MDFN: Multi-scale deep feature learning network for object detection

•The paper proposes a new model that focuses on learning the deep features produced in the latter part of the network.•Accurate detection results are achieved by making full use of the semantic and contextual information expressed by deep features.•The proposed deep feature learning inception module...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 100; p. 107149
Main Authors Ma, Wenchi, Wu, Yuanwei, Cen, Feng, Wang, Guanghui
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2020
Subjects
Online AccessGet full text
ISSN0031-3203
1873-5142
DOI10.1016/j.patcog.2019.107149

Cover

Loading…
Abstract •The paper proposes a new model that focuses on learning the deep features produced in the latter part of the network.•Accurate detection results are achieved by making full use of the semantic and contextual information expressed by deep features.•The proposed deep feature learning inception modules activate multi-scale receptive fields within a wide range at a single layer level.•The paper demonstrates that features produced in the deeper part of networks have a prevailing impact on the accuracy of object detection. This paper proposes an innovative object detector by leveraging deep features learned in high-level layers. Compared with features produced in earlier layers, the deep features are better at expressing semantic and contextual information. The proposed deep feature learning scheme shifts the focus from concrete features with details to abstract ones with semantic information. It considers not only individual objects and local contexts but also their relationships by building a multi-scale deep feature learning network (MDFN). MDFN efficiently detects the objects by introducing information square and cubic inception modules into the high-level layers, which employs parameter-sharing to enhance the computational efficiency. MDFN provides a multi-scale object detector by integrating multi-box, multi-scale and multi-level technologies. Although MDFN employs a simple framework with a relatively small base network (VGG-16), it achieves better or competitive detection results than those with a macro hierarchical structure that is either very deep or very wide for stronger ability of feature extraction. The proposed technique is evaluated extensively on KITTI, PASCAL VOC, and COCO datasets, which achieves the best results on KITTI and leading performance on PASCAL VOC and COCO. This study reveals that deep features provide prominent semantic information and a variety of contextual contents, which contribute to its superior performance in detecting small or occluded objects. In addition, the MDFN model is computationally efficient, making a good trade-off between the accuracy and speed.
AbstractList •The paper proposes a new model that focuses on learning the deep features produced in the latter part of the network.•Accurate detection results are achieved by making full use of the semantic and contextual information expressed by deep features.•The proposed deep feature learning inception modules activate multi-scale receptive fields within a wide range at a single layer level.•The paper demonstrates that features produced in the deeper part of networks have a prevailing impact on the accuracy of object detection. This paper proposes an innovative object detector by leveraging deep features learned in high-level layers. Compared with features produced in earlier layers, the deep features are better at expressing semantic and contextual information. The proposed deep feature learning scheme shifts the focus from concrete features with details to abstract ones with semantic information. It considers not only individual objects and local contexts but also their relationships by building a multi-scale deep feature learning network (MDFN). MDFN efficiently detects the objects by introducing information square and cubic inception modules into the high-level layers, which employs parameter-sharing to enhance the computational efficiency. MDFN provides a multi-scale object detector by integrating multi-box, multi-scale and multi-level technologies. Although MDFN employs a simple framework with a relatively small base network (VGG-16), it achieves better or competitive detection results than those with a macro hierarchical structure that is either very deep or very wide for stronger ability of feature extraction. The proposed technique is evaluated extensively on KITTI, PASCAL VOC, and COCO datasets, which achieves the best results on KITTI and leading performance on PASCAL VOC and COCO. This study reveals that deep features provide prominent semantic information and a variety of contextual contents, which contribute to its superior performance in detecting small or occluded objects. In addition, the MDFN model is computationally efficient, making a good trade-off between the accuracy and speed.
ArticleNumber 107149
Author Wang, Guanghui
Ma, Wenchi
Wu, Yuanwei
Cen, Feng
Author_xml – sequence: 1
  givenname: Wenchi
  orcidid: 0000-0003-1323-4298
  surname: Ma
  fullname: Ma, Wenchi
  email: wenchima@ku.edu
  organization: Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS 66045 USA
– sequence: 2
  givenname: Yuanwei
  surname: Wu
  fullname: Wu, Yuanwei
  email: y262w558@ku.edu
  organization: Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS 66045 USA
– sequence: 3
  givenname: Feng
  orcidid: 0000-0002-0825-385X
  surname: Cen
  fullname: Cen, Feng
  email: feng.cen@tongji.edu.cn
  organization: Department of Control Science and Engineering, College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
– sequence: 4
  givenname: Guanghui
  orcidid: 0000-0003-3182-104X
  surname: Wang
  fullname: Wang, Guanghui
  email: ghwang@ku.edu
  organization: Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS 66045 USA
BookMark eNqFkMFOwzAQRC1UJNrCH3DwD6TYsdM0PSChlgJSCxc4W469rhyCXTkuiL-vo3DiAKeRVvtGMzNBI-cdIHRNyYwSOr9pZgcZld_PckKrdCopr87QmC5KlhWU5yM0JoTRjOWEXaBJ1zWE0PSUj9F6t948L_Hu2EabdUq2gDXAARuQ8RgAtyCDs26PHcQvH96x8QH7ugEV02NMYr27ROdGth1c_egUvW3uX1eP2fbl4Wl1t80UI_OYVYbWeQ7lgvCKlzUFpUpT6VJxLbVeFJoZDRKgllLpQlNJeEFrbeYG6j4vm6Ll4KuC77oARigbZZ8gBmlbQYno9xCNGPYQ_R5i2CPB_Bd8CPZDhu__sNsBg1Ts00IQnbLgFGgbUnuhvf3b4ARSN3_K
CitedBy_id crossref_primary_10_1016_j_patcog_2022_109261
crossref_primary_10_1016_j_eswa_2024_124029
crossref_primary_10_1109_JBHI_2024_3381891
crossref_primary_10_3390_jimaging8070193
crossref_primary_10_1016_j_bspc_2023_105645
crossref_primary_10_1080_01431161_2023_2244642
crossref_primary_10_1016_j_aej_2025_01_077
crossref_primary_10_1109_TCSVT_2022_3173960
crossref_primary_10_1109_TCE_2024_3371451
crossref_primary_10_1016_j_patcog_2021_107929
crossref_primary_10_1007_s00521_021_05955_2
crossref_primary_10_1109_JRFID_2022_3211675
crossref_primary_10_1007_s11042_024_18397_4
crossref_primary_10_1109_TIM_2022_3193971
crossref_primary_10_1109_ACCESS_2024_3436838
crossref_primary_10_1016_j_patcog_2022_108587
crossref_primary_10_1016_j_patcog_2021_108440
crossref_primary_10_1016_j_neucom_2021_01_126
crossref_primary_10_1088_2631_8695_ad3cb7
crossref_primary_10_1038_s41598_024_55178_3
crossref_primary_10_1016_j_cag_2023_07_013
crossref_primary_10_1016_j_neunet_2023_06_020
crossref_primary_10_1016_j_patcog_2021_107997
crossref_primary_10_1007_s11227_022_04596_z
crossref_primary_10_1016_j_patcog_2023_109416
crossref_primary_10_1016_j_patcog_2024_110260
crossref_primary_10_1016_j_patcog_2023_109418
crossref_primary_10_1007_s11760_025_03857_7
crossref_primary_10_3390_rs14020420
crossref_primary_10_1016_j_patcog_2023_109365
crossref_primary_10_1016_j_dsp_2024_104580
crossref_primary_10_1016_j_patcog_2021_108199
crossref_primary_10_12677_airr_2025_141005
crossref_primary_10_1016_j_neucom_2023_126663
crossref_primary_10_1016_j_patcog_2022_108998
crossref_primary_10_3390_electronics13245049
crossref_primary_10_3390_s24247914
crossref_primary_10_1016_j_patcog_2023_109801
crossref_primary_10_1080_0951192X_2022_2078514
crossref_primary_10_1016_j_compbiomed_2024_108057
crossref_primary_10_1016_j_neucom_2022_03_033
crossref_primary_10_1371_journal_pone_0255809
crossref_primary_10_1049_ipr2_70027
crossref_primary_10_1007_s00521_023_08390_7
crossref_primary_10_1016_j_compbiomed_2025_109723
crossref_primary_10_1016_j_jag_2023_103494
crossref_primary_10_1016_j_neucom_2022_04_062
crossref_primary_10_1016_j_bspc_2024_107378
crossref_primary_10_1016_j_cmpb_2022_107110
crossref_primary_10_3390_electronics13224354
crossref_primary_10_1007_s11042_022_13801_3
crossref_primary_10_3390_rs16193697
crossref_primary_10_1109_TGRS_2022_3224599
crossref_primary_10_1080_09544828_2025_2481537
crossref_primary_10_1016_j_patcog_2023_109347
crossref_primary_10_3390_s25010214
crossref_primary_10_1016_j_engappai_2024_107931
crossref_primary_10_1016_j_neucom_2021_12_027
crossref_primary_10_1007_s10846_020_01287_w
crossref_primary_10_1016_j_patcog_2021_108418
crossref_primary_10_7717_peerj_cs_2721
crossref_primary_10_3390_wevj15070309
crossref_primary_10_1109_ACCESS_2020_3009344
crossref_primary_10_1371_journal_pone_0236452
crossref_primary_10_1109_TCE_2023_3257288
crossref_primary_10_1016_j_eswa_2022_116555
crossref_primary_10_1016_j_patcog_2022_108548
crossref_primary_10_1007_s10489_021_03007_9
crossref_primary_10_1007_s40747_024_01409_z
crossref_primary_10_1016_j_patcog_2020_107737
crossref_primary_10_1007_s00371_020_01993_4
crossref_primary_10_1007_s11042_023_15981_y
crossref_primary_10_1145_3665649
crossref_primary_10_3390_e25030509
crossref_primary_10_1016_j_asoc_2021_107846
crossref_primary_10_1109_ACCESS_2025_3548418
crossref_primary_10_1016_j_patcog_2021_108310
crossref_primary_10_1007_s00521_023_08550_9
crossref_primary_10_1109_TCSVT_2020_2978717
crossref_primary_10_1016_j_patcog_2021_108437
crossref_primary_10_1016_j_renene_2023_119471
crossref_primary_10_3390_electronics10161932
crossref_primary_10_1016_j_heliyon_2023_e17730
crossref_primary_10_1016_j_patcog_2023_109398
crossref_primary_10_1117_1_JEI_33_6_063031
crossref_primary_10_1007_s11227_024_06765_8
crossref_primary_10_1016_j_patrec_2021_12_004
crossref_primary_10_1109_JSEN_2021_3103612
crossref_primary_10_1016_j_engappai_2022_104916
crossref_primary_10_1109_ACCESS_2024_3505919
crossref_primary_10_1109_TITS_2025_3530678
crossref_primary_10_1186_s40537_024_00895_9
crossref_primary_10_1007_s00500_020_04990_w
crossref_primary_10_1016_j_patcog_2023_109558
crossref_primary_10_1016_j_eswa_2024_126375
crossref_primary_10_1007_s11042_023_15773_4
crossref_primary_10_1007_s00521_024_09761_4
Cites_doi 10.1109/ACCESS.2019.2901376
10.1109/ICCVW.2019.00136
10.1016/j.patcog.2018.01.009
10.1109/5.726791
10.1007/s11263-015-0816-y
10.1016/j.neucom.2014.07.005
10.1007/s00138-015-0679-9
10.1016/j.neucom.2016.06.055
10.1109/TIP.2018.2832296
10.1109/TMM.2019.2898777
10.1016/j.patcog.2019.05.017
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2019.107149
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2019_107149
S0031320319304509
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-9f1b22e7804947b1ecc7f9d7c4dadd85d3fdeaeebaacd5d1a0451bdf6feb01713
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Thu Apr 24 23:02:55 EDT 2025
Tue Jul 01 02:36:30 EDT 2025
Fri Feb 23 02:46:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep feature learning
Multi-scale
Semantic and contextual information
Small and occluded objects
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-9f1b22e7804947b1ecc7f9d7c4dadd85d3fdeaeebaacd5d1a0451bdf6feb01713
ORCID 0000-0002-0825-385X
0000-0003-1323-4298
0000-0003-3182-104X
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2019_107149
crossref_primary_10_1016_j_patcog_2019_107149
elsevier_sciencedirect_doi_10_1016_j_patcog_2019_107149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Stewart, Andriluka, Ng (bib0033) 2016
Yang, Zhang, Wang, Li (bib0004) 2015; 148
Huang, Sun, Liu, Sedra, Weinberger (bib0008) 2016
Y. Wu, Z. Zhang, G. Wang, Unsupervised deep feature transfer for low resolution image classification, in
A. Veit, M. Wilber, S. Belongie, Residual networks are exponential ensembles of relatively shallow.
Cen, Wang (bib0024) 2019; 7
Cai, Fan, Feris, Vasconcelos (bib0047) 2016
Wu, Iandola, Jin, Keutzer (bib0030) 2017
C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, A.C. Berg, DSSD: deconvolutional single shot detector., (2017)
Szegedy, Ioffe, Vanhoucke, Alemi (bib0023) 2017
Ren, Chen, Liu, Sun, Pang, Yan, Tai, Xu (bib0028) 2017
Ouyang, Wang, Zhu, Wang (bib0051) 2017
(2), p.3. 2016
Mahendran, Vedaldi (bib0016) 2015
Cen, Wang (bib0002) 2019
Ren, He, Girshick, Sun (bib0046) 2015
S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shelhamer, CUDNN: efficient primitives for deep learning
(2015).
Chen, Kalantidis, Li, Yan, Feng (bib0014) 2018
Geiger, Lenz, Urtasun (bib0018) 2012
Redmon, Farhadi (bib0050) 2017
Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (bib0020) 2014
(2017).
Gao, Yang, Wang, Li (bib0021) 2016; 214
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (bib0026) 2015; 115
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinvich (bib0009) 2015
F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer, Squeezenet: alexnet-level accuracy with 50x fewer parameters and <0.5 MB model size.
Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bib0010) 2016
Zhang, Wu, Wang (bib0040) 2018
W. Liu, A. Rabinovich, A.C. Berg, Parsenet: looking wider to see better.
Bell, Lawrence Zitnick, Bala, Girshick (bib0045) 2016
Xu, Keshmiri, Wang (bib0003) 2019; 21
J. Redmon, A. Farhadi, Yolov3: an incremental improvement, arXiv
Bottou (bib0039) 2004
He, Gkioxari, Dollár, Girshick (bib0032) 2017
M. Everingham, L. Van Gool, C.K. Williams, J. Winn, A. Zisserman, The PASCAL visual object classes challenge 2007 (VOC2007) results. (2007).
Wang, Yang (bib0017) 2018; 78
Xu, Shawn, Wang (bib0001) 2019; 93
Ma, Wu, Wang, Wang (bib0035) 2018
2019.
Krizhevsky, Hinton (bib0036) 2012
He, Zhang, Ren, Sun (bib0007) 2016
Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib0029) 2016
(2014).
Xiang, Choi, Lin, Savarese (bib0044) 2017
Dai, Li, He, Sun (bib0049) 2016
Mukherjee, Wu, Wang (bib0022) 2015; 26
Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (bib0042) 2014
He, Wang, Hu (bib0005) 2018; 27
Huang, Liu, Van Der Maaten, Weinberger (bib0011) 2017
(bib0038) 2010
(2018).
LeCun, Bottou, Bengio, Haffner (bib0025) 1998; 86
(2016).
Li, Peng, Yu, Zhang, Deng, Sun (bib0013) 2018
Dvornik, Shmelkov, Mairal, Schmid (bib0052) 2017
Wang, Girshick, Gupta, He (bib0015) 2018
Mo, Tao, Wang, Wang (bib0006) 2018
Girshick (bib0041) 2015
Gidaris, Komodakis (bib0048) 2015
Cen (10.1016/j.patcog.2019.107149_bib0002) 2019
Szegedy (10.1016/j.patcog.2019.107149_bib0023) 2017
LeCun (10.1016/j.patcog.2019.107149_bib0025) 1998; 86
Wang (10.1016/j.patcog.2019.107149_bib0017) 2018; 78
Gidaris (10.1016/j.patcog.2019.107149_bib0048) 2015
Wang (10.1016/j.patcog.2019.107149_bib0015) 2018
Ma (10.1016/j.patcog.2019.107149_bib0035) 2018
Bell (10.1016/j.patcog.2019.107149_bib0045) 2016
Mo (10.1016/j.patcog.2019.107149_bib0006) 2018
Geiger (10.1016/j.patcog.2019.107149_bib0018) 2012
10.1016/j.patcog.2019.107149_bib0043
Russakovsky (10.1016/j.patcog.2019.107149_bib0026) 2015; 115
He (10.1016/j.patcog.2019.107149_bib0005) 2018; 27
10.1016/j.patcog.2019.107149_bib0037
He (10.1016/j.patcog.2019.107149_bib0032) 2017
Zhang (10.1016/j.patcog.2019.107149_bib0040) 2018
Bottou (10.1016/j.patcog.2019.107149_bib0039) 2004
Lin (10.1016/j.patcog.2019.107149_bib0020) 2014
Dvornik (10.1016/j.patcog.2019.107149_bib0052) 2017
Chen (10.1016/j.patcog.2019.107149_bib0014) 2018
Krizhevsky (10.1016/j.patcog.2019.107149_bib0036) 2012
Szegedy (10.1016/j.patcog.2019.107149_bib0029) 2016
Ren (10.1016/j.patcog.2019.107149_bib0046) 2015
Szegedy (10.1016/j.patcog.2019.107149_bib0009) 2015
He (10.1016/j.patcog.2019.107149_bib0007) 2016
Li (10.1016/j.patcog.2019.107149_bib0013) 2018
10.1016/j.patcog.2019.107149_bib0031
10.1016/j.patcog.2019.107149_bib0034
10.1016/j.patcog.2019.107149_bib0027
Dai (10.1016/j.patcog.2019.107149_bib0049) 2016
Girshick (10.1016/j.patcog.2019.107149_bib0041) 2015
Cai (10.1016/j.patcog.2019.107149_bib0047) 2016
Ren (10.1016/j.patcog.2019.107149_bib0028) 2017
Wu (10.1016/j.patcog.2019.107149_bib0030) 2017
Xu (10.1016/j.patcog.2019.107149_bib0001) 2019; 93
Stewart (10.1016/j.patcog.2019.107149_bib0033) 2016
Huang (10.1016/j.patcog.2019.107149_bib0011) 2017
10.1016/j.patcog.2019.107149_bib0019
Redmon (10.1016/j.patcog.2019.107149_bib0050) 2017
Huang (10.1016/j.patcog.2019.107149_bib0008) 2016
Jia (10.1016/j.patcog.2019.107149_bib0042) 2014
Ouyang (10.1016/j.patcog.2019.107149_bib0051) 2017
Mukherjee (10.1016/j.patcog.2019.107149_bib0022) 2015; 26
Xu (10.1016/j.patcog.2019.107149_bib0003) 2019; 21
Gao (10.1016/j.patcog.2019.107149_bib0021) 2016; 214
Cen (10.1016/j.patcog.2019.107149_bib0024) 2019; 7
(10.1016/j.patcog.2019.107149_bib0038) 2010
Xiang (10.1016/j.patcog.2019.107149_bib0044) 2017
Mahendran (10.1016/j.patcog.2019.107149_bib0016) 2015
10.1016/j.patcog.2019.107149_bib0053
Liu (10.1016/j.patcog.2019.107149_bib0010) 2016
10.1016/j.patcog.2019.107149_bib0012
Yang (10.1016/j.patcog.2019.107149_bib0004) 2015; 148
References_xml – start-page: 5188
  year: 2015
  end-page: 5196
  ident: bib0016
  article-title: Understanding deep image representations by inverting them.
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: M. Everingham, L. Van Gool, C.K. Williams, J. Winn, A. Zisserman, The PASCAL visual object classes challenge 2007 (VOC2007) results. (2007).
– volume: 148
  start-page: 578
  year: 2015
  end-page: 586
  ident: bib0004
  article-title: Scene and place recognition using a hierarchical latent topic model.
  publication-title: Neurocomputing
– reference: (2), p.3. 2016
– start-page: 2874
  year: 2016
  end-page: 2883
  ident: bib0045
  article-title: Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks
  publication-title: Proceedings of the IEEE Conference on Computer vision and Pattern Recognition
– year: 2017
  ident: bib0023
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning.
  publication-title: Proceedings of the Thirty-First AAAI Conference on Artifical Intelligence
– start-page: 7794
  year: 2018
  end-page: 7803
  ident: bib0015
  article-title: Non-local neural networks.
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2012
  ident: bib0018
  article-title: Are we ready for autonomous driving? The Kitti vision benchmark suite.
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 7263
  year: 2017
  end-page: 7271
  ident: bib0050
  article-title: Yolo9000: better, faster, stronger.
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: bib0011
  article-title: Densely connected convolutional networks.
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 334
  year: 2018
  end-page: 350
  ident: bib0013
  article-title: Detnet: design backbone for object detection.
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– volume: 214
  start-page: 708
  year: 2016
  end-page: 717
  ident: bib0021
  article-title: A novel feature extraction method for scene recognition based on centered convolutional restricted Boltzmann machines.
  publication-title: Neurocomputing
– start-page: 21
  year: 2016
  end-page: 37
  ident: bib0010
  article-title: Ssd: single shot multibox detector.
  publication-title: Proceedings of the European conference on computer vision
– reference: (2015).
– start-page: 2510
  year: 2018
  end-page: 2515
  ident: bib0035
  article-title: Mdcn: multi-scale, deep inception convolutional neural networks for efficient object detection.
  publication-title: Proceedings of the 24th International Conference on Pattern Recognition (ICPR)
– start-page: 1938
  year: 2017
  end-page: 1946
  ident: bib0051
  article-title: Chained cascade network for object detection.
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 2961
  year: 2017
  end-page: 2969
  ident: bib0032
  article-title: Mask R-CNN
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib0025
  article-title: Gradient-based learning applied to document recognition.
  publication-title: Proc. IEEE
– start-page: 3929
  year: 2018
  end-page: 3934
  ident: bib0006
  article-title: An efficient approach for polyps detection in endoscopic videos based on faster R-CNN
  publication-title: Proceedings of the 24th International Conference on Pattern Recognition (ICPR)
– start-page: 2818
  year: 2016
  end-page: 2826
  ident: bib0029
  article-title: Rethinking the inception architecture for computer vision.
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: A. Veit, M. Wilber, S. Belongie, Residual networks are exponential ensembles of relatively shallow.,
– volume: 27
  start-page: 4676
  year: 2018
  end-page: 4689
  ident: bib0005
  article-title: Learning depth from single images with deep neural network embedding focal length.
  publication-title: IEEE Trans. Image Process.
– start-page: 1134
  year: 2015
  end-page: 1142
  ident: bib0048
  article-title: Object detection via a multi-region and semantic segmentation-aware CNN model.
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– reference: (2018).
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0007
  article-title: Deep residual learning for image recognition.
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 4154
  year: 2017
  end-page: 4162
  ident: bib0052
  article-title: Blitznet: a real-time deep network for scene understanding.
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– reference: J. Redmon, A. Farhadi, Yolov3: an incremental improvement, arXiv:
– start-page: 37
  year: 2010
  end-page: 44
  ident: bib0038
  article-title: Dimension reduction for regression with bottleneck neural networks.
  publication-title: Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning
– volume: 26
  start-page: 443
  year: 2015
  end-page: 466
  ident: bib0022
  article-title: A comparative experimental study of image feature detectors and descriptors
  publication-title: Mach. Vis. Appl.
– start-page: 3301
  year: 2018
  end-page: 3309
  ident: bib0040
  article-title: Bpgard: towards global optimality in deep learning via branch and pruning.
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 924
  year: 2017
  end-page: 933
  ident: bib0044
  article-title: Subcategory-aware convolutional neural networks for object proposals and detection.
  publication-title: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV)
– volume: 7
  start-page: 26595
  year: 2019
  end-page: 26605
  ident: bib0024
  article-title: Dictionary representation of deep features for occlusion-robust face recognition
  publication-title: IEEE Access
– reference: (2017).
– volume: 21
  start-page: 2387
  year: 2019
  end-page: 2396
  ident: bib0003
  article-title: Adversarially approximated autoencoder for image generation and manipulation
  publication-title: IEEE Trans. Multimedia
– start-page: 646
  year: 2016
  end-page: 661
  ident: bib0008
  article-title: Deep networks with stochastic depth.
  publication-title: Proceedings of the European Conference on Computer Vision
– start-page: 675
  year: 2014
  end-page: 678
  ident: bib0042
  article-title: Caffe: convolutional architecture for fast feature embedding.
  publication-title: Proceedings of the 22nd ACM International Conference on Multimedia
– reference: (2016).
– start-page: 1440
  year: 2015
  end-page: 1448
  ident: bib0041
  article-title: Fast R-CNN
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 93
  start-page: 570
  year: 2019
  end-page: 580
  ident: bib0001
  article-title: Toward learning a unified many-to-many mapping for diverse image translation
  publication-title: Pattern Recognit.
– start-page: 379
  year: 2016
  end-page: 387
  ident: bib0049
  article-title: R-Fcn: object detection via region-based fully convolutional networks.
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0009
  article-title: Going deeper with convolutions.
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 78
  start-page: 12
  year: 2018
  end-page: 22
  ident: bib0017
  article-title: A context-sensitive deep learning approach for microcalcification detection in mammograms.
  publication-title: Pattern Recognit.
– reference: F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer, Squeezenet: alexnet-level accuracy with 50x fewer parameters and <0.5 MB model size.,
– start-page: 740
  year: 2014
  end-page: 755
  ident: bib0020
  article-title: Microsoft coco: common objects in context.
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– start-page: 350
  year: 2018
  end-page: 359
  ident: bib0014
  article-title: A 2-nets: double attention networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 5420
  year: 2017
  end-page: 5428
  ident: bib0028
  article-title: Accurate single stage detector using recurrent rolling convolution.
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 146
  year: 2004
  end-page: 168
  ident: bib0039
  article-title: Stochastic learning
  publication-title: Advanced Lectures on Machine Learning
– reference: (2014).
– start-page: 91
  year: 2015
  end-page: 99
  ident: bib0046
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks.
  publication-title: Adv. Neural Inf. Process Syst.
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib0026
  article-title: Imagenet large scale visual recognition challenge.
  publication-title: Int. J. Comput. Vis.
– reference: W. Liu, A. Rabinovich, A.C. Berg, Parsenet: looking wider to see better.,
– start-page: 129
  year: 2017
  end-page: 137
  ident: bib0030
  article-title: SqueezeDet: unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving.
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
– reference: Y. Wu, Z. Zhang, G. Wang, Unsupervised deep feature transfer for low resolution image classification, in
– start-page: 2325
  year: 2016
  end-page: 2333
  ident: bib0033
  article-title: End-to-end people detection in crowded scenes.
  publication-title: Proceedings of the IEEE Conference on Computer vision and Pattern Recognition
– reference: C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, A.C. Berg, DSSD: deconvolutional single shot detector., (2017),
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0036
  article-title: Imagenet classification with deep convolutional neural networks.
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shelhamer, CUDNN: efficient primitives for deep learning,
– start-page: 1
  year: 2019
  end-page: 14
  ident: bib0002
  article-title: Boosting occluded image classification via subspace decomposition-based estimation of deep features
  publication-title: IEEE Trans. Cybern.
– start-page: 354
  year: 2016
  end-page: 370
  ident: bib0047
  article-title: A unified multi-scale deep convolutional neural network for fast object detection
  publication-title: Proceedings of the European conference on computer vision
– reference: . 2019.
– start-page: 146
  year: 2004
  ident: 10.1016/j.patcog.2019.107149_bib0039
  article-title: Stochastic learning
– start-page: 2818
  year: 2016
  ident: 10.1016/j.patcog.2019.107149_bib0029
  article-title: Rethinking the inception architecture for computer vision.
– ident: 10.1016/j.patcog.2019.107149_bib0053
– volume: 7
  start-page: 26595
  year: 2019
  ident: 10.1016/j.patcog.2019.107149_bib0024
  article-title: Dictionary representation of deep features for occlusion-robust face recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2901376
– start-page: 675
  year: 2014
  ident: 10.1016/j.patcog.2019.107149_bib0042
  article-title: Caffe: convolutional architecture for fast feature embedding.
– ident: 10.1016/j.patcog.2019.107149_bib0034
– start-page: 4700
  year: 2017
  ident: 10.1016/j.patcog.2019.107149_bib0011
  article-title: Densely connected convolutional networks.
– start-page: 129
  year: 2017
  ident: 10.1016/j.patcog.2019.107149_bib0030
  article-title: SqueezeDet: unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving.
– start-page: 354
  year: 2016
  ident: 10.1016/j.patcog.2019.107149_bib0047
  article-title: A unified multi-scale deep convolutional neural network for fast object detection
– ident: 10.1016/j.patcog.2019.107149_bib0037
– start-page: 4154
  year: 2017
  ident: 10.1016/j.patcog.2019.107149_bib0052
  article-title: Blitznet: a real-time deep network for scene understanding.
– start-page: 37
  year: 2010
  ident: 10.1016/j.patcog.2019.107149_bib0038
  article-title: Dimension reduction for regression with bottleneck neural networks.
– start-page: 740
  year: 2014
  ident: 10.1016/j.patcog.2019.107149_bib0020
  article-title: Microsoft coco: common objects in context.
– start-page: 770
  year: 2016
  ident: 10.1016/j.patcog.2019.107149_bib0007
  article-title: Deep residual learning for image recognition.
– start-page: 7263
  year: 2017
  ident: 10.1016/j.patcog.2019.107149_bib0050
  article-title: Yolo9000: better, faster, stronger.
– year: 2017
  ident: 10.1016/j.patcog.2019.107149_bib0023
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning.
– start-page: 2325
  year: 2016
  ident: 10.1016/j.patcog.2019.107149_bib0033
  article-title: End-to-end people detection in crowded scenes.
– ident: 10.1016/j.patcog.2019.107149_bib0012
  doi: 10.1109/ICCVW.2019.00136
– start-page: 21
  year: 2016
  ident: 10.1016/j.patcog.2019.107149_bib0010
  article-title: Ssd: single shot multibox detector.
– start-page: 1938
  year: 2017
  ident: 10.1016/j.patcog.2019.107149_bib0051
  article-title: Chained cascade network for object detection.
– ident: 10.1016/j.patcog.2019.107149_bib0019
– year: 2012
  ident: 10.1016/j.patcog.2019.107149_bib0018
  article-title: Are we ready for autonomous driving? The Kitti vision benchmark suite.
– ident: 10.1016/j.patcog.2019.107149_bib0043
– start-page: 3301
  year: 2018
  ident: 10.1016/j.patcog.2019.107149_bib0040
  article-title: Bpgard: towards global optimality in deep learning via branch and pruning.
– start-page: 2510
  year: 2018
  ident: 10.1016/j.patcog.2019.107149_bib0035
  article-title: Mdcn: multi-scale, deep inception convolutional neural networks for efficient object detection.
– volume: 78
  start-page: 12
  year: 2018
  ident: 10.1016/j.patcog.2019.107149_bib0017
  article-title: A context-sensitive deep learning approach for microcalcification detection in mammograms.
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.01.009
– start-page: 5420
  year: 2017
  ident: 10.1016/j.patcog.2019.107149_bib0028
  article-title: Accurate single stage detector using recurrent rolling convolution.
– start-page: 2961
  year: 2017
  ident: 10.1016/j.patcog.2019.107149_bib0032
  article-title: Mask R-CNN
– start-page: 646
  year: 2016
  ident: 10.1016/j.patcog.2019.107149_bib0008
  article-title: Deep networks with stochastic depth.
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.patcog.2019.107149_bib0025
  article-title: Gradient-based learning applied to document recognition.
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– start-page: 379
  year: 2016
  ident: 10.1016/j.patcog.2019.107149_bib0049
  article-title: R-Fcn: object detection via region-based fully convolutional networks.
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 3929
  year: 2018
  ident: 10.1016/j.patcog.2019.107149_bib0006
  article-title: An efficient approach for polyps detection in endoscopic videos based on faster R-CNN
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.patcog.2019.107149_bib0026
  article-title: Imagenet large scale visual recognition challenge.
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– start-page: 1134
  year: 2015
  ident: 10.1016/j.patcog.2019.107149_bib0048
  article-title: Object detection via a multi-region and semantic segmentation-aware CNN model.
– volume: 148
  start-page: 578
  year: 2015
  ident: 10.1016/j.patcog.2019.107149_bib0004
  article-title: Scene and place recognition using a hierarchical latent topic model.
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.07.005
– volume: 26
  start-page: 443
  issue: 4
  year: 2015
  ident: 10.1016/j.patcog.2019.107149_bib0022
  article-title: A comparative experimental study of image feature detectors and descriptors
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-015-0679-9
– start-page: 924
  year: 2017
  ident: 10.1016/j.patcog.2019.107149_bib0044
  article-title: Subcategory-aware convolutional neural networks for object proposals and detection.
– volume: 214
  start-page: 708
  year: 2016
  ident: 10.1016/j.patcog.2019.107149_bib0021
  article-title: A novel feature extraction method for scene recognition based on centered convolutional restricted Boltzmann machines.
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.06.055
– start-page: 334
  year: 2018
  ident: 10.1016/j.patcog.2019.107149_bib0013
  article-title: Detnet: design backbone for object detection.
– start-page: 2874
  year: 2016
  ident: 10.1016/j.patcog.2019.107149_bib0045
  article-title: Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks
– start-page: 1440
  year: 2015
  ident: 10.1016/j.patcog.2019.107149_bib0041
  article-title: Fast R-CNN
– volume: 27
  start-page: 4676
  issue: 9
  year: 2018
  ident: 10.1016/j.patcog.2019.107149_bib0005
  article-title: Learning depth from single images with deep neural network embedding focal length.
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2832296
– volume: 21
  start-page: 2387
  issue: 9
  year: 2019
  ident: 10.1016/j.patcog.2019.107149_bib0003
  article-title: Adversarially approximated autoencoder for image generation and manipulation
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2019.2898777
– start-page: 1
  year: 2015
  ident: 10.1016/j.patcog.2019.107149_bib0009
  article-title: Going deeper with convolutions.
– start-page: 350
  year: 2018
  ident: 10.1016/j.patcog.2019.107149_bib0014
  article-title: A 2-nets: double attention networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 91
  year: 2015
  ident: 10.1016/j.patcog.2019.107149_bib0046
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks.
  publication-title: Adv. Neural Inf. Process Syst.
– volume: 93
  start-page: 570
  year: 2019
  ident: 10.1016/j.patcog.2019.107149_bib0001
  article-title: Toward learning a unified many-to-many mapping for diverse image translation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.05.017
– ident: 10.1016/j.patcog.2019.107149_bib0027
– ident: 10.1016/j.patcog.2019.107149_bib0031
– start-page: 7794
  year: 2018
  ident: 10.1016/j.patcog.2019.107149_bib0015
  article-title: Non-local neural networks.
– start-page: 1
  year: 2019
  ident: 10.1016/j.patcog.2019.107149_bib0002
  article-title: Boosting occluded image classification via subspace decomposition-based estimation of deep features
  publication-title: IEEE Trans. Cybern.
– start-page: 5188
  year: 2015
  ident: 10.1016/j.patcog.2019.107149_bib0016
  article-title: Understanding deep image representations by inverting them.
– start-page: 1097
  year: 2012
  ident: 10.1016/j.patcog.2019.107149_bib0036
  article-title: Imagenet classification with deep convolutional neural networks.
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0017142
Score 2.6140783
Snippet •The paper proposes a new model that focuses on learning the deep features produced in the latter part of the network.•Accurate detection results are achieved...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107149
SubjectTerms Deep feature learning
Multi-scale
Semantic and contextual information
Small and occluded objects
Title MDFN: Multi-scale deep feature learning network for object detection
URI https://dx.doi.org/10.1016/j.patcog.2019.107149
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2KXrz4LdaPsgevsU2yaRpvpbVUxZ4s9BayO5NSkTRovPrbndlsioIoeMlhmYHwsjszSd68EeIqh3jg07nxlOnTJdB05oCnuWvjU7UBnFaYbTHrT-fqfhEtWmLU9MIwrdLF_jqm22jtVroOzW65WnGPL8sOchcO_-2zTXxKxbzLrz82NA-e710rhoe-x9ZN-5zleJUU7tZLJngltESmyc_p6UvKmeyLXVcrymF9OweihcWh2GvmMEh3LI_E-HE8md1I20vrvRHoKAGxlDla1U7pJkMsZVFzviUVqnKt-QsMGVaWjFUci_nk9mk09dx0BM9QmV95Se7rIEAWEEpUrH16FnGeQGwUEPaDCMIcMEPUWWYgAj9jJRkNeT9HzbCEJ2KrWBd4KmQPfUCgwgohUhhGiclUZljMrQfQw7AtwgaU1DjpcJ5g8ZI2HLHntIYyZSjTGsq28DZeZS2d8Yd93OCdftsCKUX3Xz3P_u15LnYCfoG2VJwLsVW9vuMlVRmV7tht1BHbw7uH6ewTPh7SsQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqdoCFb0T59MAatW6SpmGrKFVK20yt1M2KfZeqCKURhP-PL3EqkBBILBksn2S9-M6X-N07xu5TCAbC-I3j6b559JTxOaBu7koLk20AHSvEtoj70dJ7XvmrBnusa2GIVmljfxXTy2htRzoWzU6-2VCNL8kOUhUO3fZREV-L1Kn8JmsNJ9Mo3l0mBMKrRMNd4ZBBXUFX0rxyE_G2a-J4hWbITA1_PqG-nDrjI3Zg00U-rFZ0zBqYnbDDuhUDt555ykbz0Th-4GU5rfNucEcOiDlPsRTu5LY5xJpnFe2bm1yVbxX9hDETi5KPlZ2x5fhp8Rg5tkGCo02mXzhhKlSvh6QhFHqBEuZ1BGkIgfbAwD_wwU0BE0SVJBp8EAmJyShI-ykqgsU9Z81sm-EF410UgGByKwTfQ9cPdeIlmvTcugBddNvMrUGR2qqHUxOLV1nTxF5kBaUkKGUFZZs5O6u8Us_4Y35Q4y2_7QJpAvyvlpf_trxje9FiPpOzSTy9Yvs9-p4umTnXrFm8feCNSToKdWs31SeDeNVi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MDFN%3A+Multi-scale+deep+feature+learning+network+for+object+detection&rft.jtitle=Pattern+recognition&rft.au=Ma%2C+Wenchi&rft.au=Wu%2C+Yuanwei&rft.au=Cen%2C+Feng&rft.au=Wang%2C+Guanghui&rft.date=2020-04-01&rft.issn=0031-3203&rft.volume=100&rft.spage=107149&rft_id=info:doi/10.1016%2Fj.patcog.2019.107149&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2019_107149
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon