiro (10.1016/j.optmat.2020.110213_bib4) 2009; 131
Ravishankar (10.1016/j.optmat.2020.110213_bib30) 2017; 8
Babayigit (10.1016/j.optmat.2020.110213_bib8) 2016; 15
Zhao (10.1016/j.optmat.2020.110213_bib34) 2017; 4
Lin (10.1016/j.optmat.2020.110213_bib31) 2014; 9
Ke (10.1016/j.optmat.2020.110213_bib17) 2018; 3
Kumar (10.1016/j.optmat.2020.110213_bib15) 2014; 26
Hima (10.1016/j.optmat.2020.110213_bib19) 2019; 129
(10.1016/j.optmat.2020.110213_bib24) 1996
Calado (10.1016/j.optmat.2020.110213_bib27) 2016; 7
Burgelman (10.1016/j.optmat.2020.110213_bib22) 2000; 361–362
Poplavskyy (10.1016/j.optmat.2020.110213_bib32) 2003; 93
Zhou (10.1016/j.optmat.2020.110213_bib7) 2018; 2018
Koh (10.1016/j.optmat.2020.110213_bib16) 2015; 3
Rai (10.1016/j.optmat.2020.110213_bib21) 2020; 100
Liu (10.1016/j.optmat.2020.110213_bib12) 2019; 29
Kim (10.1016/j.optmat.2020.110213_bib35) 2017; 4
Kayesh (10.1016/j.optmat.2020.110213_bib18) 2018; 3
Zhang (10.1016/j.optmat.2020.110213_bib9) 2018; 19
Hui-Jing (10.1016/j.optmat.2020.110213_bib23) 2016; 25
Ozawa (10.1016/j.optmat.2020.110213_bib28) 2016; 120
Abuhelaiqa (10.1016/j.optmat.2020.110213_bib11) 2019; 12
NREL (10.1016/j.optmat.2020.110213_bib5)
Kang (10.1016/j.optmat.2020.110213_bib39) 2019; 51
References_xml – volume: 2018
  year: 2018
  ident: bib7
  article-title: Perovskite-based solar cells: materials, methods, and future perspectives
  publication-title: J. Nanomater.
– volume: 19
  start-page: 425
  year: 2018
  end-page: 442
  ident: bib9
  article-title: Perovskite solar cells: must lead be replaced–and can it be done?
  publication-title: Sci. Technol. Adv. Mater.
– volume: 4
  start-page: 269
  year: 2019
  end-page: 285
  ident: bib6
  article-title: Photovoltaic solar cell technologies: analysing the state of the art
  publication-title: Nat. Rev. Mater.
– volume: 218
  start-page: 318
  year: 2003
  end-page: 323
  ident: bib25
  article-title: On the dielectric properties of dc magnetron TiO2 thin films
  publication-title: Appl. Surf. Sci.
– volume: 9
  start-page: 3456
  year: 2016
  end-page: 3463
  ident: bib2
  article-title: Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 1214
  year: 2017
  end-page: 1222
  ident: bib37
  article-title: Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 1470
  year: 2018
  end-page: 1476
  ident: bib17
  article-title: Diammonium cations in the FASnI
  publication-title: ACS Energy Lett.
– volume: 361–362
  start-page: 527
  year: 2000
  end-page: 532
  ident: bib22
  article-title: Modelling polycrystalline semiconductor solar cells
  publication-title: Thin Solid Films
– volume: 9
  start-page: 106
  year: 2014
  end-page: 112
  ident: bib31
  article-title: Electro-optics of perovskite solar cells
  publication-title: Nat. Photon.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 4
  ident: bib10
  article-title: Prospects for low-toxicity lead-free perovskite solar cells
  publication-title: Nat. Commun.
– start-page: 5
  year: 2016
  end-page: 10
  ident: bib26
  article-title: Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations
  publication-title: IEEE 43rd Photovoltaic Specialists Conference (PVSC) June
– volume: 8
  start-page: 915
  year: 2017
  end-page: 921
  ident: bib30
  article-title: Surface polarization model for the dynamic hysteresis of perovskite solar cells
  publication-title: J. Phys. Chem. Lett.
– volume: 51
  start-page: 91
  year: 2019
  ident: bib39
  article-title: Simulation analysis of graphene contacted perovskite solar cells using SCAPS-1D
  publication-title: Opt. Quant. Electron.
– volume: 8
  start-page: 133
  year: 2013
  ident: bib33
  article-title: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques
  publication-title: Nat. Photon.
– volume: 18
  start-page: 65
  year: 2015
  end-page: 72
  ident: bib3
  article-title: Perovskite solar cells: an emerging photovoltaic technology
  publication-title: Mater. Today
– volume: 100
  start-page: 109631
  year: 2020
  ident: bib21
  article-title: Modeling of highly efficient and low cost CH3NH3Pb(I
  publication-title: Opt. Mater. (Amst).
– year: 2020
  ident: bib5
– volume: 8
  start-page: 10806
  year: 2016
  end-page: 10813
  ident: bib1
  article-title: High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer
  publication-title: Nanoscale
– volume: 29
  start-page: 1808059
  year: 2019
  ident: bib12
  article-title: Enhanced hole transportation for inverted tin‐based perovskite solar cells with high performance and stability
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 7122
  year: 2014
  end-page: 7127
  ident: bib15
  article-title: Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1584
  year: 2018
  end-page: 1589
  ident: bib18
  article-title: Enhanced photovoltaic performance of FASnI
  publication-title: ACS Energy Lett.
– volume: 4
  start-page: 1700204
  year: 2017
  ident: bib34
  article-title: Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12
  publication-title: Adv. Sci.
– volume: 2
  start-page: 1539
  year: 2017
  end-page: 1548
  ident: bib36
  article-title: Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits
  publication-title: ACS Energy Lett.
– start-page: 13
  year: 1996
  end-page: 17
  ident: bib24
  publication-title: Numerical Modelling of AC-Characteristics of CdTe and CIS Solar Cells, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference
– volume: 93
  start-page: 341
  year: 2003
  end-page: 346
  ident: bib32
  article-title: Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound
  publication-title: Appl. Phys.
– start-page: 3
  year: 2018
  end-page: 56
  ident: bib38
  article-title: Chapter 1 - solar cells and arrays: principles, analysis, and design
  publication-title: Advances in Renewable Energies and Power Technologies
– volume: 120
  start-page: 29283
  year: 2016
  end-page: 29289
  ident: bib28
  article-title: What determines the lifetime of photoexcited carriers on TiO2 surfaces?
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 13831
  year: Dec 22 2016
  ident: bib27
  article-title: Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis
  publication-title: Nat. Commun.
– volume: 7
  start-page: 3061
  year: 2014
  end-page: 3068
  ident: bib13
  article-title: Lead-free organic-inorganic tin halide perovskites for photovoltaic applications
  publication-title: Energy Environ. Sci.
– volume: 15
  start-page: 247
  year: 2016
  end-page: 251
  ident: bib8
  article-title: Toxicity of organometal halide perovskite solar cells
  publication-title: Nat. Mater.
– volume: 12
  start-page: 1910
  year: 2019
  end-page: 1917
  ident: bib11
  article-title: Stable perovskite solar cells using tin acetylacetonate based electron transporting layers
  publication-title: Energy Environ. Sci.
– volume: 101
  start-page: 109738
  year: 2020
  ident: bib20
  article-title: Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation
  publication-title: Opt. Mater. (Amst).
– volume: 129
  start-page: 240
  year: 2019
  end-page: 246
  ident: bib19
  article-title: An optimized perovskite solar cell designs for high conversion efficiency
  publication-title: Superlattice. Microst.
– volume: 4
  start-page: 170057
  year: 2017
  ident: bib35
  article-title: A hybrid organic-inorganic perovskite dataset
  publication-title: Sci. Data
– volume: 8
  start-page: 489
  year: 2014
  end-page: 494
  ident: bib14
  article-title: Lead-free solid-state organic-inorganic halide perovskite solar cells
  publication-title: Nat. Photon.
– volume: 3
  start-page: 14996
  year: 2015
  end-page: 15000
  ident: bib16
  article-title: Formamidinium tin-based perovskite with low Eg for photovoltaic applications
  publication-title: J. Mater. Chem. A.
– volume: 131
  start-page: 6050
  year: 2009
  end-page: 6051
  ident: bib4
  article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 108802
  year: 2016
  ident: bib23
  article-title: Device simulation of lead-free CH
  publication-title: Chin. Phys. B
– volume: 6
  start-page: 3808
  year: Oct 1 2015
  end-page: 3814
  ident: bib29
  article-title: Modeling anomalous hysteresis in perovskite solar cells
  publication-title: J. Phys. Chem. Lett.
– volume: 7
  start-page: 3061
  year: 2014
  ident: 10.1016/j.optmat.2020.110213_bib13
  article-title: Lead-free organic-inorganic tin halide perovskites for photovoltaic applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01076K
– volume: 8
  start-page: 489
  year: 2014
  ident: 10.1016/j.optmat.2020.110213_bib14
  article-title: Lead-free solid-state organic-inorganic halide perovskite solar cells
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2014.82
– volume: 4
  start-page: 1700204
  issue: 11
  year: 2017
  ident: 10.1016/j.optmat.2020.110213_bib34
  article-title: Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700204
– volume: 7
  start-page: 13831
  year: 2016
  ident: 10.1016/j.optmat.2020.110213_bib27
  article-title: Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13831
– volume: 2018
  year: 2018
  ident: 10.1016/j.optmat.2020.110213_bib7
  article-title: Perovskite-based solar cells: materials, methods, and future perspectives
  publication-title: J. Nanomater.
  doi: 10.1155/2018/8148072
– volume: 9
  start-page: 106
  year: 2014
  ident: 10.1016/j.optmat.2020.110213_bib31
  article-title: Electro-optics of perovskite solar cells
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2014.284
– volume: 101
  start-page: 109738
  year: 2020
  ident: 10.1016/j.optmat.2020.110213_bib20
  article-title: Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation
  publication-title: Opt. Mater. (Amst).
  doi: 10.1016/j.optmat.2020.109738
– start-page: 5
  year: 2016
  ident: 10.1016/j.optmat.2020.110213_bib26
  article-title: Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations
– ident: 10.1016/j.optmat.2020.110213_bib5
– volume: 25
  start-page: 108802
  issue: 10
  year: 2016
  ident: 10.1016/j.optmat.2020.110213_bib23
  article-title: Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/25/10/108802
– volume: 19
  start-page: 425
  year: 2018
  ident: 10.1016/j.optmat.2020.110213_bib9
  article-title: Perovskite solar cells: must lead be replaced–and can it be done?
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1080/14686996.2018.1460176
– volume: 93
  start-page: 341
  issue: 1
  year: 2003
  ident: 10.1016/j.optmat.2020.110213_bib32
  article-title: Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound
  publication-title: Appl. Phys.
  doi: 10.1063/1.1525866
– volume: 4
  start-page: 170057
  year: 2017
  ident: 10.1016/j.optmat.2020.110213_bib35
  article-title: A hybrid organic-inorganic perovskite dataset
  publication-title: Sci. Data
  doi: 10.1038/sdata.2017.57
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.optmat.2020.110213_bib10
  article-title: Prospects for low-toxicity lead-free perovskite solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08918-3
– start-page: 3
  year: 2018
  ident: 10.1016/j.optmat.2020.110213_bib38
  article-title: Chapter 1 - solar cells and arrays: principles, analysis, and design
– volume: 4
  start-page: 269
  year: 2019
  ident: 10.1016/j.optmat.2020.110213_bib6
  article-title: Photovoltaic solar cell technologies: analysing the state of the art
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0097-0
– volume: 3
  start-page: 1470
  year: 2018
  ident: 10.1016/j.optmat.2020.110213_bib17
  article-title: Diammonium cations in the FASnI3 perovskite structure lead to lower dark currents and more efficient solar cells
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00687
– volume: 29
  start-page: 1808059
  year: 2019
  ident: 10.1016/j.optmat.2020.110213_bib12
  article-title: Enhanced hole transportation for inverted tin‐based perovskite solar cells with high performance and stability
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808059
– volume: 18
  start-page: 65
  year: 2015
  ident: 10.1016/j.optmat.2020.110213_bib3
  article-title: Perovskite solar cells: an emerging photovoltaic technology
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2014.07.007
– volume: 26
  start-page: 7122
  year: 2014
  ident: 10.1016/j.optmat.2020.110213_bib15
  article-title: Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401991
– volume: 3
  start-page: 14996
  year: 2015
  ident: 10.1016/j.optmat.2020.110213_bib16
  article-title: Formamidinium tin-based perovskite with low Eg for photovoltaic applications
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C5TA00190K
– volume: 2
  start-page: 1214
  issue: 5
  year: 2017
  ident: 10.1016/j.optmat.2020.110213_bib37
  article-title: Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00236
– volume: 9
  start-page: 3456
  year: 2016
  ident: 10.1016/j.optmat.2020.110213_bib2
  article-title: Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE02100J
– volume: 51
  start-page: 91
  year: 2019
  ident: 10.1016/j.optmat.2020.110213_bib39
  article-title: Simulation analysis of graphene contacted perovskite solar cells using SCAPS-1D
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-019-1802-3
– volume: 3
  start-page: 1584
  year: 2018
  ident: 10.1016/j.optmat.2020.110213_bib18
  article-title: Enhanced photovoltaic performance of FASnI3 -based perovskite solar cells with hydrazinium chloride coadditive
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00645
– volume: 120
  start-page: 29283
  year: 2016
  ident: 10.1016/j.optmat.2020.110213_bib28
  article-title: What determines the lifetime of photoexcited carriers on TiO2 surfaces?
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b10136
– volume: 100
  start-page: 109631
  year: 2020
  ident: 10.1016/j.optmat.2020.110213_bib21
  article-title: Modeling of highly efficient and low cost CH3NH3Pb(I1-xClx)3 based perovskite solar cell by numerical simulation
  publication-title: Opt. Mater. (Amst).
  doi: 10.1016/j.optmat.2019.109631
– volume: 129
  start-page: 240
  year: 2019
  ident: 10.1016/j.optmat.2020.110213_bib19
  article-title: An optimized perovskite solar cell designs for high conversion efficiency
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2019.04.007
– volume: 2
  start-page: 1539
  issue: 7
  year: 2017
  ident: 10.1016/j.optmat.2020.110213_bib36
  article-title: Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00276
– volume: 15
  start-page: 247
  year: 2016
  ident: 10.1016/j.optmat.2020.110213_bib8
  article-title: Toxicity of organometal halide perovskite solar cells
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4572
– volume: 218
  start-page: 318
  issue: 1
  year: 2003
  ident: 10.1016/j.optmat.2020.110213_bib25
  article-title: On the dielectric properties of dc magnetron TiO2 thin films
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(03)00624-X
– volume: 12
  start-page: 1910
  year: 2019
  ident: 10.1016/j.optmat.2020.110213_bib11
  article-title: Stable perovskite solar cells using tin acetylacetonate based electron transporting layers
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00453J
– start-page: 13
  year: 1996
  ident: 10.1016/j.optmat.2020.110213_bib24
– volume: 131
  start-page: 6050
  year: 2009
  ident: 10.1016/j.optmat.2020.110213_bib4
  article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 6
  start-page: 3808
  year: 2015
  ident: 10.1016/j.optmat.2020.110213_bib29
  article-title: Modeling anomalous hysteresis in perovskite solar cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01645
– volume: 8
  start-page: 10806
  year: 2016
  ident: 10.1016/j.optmat.2020.110213_bib1
  article-title: High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer
  publication-title: Nanoscale
  doi: 10.1039/C6NR01927G
– volume: 8
  start-page: 915
  issue: Mar 2
  year: 2017
  ident: 10.1016/j.optmat.2020.110213_bib30
  article-title: Surface polarization model for the dynamic hysteresis of perovskite solar cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b00045
– volume: 8
  start-page: 133
  year: 2013
  ident: 10.1016/j.optmat.2020.110213_bib33
  article-title: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2013.342
– volume: 361–362
  start-page: 527
  year: 2000
  ident: 10.1016/j.optmat.2020.110213_bib22
  article-title: Modelling polycrystalline semiconductor solar cells
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(99)00825-1
SSID ssj0002566
Score 2.6180067
Snippet An organic-inorganic perovskite formamidinium tin iodide (HC(NH2)2SnI3– FASnI3) is used as light absorbing layer in photovoltaics due to its lead-free nature,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110213
SubjectTerms Electron transport layer
Hole transport layer
I–V characteristics
Lead-free perovskite solar cell
Power conversion efficiency
SCAPS simulation
Title An optimized lead-free formamidinium Sn-based perovskite solar cell design for high power conversion efficiency by SCAPS simulation
URI https://dx.doi.org/10.1016/j.optmat.2020.110213
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEG5EEfay-GR9Ugev7STpTrpzHAZlVBRhFLyF7nQNZHHi4IyCHrz4x-3qJD5AVthjQlUIXZV65asqxg600pmzEXKdiJRL53JuhVM8RZei1UaVgnqHzy-y4bU8vUlvFtig64UhWGVr-xubHqx1e6fXnmZvWlW9UZQnqfDfedKMuaJGcykVafnhywfMw7v08L_SE3Oi7trnAsbrbjr3caHPEpOAh09i8b17-uRyjlfY7zZWhH7zOqtsAes1thwwm-Vsnb32a_CPribVMzq49cLi43tECGHopPJOqXqYwKjm5Kkc0ETwxxkVa2FG-SxQzR5cQHAQD9DkYpjS1jQIWPRQSAMMMyaoQRPsE4wG_csRzKpJu_Vrg10fH10NhrzdqcBLnxzMuYnU2FgfZ7hxomNZWinzDH0UZrLMOuWPCTGXWTyOSrRG2jg1FqVxsXCxRlRiky3WdzX-YWByY6RQqrQ-q9FRbnRuY6NNnmSiTKXcYqI7yqJsB47T3ovbokOW_S0aARQkgKIRwBbj71zTZuDGD_Sqk1LxRXEK7xP-ybn935w77BddNZi-XbY4v3_APR-bzO1-UL59ttQ_ORtevAHEGuZH
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-EL2IT3w7B69x2yZt0uOyKOsTYRW8laSZhcpuXdxV0IMX_7hJ2voAUfDazpSSSeaVb2YIOZBCJkYHSGXEYsqNSalmRtAYTYxaKpEzVzt8cZl0b_jpbXw7RTpNLYyDVda6v9LpXlvXT1r1arZGRdHqBWkUM3vOo6rNVTxNZrk9vm6MweHrJ87D2nR_YWmpqSNv6uc8yOt-NLGOoQ0TIw-Ij0L2s336YnOOl8hi7SxCu_qfZTKF5QqZ86DNfLxK3tol2E8Xw-IFDQystGj_ARG8HzosrFUqHofQK6kzVQZcS_CnscvWwtgFtOCS9mA8hMPxgGtdDCM3Ng08GN1n0gB9kwlXoQn6GXqd9lUPxsWwHvu1Rm6Oj647XVoPVaC5jQ4mVAWir7R1NEw_kiHPNedpgtYNU0mijbDLhJjyJOwHOWrFdRgrjVyZkJlQIgq2TmbK-xI3CKhUKc6EyLUNa2SQKpnqUEmVRgnLY843CWuWMsvrjuNu8MUga6Bld1klgMwJIKsEsEnoB9eo6rjxB71opJR92zmZNQq_cm79m3OfzHevL86z85PLs22y4N5UAL8dMjN5eMRd66hM9J7fiO8X5ufV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+lead-free+formamidinium+Sn-based+perovskite+solar+cell+design+for+high+power+conversion+efficiency+by+SCAPS+simulation&rft.jtitle=Optical+materials&rft.au=Kumar%2C+Manish&rft.au=Raj%2C+Abhishek&rft.au=Kumar%2C+Arvind&rft.au=Anshul%2C+Avneesh&rft.date=2020-10-01&rft.issn=0925-3467&rft.volume=108&rft.spage=110213&rft_id=info:doi/10.1016%2Fj.optmat.2020.110213&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optmat_2020_110213
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-3467&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-3467&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-3467&client=summon