Highly active Pt/In2O3-ZrO2 catalyst for CO2 hydrogenation to methanol with enhanced CO tolerance: The effects of ZrO2
The supported Pt catalyst is normally not active for CO2 hydrogenation to methanol at the presence of CO. Herein, ZrO2 is added into Pt/In2O3 for CO2 hydrogenation to methanol with CO as a co-feed gas. High activity with enhanced CO tolerance is achieved on Pt/In2O3-ZrO2. For example, the space-time...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 320; p. 122018 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The supported Pt catalyst is normally not active for CO2 hydrogenation to methanol at the presence of CO. Herein, ZrO2 is added into Pt/In2O3 for CO2 hydrogenation to methanol with CO as a co-feed gas. High activity with enhanced CO tolerance is achieved on Pt/In2O3-ZrO2. For example, the space-time yield of methanol reaches 0.569 gmethanol gcat−1 h−1 at 300 °C and 5 MPa under feed gas containing 4% CO of 21,000 cm3·h−1·gcat−1. With the addition of ZrO2, a stronger electron transfer occurs between Pt and the In2O3-ZrO2 solid solution support. This leads to weaker CO adsorption, which suppresses over-reduction of In2O3 and enhances CO tolerance of the Pt catalyst. The oxygen vacancy of In2O3 modified by ZrO2 promotes CO2 activation. The synergy between Zr-modified oxygen vacancy (In-Ov-Zr) and Pt catalyst facilitates methanol synthesis from CO2 hydrogenation via formate route. This is different from Pt/In2O3, which takes CO hydrogenation route.
[Display omitted]
•ZrO2 significantly changes the electronic structure of Pt/In2O3.•The Pt/In2O3-ZrO2 catalyst possesses high activity with enhanced CO tolerance.•The addition of ZrO2 totally changes the reaction route.•The addition of ZrO2 promotes the activation of hydrogen.•The addition of ZrO2 improves the stability of surface oxygen atoms of In2O3. |
---|---|
AbstractList | The supported Pt catalyst is normally not active for CO2 hydrogenation to methanol at the presence of CO. Herein, ZrO2 is added into Pt/In2O3 for CO2 hydrogenation to methanol with CO as a co-feed gas. High activity with enhanced CO tolerance is achieved on Pt/In2O3-ZrO2. For example, the space-time yield of methanol reaches 0.569 gmethanol gcat−1 h−1 at 300 °C and 5 MPa under feed gas containing 4% CO of 21,000 cm3·h−1·gcat−1. With the addition of ZrO2, a stronger electron transfer occurs between Pt and the In2O3-ZrO2 solid solution support. This leads to weaker CO adsorption, which suppresses over-reduction of In2O3 and enhances CO tolerance of the Pt catalyst. The oxygen vacancy of In2O3 modified by ZrO2 promotes CO2 activation. The synergy between Zr-modified oxygen vacancy (In-Ov-Zr) and Pt catalyst facilitates methanol synthesis from CO2 hydrogenation via formate route. This is different from Pt/In2O3, which takes CO hydrogenation route.
[Display omitted]
•ZrO2 significantly changes the electronic structure of Pt/In2O3.•The Pt/In2O3-ZrO2 catalyst possesses high activity with enhanced CO tolerance.•The addition of ZrO2 totally changes the reaction route.•The addition of ZrO2 promotes the activation of hydrogen.•The addition of ZrO2 improves the stability of surface oxygen atoms of In2O3. |
ArticleNumber | 122018 |
Author | Sun, Kaihang Zou, Rui Shen, Chenyang Liu, Chang-jun |
Author_xml | – sequence: 1 givenname: Kaihang surname: Sun fullname: Sun, Kaihang organization: School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China – sequence: 2 givenname: Chenyang surname: Shen fullname: Shen, Chenyang organization: School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China – sequence: 3 givenname: Rui surname: Zou fullname: Zou, Rui organization: School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China – sequence: 4 givenname: Chang-jun surname: Liu fullname: Liu, Chang-jun email: cjL@tju.edu.cn organization: School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China |
BookMark | eNqFkM9OAjEQxhuDiYC-gYe-wMK0A_vHg4khKiYkeMCLl6Z0p2zJsjXdBsPbuyuePOhp8s3M92XmN2KDxjfE2K2AiQCRTvcT_WF03E4kSDkRUoLIL9hQ5BkmmOc4YEMoZJogZnjFRm27BwCJMh-y49LtqvrEtYnuSPw1Tl8aucbkPawl7zJ1fWojtz7wRdeoTmXwO2p0dL7h0fMDxUo3vuafLlacmk4YKrvdblhT6NUd31TEyVoyseXe8j76ml1aXbd081PH7O3pcbNYJqv188viYZUYhDQmRQlzsGYLWGBJkvJSkxQZaChRCJvNUoC5EfkcoCjSWZnmuEWNaaqlnaPIcMzuzrkm-LYNZJVx8fv6GLSrlQDVE1R7dSaoeoLqTLAzz36ZP4I76HD6z3Z_tlH32NFRUK1x1HNxoWOgSu_-DvgC-yyNNw |
CitedBy_id | crossref_primary_10_1016_j_mcat_2023_113146 crossref_primary_10_1007_s10934_024_01659_9 crossref_primary_10_26599_CF_2024_9200016 crossref_primary_10_1063_5_0224256 crossref_primary_10_3390_atmos14081208 crossref_primary_10_1021_acscatal_3c04608 crossref_primary_10_1021_acs_jpcc_4c08481 crossref_primary_10_1016_j_apcatb_2023_123508 crossref_primary_10_1016_j_cej_2024_150333 crossref_primary_10_1016_j_ces_2024_120099 crossref_primary_10_3390_ijms24032426 crossref_primary_10_1007_s11356_024_34375_7 crossref_primary_10_1021_acscatal_4c02168 crossref_primary_10_1016_j_apcatb_2024_124683 crossref_primary_10_1016_j_actphy_2025_100073 crossref_primary_10_1002_cctc_202301577 crossref_primary_10_1016_j_jechem_2024_03_041 crossref_primary_10_1016_j_cjsc_2024_100438 crossref_primary_10_1002_aic_18353 crossref_primary_10_1016_j_jechem_2024_01_027 crossref_primary_10_1021_acs_iecr_4c03720 crossref_primary_10_1021_acs_inorgchem_3c02301 crossref_primary_10_1016_j_cej_2024_151394 crossref_primary_10_1007_s11356_024_32779_z crossref_primary_10_1016_j_pnsc_2024_03_002 crossref_primary_10_1016_j_apsusc_2024_160198 crossref_primary_10_1021_acs_energyfuels_4c04980 crossref_primary_10_1039_D3CY01740K crossref_primary_10_1021_acscatal_4c06218 crossref_primary_10_1063_5_0233082 crossref_primary_10_1021_acs_jpca_4c08693 crossref_primary_10_1016_j_ces_2024_119914 crossref_primary_10_1021_acs_est_3c06691 crossref_primary_10_1016_j_fuel_2024_131496 crossref_primary_10_59761_RCR5101 crossref_primary_10_1002_aenm_202203806 crossref_primary_10_1016_j_cej_2023_143502 crossref_primary_10_1021_acs_iecr_4c02563 crossref_primary_10_1016_j_psep_2024_07_018 crossref_primary_10_1016_j_jmst_2024_10_004 crossref_primary_10_1016_j_cej_2024_157397 crossref_primary_10_1016_j_seppur_2024_128171 crossref_primary_10_1021_acscatal_4c01929 crossref_primary_10_3390_catal14070428 crossref_primary_10_1016_j_apcatb_2024_124549 crossref_primary_10_1016_j_ces_2023_119246 crossref_primary_10_1016_j_jcis_2024_10_136 crossref_primary_10_1002_cctc_202301390 crossref_primary_10_1016_j_fuel_2024_131904 crossref_primary_10_1002_aic_18617 crossref_primary_10_1016_j_apcatb_2024_123936 crossref_primary_10_1039_D4TA05062B crossref_primary_10_1016_j_mcat_2024_114403 crossref_primary_10_1016_j_fuel_2024_131394 crossref_primary_10_1016_j_cattod_2023_02_001 crossref_primary_10_1016_j_mcat_2024_114008 crossref_primary_10_1021_acs_energyfuels_3c04721 crossref_primary_10_1016_j_mcat_2024_114002 crossref_primary_10_1016_j_ccst_2025_100376 crossref_primary_10_1021_acs_energyfuels_3c03911 crossref_primary_10_1021_acssuschemeng_4c08050 crossref_primary_10_3390_atmos14030584 crossref_primary_10_1016_j_cej_2025_159743 crossref_primary_10_1039_D3CC05973A crossref_primary_10_1016_j_cej_2024_149370 crossref_primary_10_1016_j_actphy_2025_100049 crossref_primary_10_1016_j_apcata_2024_120098 crossref_primary_10_1016_j_cej_2023_147373 crossref_primary_10_1016_j_apcatb_2024_124210 crossref_primary_10_1016_j_cej_2025_161742 crossref_primary_10_1021_acssuschemeng_3c04853 crossref_primary_10_1021_acs_energyfuels_4c06185 crossref_primary_10_1002_smll_202301685 crossref_primary_10_1021_acsanm_4c03801 crossref_primary_10_1016_j_jpcs_2024_112426 |
Cites_doi | 10.1016/j.jcat.2020.06.018 10.1021/acscatal.0c00449 10.1021/acscatal.0c01968 10.1103/PhysRevLett.81.2819 10.1021/acscatal.9b03305 10.1021/acs.iecr.9b01546 10.1021/acs.jpcc.1c00638 10.1016/S0022-2860(96)09549-X 10.1016/j.cattod.2020.03.011 10.1021/acscatal.0c05628 10.1021/acscatal.1c03170 10.1016/j.jcou.2021.101720 10.1016/j.jechem.2021.06.039 10.1039/D0CY01789B 10.1039/C6RA28305E 10.1039/C7NJ04273F 10.1016/j.apcatb.2021.120842 10.1038/s41467-019-11349-9 10.1016/j.apcatb.2021.120994 10.1002/anie.201600943 10.1016/j.apcatb.2021.119878 10.1016/j.jechem.2020.03.083 10.1021/acscatal.0c03372 10.1021/acs.chemrev.9b00723 10.1021/jacs.9b04873 10.1021/acscatal.8b01396 10.1016/j.gee.2021.05.004 10.1021/jacs.0c07195 10.1002/cctc.201702054 10.1038/srep01021 10.1021/cs400132a 10.1039/D0GC01597K 10.1021/acscatal.0c05046 10.1016/j.jcat.2014.06.002 10.1016/j.jcat.2020.01.014 10.1021/cs500979c 10.1016/j.apcatb.2022.121098 10.1126/sciadv.aaz2060 10.1021/acscatal.0c02120 10.1016/j.apcatb.2017.06.069 10.1021/jacs.0c08607 10.1039/D0CP05947A 10.1016/S1872-2067(21)63907-4 10.1016/j.jcou.2015.09.002 10.1016/j.cattod.2020.05.020 10.1038/s41467-021-22224-x 10.1021/acscatal.9b01869 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apcatb.2022.122018 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2022_122018 S0926337322009596 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SES SEW SPC SPD SSG SSZ T5K VH1 WUQ XFK XPP ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-9d050fcb0393de2e8dae2170a0d311f746005c185009964d683b3a366a2f53173 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Tue Jul 01 04:35:24 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Sat Mar 02 16:01:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pt In2O3 CO tolerance Metal-support interaction DFT study CO2 hydrogenation Methanol |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-9d050fcb0393de2e8dae2170a0d311f746005c185009964d683b3a366a2f53173 |
ParticipantIDs | crossref_citationtrail_10_1016_j_apcatb_2022_122018 crossref_primary_10_1016_j_apcatb_2022_122018 elsevier_sciencedirect_doi_10_1016_j_apcatb_2022_122018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Meeprasert, Han, Wang, Feng, Tang, Sha, Tang, Li, Pidko, Li (bib4) 2022; 43 Tada, Kayamori, Honma, Kamei, Nariyuki, Kon, Toyao, Shimizu, Satokawa (bib43) 2018; 8 Wang, Gao, Wang, Zheng, Na, Li (bib44) 2017; 7 Numpilai, Kidkhunthod, Cheng, Wattanakit, Chareonpanich, Limtrakul, Witoon (bib39) 2020; 375 Araújo, Shah, Mondelli, Stewart, Curulla Ferré, Pérez-Ramírez (bib40) 2021; 285 Yang, Pei, Luo, Liu, Wang, Wang, Zhao, Gong (bib35) 2020; 142 Lee, Anjum, Araújo, Mondelli, He, Furukawa, Pérez-Ramírez, Kozlov, Yan (bib6) 2022; 304 Pustovarenko, Dikhtiarenko, Bavykina, Gevers, Ramírez, Russkikh, Telalovic, Aguilar, Hazemann, Ould-Chikh, Gascon (bib17) 2020; 10 Sun, Zhang, Shen, Rui, Liu (bib30) 2022; 7 Dostagir, Thompson, Kobayashi, Karim, Fukuoka, Shrotri (bib19) 2020; 10 Shen, Bao, Xue, Sun, Zhang, Jia, Mei, Liu (bib33) 2022; 65 Zhu, Cannizzaro, Liu, Zhang, Kosinov, Filot, Rabeah, Brückner, Hensen (bib31) 2021; 11 Jiang, Nie, Guo, Song, Chen (bib1) 2020; 120 Mavrikakis, Hammer, Nørskov (bib47) 1998; 81 Yan, Wong, Ma, Donat, Xi, Saqline, Fan, Du, Borgna, He, Müller, Chen, Lapkin, Liu (bib3) 2022; 306 Liang, Ma, Su, Yang, Duan, Zhou, Deng, Li, Huang (bib2) 2019; 58 Tsoukalou, Abdala, Stoian, Huang, Willinger, Fedorov, Muller (bib23) 2019; 141 Tsoukalou, Abdala, Armutlulu, Willinger, Fedorov, Müller (bib36) 2020; 10 Štefanić, Musić, Popović, Sekulić (bib42) 1997; 408–409 Wang, Sun, Jia, Liu (bib11) 2021; 365 Han, Tang, Wang, Li, Li (bib13) 2021; 394 Jia, Sun, Wang, Shen, Liu (bib18) 2020; 50 Frei, Mondelli, Cesarini, Krumeich, Hauert, Stewart, Curulla Ferré, Pérez-Ramírez (bib38) 2020; 10 Martin, Martín, Mondelli, Mitchell, Segawa, Hauert, Drouilly, Curulla-Ferré, Pérez-Ramírez (bib9) 2016; 55 Cao, Wang, Li, Nørskov (bib26) 2021; 11 Chen, Cao, Chen, Ding, Huang, Shen, Cao, Zhu, Xu, Gao, Han (bib37) 2019; 9 Ye, Yang, Pan, Ma, Zhang, Ren, Liu, Li, Huang (bib29) 2020; 142 Ye, Liu, Mei, Ge (bib7) 2013; 3 Sun, Fan, Ye, Yan, Ge, Li, He, Yang, Liu (bib8) 2015; 12 Gan, Lu, Wu, Xie, Zhai, Yu, Zhang, Mao, Wang, Shen, Tong (bib46) 2013; 3 Rui, Zhang, Sun, Liu, Xu, Stavitski, Senanayake, Rodriguez, Liu (bib16) 2020; 10 Frei, Mondelli, García-Muelas, Morales-Vidal, Philipp, Safonova, López, Stewart, Ferré, Pérez-Ramírez (bib14) 2021; 12 Cai, Dai, Li, Tan, Huang, Zhan, Huang, Li (bib21) 2020; 10 Jiang, Nie, Gong, Moran, Wang, Zhu, Chang, Guo, Walton, Song (bib34) 2020; 383 Sun, Rui, Shen, Liu (bib25) 2021; 125 Rasteiro, De Sousa, Vieira, Ocampo-Restrepo, Verga, Assaf, Da Silva, Assaf (bib5) 2022; 302 Sun, Rui, Zhang, Sun, Ge, Liu (bib28) 2020; 22 Su, Wang, Wang, Zhou, Liu, Liu, Wang, Yang, Xie, He (bib41) 2018; 10 Frei, Mondelli, García-Muelas, Kley, Puértolas, López, Safonova, Stewart, Curulla Ferré, Pérez-Ramírez (bib22) 2019; 10 Dou, Zhang, Chen, Yu (bib24) 2018; 42 Rui, Wang, Sun, Ye, Ge, Liu (bib27) 2017; 218 Ye, Liu, Mei, Ge (bib32) 2014; 317 Wu, Shen, Rui, Sun, Liu (bib10) 2021; 53 Shen, Sun, Zhang, Rui, Jia, Mei, Liu (bib12) 2021; 11 Dang, Qin, Yang, Wang, Cai, Han, Li, Gao, Sun (bib20) 2020; 6 Zhou, Qin, Li, Sun, DFT-based (bib15) 2021; 23 Samson, Śliwa, Socha, Góra-Marek, Mucha, Rutkowska-Zbik, Paul, Ruggiero-Mikołajczyk, Grabowski, Słoczyński (bib45) 2014; 4 Sun (10.1016/j.apcatb.2022.122018_bib30) 2022; 7 Rui (10.1016/j.apcatb.2022.122018_bib16) 2020; 10 Sun (10.1016/j.apcatb.2022.122018_bib8) 2015; 12 Wang (10.1016/j.apcatb.2022.122018_bib44) 2017; 7 Han (10.1016/j.apcatb.2022.122018_bib13) 2021; 394 Tada (10.1016/j.apcatb.2022.122018_bib43) 2018; 8 Gan (10.1016/j.apcatb.2022.122018_bib46) 2013; 3 Yang (10.1016/j.apcatb.2022.122018_bib35) 2020; 142 Frei (10.1016/j.apcatb.2022.122018_bib14) 2021; 12 Dang (10.1016/j.apcatb.2022.122018_bib20) 2020; 6 Numpilai (10.1016/j.apcatb.2022.122018_bib39) 2020; 375 Frei (10.1016/j.apcatb.2022.122018_bib38) 2020; 10 Jiang (10.1016/j.apcatb.2022.122018_bib34) 2020; 383 Wang (10.1016/j.apcatb.2022.122018_bib4) 2022; 43 Štefanić (10.1016/j.apcatb.2022.122018_bib42) 1997; 408–409 Jiang (10.1016/j.apcatb.2022.122018_bib1) 2020; 120 Zhou (10.1016/j.apcatb.2022.122018_bib15) 2021; 23 Rui (10.1016/j.apcatb.2022.122018_bib27) 2017; 218 Liang (10.1016/j.apcatb.2022.122018_bib2) 2019; 58 Ye (10.1016/j.apcatb.2022.122018_bib29) 2020; 142 Ye (10.1016/j.apcatb.2022.122018_bib7) 2013; 3 Frei (10.1016/j.apcatb.2022.122018_bib22) 2019; 10 Sun (10.1016/j.apcatb.2022.122018_bib25) 2021; 125 Yan (10.1016/j.apcatb.2022.122018_bib3) 2022; 306 Dostagir (10.1016/j.apcatb.2022.122018_bib19) 2020; 10 Araújo (10.1016/j.apcatb.2022.122018_bib40) 2021; 285 Dou (10.1016/j.apcatb.2022.122018_bib24) 2018; 42 Rasteiro (10.1016/j.apcatb.2022.122018_bib5) 2022; 302 Shen (10.1016/j.apcatb.2022.122018_bib12) 2021; 11 Lee (10.1016/j.apcatb.2022.122018_bib6) 2022; 304 Jia (10.1016/j.apcatb.2022.122018_bib18) 2020; 50 Ye (10.1016/j.apcatb.2022.122018_bib32) 2014; 317 Martin (10.1016/j.apcatb.2022.122018_bib9) 2016; 55 Cai (10.1016/j.apcatb.2022.122018_bib21) 2020; 10 Cao (10.1016/j.apcatb.2022.122018_bib26) 2021; 11 Wang (10.1016/j.apcatb.2022.122018_bib11) 2021; 365 Pustovarenko (10.1016/j.apcatb.2022.122018_bib17) 2020; 10 Shen (10.1016/j.apcatb.2022.122018_bib33) 2022; 65 Su (10.1016/j.apcatb.2022.122018_bib41) 2018; 10 Samson (10.1016/j.apcatb.2022.122018_bib45) 2014; 4 Tsoukalou (10.1016/j.apcatb.2022.122018_bib23) 2019; 141 Wu (10.1016/j.apcatb.2022.122018_bib10) 2021; 53 Chen (10.1016/j.apcatb.2022.122018_bib37) 2019; 9 Zhu (10.1016/j.apcatb.2022.122018_bib31) 2021; 11 Tsoukalou (10.1016/j.apcatb.2022.122018_bib36) 2020; 10 Mavrikakis (10.1016/j.apcatb.2022.122018_bib47) 1998; 81 Sun (10.1016/j.apcatb.2022.122018_bib28) 2020; 22 |
References_xml | – volume: 10 start-page: 11307 year: 2020 end-page: 11317 ident: bib16 article-title: Hydrogenation of CO publication-title: ACS Catal. – volume: 9 start-page: 8785 year: 2019 end-page: 8797 ident: bib37 article-title: Unraveling highly tunable selectivity in CO publication-title: ACS Catal. – volume: 58 start-page: 9030 year: 2019 end-page: 9037 ident: bib2 article-title: Investigation on deactivation of Cu/ZnO/Al publication-title: Ind. Eng. Chem. Res. – volume: 6 start-page: eaaz2060 year: 2020 ident: bib20 article-title: Rationally designed indium oxide catalysts for CO publication-title: Sci. Adv. – volume: 22 start-page: 5059 year: 2020 end-page: 5066 ident: bib28 article-title: A highly active Pt/In publication-title: Green. Chem. – volume: 142 start-page: 19001 year: 2020 end-page: 19005 ident: bib29 article-title: Highly selective hydrogenation of CO publication-title: J. Am. Chem. Soc. – volume: 53 year: 2021 ident: bib10 article-title: Experimental and theoretical studies of CO publication-title: J. CO – volume: 120 start-page: 7984 year: 2020 end-page: 8034 ident: bib1 article-title: Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis publication-title: Chem. Rev. – volume: 304 year: 2022 ident: bib6 article-title: Atomic Pd-promoted ZnZrO publication-title: Appl. Catal. B – volume: 65 start-page: 623 year: 2022 end-page: 629 ident: bib33 article-title: Synergistic effect of the metal-support interaction and interfacial oxygen vacancy for CO publication-title: J. Energy Chem. – volume: 218 start-page: 488 year: 2017 end-page: 497 ident: bib27 article-title: CO publication-title: Appl. Catal. B – volume: 3 start-page: 1021 year: 2013 ident: bib46 article-title: Oxygen vacancies promoting photoelectrochemical performance of In publication-title: Sci. Rep. – volume: 81 start-page: 2819 year: 1998 end-page: 2822 ident: bib47 article-title: Effect of strain on the reactivity of metal surfaces publication-title: Phys. Rev. Lett. – volume: 142 start-page: 19523 year: 2020 end-page: 19531 ident: bib35 article-title: Strong electronic oxide-support interaction over In publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1960 year: 2021 ident: bib14 article-title: Nanostructure of nickel-promoted indium oxide catalysts drives selectivity in CO publication-title: Nat. Commun. – volume: 394 start-page: 236 year: 2021 end-page: 244 ident: bib13 article-title: Atomically dispersed Pt publication-title: J. Catal. – volume: 7 start-page: 8709 year: 2017 end-page: 8717 ident: bib44 article-title: Structure-activity relationships of Cu-ZrO publication-title: RSC Adv. – volume: 11 start-page: 11371 year: 2021 end-page: 11384 ident: bib31 article-title: Ni-In synergy in CO publication-title: ACS Catal. – volume: 10 start-page: 1133 year: 2020 end-page: 1145 ident: bib38 article-title: Role of zirconia in indium oxide-catalyzed CO publication-title: ACS Catal. – volume: 11 start-page: 4036 year: 2021 end-page: 4046 ident: bib12 article-title: Highly active Ir/In publication-title: ACS Catal. – volume: 302 year: 2022 ident: bib5 article-title: Insights into the alloy-support synergistic effects for the CO publication-title: Appl. Catal. B – volume: 10 start-page: 1536 year: 2018 end-page: 1541 ident: bib41 article-title: Direct conversion of syngas into light olefins over zirconium-doped indium(III) oxide and SAPO-34 bifunctional catalysts: Design of oxide component and construction of reaction network publication-title: ChemCatChem – volume: 23 start-page: 1888 year: 2021 end-page: 1895 ident: bib15 article-title: microkinetic study on methanol synthesis from CO publication-title: Phys. Chem. Chem. Phys. – volume: 55 start-page: 6261 year: 2016 end-page: 6265 ident: bib9 article-title: Indium oxide as a superior catalyst for methanol synthesis by CO publication-title: Angew. Chem. Int. Ed. – volume: 50 start-page: 409 year: 2020 end-page: 415 ident: bib18 article-title: Selective hydrogenation of CO publication-title: J. Energy Chem. – volume: 408–409 start-page: 391 year: 1997 end-page: 394 ident: bib42 article-title: FT-IR and laser Raman spectroscopic investigation of the formation and stability of low temperature t-ZrO publication-title: J. Mol. Struct. – volume: 10 start-page: 8196 year: 2020 end-page: 8202 ident: bib19 article-title: Rh promoted In publication-title: Catal. Sci. Technol. – volume: 306 year: 2022 ident: bib3 article-title: CO publication-title: Appl. Catal. B – volume: 125 start-page: 10926 year: 2021 end-page: 10936 ident: bib25 article-title: Theoretical study of selective hydrogenation of CO publication-title: J. Phys. Chem. C – volume: 285 year: 2021 ident: bib40 article-title: Impact of hybrid CO publication-title: Appl. Catal. B – volume: 383 start-page: 283 year: 2020 end-page: 296 ident: bib34 article-title: A combined experimental and DFT study of H publication-title: J. Catal. – volume: 141 start-page: 13497 year: 2019 end-page: 13505 ident: bib23 article-title: Structural evolution and dynamics of an In publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1 year: 2015 end-page: 6 ident: bib8 article-title: Hydrogenation of CO publication-title: J. CO – volume: 3 start-page: 1296 year: 2013 end-page: 1306 ident: bib7 article-title: Active oxygen vacancy site for methanol synthesis from CO publication-title: ACS Catal. – volume: 365 start-page: 341 year: 2021 end-page: 347 ident: bib11 article-title: CO publication-title: Catal. Today – volume: 317 start-page: 44 year: 2014 end-page: 53 ident: bib32 article-title: Methanol synthesis from CO publication-title: J. Catal. – volume: 375 start-page: 298 year: 2020 end-page: 306 ident: bib39 article-title: CO publication-title: Catal. Today – volume: 10 start-page: 10060 year: 2020 end-page: 10067 ident: bib36 article-title: Operando X-ray absorption spectroscopy identifies a monoclinic ZrO publication-title: ACS Catal. – volume: 10 start-page: 5064 year: 2020 end-page: 5076 ident: bib17 article-title: Metal-organic framework-derived synthesis of cobalt indium catalysts for the hydrogenation of CO publication-title: ACS Catal. – volume: 43 start-page: 761 year: 2022 end-page: 770 ident: bib4 article-title: Highly dispersed Cd cluster supported on TiO publication-title: Chin. J. Catal. – volume: 7 start-page: 807 year: 2022 end-page: 817 ident: bib30 article-title: The feasibility study of the indium oxide supported silver catalyst for selective hydrogenation of CO publication-title: Green Energy Environ. – volume: 4 start-page: 3730 year: 2014 end-page: 3741 ident: bib45 article-title: Influence of ZrO publication-title: ACS Catal. – volume: 42 start-page: 3293 year: 2018 end-page: 3300 ident: bib24 article-title: DFT study of In publication-title: New J. Chem. – volume: 8 start-page: 7809 year: 2018 end-page: 7819 ident: bib43 article-title: Design of interfacial sites between Cu and amorphous ZrO publication-title: ACS Catal. – volume: 10 start-page: 3377 year: 2019 ident: bib22 article-title: Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO publication-title: Nat. Commun. – volume: 11 start-page: 1780 year: 2021 end-page: 1786 ident: bib26 article-title: Relations between surface oxygen vacancies and activity of methanol formation from CO publication-title: ACS Catal. – volume: 10 start-page: 13275 year: 2020 end-page: 13289 ident: bib21 article-title: Pd supported on MIL-68(In)-derived In publication-title: ACS Catal. – volume: 394 start-page: 236 year: 2021 ident: 10.1016/j.apcatb.2022.122018_bib13 article-title: Atomically dispersed Ptn+ species as highly active sites in Pt/In2O3 catalysts for methanol synthesis from CO2 hydrogenation publication-title: J. Catal. doi: 10.1016/j.jcat.2020.06.018 – volume: 10 start-page: 5064 year: 2020 ident: 10.1016/j.apcatb.2022.122018_bib17 article-title: Metal-organic framework-derived synthesis of cobalt indium catalysts for the hydrogenation of CO2 to methanol publication-title: ACS Catal. doi: 10.1021/acscatal.0c00449 – volume: 10 start-page: 10060 year: 2020 ident: 10.1016/j.apcatb.2022.122018_bib36 article-title: Operando X-ray absorption spectroscopy identifies a monoclinic ZrO2:In solid solution as the active phase for the hydrogenation of CO2 to methanol publication-title: ACS Catal. doi: 10.1021/acscatal.0c01968 – volume: 81 start-page: 2819 year: 1998 ident: 10.1016/j.apcatb.2022.122018_bib47 article-title: Effect of strain on the reactivity of metal surfaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.2819 – volume: 10 start-page: 1133 year: 2020 ident: 10.1016/j.apcatb.2022.122018_bib38 article-title: Role of zirconia in indium oxide-catalyzed CO2 hydrogenation to methanol publication-title: ACS Catal. doi: 10.1021/acscatal.9b03305 – volume: 58 start-page: 9030 year: 2019 ident: 10.1016/j.apcatb.2022.122018_bib2 article-title: Investigation on deactivation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b01546 – volume: 125 start-page: 10926 year: 2021 ident: 10.1016/j.apcatb.2022.122018_bib25 article-title: Theoretical study of selective hydrogenation of CO2 to methanol over Pt4/In2O3 model catalyst publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c00638 – volume: 408–409 start-page: 391 year: 1997 ident: 10.1016/j.apcatb.2022.122018_bib42 article-title: FT-IR and laser Raman spectroscopic investigation of the formation and stability of low temperature t-ZrO2 publication-title: J. Mol. Struct. doi: 10.1016/S0022-2860(96)09549-X – volume: 375 start-page: 298 year: 2020 ident: 10.1016/j.apcatb.2022.122018_bib39 article-title: CO2 hydrogenation to methanol at high reaction temperatures over In2O3/ZrO2 catalysts: influence of calcination temperatures of ZrO2 support publication-title: Catal. Today doi: 10.1016/j.cattod.2020.03.011 – volume: 11 start-page: 4036 year: 2021 ident: 10.1016/j.apcatb.2022.122018_bib12 article-title: Highly active Ir/In2O3 catalysts for selective hydrogenation of CO2 to methanol: experimental and theoretical studies publication-title: ACS Catal. doi: 10.1021/acscatal.0c05628 – volume: 11 start-page: 11371 year: 2021 ident: 10.1016/j.apcatb.2022.122018_bib31 article-title: Ni-In synergy in CO2 hydrogenation to methanol publication-title: ACS Catal. doi: 10.1021/acscatal.1c03170 – volume: 53 year: 2021 ident: 10.1016/j.apcatb.2022.122018_bib10 article-title: Experimental and theoretical studies of CO2 hydrogenation to methanol on Ru/In2O3 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2021.101720 – volume: 65 start-page: 623 year: 2022 ident: 10.1016/j.apcatb.2022.122018_bib33 article-title: Synergistic effect of the metal-support interaction and interfacial oxygen vacancy for CO2 hydrogenation to methanol over Ni/In2O3 catalyst: a theoretical study publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.06.039 – volume: 10 start-page: 8196 year: 2020 ident: 10.1016/j.apcatb.2022.122018_bib19 article-title: Rh promoted In2O3 as a highly active catalyst for CO2 hydrogenation to methanol publication-title: Catal. Sci. Technol. doi: 10.1039/D0CY01789B – volume: 7 start-page: 8709 year: 2017 ident: 10.1016/j.apcatb.2022.122018_bib44 article-title: Structure-activity relationships of Cu-ZrO2 catalysts for CO2 hydrogenation to methanol: interaction effects and reaction mechanism publication-title: RSC Adv. doi: 10.1039/C6RA28305E – volume: 42 start-page: 3293 year: 2018 ident: 10.1016/j.apcatb.2022.122018_bib24 article-title: DFT study of In2O3-catalyzed methanol synthesis from CO2 and CO hydrogenation on the defective site publication-title: New J. Chem. doi: 10.1039/C7NJ04273F – volume: 302 year: 2022 ident: 10.1016/j.apcatb.2022.122018_bib5 article-title: Insights into the alloy-support synergistic effects for the CO2 hydrogenation towards methanol on oxide-supported Ni5Ga3 catalysts: an experimental and DFT study publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120842 – volume: 10 start-page: 3377 year: 2019 ident: 10.1016/j.apcatb.2022.122018_bib22 article-title: Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation publication-title: Nat. Commun. doi: 10.1038/s41467-019-11349-9 – volume: 304 year: 2022 ident: 10.1016/j.apcatb.2022.122018_bib6 article-title: Atomic Pd-promoted ZnZrOx solid solution catalyst for CO2 hydrogenation to methanol publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120994 – volume: 55 start-page: 6261 year: 2016 ident: 10.1016/j.apcatb.2022.122018_bib9 article-title: Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201600943 – volume: 285 year: 2021 ident: 10.1016/j.apcatb.2022.122018_bib40 article-title: Impact of hybrid CO2-CO feeds on methanol synthesis over In2O3-based catalysts publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.119878 – volume: 50 start-page: 409 year: 2020 ident: 10.1016/j.apcatb.2022.122018_bib18 article-title: Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.03.083 – volume: 10 start-page: 13275 year: 2020 ident: 10.1016/j.apcatb.2022.122018_bib21 article-title: Pd supported on MIL-68(In)-derived In2O3 nanotubes as superior catalysts to boost CO2 hydrogenation to methanol publication-title: ACS Catal. doi: 10.1021/acscatal.0c03372 – volume: 120 start-page: 7984 year: 2020 ident: 10.1016/j.apcatb.2022.122018_bib1 article-title: Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00723 – volume: 141 start-page: 13497 year: 2019 ident: 10.1016/j.apcatb.2022.122018_bib23 article-title: Structural evolution and dynamics of an In2O3 catalyst for CO2 hydrogenation to methanol: an operando XAS-XRD and in situ TEM study publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04873 – volume: 8 start-page: 7809 year: 2018 ident: 10.1016/j.apcatb.2022.122018_bib43 article-title: Design of interfacial sites between Cu and amorphous ZrO2 dedicated to CO2-to-methanol hydrogenation publication-title: ACS Catal. doi: 10.1021/acscatal.8b01396 – volume: 7 start-page: 807 year: 2022 ident: 10.1016/j.apcatb.2022.122018_bib30 article-title: The feasibility study of the indium oxide supported silver catalyst for selective hydrogenation of CO2 to methanol publication-title: Green Energy Environ. doi: 10.1016/j.gee.2021.05.004 – volume: 142 start-page: 19523 year: 2020 ident: 10.1016/j.apcatb.2022.122018_bib35 article-title: Strong electronic oxide-support interaction over In2O3/ZrO2 for highly selective CO2 hydrogenation to methanol publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c07195 – volume: 10 start-page: 1536 year: 2018 ident: 10.1016/j.apcatb.2022.122018_bib41 article-title: Direct conversion of syngas into light olefins over zirconium-doped indium(III) oxide and SAPO-34 bifunctional catalysts: Design of oxide component and construction of reaction network publication-title: ChemCatChem doi: 10.1002/cctc.201702054 – volume: 3 start-page: 1021 year: 2013 ident: 10.1016/j.apcatb.2022.122018_bib46 article-title: Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes publication-title: Sci. Rep. doi: 10.1038/srep01021 – volume: 3 start-page: 1296 year: 2013 ident: 10.1016/j.apcatb.2022.122018_bib7 article-title: Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): A DFT study publication-title: ACS Catal. doi: 10.1021/cs400132a – volume: 22 start-page: 5059 year: 2020 ident: 10.1016/j.apcatb.2022.122018_bib28 article-title: A highly active Pt/In2O3 catalyst for CO2 hydrogenation to methanol with enhanced stability publication-title: Green. Chem. doi: 10.1039/D0GC01597K – volume: 11 start-page: 1780 year: 2021 ident: 10.1016/j.apcatb.2022.122018_bib26 article-title: Relations between surface oxygen vacancies and activity of methanol formation from CO2 hydrogenation over In2O3 surfaces publication-title: ACS Catal. doi: 10.1021/acscatal.0c05046 – volume: 317 start-page: 44 year: 2014 ident: 10.1016/j.apcatb.2022.122018_bib32 article-title: Methanol synthesis from CO2 hydrogenation over a Pd4/In2O3 model catalyst: a combined DFT and kinetic study publication-title: J. Catal. doi: 10.1016/j.jcat.2014.06.002 – volume: 383 start-page: 283 year: 2020 ident: 10.1016/j.apcatb.2022.122018_bib34 article-title: A combined experimental and DFT study of H2O effect on In2O3/ZrO2 catalyst for CO2 hydrogenation to methanol publication-title: J. Catal. doi: 10.1016/j.jcat.2020.01.014 – volume: 4 start-page: 3730 year: 2014 ident: 10.1016/j.apcatb.2022.122018_bib45 article-title: Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2 publication-title: ACS Catal. doi: 10.1021/cs500979c – volume: 306 year: 2022 ident: 10.1016/j.apcatb.2022.122018_bib3 article-title: CO2 hydrogenation to methanol on tungsten-doped Cu/CeO2 catalysts publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2022.121098 – volume: 6 start-page: eaaz2060 year: 2020 ident: 10.1016/j.apcatb.2022.122018_bib20 article-title: Rationally designed indium oxide catalysts for CO2 hydrogenation to methanol with high activity and selectivity publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz2060 – volume: 10 start-page: 11307 year: 2020 ident: 10.1016/j.apcatb.2022.122018_bib16 article-title: Hydrogenation of CO2 to methanol on a Auδ+-In2O3−x catalyst publication-title: ACS Catal. doi: 10.1021/acscatal.0c02120 – volume: 218 start-page: 488 year: 2017 ident: 10.1016/j.apcatb.2022.122018_bib27 article-title: CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.06.069 – volume: 142 start-page: 19001 year: 2020 ident: 10.1016/j.apcatb.2022.122018_bib29 article-title: Highly selective hydrogenation of CO2 to ethanol via designed bifunctional Ir1-In2O3 single-atom catalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c08607 – volume: 23 start-page: 1888 year: 2021 ident: 10.1016/j.apcatb.2022.122018_bib15 article-title: microkinetic study on methanol synthesis from CO2 hydrogenation over the In2O3 catalyst publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP05947A – volume: 43 start-page: 761 year: 2022 ident: 10.1016/j.apcatb.2022.122018_bib4 article-title: Highly dispersed Cd cluster supported on TiO2 as an efficient catalyst for CO2 hydrogenation to methanol publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)63907-4 – volume: 12 start-page: 1 year: 2015 ident: 10.1016/j.apcatb.2022.122018_bib8 article-title: Hydrogenation of CO2 to methanol over In2O3 catalyst publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2015.09.002 – volume: 365 start-page: 341 year: 2021 ident: 10.1016/j.apcatb.2022.122018_bib11 article-title: CO2 hydrogenation to methanol over Rh/In2O3 catalyst publication-title: Catal. Today doi: 10.1016/j.cattod.2020.05.020 – volume: 12 start-page: 1960 year: 2021 ident: 10.1016/j.apcatb.2022.122018_bib14 article-title: Nanostructure of nickel-promoted indium oxide catalysts drives selectivity in CO2 hydrogenation publication-title: Nat. Commun. doi: 10.1038/s41467-021-22224-x – volume: 9 start-page: 8785 year: 2019 ident: 10.1016/j.apcatb.2022.122018_bib37 article-title: Unraveling highly tunable selectivity in CO2 hydrogenation over bimetallic In-Zr oxide catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.9b01869 |
SSID | ssj0002328 |
Score | 2.638359 |
Snippet | The supported Pt catalyst is normally not active for CO2 hydrogenation to methanol at the presence of CO. Herein, ZrO2 is added into Pt/In2O3 for CO2... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 122018 |
SubjectTerms | CO tolerance CO2 hydrogenation DFT study In2O3 Metal-support interaction Methanol |
Title | Highly active Pt/In2O3-ZrO2 catalyst for CO2 hydrogenation to methanol with enhanced CO tolerance: The effects of ZrO2 |
URI | https://dx.doi.org/10.1016/j.apcatb.2022.122018 |
Volume | 320 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9EH9QH0ak4v8iDr3FdkrWrb2M4puIHqCC-lLRJURnt2KqwF_9279LWKYiCr-ldKLnLfYS73wEcJUrY1E89rm035MrqgIdp7HOpFRrMIO54Kb1DXl75w3t1_tB5WIB-3QtDZZWV7S9turPW1UqrOs3W-Pm5deuFwpcyQI108LoEu61UQFp-_D4v88CIwVljJOZEXbfPuRovPU50EWOWKMRxG_eh0R8_uacvLmewDmtVrMh65e9swILNGrDcr0e0NWD1C5pgA7ZP501ryFbd2ukmvFExx2jGtLNt7KZonWXiWvLHybVg7v1mNi0YRq-sjwtPMzPJUa2cyFiRMxoyrbN8xOjNltnsyRUNIC1-HFkazGFPGKobq2pDWJ4y2noL7gend_0hr-Yt8AQTh4KHxkPRJDG16xorbNdoixmLpz0j2-00UBgcdRJ08BRW-sr4XRlLLX1fixSvciC3YTHLM7sDzFNGCe1Z6s9UsUk0wbgbTJW6oSVEwibI-pijpAIjp5kYo6iuOnuJSuFEJJyoFE4T-CfXuATj-IM-qCUYfVOqCP3Fr5y7_-bcgxWaSF--0uzDYjF5tQcYtxTxoVPMQ1jqnV0Mrz4AiBrqSg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6x5cByQNAFLW8fuJqmtus03FAFanmUlQAJcYmc2BGsqqQqAan_npnEAVZCi8TV8ViRZzwvzXwDcJAq4TKdBdy4fsSVMyGPskRzaRQqzDDpBRnlIS_Henirzu56dwswaHphqKzS6_5ap1fa2q90_G12po-PnesgElrKECWygtfVP2CR0Kl6LVg8Hp0Px28KGZ2GSiHjfk4ETQddVeZlpqkpEwwUhTjs4lE0_eMzC_XB6pyuwop3F9lx_UdrsODyNiwNmiltbVj-ACjYho2T9741JPMP9-kXvFA9x2TOTKXe2J-yM8rFleT3syvBqhTO_Klk6MCyAS48zO2sQMmquMbKgtGcaZMXE0ZpW-byh6puAPfix4mj2RzuiKHEMV8ewoqM0dHrcHt6cjMYcj9ygacYO5Q8sgFyJ02oY9c64frWOAxaAhNY2e1moUL_qJeijSfPUiur-zKRRmptRIavOZQb0MqL3P0GFiirhAkctWiqxKaGkNwtRkv9yBEo4SbI5prj1OOR01iMSdwUnv2Na-bExJy4Zs4m8DeqaY3H8cX-sOFg_I9cxWgy_ku59W3KfVga3lxexBej8fk2_KQB9XXSZgda5ezZ7aIbUyZ7XkxfAZsX7Ps |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+active+Pt%2FIn2O3-ZrO2+catalyst+for+CO2+hydrogenation+to+methanol+with+enhanced+CO+tolerance%3A+The+effects+of+ZrO2&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Sun%2C+Kaihang&rft.au=Shen%2C+Chenyang&rft.au=Zou%2C+Rui&rft.au=Liu%2C+Chang-jun&rft.date=2023-01-01&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=320&rft_id=info:doi/10.1016%2Fj.apcatb.2022.122018&rft.externalDocID=S0926337322009596 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |