MDFN: Multi-scale deep feature learning network for object detection
•The paper proposes a new model that focuses on learning the deep features produced in the latter part of the network.•Accurate detection results are achieved by making full use of the semantic and contextual information expressed by deep features.•The proposed deep feature learning inception module...
Saved in:
Published in | Pattern recognition Vol. 100; p. 107149 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-3203 1873-5142 |
DOI | 10.1016/j.patcog.2019.107149 |
Cover
Loading…
Abstract | •The paper proposes a new model that focuses on learning the deep features produced in the latter part of the network.•Accurate detection results are achieved by making full use of the semantic and contextual information expressed by deep features.•The proposed deep feature learning inception modules activate multi-scale receptive fields within a wide range at a single layer level.•The paper demonstrates that features produced in the deeper part of networks have a prevailing impact on the accuracy of object detection.
This paper proposes an innovative object detector by leveraging deep features learned in high-level layers. Compared with features produced in earlier layers, the deep features are better at expressing semantic and contextual information. The proposed deep feature learning scheme shifts the focus from concrete features with details to abstract ones with semantic information. It considers not only individual objects and local contexts but also their relationships by building a multi-scale deep feature learning network (MDFN). MDFN efficiently detects the objects by introducing information square and cubic inception modules into the high-level layers, which employs parameter-sharing to enhance the computational efficiency. MDFN provides a multi-scale object detector by integrating multi-box, multi-scale and multi-level technologies. Although MDFN employs a simple framework with a relatively small base network (VGG-16), it achieves better or competitive detection results than those with a macro hierarchical structure that is either very deep or very wide for stronger ability of feature extraction. The proposed technique is evaluated extensively on KITTI, PASCAL VOC, and COCO datasets, which achieves the best results on KITTI and leading performance on PASCAL VOC and COCO. This study reveals that deep features provide prominent semantic information and a variety of contextual contents, which contribute to its superior performance in detecting small or occluded objects. In addition, the MDFN model is computationally efficient, making a good trade-off between the accuracy and speed. |
---|---|
AbstractList | •The paper proposes a new model that focuses on learning the deep features produced in the latter part of the network.•Accurate detection results are achieved by making full use of the semantic and contextual information expressed by deep features.•The proposed deep feature learning inception modules activate multi-scale receptive fields within a wide range at a single layer level.•The paper demonstrates that features produced in the deeper part of networks have a prevailing impact on the accuracy of object detection.
This paper proposes an innovative object detector by leveraging deep features learned in high-level layers. Compared with features produced in earlier layers, the deep features are better at expressing semantic and contextual information. The proposed deep feature learning scheme shifts the focus from concrete features with details to abstract ones with semantic information. It considers not only individual objects and local contexts but also their relationships by building a multi-scale deep feature learning network (MDFN). MDFN efficiently detects the objects by introducing information square and cubic inception modules into the high-level layers, which employs parameter-sharing to enhance the computational efficiency. MDFN provides a multi-scale object detector by integrating multi-box, multi-scale and multi-level technologies. Although MDFN employs a simple framework with a relatively small base network (VGG-16), it achieves better or competitive detection results than those with a macro hierarchical structure that is either very deep or very wide for stronger ability of feature extraction. The proposed technique is evaluated extensively on KITTI, PASCAL VOC, and COCO datasets, which achieves the best results on KITTI and leading performance on PASCAL VOC and COCO. This study reveals that deep features provide prominent semantic information and a variety of contextual contents, which contribute to its superior performance in detecting small or occluded objects. In addition, the MDFN model is computationally efficient, making a good trade-off between the accuracy and speed. |
ArticleNumber | 107149 |
Author | Wang, Guanghui Ma, Wenchi Wu, Yuanwei Cen, Feng |
Author_xml | – sequence: 1 givenname: Wenchi orcidid: 0000-0003-1323-4298 surname: Ma fullname: Ma, Wenchi email: wenchima@ku.edu organization: Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS 66045 USA – sequence: 2 givenname: Yuanwei surname: Wu fullname: Wu, Yuanwei email: y262w558@ku.edu organization: Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS 66045 USA – sequence: 3 givenname: Feng orcidid: 0000-0002-0825-385X surname: Cen fullname: Cen, Feng email: feng.cen@tongji.edu.cn organization: Department of Control Science and Engineering, College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China – sequence: 4 givenname: Guanghui orcidid: 0000-0003-3182-104X surname: Wang fullname: Wang, Guanghui email: ghwang@ku.edu organization: Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS 66045 USA |
BookMark | eNqFkMFOwzAQRC1UJNrCH3DwD6TYsdM0PSChlgJSCxc4W469rhyCXTkuiL-vo3DiAKeRVvtGMzNBI-cdIHRNyYwSOr9pZgcZld_PckKrdCopr87QmC5KlhWU5yM0JoTRjOWEXaBJ1zWE0PSUj9F6t948L_Hu2EabdUq2gDXAARuQ8RgAtyCDs26PHcQvH96x8QH7ugEV02NMYr27ROdGth1c_egUvW3uX1eP2fbl4Wl1t80UI_OYVYbWeQ7lgvCKlzUFpUpT6VJxLbVeFJoZDRKgllLpQlNJeEFrbeYG6j4vm6Ll4KuC77oARigbZZ8gBmlbQYno9xCNGPYQ_R5i2CPB_Bd8CPZDhu__sNsBg1Ts00IQnbLgFGgbUnuhvf3b4ARSN3_K |
CitedBy_id | crossref_primary_10_1016_j_patcog_2022_109261 crossref_primary_10_1016_j_eswa_2024_124029 crossref_primary_10_1109_JBHI_2024_3381891 crossref_primary_10_3390_jimaging8070193 crossref_primary_10_1016_j_bspc_2023_105645 crossref_primary_10_1080_01431161_2023_2244642 crossref_primary_10_1016_j_aej_2025_01_077 crossref_primary_10_1109_TCSVT_2022_3173960 crossref_primary_10_1109_TCE_2024_3371451 crossref_primary_10_1016_j_patcog_2021_107929 crossref_primary_10_1007_s00521_021_05955_2 crossref_primary_10_1109_JRFID_2022_3211675 crossref_primary_10_1007_s11042_024_18397_4 crossref_primary_10_1109_TIM_2022_3193971 crossref_primary_10_1109_ACCESS_2024_3436838 crossref_primary_10_1016_j_patcog_2022_108587 crossref_primary_10_1016_j_patcog_2021_108440 crossref_primary_10_1016_j_neucom_2021_01_126 crossref_primary_10_1088_2631_8695_ad3cb7 crossref_primary_10_1038_s41598_024_55178_3 crossref_primary_10_1016_j_cag_2023_07_013 crossref_primary_10_1016_j_neunet_2023_06_020 crossref_primary_10_1016_j_patcog_2021_107997 crossref_primary_10_1007_s11227_022_04596_z crossref_primary_10_1016_j_patcog_2023_109416 crossref_primary_10_1016_j_patcog_2024_110260 crossref_primary_10_1016_j_patcog_2023_109418 crossref_primary_10_1007_s11760_025_03857_7 crossref_primary_10_3390_rs14020420 crossref_primary_10_1016_j_patcog_2023_109365 crossref_primary_10_1016_j_dsp_2024_104580 crossref_primary_10_1016_j_patcog_2021_108199 crossref_primary_10_12677_airr_2025_141005 crossref_primary_10_1016_j_neucom_2023_126663 crossref_primary_10_1016_j_patcog_2022_108998 crossref_primary_10_3390_electronics13245049 crossref_primary_10_3390_s24247914 crossref_primary_10_1016_j_patcog_2023_109801 crossref_primary_10_1080_0951192X_2022_2078514 crossref_primary_10_1016_j_compbiomed_2024_108057 crossref_primary_10_1016_j_neucom_2022_03_033 crossref_primary_10_1371_journal_pone_0255809 crossref_primary_10_1049_ipr2_70027 crossref_primary_10_1007_s00521_023_08390_7 crossref_primary_10_1016_j_compbiomed_2025_109723 crossref_primary_10_1016_j_jag_2023_103494 crossref_primary_10_1016_j_neucom_2022_04_062 crossref_primary_10_1016_j_bspc_2024_107378 crossref_primary_10_1016_j_cmpb_2022_107110 crossref_primary_10_3390_electronics13224354 crossref_primary_10_1007_s11042_022_13801_3 crossref_primary_10_3390_rs16193697 crossref_primary_10_1109_TGRS_2022_3224599 crossref_primary_10_1080_09544828_2025_2481537 crossref_primary_10_1016_j_patcog_2023_109347 crossref_primary_10_3390_s25010214 crossref_primary_10_1016_j_engappai_2024_107931 crossref_primary_10_1016_j_neucom_2021_12_027 crossref_primary_10_1007_s10846_020_01287_w crossref_primary_10_1016_j_patcog_2021_108418 crossref_primary_10_7717_peerj_cs_2721 crossref_primary_10_3390_wevj15070309 crossref_primary_10_1109_ACCESS_2020_3009344 crossref_primary_10_1371_journal_pone_0236452 crossref_primary_10_1109_TCE_2023_3257288 crossref_primary_10_1016_j_eswa_2022_116555 crossref_primary_10_1016_j_patcog_2022_108548 crossref_primary_10_1007_s10489_021_03007_9 crossref_primary_10_1007_s40747_024_01409_z crossref_primary_10_1016_j_patcog_2020_107737 crossref_primary_10_1007_s00371_020_01993_4 crossref_primary_10_1007_s11042_023_15981_y crossref_primary_10_1145_3665649 crossref_primary_10_3390_e25030509 crossref_primary_10_1016_j_asoc_2021_107846 crossref_primary_10_1109_ACCESS_2025_3548418 crossref_primary_10_1016_j_patcog_2021_108310 crossref_primary_10_1007_s00521_023_08550_9 crossref_primary_10_1109_TCSVT_2020_2978717 crossref_primary_10_1016_j_patcog_2021_108437 crossref_primary_10_1016_j_renene_2023_119471 crossref_primary_10_3390_electronics10161932 crossref_primary_10_1016_j_heliyon_2023_e17730 crossref_primary_10_1016_j_patcog_2023_109398 crossref_primary_10_1117_1_JEI_33_6_063031 crossref_primary_10_1007_s11227_024_06765_8 crossref_primary_10_1016_j_patrec_2021_12_004 crossref_primary_10_1109_JSEN_2021_3103612 crossref_primary_10_1016_j_engappai_2022_104916 crossref_primary_10_1109_ACCESS_2024_3505919 crossref_primary_10_1109_TITS_2025_3530678 crossref_primary_10_1186_s40537_024_00895_9 crossref_primary_10_1007_s00500_020_04990_w crossref_primary_10_1016_j_patcog_2023_109558 crossref_primary_10_1016_j_eswa_2024_126375 crossref_primary_10_1007_s11042_023_15773_4 crossref_primary_10_1007_s00521_024_09761_4 |
Cites_doi | 10.1109/ACCESS.2019.2901376 10.1109/ICCVW.2019.00136 10.1016/j.patcog.2018.01.009 10.1109/5.726791 10.1007/s11263-015-0816-y 10.1016/j.neucom.2014.07.005 10.1007/s00138-015-0679-9 10.1016/j.neucom.2016.06.055 10.1109/TIP.2018.2832296 10.1109/TMM.2019.2898777 10.1016/j.patcog.2019.05.017 |
ContentType | Journal Article |
Copyright | 2019 |
Copyright_xml | – notice: 2019 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2019.107149 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
ExternalDocumentID | 10_1016_j_patcog_2019_107149 S0031320319304509 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-9f1b22e7804947b1ecc7f9d7c4dadd85d3fdeaeebaacd5d1a0451bdf6feb01713 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Thu Apr 24 23:02:55 EDT 2025 Tue Jul 01 02:36:30 EDT 2025 Fri Feb 23 02:46:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep feature learning Multi-scale Semantic and contextual information Small and occluded objects |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-9f1b22e7804947b1ecc7f9d7c4dadd85d3fdeaeebaacd5d1a0451bdf6feb01713 |
ORCID | 0000-0002-0825-385X 0000-0003-1323-4298 0000-0003-3182-104X |
ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2019_107149 crossref_primary_10_1016_j_patcog_2019_107149 elsevier_sciencedirect_doi_10_1016_j_patcog_2019_107149 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 2020-04-00 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Stewart, Andriluka, Ng (bib0033) 2016 Yang, Zhang, Wang, Li (bib0004) 2015; 148 Huang, Sun, Liu, Sedra, Weinberger (bib0008) 2016 Y. Wu, Z. Zhang, G. Wang, Unsupervised deep feature transfer for low resolution image classification, in A. Veit, M. Wilber, S. Belongie, Residual networks are exponential ensembles of relatively shallow. Cen, Wang (bib0024) 2019; 7 Cai, Fan, Feris, Vasconcelos (bib0047) 2016 Wu, Iandola, Jin, Keutzer (bib0030) 2017 C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, A.C. Berg, DSSD: deconvolutional single shot detector., (2017) Szegedy, Ioffe, Vanhoucke, Alemi (bib0023) 2017 Ren, Chen, Liu, Sun, Pang, Yan, Tai, Xu (bib0028) 2017 Ouyang, Wang, Zhu, Wang (bib0051) 2017 (2), p.3. 2016 Mahendran, Vedaldi (bib0016) 2015 Cen, Wang (bib0002) 2019 Ren, He, Girshick, Sun (bib0046) 2015 S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shelhamer, CUDNN: efficient primitives for deep learning (2015). Chen, Kalantidis, Li, Yan, Feng (bib0014) 2018 Geiger, Lenz, Urtasun (bib0018) 2012 Redmon, Farhadi (bib0050) 2017 Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (bib0020) 2014 (2017). Gao, Yang, Wang, Li (bib0021) 2016; 214 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (bib0026) 2015; 115 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinvich (bib0009) 2015 F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer, Squeezenet: alexnet-level accuracy with 50x fewer parameters and <0.5 MB model size. Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bib0010) 2016 Zhang, Wu, Wang (bib0040) 2018 W. Liu, A. Rabinovich, A.C. Berg, Parsenet: looking wider to see better. Bell, Lawrence Zitnick, Bala, Girshick (bib0045) 2016 Xu, Keshmiri, Wang (bib0003) 2019; 21 J. Redmon, A. Farhadi, Yolov3: an incremental improvement, arXiv Bottou (bib0039) 2004 He, Gkioxari, Dollár, Girshick (bib0032) 2017 M. Everingham, L. Van Gool, C.K. Williams, J. Winn, A. Zisserman, The PASCAL visual object classes challenge 2007 (VOC2007) results. (2007). Wang, Yang (bib0017) 2018; 78 Xu, Shawn, Wang (bib0001) 2019; 93 Ma, Wu, Wang, Wang (bib0035) 2018 2019. Krizhevsky, Hinton (bib0036) 2012 He, Zhang, Ren, Sun (bib0007) 2016 Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib0029) 2016 (2014). Xiang, Choi, Lin, Savarese (bib0044) 2017 Dai, Li, He, Sun (bib0049) 2016 Mukherjee, Wu, Wang (bib0022) 2015; 26 Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (bib0042) 2014 He, Wang, Hu (bib0005) 2018; 27 Huang, Liu, Van Der Maaten, Weinberger (bib0011) 2017 (bib0038) 2010 (2018). LeCun, Bottou, Bengio, Haffner (bib0025) 1998; 86 (2016). Li, Peng, Yu, Zhang, Deng, Sun (bib0013) 2018 Dvornik, Shmelkov, Mairal, Schmid (bib0052) 2017 Wang, Girshick, Gupta, He (bib0015) 2018 Mo, Tao, Wang, Wang (bib0006) 2018 Girshick (bib0041) 2015 Gidaris, Komodakis (bib0048) 2015 Cen (10.1016/j.patcog.2019.107149_bib0002) 2019 Szegedy (10.1016/j.patcog.2019.107149_bib0023) 2017 LeCun (10.1016/j.patcog.2019.107149_bib0025) 1998; 86 Wang (10.1016/j.patcog.2019.107149_bib0017) 2018; 78 Gidaris (10.1016/j.patcog.2019.107149_bib0048) 2015 Wang (10.1016/j.patcog.2019.107149_bib0015) 2018 Ma (10.1016/j.patcog.2019.107149_bib0035) 2018 Bell (10.1016/j.patcog.2019.107149_bib0045) 2016 Mo (10.1016/j.patcog.2019.107149_bib0006) 2018 Geiger (10.1016/j.patcog.2019.107149_bib0018) 2012 10.1016/j.patcog.2019.107149_bib0043 Russakovsky (10.1016/j.patcog.2019.107149_bib0026) 2015; 115 He (10.1016/j.patcog.2019.107149_bib0005) 2018; 27 10.1016/j.patcog.2019.107149_bib0037 He (10.1016/j.patcog.2019.107149_bib0032) 2017 Zhang (10.1016/j.patcog.2019.107149_bib0040) 2018 Bottou (10.1016/j.patcog.2019.107149_bib0039) 2004 Lin (10.1016/j.patcog.2019.107149_bib0020) 2014 Dvornik (10.1016/j.patcog.2019.107149_bib0052) 2017 Chen (10.1016/j.patcog.2019.107149_bib0014) 2018 Krizhevsky (10.1016/j.patcog.2019.107149_bib0036) 2012 Szegedy (10.1016/j.patcog.2019.107149_bib0029) 2016 Ren (10.1016/j.patcog.2019.107149_bib0046) 2015 Szegedy (10.1016/j.patcog.2019.107149_bib0009) 2015 He (10.1016/j.patcog.2019.107149_bib0007) 2016 Li (10.1016/j.patcog.2019.107149_bib0013) 2018 10.1016/j.patcog.2019.107149_bib0031 10.1016/j.patcog.2019.107149_bib0034 10.1016/j.patcog.2019.107149_bib0027 Dai (10.1016/j.patcog.2019.107149_bib0049) 2016 Girshick (10.1016/j.patcog.2019.107149_bib0041) 2015 Cai (10.1016/j.patcog.2019.107149_bib0047) 2016 Ren (10.1016/j.patcog.2019.107149_bib0028) 2017 Wu (10.1016/j.patcog.2019.107149_bib0030) 2017 Xu (10.1016/j.patcog.2019.107149_bib0001) 2019; 93 Stewart (10.1016/j.patcog.2019.107149_bib0033) 2016 Huang (10.1016/j.patcog.2019.107149_bib0011) 2017 10.1016/j.patcog.2019.107149_bib0019 Redmon (10.1016/j.patcog.2019.107149_bib0050) 2017 Huang (10.1016/j.patcog.2019.107149_bib0008) 2016 Jia (10.1016/j.patcog.2019.107149_bib0042) 2014 Ouyang (10.1016/j.patcog.2019.107149_bib0051) 2017 Mukherjee (10.1016/j.patcog.2019.107149_bib0022) 2015; 26 Xu (10.1016/j.patcog.2019.107149_bib0003) 2019; 21 Gao (10.1016/j.patcog.2019.107149_bib0021) 2016; 214 Cen (10.1016/j.patcog.2019.107149_bib0024) 2019; 7 (10.1016/j.patcog.2019.107149_bib0038) 2010 Xiang (10.1016/j.patcog.2019.107149_bib0044) 2017 Mahendran (10.1016/j.patcog.2019.107149_bib0016) 2015 10.1016/j.patcog.2019.107149_bib0053 Liu (10.1016/j.patcog.2019.107149_bib0010) 2016 10.1016/j.patcog.2019.107149_bib0012 Yang (10.1016/j.patcog.2019.107149_bib0004) 2015; 148 |
References_xml | – start-page: 5188 year: 2015 end-page: 5196 ident: bib0016 article-title: Understanding deep image representations by inverting them. publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: M. Everingham, L. Van Gool, C.K. Williams, J. Winn, A. Zisserman, The PASCAL visual object classes challenge 2007 (VOC2007) results. (2007). – volume: 148 start-page: 578 year: 2015 end-page: 586 ident: bib0004 article-title: Scene and place recognition using a hierarchical latent topic model. publication-title: Neurocomputing – reference: (2), p.3. 2016 – start-page: 2874 year: 2016 end-page: 2883 ident: bib0045 article-title: Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks publication-title: Proceedings of the IEEE Conference on Computer vision and Pattern Recognition – year: 2017 ident: bib0023 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning. publication-title: Proceedings of the Thirty-First AAAI Conference on Artifical Intelligence – start-page: 7794 year: 2018 end-page: 7803 ident: bib0015 article-title: Non-local neural networks. publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2012 ident: bib0018 article-title: Are we ready for autonomous driving? The Kitti vision benchmark suite. publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 7263 year: 2017 end-page: 7271 ident: bib0050 article-title: Yolo9000: better, faster, stronger. publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 4700 year: 2017 end-page: 4708 ident: bib0011 article-title: Densely connected convolutional networks. publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 334 year: 2018 end-page: 350 ident: bib0013 article-title: Detnet: design backbone for object detection. publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – volume: 214 start-page: 708 year: 2016 end-page: 717 ident: bib0021 article-title: A novel feature extraction method for scene recognition based on centered convolutional restricted Boltzmann machines. publication-title: Neurocomputing – start-page: 21 year: 2016 end-page: 37 ident: bib0010 article-title: Ssd: single shot multibox detector. publication-title: Proceedings of the European conference on computer vision – reference: (2015). – start-page: 2510 year: 2018 end-page: 2515 ident: bib0035 article-title: Mdcn: multi-scale, deep inception convolutional neural networks for efficient object detection. publication-title: Proceedings of the 24th International Conference on Pattern Recognition (ICPR) – start-page: 1938 year: 2017 end-page: 1946 ident: bib0051 article-title: Chained cascade network for object detection. publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 2961 year: 2017 end-page: 2969 ident: bib0032 article-title: Mask R-CNN publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: bib0025 article-title: Gradient-based learning applied to document recognition. publication-title: Proc. IEEE – start-page: 3929 year: 2018 end-page: 3934 ident: bib0006 article-title: An efficient approach for polyps detection in endoscopic videos based on faster R-CNN publication-title: Proceedings of the 24th International Conference on Pattern Recognition (ICPR) – start-page: 2818 year: 2016 end-page: 2826 ident: bib0029 article-title: Rethinking the inception architecture for computer vision. publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: A. Veit, M. Wilber, S. Belongie, Residual networks are exponential ensembles of relatively shallow., – volume: 27 start-page: 4676 year: 2018 end-page: 4689 ident: bib0005 article-title: Learning depth from single images with deep neural network embedding focal length. publication-title: IEEE Trans. Image Process. – start-page: 1134 year: 2015 end-page: 1142 ident: bib0048 article-title: Object detection via a multi-region and semantic segmentation-aware CNN model. publication-title: Proceedings of the IEEE International Conference on Computer Vision – reference: (2018). – start-page: 770 year: 2016 end-page: 778 ident: bib0007 article-title: Deep residual learning for image recognition. publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 4154 year: 2017 end-page: 4162 ident: bib0052 article-title: Blitznet: a real-time deep network for scene understanding. publication-title: Proceedings of the IEEE International Conference on Computer Vision – reference: J. Redmon, A. Farhadi, Yolov3: an incremental improvement, arXiv: – start-page: 37 year: 2010 end-page: 44 ident: bib0038 article-title: Dimension reduction for regression with bottleneck neural networks. publication-title: Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning – volume: 26 start-page: 443 year: 2015 end-page: 466 ident: bib0022 article-title: A comparative experimental study of image feature detectors and descriptors publication-title: Mach. Vis. Appl. – start-page: 3301 year: 2018 end-page: 3309 ident: bib0040 article-title: Bpgard: towards global optimality in deep learning via branch and pruning. publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 924 year: 2017 end-page: 933 ident: bib0044 article-title: Subcategory-aware convolutional neural networks for object proposals and detection. publication-title: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV) – volume: 7 start-page: 26595 year: 2019 end-page: 26605 ident: bib0024 article-title: Dictionary representation of deep features for occlusion-robust face recognition publication-title: IEEE Access – reference: (2017). – volume: 21 start-page: 2387 year: 2019 end-page: 2396 ident: bib0003 article-title: Adversarially approximated autoencoder for image generation and manipulation publication-title: IEEE Trans. Multimedia – start-page: 646 year: 2016 end-page: 661 ident: bib0008 article-title: Deep networks with stochastic depth. publication-title: Proceedings of the European Conference on Computer Vision – start-page: 675 year: 2014 end-page: 678 ident: bib0042 article-title: Caffe: convolutional architecture for fast feature embedding. publication-title: Proceedings of the 22nd ACM International Conference on Multimedia – reference: (2016). – start-page: 1440 year: 2015 end-page: 1448 ident: bib0041 article-title: Fast R-CNN publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 93 start-page: 570 year: 2019 end-page: 580 ident: bib0001 article-title: Toward learning a unified many-to-many mapping for diverse image translation publication-title: Pattern Recognit. – start-page: 379 year: 2016 end-page: 387 ident: bib0049 article-title: R-Fcn: object detection via region-based fully convolutional networks. publication-title: Adv. Neural Inf. Process. Syst. – start-page: 1 year: 2015 end-page: 9 ident: bib0009 article-title: Going deeper with convolutions. publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 78 start-page: 12 year: 2018 end-page: 22 ident: bib0017 article-title: A context-sensitive deep learning approach for microcalcification detection in mammograms. publication-title: Pattern Recognit. – reference: F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer, Squeezenet: alexnet-level accuracy with 50x fewer parameters and <0.5 MB model size., – start-page: 740 year: 2014 end-page: 755 ident: bib0020 article-title: Microsoft coco: common objects in context. publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – start-page: 350 year: 2018 end-page: 359 ident: bib0014 article-title: A 2-nets: double attention networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 5420 year: 2017 end-page: 5428 ident: bib0028 article-title: Accurate single stage detector using recurrent rolling convolution. publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 146 year: 2004 end-page: 168 ident: bib0039 article-title: Stochastic learning publication-title: Advanced Lectures on Machine Learning – reference: (2014). – start-page: 91 year: 2015 end-page: 99 ident: bib0046 article-title: Faster R-CNN: towards real-time object detection with region proposal networks. publication-title: Adv. Neural Inf. Process Syst. – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: bib0026 article-title: Imagenet large scale visual recognition challenge. publication-title: Int. J. Comput. Vis. – reference: W. Liu, A. Rabinovich, A.C. Berg, Parsenet: looking wider to see better., – start-page: 129 year: 2017 end-page: 137 ident: bib0030 article-title: SqueezeDet: unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving. publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops – reference: Y. Wu, Z. Zhang, G. Wang, Unsupervised deep feature transfer for low resolution image classification, in – start-page: 2325 year: 2016 end-page: 2333 ident: bib0033 article-title: End-to-end people detection in crowded scenes. publication-title: Proceedings of the IEEE Conference on Computer vision and Pattern Recognition – reference: C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, A.C. Berg, DSSD: deconvolutional single shot detector., (2017), – start-page: 1097 year: 2012 end-page: 1105 ident: bib0036 article-title: Imagenet classification with deep convolutional neural networks. publication-title: Adv. Neural Inf. Process. Syst. – reference: S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shelhamer, CUDNN: efficient primitives for deep learning, – start-page: 1 year: 2019 end-page: 14 ident: bib0002 article-title: Boosting occluded image classification via subspace decomposition-based estimation of deep features publication-title: IEEE Trans. Cybern. – start-page: 354 year: 2016 end-page: 370 ident: bib0047 article-title: A unified multi-scale deep convolutional neural network for fast object detection publication-title: Proceedings of the European conference on computer vision – reference: . 2019. – start-page: 146 year: 2004 ident: 10.1016/j.patcog.2019.107149_bib0039 article-title: Stochastic learning – start-page: 2818 year: 2016 ident: 10.1016/j.patcog.2019.107149_bib0029 article-title: Rethinking the inception architecture for computer vision. – ident: 10.1016/j.patcog.2019.107149_bib0053 – volume: 7 start-page: 26595 year: 2019 ident: 10.1016/j.patcog.2019.107149_bib0024 article-title: Dictionary representation of deep features for occlusion-robust face recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2901376 – start-page: 675 year: 2014 ident: 10.1016/j.patcog.2019.107149_bib0042 article-title: Caffe: convolutional architecture for fast feature embedding. – ident: 10.1016/j.patcog.2019.107149_bib0034 – start-page: 4700 year: 2017 ident: 10.1016/j.patcog.2019.107149_bib0011 article-title: Densely connected convolutional networks. – start-page: 129 year: 2017 ident: 10.1016/j.patcog.2019.107149_bib0030 article-title: SqueezeDet: unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving. – start-page: 354 year: 2016 ident: 10.1016/j.patcog.2019.107149_bib0047 article-title: A unified multi-scale deep convolutional neural network for fast object detection – ident: 10.1016/j.patcog.2019.107149_bib0037 – start-page: 4154 year: 2017 ident: 10.1016/j.patcog.2019.107149_bib0052 article-title: Blitznet: a real-time deep network for scene understanding. – start-page: 37 year: 2010 ident: 10.1016/j.patcog.2019.107149_bib0038 article-title: Dimension reduction for regression with bottleneck neural networks. – start-page: 740 year: 2014 ident: 10.1016/j.patcog.2019.107149_bib0020 article-title: Microsoft coco: common objects in context. – start-page: 770 year: 2016 ident: 10.1016/j.patcog.2019.107149_bib0007 article-title: Deep residual learning for image recognition. – start-page: 7263 year: 2017 ident: 10.1016/j.patcog.2019.107149_bib0050 article-title: Yolo9000: better, faster, stronger. – year: 2017 ident: 10.1016/j.patcog.2019.107149_bib0023 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning. – start-page: 2325 year: 2016 ident: 10.1016/j.patcog.2019.107149_bib0033 article-title: End-to-end people detection in crowded scenes. – ident: 10.1016/j.patcog.2019.107149_bib0012 doi: 10.1109/ICCVW.2019.00136 – start-page: 21 year: 2016 ident: 10.1016/j.patcog.2019.107149_bib0010 article-title: Ssd: single shot multibox detector. – start-page: 1938 year: 2017 ident: 10.1016/j.patcog.2019.107149_bib0051 article-title: Chained cascade network for object detection. – ident: 10.1016/j.patcog.2019.107149_bib0019 – year: 2012 ident: 10.1016/j.patcog.2019.107149_bib0018 article-title: Are we ready for autonomous driving? The Kitti vision benchmark suite. – ident: 10.1016/j.patcog.2019.107149_bib0043 – start-page: 3301 year: 2018 ident: 10.1016/j.patcog.2019.107149_bib0040 article-title: Bpgard: towards global optimality in deep learning via branch and pruning. – start-page: 2510 year: 2018 ident: 10.1016/j.patcog.2019.107149_bib0035 article-title: Mdcn: multi-scale, deep inception convolutional neural networks for efficient object detection. – volume: 78 start-page: 12 year: 2018 ident: 10.1016/j.patcog.2019.107149_bib0017 article-title: A context-sensitive deep learning approach for microcalcification detection in mammograms. publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.01.009 – start-page: 5420 year: 2017 ident: 10.1016/j.patcog.2019.107149_bib0028 article-title: Accurate single stage detector using recurrent rolling convolution. – start-page: 2961 year: 2017 ident: 10.1016/j.patcog.2019.107149_bib0032 article-title: Mask R-CNN – start-page: 646 year: 2016 ident: 10.1016/j.patcog.2019.107149_bib0008 article-title: Deep networks with stochastic depth. – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.patcog.2019.107149_bib0025 article-title: Gradient-based learning applied to document recognition. publication-title: Proc. IEEE doi: 10.1109/5.726791 – start-page: 379 year: 2016 ident: 10.1016/j.patcog.2019.107149_bib0049 article-title: R-Fcn: object detection via region-based fully convolutional networks. publication-title: Adv. Neural Inf. Process. Syst. – start-page: 3929 year: 2018 ident: 10.1016/j.patcog.2019.107149_bib0006 article-title: An efficient approach for polyps detection in endoscopic videos based on faster R-CNN – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 10.1016/j.patcog.2019.107149_bib0026 article-title: Imagenet large scale visual recognition challenge. publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – start-page: 1134 year: 2015 ident: 10.1016/j.patcog.2019.107149_bib0048 article-title: Object detection via a multi-region and semantic segmentation-aware CNN model. – volume: 148 start-page: 578 year: 2015 ident: 10.1016/j.patcog.2019.107149_bib0004 article-title: Scene and place recognition using a hierarchical latent topic model. publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.07.005 – volume: 26 start-page: 443 issue: 4 year: 2015 ident: 10.1016/j.patcog.2019.107149_bib0022 article-title: A comparative experimental study of image feature detectors and descriptors publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-015-0679-9 – start-page: 924 year: 2017 ident: 10.1016/j.patcog.2019.107149_bib0044 article-title: Subcategory-aware convolutional neural networks for object proposals and detection. – volume: 214 start-page: 708 year: 2016 ident: 10.1016/j.patcog.2019.107149_bib0021 article-title: A novel feature extraction method for scene recognition based on centered convolutional restricted Boltzmann machines. publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.06.055 – start-page: 334 year: 2018 ident: 10.1016/j.patcog.2019.107149_bib0013 article-title: Detnet: design backbone for object detection. – start-page: 2874 year: 2016 ident: 10.1016/j.patcog.2019.107149_bib0045 article-title: Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks – start-page: 1440 year: 2015 ident: 10.1016/j.patcog.2019.107149_bib0041 article-title: Fast R-CNN – volume: 27 start-page: 4676 issue: 9 year: 2018 ident: 10.1016/j.patcog.2019.107149_bib0005 article-title: Learning depth from single images with deep neural network embedding focal length. publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2832296 – volume: 21 start-page: 2387 issue: 9 year: 2019 ident: 10.1016/j.patcog.2019.107149_bib0003 article-title: Adversarially approximated autoencoder for image generation and manipulation publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2019.2898777 – start-page: 1 year: 2015 ident: 10.1016/j.patcog.2019.107149_bib0009 article-title: Going deeper with convolutions. – start-page: 350 year: 2018 ident: 10.1016/j.patcog.2019.107149_bib0014 article-title: A 2-nets: double attention networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 91 year: 2015 ident: 10.1016/j.patcog.2019.107149_bib0046 article-title: Faster R-CNN: towards real-time object detection with region proposal networks. publication-title: Adv. Neural Inf. Process Syst. – volume: 93 start-page: 570 year: 2019 ident: 10.1016/j.patcog.2019.107149_bib0001 article-title: Toward learning a unified many-to-many mapping for diverse image translation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.05.017 – ident: 10.1016/j.patcog.2019.107149_bib0027 – ident: 10.1016/j.patcog.2019.107149_bib0031 – start-page: 7794 year: 2018 ident: 10.1016/j.patcog.2019.107149_bib0015 article-title: Non-local neural networks. – start-page: 1 year: 2019 ident: 10.1016/j.patcog.2019.107149_bib0002 article-title: Boosting occluded image classification via subspace decomposition-based estimation of deep features publication-title: IEEE Trans. Cybern. – start-page: 5188 year: 2015 ident: 10.1016/j.patcog.2019.107149_bib0016 article-title: Understanding deep image representations by inverting them. – start-page: 1097 year: 2012 ident: 10.1016/j.patcog.2019.107149_bib0036 article-title: Imagenet classification with deep convolutional neural networks. publication-title: Adv. Neural Inf. Process. Syst. |
SSID | ssj0017142 |
Score | 2.6140783 |
Snippet | •The paper proposes a new model that focuses on learning the deep features produced in the latter part of the network.•Accurate detection results are achieved... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107149 |
SubjectTerms | Deep feature learning Multi-scale Semantic and contextual information Small and occluded objects |
Title | MDFN: Multi-scale deep feature learning network for object detection |
URI | https://dx.doi.org/10.1016/j.patcog.2019.107149 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2KXrz4LdaPsgevsU2yaRpvpbVUxZ4s9BayO5NSkTRovPrbndlsioIoeMlhmYHwsjszSd68EeIqh3jg07nxlOnTJdB05oCnuWvjU7UBnFaYbTHrT-fqfhEtWmLU9MIwrdLF_jqm22jtVroOzW65WnGPL8sOchcO_-2zTXxKxbzLrz82NA-e710rhoe-x9ZN-5zleJUU7tZLJngltESmyc_p6UvKmeyLXVcrymF9OweihcWh2GvmMEh3LI_E-HE8md1I20vrvRHoKAGxlDla1U7pJkMsZVFzviUVqnKt-QsMGVaWjFUci_nk9mk09dx0BM9QmV95Se7rIEAWEEpUrH16FnGeQGwUEPaDCMIcMEPUWWYgAj9jJRkNeT9HzbCEJ2KrWBd4KmQPfUCgwgohUhhGiclUZljMrQfQw7AtwgaU1DjpcJ5g8ZI2HLHntIYyZSjTGsq28DZeZS2d8Yd93OCdftsCKUX3Xz3P_u15LnYCfoG2VJwLsVW9vuMlVRmV7tht1BHbw7uH6ewTPh7SsQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqdoCFb0T59MAatW6SpmGrKFVK20yt1M2KfZeqCKURhP-PL3EqkBBILBksn2S9-M6X-N07xu5TCAbC-I3j6b559JTxOaBu7koLk20AHSvEtoj70dJ7XvmrBnusa2GIVmljfxXTy2htRzoWzU6-2VCNL8kOUhUO3fZREV-L1Kn8JmsNJ9Mo3l0mBMKrRMNd4ZBBXUFX0rxyE_G2a-J4hWbITA1_PqG-nDrjI3Zg00U-rFZ0zBqYnbDDuhUDt555ykbz0Th-4GU5rfNucEcOiDlPsRTu5LY5xJpnFe2bm1yVbxX9hDETi5KPlZ2x5fhp8Rg5tkGCo02mXzhhKlSvh6QhFHqBEuZ1BGkIgfbAwD_wwU0BE0SVJBp8EAmJyShI-ykqgsU9Z81sm-EF410UgGByKwTfQ9cPdeIlmvTcugBddNvMrUGR2qqHUxOLV1nTxF5kBaUkKGUFZZs5O6u8Us_4Y35Q4y2_7QJpAvyvlpf_trxje9FiPpOzSTy9Yvs9-p4umTnXrFm8feCNSToKdWs31SeDeNVi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MDFN%3A+Multi-scale+deep+feature+learning+network+for+object+detection&rft.jtitle=Pattern+recognition&rft.au=Ma%2C+Wenchi&rft.au=Wu%2C+Yuanwei&rft.au=Cen%2C+Feng&rft.au=Wang%2C+Guanghui&rft.date=2020-04-01&rft.issn=0031-3203&rft.volume=100&rft.spage=107149&rft_id=info:doi/10.1016%2Fj.patcog.2019.107149&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2019_107149 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |