Highly active Pt/In2O3-ZrO2 catalyst for CO2 hydrogenation to methanol with enhanced CO tolerance: The effects of ZrO2

The supported Pt catalyst is normally not active for CO2 hydrogenation to methanol at the presence of CO. Herein, ZrO2 is added into Pt/In2O3 for CO2 hydrogenation to methanol with CO as a co-feed gas. High activity with enhanced CO tolerance is achieved on Pt/In2O3-ZrO2. For example, the space-time...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 320; p. 122018
Main Authors Sun, Kaihang, Shen, Chenyang, Zou, Rui, Liu, Chang-jun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The supported Pt catalyst is normally not active for CO2 hydrogenation to methanol at the presence of CO. Herein, ZrO2 is added into Pt/In2O3 for CO2 hydrogenation to methanol with CO as a co-feed gas. High activity with enhanced CO tolerance is achieved on Pt/In2O3-ZrO2. For example, the space-time yield of methanol reaches 0.569 gmethanol gcat−1 h−1 at 300 °C and 5 MPa under feed gas containing 4% CO of 21,000 cm3·h−1·gcat−1. With the addition of ZrO2, a stronger electron transfer occurs between Pt and the In2O3-ZrO2 solid solution support. This leads to weaker CO adsorption, which suppresses over-reduction of In2O3 and enhances CO tolerance of the Pt catalyst. The oxygen vacancy of In2O3 modified by ZrO2 promotes CO2 activation. The synergy between Zr-modified oxygen vacancy (In-Ov-Zr) and Pt catalyst facilitates methanol synthesis from CO2 hydrogenation via formate route. This is different from Pt/In2O3, which takes CO hydrogenation route. [Display omitted] •ZrO2 significantly changes the electronic structure of Pt/In2O3.•The Pt/In2O3-ZrO2 catalyst possesses high activity with enhanced CO tolerance.•The addition of ZrO2 totally changes the reaction route.•The addition of ZrO2 promotes the activation of hydrogen.•The addition of ZrO2 improves the stability of surface oxygen atoms of In2O3.
AbstractList The supported Pt catalyst is normally not active for CO2 hydrogenation to methanol at the presence of CO. Herein, ZrO2 is added into Pt/In2O3 for CO2 hydrogenation to methanol with CO as a co-feed gas. High activity with enhanced CO tolerance is achieved on Pt/In2O3-ZrO2. For example, the space-time yield of methanol reaches 0.569 gmethanol gcat−1 h−1 at 300 °C and 5 MPa under feed gas containing 4% CO of 21,000 cm3·h−1·gcat−1. With the addition of ZrO2, a stronger electron transfer occurs between Pt and the In2O3-ZrO2 solid solution support. This leads to weaker CO adsorption, which suppresses over-reduction of In2O3 and enhances CO tolerance of the Pt catalyst. The oxygen vacancy of In2O3 modified by ZrO2 promotes CO2 activation. The synergy between Zr-modified oxygen vacancy (In-Ov-Zr) and Pt catalyst facilitates methanol synthesis from CO2 hydrogenation via formate route. This is different from Pt/In2O3, which takes CO hydrogenation route. [Display omitted] •ZrO2 significantly changes the electronic structure of Pt/In2O3.•The Pt/In2O3-ZrO2 catalyst possesses high activity with enhanced CO tolerance.•The addition of ZrO2 totally changes the reaction route.•The addition of ZrO2 promotes the activation of hydrogen.•The addition of ZrO2 improves the stability of surface oxygen atoms of In2O3.
ArticleNumber 122018
Author Sun, Kaihang
Zou, Rui
Shen, Chenyang
Liu, Chang-jun
Author_xml – sequence: 1
  givenname: Kaihang
  surname: Sun
  fullname: Sun, Kaihang
  organization: School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
– sequence: 2
  givenname: Chenyang
  surname: Shen
  fullname: Shen, Chenyang
  organization: School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
– sequence: 3
  givenname: Rui
  surname: Zou
  fullname: Zou, Rui
  organization: School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
– sequence: 4
  givenname: Chang-jun
  surname: Liu
  fullname: Liu, Chang-jun
  email: cjL@tju.edu.cn
  organization: School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
BookMark eNqFkM9OAjEQxhuDiYC-gYe-wMK0A_vHg4khKiYkeMCLl6Z0p2zJsjXdBsPbuyuePOhp8s3M92XmN2KDxjfE2K2AiQCRTvcT_WF03E4kSDkRUoLIL9hQ5BkmmOc4YEMoZJogZnjFRm27BwCJMh-y49LtqvrEtYnuSPw1Tl8aucbkPawl7zJ1fWojtz7wRdeoTmXwO2p0dL7h0fMDxUo3vuafLlacmk4YKrvdblhT6NUd31TEyVoyseXe8j76ml1aXbd081PH7O3pcbNYJqv188viYZUYhDQmRQlzsGYLWGBJkvJSkxQZaChRCJvNUoC5EfkcoCjSWZnmuEWNaaqlnaPIcMzuzrkm-LYNZJVx8fv6GLSrlQDVE1R7dSaoeoLqTLAzz36ZP4I76HD6z3Z_tlH32NFRUK1x1HNxoWOgSu_-DvgC-yyNNw
CitedBy_id crossref_primary_10_1016_j_mcat_2023_113146
crossref_primary_10_1007_s10934_024_01659_9
crossref_primary_10_26599_CF_2024_9200016
crossref_primary_10_1063_5_0224256
crossref_primary_10_3390_atmos14081208
crossref_primary_10_1021_acscatal_3c04608
crossref_primary_10_1021_acs_jpcc_4c08481
crossref_primary_10_1016_j_apcatb_2023_123508
crossref_primary_10_1016_j_cej_2024_150333
crossref_primary_10_1016_j_ces_2024_120099
crossref_primary_10_3390_ijms24032426
crossref_primary_10_1007_s11356_024_34375_7
crossref_primary_10_1021_acscatal_4c02168
crossref_primary_10_1016_j_apcatb_2024_124683
crossref_primary_10_1016_j_actphy_2025_100073
crossref_primary_10_1002_cctc_202301577
crossref_primary_10_1016_j_jechem_2024_03_041
crossref_primary_10_1016_j_cjsc_2024_100438
crossref_primary_10_1002_aic_18353
crossref_primary_10_1016_j_jechem_2024_01_027
crossref_primary_10_1021_acs_iecr_4c03720
crossref_primary_10_1021_acs_inorgchem_3c02301
crossref_primary_10_1016_j_cej_2024_151394
crossref_primary_10_1007_s11356_024_32779_z
crossref_primary_10_1016_j_pnsc_2024_03_002
crossref_primary_10_1016_j_apsusc_2024_160198
crossref_primary_10_1021_acs_energyfuels_4c04980
crossref_primary_10_1039_D3CY01740K
crossref_primary_10_1021_acscatal_4c06218
crossref_primary_10_1063_5_0233082
crossref_primary_10_1021_acs_jpca_4c08693
crossref_primary_10_1016_j_ces_2024_119914
crossref_primary_10_1021_acs_est_3c06691
crossref_primary_10_1016_j_fuel_2024_131496
crossref_primary_10_59761_RCR5101
crossref_primary_10_1002_aenm_202203806
crossref_primary_10_1016_j_cej_2023_143502
crossref_primary_10_1021_acs_iecr_4c02563
crossref_primary_10_1016_j_psep_2024_07_018
crossref_primary_10_1016_j_jmst_2024_10_004
crossref_primary_10_1016_j_cej_2024_157397
crossref_primary_10_1016_j_seppur_2024_128171
crossref_primary_10_1021_acscatal_4c01929
crossref_primary_10_3390_catal14070428
crossref_primary_10_1016_j_apcatb_2024_124549
crossref_primary_10_1016_j_ces_2023_119246
crossref_primary_10_1016_j_jcis_2024_10_136
crossref_primary_10_1002_cctc_202301390
crossref_primary_10_1016_j_fuel_2024_131904
crossref_primary_10_1002_aic_18617
crossref_primary_10_1016_j_apcatb_2024_123936
crossref_primary_10_1039_D4TA05062B
crossref_primary_10_1016_j_mcat_2024_114403
crossref_primary_10_1016_j_fuel_2024_131394
crossref_primary_10_1016_j_cattod_2023_02_001
crossref_primary_10_1016_j_mcat_2024_114008
crossref_primary_10_1021_acs_energyfuels_3c04721
crossref_primary_10_1016_j_mcat_2024_114002
crossref_primary_10_1016_j_ccst_2025_100376
crossref_primary_10_1021_acs_energyfuels_3c03911
crossref_primary_10_1021_acssuschemeng_4c08050
crossref_primary_10_3390_atmos14030584
crossref_primary_10_1016_j_cej_2025_159743
crossref_primary_10_1039_D3CC05973A
crossref_primary_10_1016_j_cej_2024_149370
crossref_primary_10_1016_j_actphy_2025_100049
crossref_primary_10_1016_j_apcata_2024_120098
crossref_primary_10_1016_j_cej_2023_147373
crossref_primary_10_1016_j_apcatb_2024_124210
crossref_primary_10_1016_j_cej_2025_161742
crossref_primary_10_1021_acssuschemeng_3c04853
crossref_primary_10_1021_acs_energyfuels_4c06185
crossref_primary_10_1002_smll_202301685
crossref_primary_10_1021_acsanm_4c03801
crossref_primary_10_1016_j_jpcs_2024_112426
Cites_doi 10.1016/j.jcat.2020.06.018
10.1021/acscatal.0c00449
10.1021/acscatal.0c01968
10.1103/PhysRevLett.81.2819
10.1021/acscatal.9b03305
10.1021/acs.iecr.9b01546
10.1021/acs.jpcc.1c00638
10.1016/S0022-2860(96)09549-X
10.1016/j.cattod.2020.03.011
10.1021/acscatal.0c05628
10.1021/acscatal.1c03170
10.1016/j.jcou.2021.101720
10.1016/j.jechem.2021.06.039
10.1039/D0CY01789B
10.1039/C6RA28305E
10.1039/C7NJ04273F
10.1016/j.apcatb.2021.120842
10.1038/s41467-019-11349-9
10.1016/j.apcatb.2021.120994
10.1002/anie.201600943
10.1016/j.apcatb.2021.119878
10.1016/j.jechem.2020.03.083
10.1021/acscatal.0c03372
10.1021/acs.chemrev.9b00723
10.1021/jacs.9b04873
10.1021/acscatal.8b01396
10.1016/j.gee.2021.05.004
10.1021/jacs.0c07195
10.1002/cctc.201702054
10.1038/srep01021
10.1021/cs400132a
10.1039/D0GC01597K
10.1021/acscatal.0c05046
10.1016/j.jcat.2014.06.002
10.1016/j.jcat.2020.01.014
10.1021/cs500979c
10.1016/j.apcatb.2022.121098
10.1126/sciadv.aaz2060
10.1021/acscatal.0c02120
10.1016/j.apcatb.2017.06.069
10.1021/jacs.0c08607
10.1039/D0CP05947A
10.1016/S1872-2067(21)63907-4
10.1016/j.jcou.2015.09.002
10.1016/j.cattod.2020.05.020
10.1038/s41467-021-22224-x
10.1021/acscatal.9b01869
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apcatb.2022.122018
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2022_122018
S0926337322009596
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SES
SEW
SPC
SPD
SSG
SSZ
T5K
VH1
WUQ
XFK
XPP
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-9d050fcb0393de2e8dae2170a0d311f746005c185009964d683b3a366a2f53173
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Tue Jul 01 04:35:24 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Sat Mar 02 16:01:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pt
In2O3
CO tolerance
Metal-support interaction
DFT study
CO2 hydrogenation
Methanol
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-9d050fcb0393de2e8dae2170a0d311f746005c185009964d683b3a366a2f53173
ParticipantIDs crossref_citationtrail_10_1016_j_apcatb_2022_122018
crossref_primary_10_1016_j_apcatb_2022_122018
elsevier_sciencedirect_doi_10_1016_j_apcatb_2022_122018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Meeprasert, Han, Wang, Feng, Tang, Sha, Tang, Li, Pidko, Li (bib4) 2022; 43
Tada, Kayamori, Honma, Kamei, Nariyuki, Kon, Toyao, Shimizu, Satokawa (bib43) 2018; 8
Wang, Gao, Wang, Zheng, Na, Li (bib44) 2017; 7
Numpilai, Kidkhunthod, Cheng, Wattanakit, Chareonpanich, Limtrakul, Witoon (bib39) 2020; 375
Araújo, Shah, Mondelli, Stewart, Curulla Ferré, Pérez-Ramírez (bib40) 2021; 285
Yang, Pei, Luo, Liu, Wang, Wang, Zhao, Gong (bib35) 2020; 142
Lee, Anjum, Araújo, Mondelli, He, Furukawa, Pérez-Ramírez, Kozlov, Yan (bib6) 2022; 304
Pustovarenko, Dikhtiarenko, Bavykina, Gevers, Ramírez, Russkikh, Telalovic, Aguilar, Hazemann, Ould-Chikh, Gascon (bib17) 2020; 10
Sun, Zhang, Shen, Rui, Liu (bib30) 2022; 7
Dostagir, Thompson, Kobayashi, Karim, Fukuoka, Shrotri (bib19) 2020; 10
Shen, Bao, Xue, Sun, Zhang, Jia, Mei, Liu (bib33) 2022; 65
Zhu, Cannizzaro, Liu, Zhang, Kosinov, Filot, Rabeah, Brückner, Hensen (bib31) 2021; 11
Jiang, Nie, Guo, Song, Chen (bib1) 2020; 120
Mavrikakis, Hammer, Nørskov (bib47) 1998; 81
Yan, Wong, Ma, Donat, Xi, Saqline, Fan, Du, Borgna, He, Müller, Chen, Lapkin, Liu (bib3) 2022; 306
Liang, Ma, Su, Yang, Duan, Zhou, Deng, Li, Huang (bib2) 2019; 58
Tsoukalou, Abdala, Stoian, Huang, Willinger, Fedorov, Muller (bib23) 2019; 141
Tsoukalou, Abdala, Armutlulu, Willinger, Fedorov, Müller (bib36) 2020; 10
Štefanić, Musić, Popović, Sekulić (bib42) 1997; 408–409
Wang, Sun, Jia, Liu (bib11) 2021; 365
Han, Tang, Wang, Li, Li (bib13) 2021; 394
Jia, Sun, Wang, Shen, Liu (bib18) 2020; 50
Frei, Mondelli, Cesarini, Krumeich, Hauert, Stewart, Curulla Ferré, Pérez-Ramírez (bib38) 2020; 10
Martin, Martín, Mondelli, Mitchell, Segawa, Hauert, Drouilly, Curulla-Ferré, Pérez-Ramírez (bib9) 2016; 55
Cao, Wang, Li, Nørskov (bib26) 2021; 11
Chen, Cao, Chen, Ding, Huang, Shen, Cao, Zhu, Xu, Gao, Han (bib37) 2019; 9
Ye, Yang, Pan, Ma, Zhang, Ren, Liu, Li, Huang (bib29) 2020; 142
Ye, Liu, Mei, Ge (bib7) 2013; 3
Sun, Fan, Ye, Yan, Ge, Li, He, Yang, Liu (bib8) 2015; 12
Gan, Lu, Wu, Xie, Zhai, Yu, Zhang, Mao, Wang, Shen, Tong (bib46) 2013; 3
Rui, Zhang, Sun, Liu, Xu, Stavitski, Senanayake, Rodriguez, Liu (bib16) 2020; 10
Frei, Mondelli, García-Muelas, Morales-Vidal, Philipp, Safonova, López, Stewart, Ferré, Pérez-Ramírez (bib14) 2021; 12
Cai, Dai, Li, Tan, Huang, Zhan, Huang, Li (bib21) 2020; 10
Jiang, Nie, Gong, Moran, Wang, Zhu, Chang, Guo, Walton, Song (bib34) 2020; 383
Sun, Rui, Shen, Liu (bib25) 2021; 125
Rasteiro, De Sousa, Vieira, Ocampo-Restrepo, Verga, Assaf, Da Silva, Assaf (bib5) 2022; 302
Sun, Rui, Zhang, Sun, Ge, Liu (bib28) 2020; 22
Su, Wang, Wang, Zhou, Liu, Liu, Wang, Yang, Xie, He (bib41) 2018; 10
Frei, Mondelli, García-Muelas, Kley, Puértolas, López, Safonova, Stewart, Curulla Ferré, Pérez-Ramírez (bib22) 2019; 10
Dou, Zhang, Chen, Yu (bib24) 2018; 42
Rui, Wang, Sun, Ye, Ge, Liu (bib27) 2017; 218
Ye, Liu, Mei, Ge (bib32) 2014; 317
Wu, Shen, Rui, Sun, Liu (bib10) 2021; 53
Shen, Sun, Zhang, Rui, Jia, Mei, Liu (bib12) 2021; 11
Dang, Qin, Yang, Wang, Cai, Han, Li, Gao, Sun (bib20) 2020; 6
Zhou, Qin, Li, Sun, DFT-based (bib15) 2021; 23
Samson, Śliwa, Socha, Góra-Marek, Mucha, Rutkowska-Zbik, Paul, Ruggiero-Mikołajczyk, Grabowski, Słoczyński (bib45) 2014; 4
Sun (10.1016/j.apcatb.2022.122018_bib30) 2022; 7
Rui (10.1016/j.apcatb.2022.122018_bib16) 2020; 10
Sun (10.1016/j.apcatb.2022.122018_bib8) 2015; 12
Wang (10.1016/j.apcatb.2022.122018_bib44) 2017; 7
Han (10.1016/j.apcatb.2022.122018_bib13) 2021; 394
Tada (10.1016/j.apcatb.2022.122018_bib43) 2018; 8
Gan (10.1016/j.apcatb.2022.122018_bib46) 2013; 3
Yang (10.1016/j.apcatb.2022.122018_bib35) 2020; 142
Frei (10.1016/j.apcatb.2022.122018_bib14) 2021; 12
Dang (10.1016/j.apcatb.2022.122018_bib20) 2020; 6
Numpilai (10.1016/j.apcatb.2022.122018_bib39) 2020; 375
Frei (10.1016/j.apcatb.2022.122018_bib38) 2020; 10
Jiang (10.1016/j.apcatb.2022.122018_bib34) 2020; 383
Wang (10.1016/j.apcatb.2022.122018_bib4) 2022; 43
Štefanić (10.1016/j.apcatb.2022.122018_bib42) 1997; 408–409
Jiang (10.1016/j.apcatb.2022.122018_bib1) 2020; 120
Zhou (10.1016/j.apcatb.2022.122018_bib15) 2021; 23
Rui (10.1016/j.apcatb.2022.122018_bib27) 2017; 218
Liang (10.1016/j.apcatb.2022.122018_bib2) 2019; 58
Ye (10.1016/j.apcatb.2022.122018_bib29) 2020; 142
Ye (10.1016/j.apcatb.2022.122018_bib7) 2013; 3
Frei (10.1016/j.apcatb.2022.122018_bib22) 2019; 10
Sun (10.1016/j.apcatb.2022.122018_bib25) 2021; 125
Yan (10.1016/j.apcatb.2022.122018_bib3) 2022; 306
Dostagir (10.1016/j.apcatb.2022.122018_bib19) 2020; 10
Araújo (10.1016/j.apcatb.2022.122018_bib40) 2021; 285
Dou (10.1016/j.apcatb.2022.122018_bib24) 2018; 42
Rasteiro (10.1016/j.apcatb.2022.122018_bib5) 2022; 302
Shen (10.1016/j.apcatb.2022.122018_bib12) 2021; 11
Lee (10.1016/j.apcatb.2022.122018_bib6) 2022; 304
Jia (10.1016/j.apcatb.2022.122018_bib18) 2020; 50
Ye (10.1016/j.apcatb.2022.122018_bib32) 2014; 317
Martin (10.1016/j.apcatb.2022.122018_bib9) 2016; 55
Cai (10.1016/j.apcatb.2022.122018_bib21) 2020; 10
Cao (10.1016/j.apcatb.2022.122018_bib26) 2021; 11
Wang (10.1016/j.apcatb.2022.122018_bib11) 2021; 365
Pustovarenko (10.1016/j.apcatb.2022.122018_bib17) 2020; 10
Shen (10.1016/j.apcatb.2022.122018_bib33) 2022; 65
Su (10.1016/j.apcatb.2022.122018_bib41) 2018; 10
Samson (10.1016/j.apcatb.2022.122018_bib45) 2014; 4
Tsoukalou (10.1016/j.apcatb.2022.122018_bib23) 2019; 141
Wu (10.1016/j.apcatb.2022.122018_bib10) 2021; 53
Chen (10.1016/j.apcatb.2022.122018_bib37) 2019; 9
Zhu (10.1016/j.apcatb.2022.122018_bib31) 2021; 11
Tsoukalou (10.1016/j.apcatb.2022.122018_bib36) 2020; 10
Mavrikakis (10.1016/j.apcatb.2022.122018_bib47) 1998; 81
Sun (10.1016/j.apcatb.2022.122018_bib28) 2020; 22
References_xml – volume: 10
  start-page: 11307
  year: 2020
  end-page: 11317
  ident: bib16
  article-title: Hydrogenation of CO
  publication-title: ACS Catal.
– volume: 9
  start-page: 8785
  year: 2019
  end-page: 8797
  ident: bib37
  article-title: Unraveling highly tunable selectivity in CO
  publication-title: ACS Catal.
– volume: 58
  start-page: 9030
  year: 2019
  end-page: 9037
  ident: bib2
  article-title: Investigation on deactivation of Cu/ZnO/Al
  publication-title: Ind. Eng. Chem. Res.
– volume: 6
  start-page: eaaz2060
  year: 2020
  ident: bib20
  article-title: Rationally designed indium oxide catalysts for CO
  publication-title: Sci. Adv.
– volume: 22
  start-page: 5059
  year: 2020
  end-page: 5066
  ident: bib28
  article-title: A highly active Pt/In
  publication-title: Green. Chem.
– volume: 142
  start-page: 19001
  year: 2020
  end-page: 19005
  ident: bib29
  article-title: Highly selective hydrogenation of CO
  publication-title: J. Am. Chem. Soc.
– volume: 53
  year: 2021
  ident: bib10
  article-title: Experimental and theoretical studies of CO
  publication-title: J. CO
– volume: 120
  start-page: 7984
  year: 2020
  end-page: 8034
  ident: bib1
  article-title: Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis
  publication-title: Chem. Rev.
– volume: 304
  year: 2022
  ident: bib6
  article-title: Atomic Pd-promoted ZnZrO
  publication-title: Appl. Catal. B
– volume: 65
  start-page: 623
  year: 2022
  end-page: 629
  ident: bib33
  article-title: Synergistic effect of the metal-support interaction and interfacial oxygen vacancy for CO
  publication-title: J. Energy Chem.
– volume: 218
  start-page: 488
  year: 2017
  end-page: 497
  ident: bib27
  article-title: CO
  publication-title: Appl. Catal. B
– volume: 3
  start-page: 1021
  year: 2013
  ident: bib46
  article-title: Oxygen vacancies promoting photoelectrochemical performance of In
  publication-title: Sci. Rep.
– volume: 81
  start-page: 2819
  year: 1998
  end-page: 2822
  ident: bib47
  article-title: Effect of strain on the reactivity of metal surfaces
  publication-title: Phys. Rev. Lett.
– volume: 142
  start-page: 19523
  year: 2020
  end-page: 19531
  ident: bib35
  article-title: Strong electronic oxide-support interaction over In
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1960
  year: 2021
  ident: bib14
  article-title: Nanostructure of nickel-promoted indium oxide catalysts drives selectivity in CO
  publication-title: Nat. Commun.
– volume: 394
  start-page: 236
  year: 2021
  end-page: 244
  ident: bib13
  article-title: Atomically dispersed Pt
  publication-title: J. Catal.
– volume: 7
  start-page: 8709
  year: 2017
  end-page: 8717
  ident: bib44
  article-title: Structure-activity relationships of Cu-ZrO
  publication-title: RSC Adv.
– volume: 11
  start-page: 11371
  year: 2021
  end-page: 11384
  ident: bib31
  article-title: Ni-In synergy in CO
  publication-title: ACS Catal.
– volume: 10
  start-page: 1133
  year: 2020
  end-page: 1145
  ident: bib38
  article-title: Role of zirconia in indium oxide-catalyzed CO
  publication-title: ACS Catal.
– volume: 11
  start-page: 4036
  year: 2021
  end-page: 4046
  ident: bib12
  article-title: Highly active Ir/In
  publication-title: ACS Catal.
– volume: 302
  year: 2022
  ident: bib5
  article-title: Insights into the alloy-support synergistic effects for the CO
  publication-title: Appl. Catal. B
– volume: 10
  start-page: 1536
  year: 2018
  end-page: 1541
  ident: bib41
  article-title: Direct conversion of syngas into light olefins over zirconium-doped indium(III) oxide and SAPO-34 bifunctional catalysts: Design of oxide component and construction of reaction network
  publication-title: ChemCatChem
– volume: 23
  start-page: 1888
  year: 2021
  end-page: 1895
  ident: bib15
  article-title: microkinetic study on methanol synthesis from CO
  publication-title: Phys. Chem. Chem. Phys.
– volume: 55
  start-page: 6261
  year: 2016
  end-page: 6265
  ident: bib9
  article-title: Indium oxide as a superior catalyst for methanol synthesis by CO
  publication-title: Angew. Chem. Int. Ed.
– volume: 50
  start-page: 409
  year: 2020
  end-page: 415
  ident: bib18
  article-title: Selective hydrogenation of CO
  publication-title: J. Energy Chem.
– volume: 408–409
  start-page: 391
  year: 1997
  end-page: 394
  ident: bib42
  article-title: FT-IR and laser Raman spectroscopic investigation of the formation and stability of low temperature t-ZrO
  publication-title: J. Mol. Struct.
– volume: 10
  start-page: 8196
  year: 2020
  end-page: 8202
  ident: bib19
  article-title: Rh promoted In
  publication-title: Catal. Sci. Technol.
– volume: 306
  year: 2022
  ident: bib3
  article-title: CO
  publication-title: Appl. Catal. B
– volume: 125
  start-page: 10926
  year: 2021
  end-page: 10936
  ident: bib25
  article-title: Theoretical study of selective hydrogenation of CO
  publication-title: J. Phys. Chem. C
– volume: 285
  year: 2021
  ident: bib40
  article-title: Impact of hybrid CO
  publication-title: Appl. Catal. B
– volume: 383
  start-page: 283
  year: 2020
  end-page: 296
  ident: bib34
  article-title: A combined experimental and DFT study of H
  publication-title: J. Catal.
– volume: 141
  start-page: 13497
  year: 2019
  end-page: 13505
  ident: bib23
  article-title: Structural evolution and dynamics of an In
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1
  year: 2015
  end-page: 6
  ident: bib8
  article-title: Hydrogenation of CO
  publication-title: J. CO
– volume: 3
  start-page: 1296
  year: 2013
  end-page: 1306
  ident: bib7
  article-title: Active oxygen vacancy site for methanol synthesis from CO
  publication-title: ACS Catal.
– volume: 365
  start-page: 341
  year: 2021
  end-page: 347
  ident: bib11
  article-title: CO
  publication-title: Catal. Today
– volume: 317
  start-page: 44
  year: 2014
  end-page: 53
  ident: bib32
  article-title: Methanol synthesis from CO
  publication-title: J. Catal.
– volume: 375
  start-page: 298
  year: 2020
  end-page: 306
  ident: bib39
  article-title: CO
  publication-title: Catal. Today
– volume: 10
  start-page: 10060
  year: 2020
  end-page: 10067
  ident: bib36
  article-title: Operando X-ray absorption spectroscopy identifies a monoclinic ZrO
  publication-title: ACS Catal.
– volume: 10
  start-page: 5064
  year: 2020
  end-page: 5076
  ident: bib17
  article-title: Metal-organic framework-derived synthesis of cobalt indium catalysts for the hydrogenation of CO
  publication-title: ACS Catal.
– volume: 43
  start-page: 761
  year: 2022
  end-page: 770
  ident: bib4
  article-title: Highly dispersed Cd cluster supported on TiO
  publication-title: Chin. J. Catal.
– volume: 7
  start-page: 807
  year: 2022
  end-page: 817
  ident: bib30
  article-title: The feasibility study of the indium oxide supported silver catalyst for selective hydrogenation of CO
  publication-title: Green Energy Environ.
– volume: 4
  start-page: 3730
  year: 2014
  end-page: 3741
  ident: bib45
  article-title: Influence of ZrO
  publication-title: ACS Catal.
– volume: 42
  start-page: 3293
  year: 2018
  end-page: 3300
  ident: bib24
  article-title: DFT study of In
  publication-title: New J. Chem.
– volume: 8
  start-page: 7809
  year: 2018
  end-page: 7819
  ident: bib43
  article-title: Design of interfacial sites between Cu and amorphous ZrO
  publication-title: ACS Catal.
– volume: 10
  start-page: 3377
  year: 2019
  ident: bib22
  article-title: Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1780
  year: 2021
  end-page: 1786
  ident: bib26
  article-title: Relations between surface oxygen vacancies and activity of methanol formation from CO
  publication-title: ACS Catal.
– volume: 10
  start-page: 13275
  year: 2020
  end-page: 13289
  ident: bib21
  article-title: Pd supported on MIL-68(In)-derived In
  publication-title: ACS Catal.
– volume: 394
  start-page: 236
  year: 2021
  ident: 10.1016/j.apcatb.2022.122018_bib13
  article-title: Atomically dispersed Ptn+ species as highly active sites in Pt/In2O3 catalysts for methanol synthesis from CO2 hydrogenation
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2020.06.018
– volume: 10
  start-page: 5064
  year: 2020
  ident: 10.1016/j.apcatb.2022.122018_bib17
  article-title: Metal-organic framework-derived synthesis of cobalt indium catalysts for the hydrogenation of CO2 to methanol
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00449
– volume: 10
  start-page: 10060
  year: 2020
  ident: 10.1016/j.apcatb.2022.122018_bib36
  article-title: Operando X-ray absorption spectroscopy identifies a monoclinic ZrO2:In solid solution as the active phase for the hydrogenation of CO2 to methanol
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c01968
– volume: 81
  start-page: 2819
  year: 1998
  ident: 10.1016/j.apcatb.2022.122018_bib47
  article-title: Effect of strain on the reactivity of metal surfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.2819
– volume: 10
  start-page: 1133
  year: 2020
  ident: 10.1016/j.apcatb.2022.122018_bib38
  article-title: Role of zirconia in indium oxide-catalyzed CO2 hydrogenation to methanol
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b03305
– volume: 58
  start-page: 9030
  year: 2019
  ident: 10.1016/j.apcatb.2022.122018_bib2
  article-title: Investigation on deactivation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b01546
– volume: 125
  start-page: 10926
  year: 2021
  ident: 10.1016/j.apcatb.2022.122018_bib25
  article-title: Theoretical study of selective hydrogenation of CO2 to methanol over Pt4/In2O3 model catalyst
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c00638
– volume: 408–409
  start-page: 391
  year: 1997
  ident: 10.1016/j.apcatb.2022.122018_bib42
  article-title: FT-IR and laser Raman spectroscopic investigation of the formation and stability of low temperature t-ZrO2
  publication-title: J. Mol. Struct.
  doi: 10.1016/S0022-2860(96)09549-X
– volume: 375
  start-page: 298
  year: 2020
  ident: 10.1016/j.apcatb.2022.122018_bib39
  article-title: CO2 hydrogenation to methanol at high reaction temperatures over In2O3/ZrO2 catalysts: influence of calcination temperatures of ZrO2 support
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2020.03.011
– volume: 11
  start-page: 4036
  year: 2021
  ident: 10.1016/j.apcatb.2022.122018_bib12
  article-title: Highly active Ir/In2O3 catalysts for selective hydrogenation of CO2 to methanol: experimental and theoretical studies
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c05628
– volume: 11
  start-page: 11371
  year: 2021
  ident: 10.1016/j.apcatb.2022.122018_bib31
  article-title: Ni-In synergy in CO2 hydrogenation to methanol
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c03170
– volume: 53
  year: 2021
  ident: 10.1016/j.apcatb.2022.122018_bib10
  article-title: Experimental and theoretical studies of CO2 hydrogenation to methanol on Ru/In2O3
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2021.101720
– volume: 65
  start-page: 623
  year: 2022
  ident: 10.1016/j.apcatb.2022.122018_bib33
  article-title: Synergistic effect of the metal-support interaction and interfacial oxygen vacancy for CO2 hydrogenation to methanol over Ni/In2O3 catalyst: a theoretical study
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.06.039
– volume: 10
  start-page: 8196
  year: 2020
  ident: 10.1016/j.apcatb.2022.122018_bib19
  article-title: Rh promoted In2O3 as a highly active catalyst for CO2 hydrogenation to methanol
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D0CY01789B
– volume: 7
  start-page: 8709
  year: 2017
  ident: 10.1016/j.apcatb.2022.122018_bib44
  article-title: Structure-activity relationships of Cu-ZrO2 catalysts for CO2 hydrogenation to methanol: interaction effects and reaction mechanism
  publication-title: RSC Adv.
  doi: 10.1039/C6RA28305E
– volume: 42
  start-page: 3293
  year: 2018
  ident: 10.1016/j.apcatb.2022.122018_bib24
  article-title: DFT study of In2O3-catalyzed methanol synthesis from CO2 and CO hydrogenation on the defective site
  publication-title: New J. Chem.
  doi: 10.1039/C7NJ04273F
– volume: 302
  year: 2022
  ident: 10.1016/j.apcatb.2022.122018_bib5
  article-title: Insights into the alloy-support synergistic effects for the CO2 hydrogenation towards methanol on oxide-supported Ni5Ga3 catalysts: an experimental and DFT study
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2021.120842
– volume: 10
  start-page: 3377
  year: 2019
  ident: 10.1016/j.apcatb.2022.122018_bib22
  article-title: Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11349-9
– volume: 304
  year: 2022
  ident: 10.1016/j.apcatb.2022.122018_bib6
  article-title: Atomic Pd-promoted ZnZrOx solid solution catalyst for CO2 hydrogenation to methanol
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2021.120994
– volume: 55
  start-page: 6261
  year: 2016
  ident: 10.1016/j.apcatb.2022.122018_bib9
  article-title: Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201600943
– volume: 285
  year: 2021
  ident: 10.1016/j.apcatb.2022.122018_bib40
  article-title: Impact of hybrid CO2-CO feeds on methanol synthesis over In2O3-based catalysts
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2021.119878
– volume: 50
  start-page: 409
  year: 2020
  ident: 10.1016/j.apcatb.2022.122018_bib18
  article-title: Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.03.083
– volume: 10
  start-page: 13275
  year: 2020
  ident: 10.1016/j.apcatb.2022.122018_bib21
  article-title: Pd supported on MIL-68(In)-derived In2O3 nanotubes as superior catalysts to boost CO2 hydrogenation to methanol
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03372
– volume: 120
  start-page: 7984
  year: 2020
  ident: 10.1016/j.apcatb.2022.122018_bib1
  article-title: Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00723
– volume: 141
  start-page: 13497
  year: 2019
  ident: 10.1016/j.apcatb.2022.122018_bib23
  article-title: Structural evolution and dynamics of an In2O3 catalyst for CO2 hydrogenation to methanol: an operando XAS-XRD and in situ TEM study
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04873
– volume: 8
  start-page: 7809
  year: 2018
  ident: 10.1016/j.apcatb.2022.122018_bib43
  article-title: Design of interfacial sites between Cu and amorphous ZrO2 dedicated to CO2-to-methanol hydrogenation
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01396
– volume: 7
  start-page: 807
  year: 2022
  ident: 10.1016/j.apcatb.2022.122018_bib30
  article-title: The feasibility study of the indium oxide supported silver catalyst for selective hydrogenation of CO2 to methanol
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2021.05.004
– volume: 142
  start-page: 19523
  year: 2020
  ident: 10.1016/j.apcatb.2022.122018_bib35
  article-title: Strong electronic oxide-support interaction over In2O3/ZrO2 for highly selective CO2 hydrogenation to methanol
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c07195
– volume: 10
  start-page: 1536
  year: 2018
  ident: 10.1016/j.apcatb.2022.122018_bib41
  article-title: Direct conversion of syngas into light olefins over zirconium-doped indium(III) oxide and SAPO-34 bifunctional catalysts: Design of oxide component and construction of reaction network
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201702054
– volume: 3
  start-page: 1021
  year: 2013
  ident: 10.1016/j.apcatb.2022.122018_bib46
  article-title: Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes
  publication-title: Sci. Rep.
  doi: 10.1038/srep01021
– volume: 3
  start-page: 1296
  year: 2013
  ident: 10.1016/j.apcatb.2022.122018_bib7
  article-title: Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): A DFT study
  publication-title: ACS Catal.
  doi: 10.1021/cs400132a
– volume: 22
  start-page: 5059
  year: 2020
  ident: 10.1016/j.apcatb.2022.122018_bib28
  article-title: A highly active Pt/In2O3 catalyst for CO2 hydrogenation to methanol with enhanced stability
  publication-title: Green. Chem.
  doi: 10.1039/D0GC01597K
– volume: 11
  start-page: 1780
  year: 2021
  ident: 10.1016/j.apcatb.2022.122018_bib26
  article-title: Relations between surface oxygen vacancies and activity of methanol formation from CO2 hydrogenation over In2O3 surfaces
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c05046
– volume: 317
  start-page: 44
  year: 2014
  ident: 10.1016/j.apcatb.2022.122018_bib32
  article-title: Methanol synthesis from CO2 hydrogenation over a Pd4/In2O3 model catalyst: a combined DFT and kinetic study
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2014.06.002
– volume: 383
  start-page: 283
  year: 2020
  ident: 10.1016/j.apcatb.2022.122018_bib34
  article-title: A combined experimental and DFT study of H2O effect on In2O3/ZrO2 catalyst for CO2 hydrogenation to methanol
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2020.01.014
– volume: 4
  start-page: 3730
  year: 2014
  ident: 10.1016/j.apcatb.2022.122018_bib45
  article-title: Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2
  publication-title: ACS Catal.
  doi: 10.1021/cs500979c
– volume: 306
  year: 2022
  ident: 10.1016/j.apcatb.2022.122018_bib3
  article-title: CO2 hydrogenation to methanol on tungsten-doped Cu/CeO2 catalysts
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2022.121098
– volume: 6
  start-page: eaaz2060
  year: 2020
  ident: 10.1016/j.apcatb.2022.122018_bib20
  article-title: Rationally designed indium oxide catalysts for CO2 hydrogenation to methanol with high activity and selectivity
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz2060
– volume: 10
  start-page: 11307
  year: 2020
  ident: 10.1016/j.apcatb.2022.122018_bib16
  article-title: Hydrogenation of CO2 to methanol on a Auδ+-In2O3−x catalyst
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02120
– volume: 218
  start-page: 488
  year: 2017
  ident: 10.1016/j.apcatb.2022.122018_bib27
  article-title: CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.06.069
– volume: 142
  start-page: 19001
  year: 2020
  ident: 10.1016/j.apcatb.2022.122018_bib29
  article-title: Highly selective hydrogenation of CO2 to ethanol via designed bifunctional Ir1-In2O3 single-atom catalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c08607
– volume: 23
  start-page: 1888
  year: 2021
  ident: 10.1016/j.apcatb.2022.122018_bib15
  article-title: microkinetic study on methanol synthesis from CO2 hydrogenation over the In2O3 catalyst
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP05947A
– volume: 43
  start-page: 761
  year: 2022
  ident: 10.1016/j.apcatb.2022.122018_bib4
  article-title: Highly dispersed Cd cluster supported on TiO2 as an efficient catalyst for CO2 hydrogenation to methanol
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)63907-4
– volume: 12
  start-page: 1
  year: 2015
  ident: 10.1016/j.apcatb.2022.122018_bib8
  article-title: Hydrogenation of CO2 to methanol over In2O3 catalyst
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2015.09.002
– volume: 365
  start-page: 341
  year: 2021
  ident: 10.1016/j.apcatb.2022.122018_bib11
  article-title: CO2 hydrogenation to methanol over Rh/In2O3 catalyst
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2020.05.020
– volume: 12
  start-page: 1960
  year: 2021
  ident: 10.1016/j.apcatb.2022.122018_bib14
  article-title: Nanostructure of nickel-promoted indium oxide catalysts drives selectivity in CO2 hydrogenation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22224-x
– volume: 9
  start-page: 8785
  year: 2019
  ident: 10.1016/j.apcatb.2022.122018_bib37
  article-title: Unraveling highly tunable selectivity in CO2 hydrogenation over bimetallic In-Zr oxide catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01869
SSID ssj0002328
Score 2.638359
Snippet The supported Pt catalyst is normally not active for CO2 hydrogenation to methanol at the presence of CO. Herein, ZrO2 is added into Pt/In2O3 for CO2...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 122018
SubjectTerms CO tolerance
CO2 hydrogenation
DFT study
In2O3
Metal-support interaction
Methanol
Title Highly active Pt/In2O3-ZrO2 catalyst for CO2 hydrogenation to methanol with enhanced CO tolerance: The effects of ZrO2
URI https://dx.doi.org/10.1016/j.apcatb.2022.122018
Volume 320
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9EH9QH0ak4v8iDr3FdkrWrb2M4puIHqCC-lLRJURnt2KqwF_9279LWKYiCr-ldKLnLfYS73wEcJUrY1E89rm035MrqgIdp7HOpFRrMIO54Kb1DXl75w3t1_tB5WIB-3QtDZZWV7S9turPW1UqrOs3W-Pm5deuFwpcyQI108LoEu61UQFp-_D4v88CIwVljJOZEXbfPuRovPU50EWOWKMRxG_eh0R8_uacvLmewDmtVrMh65e9swILNGrDcr0e0NWD1C5pgA7ZP501ryFbd2ukmvFExx2jGtLNt7KZonWXiWvLHybVg7v1mNi0YRq-sjwtPMzPJUa2cyFiRMxoyrbN8xOjNltnsyRUNIC1-HFkazGFPGKobq2pDWJ4y2noL7gend_0hr-Yt8AQTh4KHxkPRJDG16xorbNdoixmLpz0j2-00UBgcdRJ08BRW-sr4XRlLLX1fixSvciC3YTHLM7sDzFNGCe1Z6s9UsUk0wbgbTJW6oSVEwibI-pijpAIjp5kYo6iuOnuJSuFEJJyoFE4T-CfXuATj-IM-qCUYfVOqCP3Fr5y7_-bcgxWaSF--0uzDYjF5tQcYtxTxoVPMQ1jqnV0Mrz4AiBrqSg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6x5cByQNAFLW8fuJqmtus03FAFanmUlQAJcYmc2BGsqqQqAan_npnEAVZCi8TV8ViRZzwvzXwDcJAq4TKdBdy4fsSVMyGPskRzaRQqzDDpBRnlIS_Henirzu56dwswaHphqKzS6_5ap1fa2q90_G12po-PnesgElrKECWygtfVP2CR0Kl6LVg8Hp0Px28KGZ2GSiHjfk4ETQddVeZlpqkpEwwUhTjs4lE0_eMzC_XB6pyuwop3F9lx_UdrsODyNiwNmiltbVj-ACjYho2T9741JPMP9-kXvFA9x2TOTKXe2J-yM8rFleT3syvBqhTO_Klk6MCyAS48zO2sQMmquMbKgtGcaZMXE0ZpW-byh6puAPfix4mj2RzuiKHEMV8ewoqM0dHrcHt6cjMYcj9ygacYO5Q8sgFyJ02oY9c64frWOAxaAhNY2e1moUL_qJeijSfPUiur-zKRRmptRIavOZQb0MqL3P0GFiirhAkctWiqxKaGkNwtRkv9yBEo4SbI5prj1OOR01iMSdwUnv2Na-bExJy4Zs4m8DeqaY3H8cX-sOFg_I9cxWgy_ku59W3KfVga3lxexBej8fk2_KQB9XXSZgda5ezZ7aIbUyZ7XkxfAZsX7Ps
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+active+Pt%2FIn2O3-ZrO2+catalyst+for+CO2+hydrogenation+to+methanol+with+enhanced+CO+tolerance%3A+The+effects+of+ZrO2&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Sun%2C+Kaihang&rft.au=Shen%2C+Chenyang&rft.au=Zou%2C+Rui&rft.au=Liu%2C+Chang-jun&rft.date=2023-01-01&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=320&rft_id=info:doi/10.1016%2Fj.apcatb.2022.122018&rft.externalDocID=S0926337322009596
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon