Construction of hydrophilic N, O-rich carboxylated triazine-covalent organic frameworks for the application in selective simultaneous electrochemical detection
[Display omitted] •Constructed a triazine-COFs with high surface area via a simple method.•Developed a hydrophilic N, O- rich carboxylated triazine-COFs.•Fabricated a novel sensor combining the merits of AuNPs and the designed COFs.•The sensor was highly selective in the simultaneous determination o...
Saved in:
Published in | Applied surface science Vol. 545; p. 149047 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Constructed a triazine-COFs with high surface area via a simple method.•Developed a hydrophilic N, O- rich carboxylated triazine-COFs.•Fabricated a novel sensor combining the merits of AuNPs and the designed COFs.•The sensor was highly selective in the simultaneous determination of GA and UA.
In this study, we strategically designed a hydrophilic N, O-rich carboxylated triazine- covalent organic frameworks (ACOF-TaTp) for the application in selective simultaneous electrochemical detection of mixed chemical compounds with closing oxidation potentials. The ACOF-TaTp was firstly constructed with high surface area and hydrophilicity by 2,4,6-tris(4-aminophenyl)-1,3,5-triazine and 1,3,5-triformylphloroglucinol followed with carboxylation by sodium chloroacetate. Characterizations demonstrated the high surface area and rich N, O-electron donors of ACOF-TaTp facilitated the high dispersion and immobilization of AuNPs on it via electrostatic interactions. Based on their chemical properties, Gallic acid (GA) and uric acid (UA) were selected as model compounds for the test and the result showed their closing oxidation peaks could be clearly separated by ACOF-TaTp, which could be ascribed to its high surface area and stronger affinity to GA than to UA via H-bonding. The constructed sensor AuNPs@ ACOF-TaTp/GCE exhibited high selectivity and sensitivity in the simultaneous determination of GA and UA with a wide linear response in the range of 1–175 μM for GA and 1–150 μM for UA and detection limit of 0.19 μM and 0.25 μM respectively. This work paves a way for strategical design of functionalized COFs for simultaneous electrochemical sensing. |
---|---|
AbstractList | [Display omitted]
•Constructed a triazine-COFs with high surface area via a simple method.•Developed a hydrophilic N, O- rich carboxylated triazine-COFs.•Fabricated a novel sensor combining the merits of AuNPs and the designed COFs.•The sensor was highly selective in the simultaneous determination of GA and UA.
In this study, we strategically designed a hydrophilic N, O-rich carboxylated triazine- covalent organic frameworks (ACOF-TaTp) for the application in selective simultaneous electrochemical detection of mixed chemical compounds with closing oxidation potentials. The ACOF-TaTp was firstly constructed with high surface area and hydrophilicity by 2,4,6-tris(4-aminophenyl)-1,3,5-triazine and 1,3,5-triformylphloroglucinol followed with carboxylation by sodium chloroacetate. Characterizations demonstrated the high surface area and rich N, O-electron donors of ACOF-TaTp facilitated the high dispersion and immobilization of AuNPs on it via electrostatic interactions. Based on their chemical properties, Gallic acid (GA) and uric acid (UA) were selected as model compounds for the test and the result showed their closing oxidation peaks could be clearly separated by ACOF-TaTp, which could be ascribed to its high surface area and stronger affinity to GA than to UA via H-bonding. The constructed sensor AuNPs@ ACOF-TaTp/GCE exhibited high selectivity and sensitivity in the simultaneous determination of GA and UA with a wide linear response in the range of 1–175 μM for GA and 1–150 μM for UA and detection limit of 0.19 μM and 0.25 μM respectively. This work paves a way for strategical design of functionalized COFs for simultaneous electrochemical sensing. |
ArticleNumber | 149047 |
Author | He, Yasan Deng, Yanhua Chen, Jianhua Lin, Xiaogeng Hu, Shirong |
Author_xml | – sequence: 1 givenname: Xiaogeng surname: Lin fullname: Lin, Xiaogeng organization: College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China – sequence: 2 givenname: Yanhua surname: Deng fullname: Deng, Yanhua organization: College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China – sequence: 3 givenname: Yasan surname: He fullname: He, Yasan email: 2319578008@qq.com organization: College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China – sequence: 4 givenname: Jianhua surname: Chen fullname: Chen, Jianhua email: jhchen73@126.com organization: College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China – sequence: 5 givenname: Shirong surname: Hu fullname: Hu, Shirong organization: College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China |
BookMark | eNqFkM9uEzEQxi1UJNLSN-DgB2CDvfYmuxyQUMSfShW9tGdr1jtmHTb2auwEwsvwqrhJTxzoaaSZ-X3zzXfJLkIMyNgbKZZSyNW77RLmtE92WYtaLqXuhF6_YAvZrlXVNK2-YIuy1lVaqfoVu0xpK4Ssy3TB_mxiSJn2NvsYeHR8PA4U59FP3vJvb_ldRd6O3AL18ddxgowDz-Thtw9Y2XiACUPmkb5DKIAj2OHPSD8Sd5F4HpHDPBcpOMn7wBNOWG4dkCe_208ZAsZ94qcuRTvirixPfMCMJ0uv2UsHU8Lrp3rFHj5_ut98rW7vvtxsPt5WVolVrjprncYGQK9RqN451aw11m3TwCBd6fWI2g5u1dSiFbaHVvfS9YPrmk6taqWu2PuzrqWYEqEz1ueT60zgJyOFeYzabM05avMYtTlHXWD9DzyT3wEdn8M-nDEsjx08kknWY7A4eCrfmyH6_wv8Bc7Ho4k |
CitedBy_id | crossref_primary_10_1149_1945_7111_ac74e6 crossref_primary_10_1016_j_aca_2023_341975 crossref_primary_10_1007_s40820_023_01249_5 crossref_primary_10_1039_D1NJ04308K crossref_primary_10_1039_D4NJ03611E crossref_primary_10_3390_s22134758 crossref_primary_10_1016_j_jssc_2021_122745 crossref_primary_10_1007_s00604_022_05201_z crossref_primary_10_1016_j_seppur_2024_129021 crossref_primary_10_1016_j_cej_2024_156246 crossref_primary_10_1021_acs_cgd_3c01372 crossref_primary_10_1016_j_microc_2023_109375 crossref_primary_10_1016_j_microc_2023_109534 crossref_primary_10_1016_j_reactfunctpolym_2023_105770 crossref_primary_10_3390_en14082267 crossref_primary_10_1002_slct_202301828 crossref_primary_10_3390_bios13030308 crossref_primary_10_3390_chemosensors10110443 crossref_primary_10_1016_j_memsci_2021_119725 crossref_primary_10_1016_j_microc_2021_106823 crossref_primary_10_1016_j_memsci_2024_123509 crossref_primary_10_1002_bit_28718 crossref_primary_10_1016_j_apsusc_2025_162489 crossref_primary_10_1016_j_memsci_2024_123205 crossref_primary_10_1002_smll_202206407 crossref_primary_10_1016_j_ijoes_2023_100078 crossref_primary_10_1021_acsami_3c11210 crossref_primary_10_1016_j_memsci_2022_121075 crossref_primary_10_1021_acs_inorgchem_3c01290 crossref_primary_10_1016_j_apsusc_2022_153621 crossref_primary_10_1016_j_mtsust_2025_101096 crossref_primary_10_1038_s41545_025_00437_7 crossref_primary_10_1016_j_colsurfa_2021_128083 crossref_primary_10_1016_j_apcatb_2023_122398 |
Cites_doi | 10.1016/j.talanta.2017.09.021 10.1126/science.1120411 10.1021/cr200440z 10.1021/acsami.8b19087 10.1016/j.snb.2018.10.055 10.1021/acsami.8b05484 10.1016/j.snb.2019.01.092 10.1016/j.bios.2019.02.040 10.1021/acsami.7b05870 10.1126/science.aal1585 10.1039/C5TC00670H 10.1016/j.snb.2015.10.101 10.1021/ja509602c 10.1016/j.bios.2019.111699 10.1002/anie.201912381 10.1016/j.electacta.2006.04.062 10.1021/jacs.8b08380 10.1021/acs.chemmater.6b04178 10.1021/jacs.9b06219 10.1021/jacs.7b00925 10.1021/jacs.7b07489 10.1002/chem.201501206 10.1002/anie.201915569 10.1021/jacs.7b11940 10.1021/jacs.9b02153 10.1016/j.snb.2019.04.092 10.1021/acssuschemeng.9b00613 10.1002/anie.201306775 10.1016/j.snb.2012.10.090 10.1021/jacs.0c00560 10.1007/s10008-019-04267-9 10.1021/jacs.6b12885 10.1039/C6AY02583H 10.1016/j.bios.2019.01.009 10.1016/j.foodchem.2009.08.038 10.1021/acsami.5b12370 10.1038/nchem.2444 10.1021/acsami.6b16423 10.1016/j.snb.2018.08.132 10.1016/j.apsusc.2016.03.098 10.1002/anie.201209903 10.1016/j.snb.2017.10.110 10.1002/anie.201710502 10.1016/j.electacta.2013.09.101 10.1021/jacs.7b06640 10.1021/acsami.9b02640 10.1016/j.bios.2018.06.064 10.1039/C5TA10521H 10.1016/j.bios.2018.11.047 10.1016/j.apsusc.2017.08.054 10.1021/jacs.7b01097 10.1021/acsami.9b03330 10.1002/anie.201712246 10.1039/c1nr10899a 10.1039/C2CS35072F 10.1016/j.bios.2018.12.008 10.1016/j.msec.2015.07.025 10.1016/j.talanta.2018.06.032 10.1039/C5SC00512D 10.1016/j.micromeso.2020.110122 10.1016/j.neuint.2005.10.010 10.1016/j.snb.2018.09.106 10.1016/j.ab.2017.10.018 10.1016/j.bios.2018.05.009 10.1021/acsami.8b00579 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apsusc.2021.149047 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-5584 |
ExternalDocumentID | 10_1016_j_apsusc_2021_149047 S0169433221001239 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCB SDF SDG SDP SES SMS SPC SPCBC SPD SPG SSK SSM SSQ SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- RIG SEW SSH WUQ |
ID | FETCH-LOGICAL-c306t-9ccf4e5aa47e03bff3574e2855ad1f7e0bee4cdf652080cba84b1fbdf95936233 |
IEDL.DBID | .~1 |
ISSN | 0169-4332 |
IngestDate | Thu Apr 24 23:13:18 EDT 2025 Tue Jul 01 01:40:09 EDT 2025 Fri Feb 23 02:44:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Covalent organic frameworks Carboxylation Uric acid Gallic acid Gold nanoparticles |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-9ccf4e5aa47e03bff3574e2855ad1f7e0bee4cdf652080cba84b1fbdf95936233 |
ParticipantIDs | crossref_citationtrail_10_1016_j_apsusc_2021_149047 crossref_primary_10_1016_j_apsusc_2021_149047 elsevier_sciencedirect_doi_10_1016_j_apsusc_2021_149047 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-15 |
PublicationDateYYYYMMDD | 2021-04-15 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Applied surface science |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mitra, Sasmal, Kundu, Kandambeth, Illath, Díaz Díaz, Banerjee (b0195) 2017; 139 Bai, Phua, Lim, Jana, Luo, Tham, Zhao, Gao, Zhao (b0200) 2016; 52 Dey, Pal, Rout, Kunjattu, Das, Mukherjee, Kharul, Banerjee (b0295) 2017; 139 Sha, Vishnu, Badhulika (b0245) 2019; 279 Zhang, Chi, Li, Deng, Ma, Xu, Hu, Yang (b0140) 2019; 129 Zhang, Li, Wu, Zhang, Hu, Wang, Liu, Wu (b0085) 2019; 145 Kandambeth, Shinde, Panda, Lukose, Heine, Banerjee (b0320) 2013; 52 C. Cui, Q. Wang, C. Xin d, Q. Liu, X. Deng, T. Liu, X. Xu, X. Zhang, Covalent organic framework with bidentate ligand sites as reliable fluorescent sensor for Cu2+, Micropor Mesopor Mat. 299 (2020) 110122. 10.1016/j.micromeso.2020.110122. Cui, Zhang, Jiang, Liang, Wen, Peng, Qiu (b0095) 2019; 7 Sun, Aguila, Perman, Earl, Abney, Cheng, Wei, Nguyen, Wojtas, Ma (b0190) 2017; 139 Zhang, Zhang, Yan, Xia, Huang, Xian (b0105) 2017; 9 Ma, Li, Wei, Ding, Zhang, Wang (b0020) 2017; 139 Piermarini, Migliorelli, Volpe, Massoud, Pierantozzi, Cortese, Palleschi (b0240) 2013; 179 Gao, Wang, Zhang, Zou, Li, Ye (b0225) 2016; 8 Wei, Zhang, Zhang, Qiang, Yu, Fu, Wu, Bi, Zhang (b0290) 2019; 141 Liang, Zhai, Chen, Wang, Wang, Zhou, Huang (b0280) 2016; 224 Sun, Klechikov, Moise, Prodana, Enachescu, Talyzin (b0070) 2013; 57 Wang, Liu, Li, Guan, Xue, Yan, Valtchev, Qiu, Fang (b0030) 2020; 142 Zare, Jahangiri-Dehaghani, Shekari, Benvidi (b0260) 2016; 375 Wang, Zhang, Li, Qu (b0305) 2018; 178 Diercks, Lin, Kornienko, Kapustin, Nichols, Zhu, Zhao, Chang, Yaghi (b0045) 2018; 140 Wang, Hu, Liu, Guo, Peng, Jia, He, Zhang, Du (b0170) 2019; 132 Chandra, Chowdhury, Addicoat, Heine, Paul, Banerjee (b0075) 2017; 2017 Shinde, Aiyappa, Bhadra, Biswal, Wadge, Kandambeth, Garai, Kundu, Kurungot, Banerjee (b0055) 2016; 4 Sun, Huang, Zheng, Zhan, Zhang, Pang, Wu, Chen (b0330) 2011; 3 Wu, Han, Xu, Liu, Yuan, Yang, Liu, Jiang, Cui (b0145) 2019; 141 Mudnic, Modun, Rastija, Vukovic, Brizic, Katalinic, Kozina, Medic-Saric, Boban (b0210) 2010; 119 Atta, Ali, El-Ads, Galal (b0275) 2014; 128 Chen, Lan, Cai, Sun, Li, He, Zheng, Fan, Liu, Zhang (b0110) 2019; 11 Zhang, Gao, Huang, Chen, Wang, Wang (b0155) 2018; 188 Zhang, Chen, Huang, Wang, Hu (b0090) 2018; 276 Shahamirifard, Ghaedi, Razmi, Hajati (b0285) 2018; 114 Chen, Addicoat, Jin, Zhai, Xu, Huang, Guo, Liu, Irle, Jiang (b0035) 2015; 137 Boye, Brillas, Buso, Farnia, Flox, Giomo, Sandona (b0205) 2006; 52 Wu, Xu, Sun, Fu, He, Matyjaszewski (b0010) 2005; 112 Yang, Zhang, Han, Zhang, Xue, Gao, Li, Huang, Yi, Liu, Li (b0065) 2016; 8 Das, Biswal, Kandambeth, Venkatesh, Kaur, Addicoat, Heine, Verma, Banerjee (b0130) 2015; 6 Yan, Song, Liu, Zhou, Zhang, He, Zhang, Liu (b0165) 2019; 126 Banerjee, Haase, Savasci, Gottschling, Ochsenfeld, Lotsch (b0060) 2017; 139 Vilian, Sivakumar, Huh, Youk, Han (b0150) 2018; 10 Diercks, Yaghi (b0175) 2017; 355 Qian, Hu, Li, Shi, Zhou, Kong, Zhang, Sun, Huang (b0335) 2018; 257 Zhang, Wang, Geng, Liu (b0115) 2019; 285 Ascherl, Sick, Margraf, Lapidus, Calik, Hettstedt, Karaghiosoff, Döblinger, Clark, Chapman, Auras, Bein (b0315) 2016; 8 Gao, Zheng, Tanaka, Zhan, Yuan, Gao, Wang (b0235) 2015; 57 Vignesh Babu, Monika Bai, Rajeswara Rao (b0080) 2019; 11 Kaleeswaran, Vishnoi, Murugavel (b0325) 2015; 3 Gu, Wang, Wu, Pan, Hu, Wang, Wang (b0135) 2019; 291 Du, Yue, Yao, Jiang, Du, Yang, Wang (b0220) 2013; 419 C.O. Chikere, N.H. Faisal, P. Kong Thoo Lin, C. Fernandez, The synergistic effect between graphene oxide nanocolloids and silicon dioxide nanoparticles for gallic acid sensing, J. Solid State Electrochem. 23 (2019) 1795-1809. 10.1007/s10008-019-04267-9. Côté, Benin, Ockwig, O'Keeffe, Matzger, Yaghi (b0005) 2005; 310 Chen, He, Ma, Liu, Wang, Silver, Chen, Zhu, Gui, Diwu, Chai, Wang (b0100) 2018; 10 Gao, Bai, He, Zheng, Ma, Lei, Zhang, Wu, Fu, Lin (b0180) 2019; 11 Lu, Nie, Belton, Tang, Zhao (b0215) 2006; 48 Jain, Verma, Singh, Sharma (b0230) 2019; 127 Dey, Shebeeb, Chahande, Banerjee (b0300) 2020; 59 Ding, Wang (b0015) 2013; 42 Vilian, Song, Lee, Hwang, Kim, Jun, Huh, Han (b0250) 2018; 117 Li, Huang, Lee, Feng, Tao, Jiang, Nagao, Irle, Jiang (b0125) 2018; 140 Zhao, Dai, Peng, Niu, Sun, Shan, Yang, Wojtas, Yuan, Zhang, Dong, Zhang, Zhang, Feng, Ma (b0025) 2020; 59 He, Liu, Liu, Xiong, Zheng, Liu, Tang (b0310) 2013; 52 Stankovic, Ognajanovic, Martin, Svroc, Mariano, Antic (b0270) 2017; 539 Sun, Xu, Waterhouse, Wang, Qiao, Xu (b0160) 2019; 281 Li, Zhi, Feng, Ding, Zou, Liu, Mu (b0040) 2015; 21 Mu, Wang, Qin, Yan, Li, Chen (b0050) 2017; 9 Jafari, Ganjali, Dezfuli, Faridbod (b0255) 2018; 427 Lu, Ma, Li, Guan, Yusran, Xue, Fang, Yan, Qiu, Valtchev (b0185) 2018; 57 Stankovic (10.1016/j.apsusc.2021.149047_b0270) 2017; 539 Zhang (10.1016/j.apsusc.2021.149047_b0115) 2019; 285 Li (10.1016/j.apsusc.2021.149047_b0125) 2018; 140 Shahamirifard (10.1016/j.apsusc.2021.149047_b0285) 2018; 114 Gao (10.1016/j.apsusc.2021.149047_b0180) 2019; 11 Das (10.1016/j.apsusc.2021.149047_b0130) 2015; 6 Du (10.1016/j.apsusc.2021.149047_b0220) 2013; 419 Wu (10.1016/j.apsusc.2021.149047_b0010) 2005; 112 Yang (10.1016/j.apsusc.2021.149047_b0065) 2016; 8 Jain (10.1016/j.apsusc.2021.149047_b0230) 2019; 127 Lu (10.1016/j.apsusc.2021.149047_b0215) 2006; 48 Cui (10.1016/j.apsusc.2021.149047_b0095) 2019; 7 Gao (10.1016/j.apsusc.2021.149047_b0225) 2016; 8 Diercks (10.1016/j.apsusc.2021.149047_b0175) 2017; 355 Wang (10.1016/j.apsusc.2021.149047_b0030) 2020; 142 Kandambeth (10.1016/j.apsusc.2021.149047_b0320) 2013; 52 Wang (10.1016/j.apsusc.2021.149047_b0305) 2018; 178 Vilian (10.1016/j.apsusc.2021.149047_b0150) 2018; 10 Vilian (10.1016/j.apsusc.2021.149047_b0250) 2018; 117 Kaleeswaran (10.1016/j.apsusc.2021.149047_b0325) 2015; 3 10.1016/j.apsusc.2021.149047_b0120 Sun (10.1016/j.apsusc.2021.149047_b0070) 2013; 57 Ascherl (10.1016/j.apsusc.2021.149047_b0315) 2016; 8 Mudnic (10.1016/j.apsusc.2021.149047_b0210) 2010; 119 Chandra (10.1016/j.apsusc.2021.149047_b0075) 2017; 2017 Zhao (10.1016/j.apsusc.2021.149047_b0025) 2020; 59 Wu (10.1016/j.apsusc.2021.149047_b0145) 2019; 141 Chen (10.1016/j.apsusc.2021.149047_b0035) 2015; 137 Lu (10.1016/j.apsusc.2021.149047_b0185) 2018; 57 Zare (10.1016/j.apsusc.2021.149047_b0260) 2016; 375 Chen (10.1016/j.apsusc.2021.149047_b0100) 2018; 10 Bai (10.1016/j.apsusc.2021.149047_b0200) 2016; 52 Piermarini (10.1016/j.apsusc.2021.149047_b0240) 2013; 179 Liang (10.1016/j.apsusc.2021.149047_b0280) 2016; 224 Jafari (10.1016/j.apsusc.2021.149047_b0255) 2018; 427 Wei (10.1016/j.apsusc.2021.149047_b0290) 2019; 141 Mitra (10.1016/j.apsusc.2021.149047_b0195) 2017; 139 Qian (10.1016/j.apsusc.2021.149047_b0335) 2018; 257 Dey (10.1016/j.apsusc.2021.149047_b0295) 2017; 139 Sun (10.1016/j.apsusc.2021.149047_b0160) 2019; 281 He (10.1016/j.apsusc.2021.149047_b0310) 2013; 52 Li (10.1016/j.apsusc.2021.149047_b0040) 2015; 21 Mu (10.1016/j.apsusc.2021.149047_b0050) 2017; 9 Yan (10.1016/j.apsusc.2021.149047_b0165) 2019; 126 Boye (10.1016/j.apsusc.2021.149047_b0205) 2006; 52 Dey (10.1016/j.apsusc.2021.149047_b0300) 2020; 59 Sha (10.1016/j.apsusc.2021.149047_b0245) 2019; 279 Atta (10.1016/j.apsusc.2021.149047_b0275) 2014; 128 Diercks (10.1016/j.apsusc.2021.149047_b0045) 2018; 140 Shinde (10.1016/j.apsusc.2021.149047_b0055) 2016; 4 Zhang (10.1016/j.apsusc.2021.149047_b0155) 2018; 188 Zhang (10.1016/j.apsusc.2021.149047_b0140) 2019; 129 Wang (10.1016/j.apsusc.2021.149047_b0170) 2019; 132 Côté (10.1016/j.apsusc.2021.149047_b0005) 2005; 310 Sun (10.1016/j.apsusc.2021.149047_b0190) 2017; 139 Ding (10.1016/j.apsusc.2021.149047_b0015) 2013; 42 Gao (10.1016/j.apsusc.2021.149047_b0235) 2015; 57 Sun (10.1016/j.apsusc.2021.149047_b0330) 2011; 3 Gu (10.1016/j.apsusc.2021.149047_b0135) 2019; 291 Banerjee (10.1016/j.apsusc.2021.149047_b0060) 2017; 139 Chen (10.1016/j.apsusc.2021.149047_b0110) 2019; 11 Zhang (10.1016/j.apsusc.2021.149047_b0105) 2017; 9 Zhang (10.1016/j.apsusc.2021.149047_b0085) 2019; 145 10.1016/j.apsusc.2021.149047_b0265 Vignesh Babu (10.1016/j.apsusc.2021.149047_b0080) 2019; 11 Ma (10.1016/j.apsusc.2021.149047_b0020) 2017; 139 Zhang (10.1016/j.apsusc.2021.149047_b0090) 2018; 276 |
References_xml | – volume: 310 start-page: 1166 year: 2005 end-page: 1170 ident: b0005 article-title: Porous, crystalline, covalent organic frameworks publication-title: Science – volume: 145 year: 2019 ident: b0085 article-title: Recent advances in the construction of functionalized covalent organic frameworks and their applications to sensing publication-title: Biosens. Bioelectron. – volume: 281 start-page: 107 year: 2019 end-page: 114 ident: b0160 article-title: Novel three-dimensional electrochemical sensor with dual signal amplification based on MoS publication-title: Sens. Actuat. B Chem. – volume: 57 start-page: 279 year: 2015 end-page: 287 ident: b0235 article-title: An electrochemical sensor for gallic acid based on Fe publication-title: Mater Sci Eng C – volume: 52 start-page: 28 year: 2016 end-page: 4131 ident: b0200 article-title: An aza-BODIPY based near-infrared fluorescent probe for sensitive discrimination of cysteine/homocysteine and glutathione in living cells publication-title: Chem. Commun. – volume: 52 start-page: 256 year: 2006 end-page: 262 ident: b0205 article-title: Electrochemical removal of gallic acid from aqueous solutions publication-title: Electrochim. Acta. – volume: 137 start-page: 3241 year: 2015 end-page: 3247 ident: b0035 article-title: Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity publication-title: J. Am. Chem. Soc. – volume: 188 start-page: 578 year: 2018 end-page: 583 ident: b0155 article-title: Covalent organic framework as a novel electrochemical platform for highly sensitive and stable detection of lead publication-title: Talanta – volume: 57 start-page: 6042 year: 2018 end-page: 6048 ident: b0185 article-title: Postsynthetic functionalization of three-dimensional covalent organic frameworks for selective extraction of lanthanide ions publication-title: Angew. Chem., Int. Ed. Engl. – volume: 59 start-page: 1161 year: 2020 end-page: 1165 ident: b0300 article-title: Nanoparticle size-fractionation through self-standing porous covalent organic framework films publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 7159 year: 2015 end-page: 7171 ident: b0325 article-title: [3+3] Imine and ß-ketoenamine tethered fluorescent covalent-organic frameworks for CO publication-title: J. Mater. Chem. C – volume: 419 start-page: 4 year: 2013 end-page: 99 ident: b0220 article-title: Facile fabrication, characterization of Pt-Ru nanoparticles modified reduced graphene oxide and its high electrocatalytic activity for methanol electro-oxidation, colloids surf. a: physicochem publication-title: Eng. Asp. – volume: 224 start-page: 915 year: 2016 end-page: 925 ident: b0280 article-title: A simple, ultrasensitive sensor for gallic acid and uric acid based on gold microclusters/sulfonate functionalized graphene modified glassy carbon electrode publication-title: Sens. Actuators B: Chem. – volume: 126 start-page: 734 year: 2019 end-page: 742 ident: b0165 article-title: Two-dimensional porphyrin-based covalent organic framework: a novel platform for sensitive epidermal growth factor receptor and living cancer cell detection publication-title: Biosens. Bioelectron. – volume: 112 start-page: 3959 year: 2005 end-page: 4015 ident: b0010 article-title: Design and preparation of porous polymers publication-title: Chem. Rev. – volume: 6 start-page: 3931 year: 2015 end-page: 3939 ident: b0130 article-title: Chemical Sensing in Two Dimensional Porous Covalent Organic Nanosheets publication-title: Chem. Sci. – volume: 42 start-page: 548 year: 2013 end-page: 568 ident: b0015 article-title: Covalent Organic Frameworks (COFs): from Design to Applications publication-title: Chem. Soc. Rev. – volume: 539 start-page: 104 year: 2017 end-page: 112 ident: b0270 article-title: Design of titanium nitride and wolfram carbide-doped RGO/GC electrodes for determination of gallic acid publication-title: Anal. Biochem. – volume: 141 start-page: 7081 year: 2019 end-page: 7089 ident: b0145 article-title: Chiral BINOL-Based covalent organic frameworks for enantioselective sensing publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 12374 year: 2018 end-page: 12377 ident: b0125 article-title: Light-emitting covalent organic frameworks: fluorescence improving via pinpoint surgery and selective switch-on sensing of anions publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 2786 year: 2017 end-page: 2793 ident: b0190 article-title: Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 4995 year: 2017 end-page: 4998 ident: b0020 article-title: A dynamic three-dimensional covalent organic framework publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 14272 year: 2019 end-page: 14279 ident: b0290 article-title: Semiconducting 2D triazine-cored covalent organic frameworks with unsubstituted olefin linkages publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 13415 year: 2017 end-page: 13421 ident: b0105 article-title: Highly fluorescent polyimide covalent organic nanosheets as sensing probes for the detection of 2,4,6- trinitrophenol publication-title: ACS Appl. Mater. Interf. – volume: 10 start-page: 19554 year: 2018 end-page: 19563 ident: b0150 article-title: Palladium supported on an amphiphilic triazine–urea-functionalized porous organic polymer as a highly efficient electrocatalyst for electrochemical sensing of rutin in human plasma publication-title: ACS ACS Appl. Mater. Interf. – volume: 179 start-page: 170 year: 2013 end-page: 174 ident: b0240 article-title: Uricase biosensor based on a screen-printed electrode modified with prussian blue for detection of uric acid in human blood serum publication-title: Sens. Actuators B: Chem. – volume: 10 start-page: 15364 year: 2018 end-page: 15368 ident: b0100 article-title: Covalent organic framework functionalized with 8-hydroxyquinoline as a dual-mode fluorescent and colorimetric pH sensor publication-title: ACS Appl. Mater. Interf. – volume: 279 start-page: 53 year: 2019 end-page: 60 ident: b0245 article-title: MoS publication-title: Sens. Actuat. B Chem. – volume: 178 start-page: 188 year: 2018 end-page: 194 ident: b0305 article-title: Electrochemical sensor based on palladium-reduced graphene oxide modified with gold nanoparticles for simultaneous determination of acetaminophen and 4-aminophenol publication-title: Talanta – volume: 119 start-page: 1205 year: 2010 end-page: 1210 ident: b0210 article-title: Antioxidative and vasodilatory effects of phenolic acids in wine publication-title: Food Chem. – volume: 52 start-page: 13052 year: 2013 end-page: 13056 ident: b0320 article-title: Enhancement of chemical stability and crystallinity in porphyrin-containing covalent organic frameworks by intramolecular hydrogen bonds publication-title: Angew. Chem., Int. Ed. – volume: 291 start-page: 293 year: 2019 end-page: 297 ident: b0135 article-title: Quartz crystal microbalance sensor based on covalent organic framework composite and molecularly imprinted polymer of poly[o-aminothiophenol] with gold nanoparticles for the determination of aflatoxin B1 publication-title: Sens. Actuators B: Chem. – volume: 139 start-page: 4513 year: 2017 end-page: 4520 ident: b0195 article-title: Targeted drug delivery in covalent organic nanosheets [CONs] via sequential postsynthetic modification publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 8474 year: 2016 end-page: 8482 ident: b0225 article-title: Highly sensitive determination of gallic acid based on a Pt nanoparticle decorated polyelectrolyte-functionalized graphene modified electrode publication-title: Anal. Methods – volume: 129 start-page: 64 year: 2019 end-page: 71 ident: b0140 article-title: 2D-Porphrinic covalent organic framework-based aptasensor with enhanced photoelectrochemical response for the detection of c-reactive protein publication-title: Biosens. Bioelectron. – volume: 355 year: 2017 ident: b0175 article-title: The atom, the molecule, and the covalent organic framework publication-title: Science – volume: 8 start-page: 310 year: 2016 end-page: 316 ident: b0315 article-title: Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks publication-title: Nat. Chem. – volume: 142 start-page: 3736 year: 2020 end-page: 3741 ident: b0030 article-title: Three-dimensional mesoporous covalent organic frameworks through steric hindrance engineering publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 597 year: 2018 end-page: 604 ident: b0250 article-title: Salt-templated three-dimensional porous carbon for electrochemical determination of gallic acid publication-title: Biosens. Bioelectron. – volume: 57 start-page: 1034 year: 2013 end-page: 1038 ident: b0070 article-title: A molecular pillar approach to grow vertical covalent organic framework nanosheets on graphene: hybrid materials for energy storage publication-title: Angew. Chem. Int. Ed. – volume: 139 start-page: 16228 year: 2017 end-page: 16234 ident: b0060 article-title: Single Site Photocatalytic H publication-title: J. Am. Chem. Soc. – volume: 128 start-page: 16 year: 2014 end-page: 24 ident: b0275 article-title: Nano-perovskite carbon paste composite electrode for the simultaneous determination of dopamine, ascorbic acid and uric acid publication-title: Electrochim. Acta – volume: 2017 start-page: 2074 year: 2017 end-page: 2080 ident: b0075 article-title: Molecular-level control of the capacitance of two-dimensional covalent organic frameworks: role of hydrogen bonding in energy storage materials publication-title: Chem. Mater. – volume: 59 start-page: 4354 year: 2020 end-page: 4359 ident: b0025 article-title: A corrole-based covalent organic framework featuring desymmetrized topology publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 2682 year: 2016 end-page: 2690 ident: b0055 article-title: A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte publication-title: J. Mater. Chem. A – volume: 132 start-page: 8 year: 2019 end-page: 16 ident: b0170 article-title: Covalent organic framework-based electrochemical aptasensors for the ultrasensitive detection of antibiotics publication-title: Biosens. Bioelectron. – volume: 9 start-page: 22856 year: 2017 end-page: 22863 ident: b0050 article-title: Two-dimensional imine-linked covalent organic frameworks as a platform for selective oxidation of olefins publication-title: ACS Appl. Mater. Interf. – reference: C. Cui, Q. Wang, C. Xin d, Q. Liu, X. Deng, T. Liu, X. Xu, X. Zhang, Covalent organic framework with bidentate ligand sites as reliable fluorescent sensor for Cu2+, Micropor Mesopor Mat. 299 (2020) 110122. 10.1016/j.micromeso.2020.110122. – volume: 11 start-page: 12830 year: 2019 end-page: 12837 ident: b0110 article-title: Stable hydrazone-linked covalent organic frameworks containing O, N, O'-Chelating sites for Fe [III] detection in water publication-title: ACS Appl. Mater. Interf. – volume: 127 start-page: 135 year: 2019 end-page: 141 ident: b0230 article-title: An electrochemical biosensor based on novel butylamine capped CZTS nanoparticles immobilized by uricase for uric acid detection publication-title: Biosens. Bioelectron. – volume: 11 start-page: 13735 year: 2019 end-page: 13741 ident: b0180 article-title: Postsynthetic functionalization of Zr publication-title: ACS Appl. Mater. Interf. – volume: 257 start-page: 23 year: 2018 end-page: 28 ident: b0335 article-title: Sensitive fiber microelectrode made of nickel hydroxide nanosheets embedded in highly-aligned carbon nanotube scaffold for nonenzymatic glucose determination publication-title: Sens. Actuat. B Chem. – volume: 140 start-page: 1116 year: 2018 end-page: 1122 ident: b0045 article-title: Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 263 year: 2006 end-page: 274 ident: b0215 article-title: Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives publication-title: Neurochem. Int. – volume: 285 start-page: 546 year: 2019 end-page: 552 ident: b0115 article-title: Rapid detection of tryptamine by optosensor with molecularly imprinted polymers based on carbon dots-embedded covalent-organic frameworks publication-title: Sens. Actuat. B Chem. – volume: 52 start-page: 3741 year: 2013 end-page: 3745 ident: b0310 article-title: Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property publication-title: Angew. Chem. Int. Ed. – volume: 21 start-page: 12079 year: 2015 end-page: 12084 ident: b0040 article-title: An azine-linked covalent organic framework: synthesis, characterization and efficient gas storage publication-title: Chem. Eur. J. – volume: 375 start-page: 169 year: 2016 end-page: 178 ident: b0260 article-title: Electrocatalytic simultaneous determination of ascorbic acid, uric acid and l-Cysteine in real samples using quercetin silver nanoparticles-graphene nanosheets modified glassy carbon electrode publication-title: Appl. Surf. Sci. – volume: 114 start-page: 30 year: 2018 end-page: 36 ident: b0285 article-title: A simple ultrasensitive electrochemical sensor for simultaneous determination of gallic acid and uric acid in human urine and fruit juices based on zirconia-choline chloride-gold nanoparticles-modified carbon paste electrode publication-title: Biosens. Bioelectron. – volume: 139 start-page: 13083 year: 2017 end-page: 13091 ident: b0295 article-title: Selective molecular separation by interfacially crystallized covalent organic framework thin films publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 5366 year: 2016 end-page: 5375 ident: b0065 article-title: High conductive two-dimensional covalent organic framework for lithium storage with large capacity publication-title: ACS Appl. Mater. Interf. – reference: C.O. Chikere, N.H. Faisal, P. Kong Thoo Lin, C. Fernandez, The synergistic effect between graphene oxide nanocolloids and silicon dioxide nanoparticles for gallic acid sensing, J. Solid State Electrochem. 23 (2019) 1795-1809. 10.1007/s10008-019-04267-9. – volume: 3 start-page: 4854 year: 2011 end-page: 4858 ident: b0330 article-title: Ultra-sensitive and wide-dynamic-range sensors based on dense arrays of carbon nanotube tips publication-title: Nanoscale – volume: 276 start-page: 362 year: 2018 end-page: 369 ident: b0090 article-title: A novel AuNPs-doped COFs composite as electrochemical probe for chlorogenic acid detection with enhanced sensitivity and stability publication-title: Sens. Actuat. B Chem. – volume: 7 start-page: 9408 year: 2019 end-page: 9415 ident: b0095 article-title: Covalent organic framework nanosheet-based ultrasensitive and selective colorimetric sensor for trace Hg publication-title: ACS Sustain. Chem. Eng. – volume: 427 start-page: 496 year: 2018 end-page: 506 ident: b0255 article-title: Long term determination of dopamine and uric acid in the presence of ascorbic acid using ytterbia/reduced graphene oxide nanocomposite prepared through a sonochemical route publication-title: Appl. Surf. Sci. – volume: 11 start-page: 11029 year: 2019 end-page: 11060 ident: b0080 article-title: Functional π-conjugated two-dimensional covalent organic frameworks publication-title: ACS Appl. Mater. Interf. – volume: 178 start-page: 188 year: 2018 ident: 10.1016/j.apsusc.2021.149047_b0305 article-title: Electrochemical sensor based on palladium-reduced graphene oxide modified with gold nanoparticles for simultaneous determination of acetaminophen and 4-aminophenol publication-title: Talanta doi: 10.1016/j.talanta.2017.09.021 – volume: 310 start-page: 1166 year: 2005 ident: 10.1016/j.apsusc.2021.149047_b0005 article-title: Porous, crystalline, covalent organic frameworks publication-title: Science doi: 10.1126/science.1120411 – volume: 112 start-page: 3959 year: 2005 ident: 10.1016/j.apsusc.2021.149047_b0010 article-title: Design and preparation of porous polymers publication-title: Chem. Rev. doi: 10.1021/cr200440z – volume: 11 start-page: 11029 year: 2019 ident: 10.1016/j.apsusc.2021.149047_b0080 article-title: Functional π-conjugated two-dimensional covalent organic frameworks publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.8b19087 – volume: 281 start-page: 107 year: 2019 ident: 10.1016/j.apsusc.2021.149047_b0160 article-title: Novel three-dimensional electrochemical sensor with dual signal amplification based on MoS2 nanosheets and high-conductive NH2-MWCNT@COF for sulfamerazine determination publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2018.10.055 – volume: 10 start-page: 15364 year: 2018 ident: 10.1016/j.apsusc.2021.149047_b0100 article-title: Covalent organic framework functionalized with 8-hydroxyquinoline as a dual-mode fluorescent and colorimetric pH sensor publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.8b05484 – volume: 285 start-page: 546 year: 2019 ident: 10.1016/j.apsusc.2021.149047_b0115 article-title: Rapid detection of tryptamine by optosensor with molecularly imprinted polymers based on carbon dots-embedded covalent-organic frameworks publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2019.01.092 – volume: 132 start-page: 8 year: 2019 ident: 10.1016/j.apsusc.2021.149047_b0170 article-title: Covalent organic framework-based electrochemical aptasensors for the ultrasensitive detection of antibiotics publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.02.040 – volume: 9 start-page: 22856 year: 2017 ident: 10.1016/j.apsusc.2021.149047_b0050 article-title: Two-dimensional imine-linked covalent organic frameworks as a platform for selective oxidation of olefins publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.7b05870 – volume: 355 year: 2017 ident: 10.1016/j.apsusc.2021.149047_b0175 article-title: The atom, the molecule, and the covalent organic framework publication-title: Science doi: 10.1126/science.aal1585 – volume: 3 start-page: 7159 year: 2015 ident: 10.1016/j.apsusc.2021.149047_b0325 article-title: [3+3] Imine and ß-ketoenamine tethered fluorescent covalent-organic frameworks for CO2 uptake and nitroaromatic sensing publication-title: J. Mater. Chem. C doi: 10.1039/C5TC00670H – volume: 224 start-page: 915 year: 2016 ident: 10.1016/j.apsusc.2021.149047_b0280 article-title: A simple, ultrasensitive sensor for gallic acid and uric acid based on gold microclusters/sulfonate functionalized graphene modified glassy carbon electrode publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2015.10.101 – volume: 137 start-page: 3241 year: 2015 ident: 10.1016/j.apsusc.2021.149047_b0035 article-title: Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja509602c – volume: 145 year: 2019 ident: 10.1016/j.apsusc.2021.149047_b0085 article-title: Recent advances in the construction of functionalized covalent organic frameworks and their applications to sensing publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.111699 – volume: 59 start-page: 1161 year: 2020 ident: 10.1016/j.apsusc.2021.149047_b0300 article-title: Nanoparticle size-fractionation through self-standing porous covalent organic framework films publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201912381 – volume: 52 start-page: 256 year: 2006 ident: 10.1016/j.apsusc.2021.149047_b0205 article-title: Electrochemical removal of gallic acid from aqueous solutions publication-title: Electrochim. Acta. doi: 10.1016/j.electacta.2006.04.062 – volume: 140 start-page: 12374 year: 2018 ident: 10.1016/j.apsusc.2021.149047_b0125 article-title: Light-emitting covalent organic frameworks: fluorescence improving via pinpoint surgery and selective switch-on sensing of anions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08380 – volume: 2017 start-page: 2074 issue: 29 year: 2017 ident: 10.1016/j.apsusc.2021.149047_b0075 article-title: Molecular-level control of the capacitance of two-dimensional covalent organic frameworks: role of hydrogen bonding in energy storage materials publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b04178 – volume: 141 start-page: 14272 year: 2019 ident: 10.1016/j.apsusc.2021.149047_b0290 article-title: Semiconducting 2D triazine-cored covalent organic frameworks with unsubstituted olefin linkages publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b06219 – volume: 139 start-page: 4513 year: 2017 ident: 10.1016/j.apsusc.2021.149047_b0195 article-title: Targeted drug delivery in covalent organic nanosheets [CONs] via sequential postsynthetic modification publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00925 – volume: 139 start-page: 16228 year: 2017 ident: 10.1016/j.apsusc.2021.149047_b0060 article-title: Single Site Photocatalytic H2 Evolution from Covalent Organic Frameworks with molecular cobaloxime co-catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07489 – volume: 21 start-page: 12079 year: 2015 ident: 10.1016/j.apsusc.2021.149047_b0040 article-title: An azine-linked covalent organic framework: synthesis, characterization and efficient gas storage publication-title: Chem. Eur. J. doi: 10.1002/chem.201501206 – volume: 59 start-page: 4354 year: 2020 ident: 10.1016/j.apsusc.2021.149047_b0025 article-title: A corrole-based covalent organic framework featuring desymmetrized topology publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201915569 – volume: 140 start-page: 1116 year: 2018 ident: 10.1016/j.apsusc.2021.149047_b0045 article-title: Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11940 – volume: 141 start-page: 7081 year: 2019 ident: 10.1016/j.apsusc.2021.149047_b0145 article-title: Chiral BINOL-Based covalent organic frameworks for enantioselective sensing publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02153 – volume: 291 start-page: 293 year: 2019 ident: 10.1016/j.apsusc.2021.149047_b0135 article-title: Quartz crystal microbalance sensor based on covalent organic framework composite and molecularly imprinted polymer of poly[o-aminothiophenol] with gold nanoparticles for the determination of aflatoxin B1 publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2019.04.092 – volume: 7 start-page: 9408 year: 2019 ident: 10.1016/j.apsusc.2021.149047_b0095 article-title: Covalent organic framework nanosheet-based ultrasensitive and selective colorimetric sensor for trace Hg2+ detection publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b00613 – volume: 52 start-page: 13052 year: 2013 ident: 10.1016/j.apsusc.2021.149047_b0320 article-title: Enhancement of chemical stability and crystallinity in porphyrin-containing covalent organic frameworks by intramolecular hydrogen bonds publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201306775 – volume: 179 start-page: 170 year: 2013 ident: 10.1016/j.apsusc.2021.149047_b0240 article-title: Uricase biosensor based on a screen-printed electrode modified with prussian blue for detection of uric acid in human blood serum publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2012.10.090 – volume: 142 start-page: 3736 year: 2020 ident: 10.1016/j.apsusc.2021.149047_b0030 article-title: Three-dimensional mesoporous covalent organic frameworks through steric hindrance engineering publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00560 – ident: 10.1016/j.apsusc.2021.149047_b0265 doi: 10.1007/s10008-019-04267-9 – volume: 139 start-page: 2786 year: 2017 ident: 10.1016/j.apsusc.2021.149047_b0190 article-title: Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12885 – volume: 8 start-page: 8474 year: 2016 ident: 10.1016/j.apsusc.2021.149047_b0225 article-title: Highly sensitive determination of gallic acid based on a Pt nanoparticle decorated polyelectrolyte-functionalized graphene modified electrode publication-title: Anal. Methods doi: 10.1039/C6AY02583H – volume: 129 start-page: 64 year: 2019 ident: 10.1016/j.apsusc.2021.149047_b0140 article-title: 2D-Porphrinic covalent organic framework-based aptasensor with enhanced photoelectrochemical response for the detection of c-reactive protein publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.01.009 – volume: 119 start-page: 1205 year: 2010 ident: 10.1016/j.apsusc.2021.149047_b0210 article-title: Antioxidative and vasodilatory effects of phenolic acids in wine publication-title: Food Chem. doi: 10.1016/j.foodchem.2009.08.038 – volume: 8 start-page: 5366 year: 2016 ident: 10.1016/j.apsusc.2021.149047_b0065 article-title: High conductive two-dimensional covalent organic framework for lithium storage with large capacity publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.5b12370 – volume: 8 start-page: 310 year: 2016 ident: 10.1016/j.apsusc.2021.149047_b0315 article-title: Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks publication-title: Nat. Chem. doi: 10.1038/nchem.2444 – volume: 9 start-page: 13415 year: 2017 ident: 10.1016/j.apsusc.2021.149047_b0105 article-title: Highly fluorescent polyimide covalent organic nanosheets as sensing probes for the detection of 2,4,6- trinitrophenol publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.6b16423 – volume: 276 start-page: 362 year: 2018 ident: 10.1016/j.apsusc.2021.149047_b0090 article-title: A novel AuNPs-doped COFs composite as electrochemical probe for chlorogenic acid detection with enhanced sensitivity and stability publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2018.08.132 – volume: 375 start-page: 169 year: 2016 ident: 10.1016/j.apsusc.2021.149047_b0260 article-title: Electrocatalytic simultaneous determination of ascorbic acid, uric acid and l-Cysteine in real samples using quercetin silver nanoparticles-graphene nanosheets modified glassy carbon electrode publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.03.098 – volume: 52 start-page: 3741 year: 2013 ident: 10.1016/j.apsusc.2021.149047_b0310 article-title: Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201209903 – volume: 257 start-page: 23 year: 2018 ident: 10.1016/j.apsusc.2021.149047_b0335 article-title: Sensitive fiber microelectrode made of nickel hydroxide nanosheets embedded in highly-aligned carbon nanotube scaffold for nonenzymatic glucose determination publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2017.10.110 – volume: 57 start-page: 1034 year: 2013 ident: 10.1016/j.apsusc.2021.149047_b0070 article-title: A molecular pillar approach to grow vertical covalent organic framework nanosheets on graphene: hybrid materials for energy storage publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201710502 – volume: 52 start-page: 28 year: 2016 ident: 10.1016/j.apsusc.2021.149047_b0200 article-title: An aza-BODIPY based near-infrared fluorescent probe for sensitive discrimination of cysteine/homocysteine and glutathione in living cells publication-title: Chem. Commun. – volume: 128 start-page: 16 year: 2014 ident: 10.1016/j.apsusc.2021.149047_b0275 article-title: Nano-perovskite carbon paste composite electrode for the simultaneous determination of dopamine, ascorbic acid and uric acid publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.09.101 – volume: 139 start-page: 13083 year: 2017 ident: 10.1016/j.apsusc.2021.149047_b0295 article-title: Selective molecular separation by interfacially crystallized covalent organic framework thin films publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06640 – volume: 11 start-page: 12830 year: 2019 ident: 10.1016/j.apsusc.2021.149047_b0110 article-title: Stable hydrazone-linked covalent organic frameworks containing O, N, O'-Chelating sites for Fe [III] detection in water publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.9b02640 – volume: 117 start-page: 597 year: 2018 ident: 10.1016/j.apsusc.2021.149047_b0250 article-title: Salt-templated three-dimensional porous carbon for electrochemical determination of gallic acid publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.06.064 – volume: 4 start-page: 2682 year: 2016 ident: 10.1016/j.apsusc.2021.149047_b0055 article-title: A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte publication-title: J. Mater. Chem. A doi: 10.1039/C5TA10521H – volume: 126 start-page: 734 year: 2019 ident: 10.1016/j.apsusc.2021.149047_b0165 article-title: Two-dimensional porphyrin-based covalent organic framework: a novel platform for sensitive epidermal growth factor receptor and living cancer cell detection publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.11.047 – volume: 427 start-page: 496 year: 2018 ident: 10.1016/j.apsusc.2021.149047_b0255 article-title: Long term determination of dopamine and uric acid in the presence of ascorbic acid using ytterbia/reduced graphene oxide nanocomposite prepared through a sonochemical route publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.08.054 – volume: 419 start-page: 4 year: 2013 ident: 10.1016/j.apsusc.2021.149047_b0220 article-title: Facile fabrication, characterization of Pt-Ru nanoparticles modified reduced graphene oxide and its high electrocatalytic activity for methanol electro-oxidation, colloids surf. a: physicochem publication-title: Eng. Asp. – volume: 139 start-page: 4995 year: 2017 ident: 10.1016/j.apsusc.2021.149047_b0020 article-title: A dynamic three-dimensional covalent organic framework publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01097 – volume: 11 start-page: 13735 year: 2019 ident: 10.1016/j.apsusc.2021.149047_b0180 article-title: Postsynthetic functionalization of Zr4+-immobilized core-shell structured magnetic covalent organic frameworks for selective enrichment of phosphopeptides publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.9b03330 – volume: 57 start-page: 6042 year: 2018 ident: 10.1016/j.apsusc.2021.149047_b0185 article-title: Postsynthetic functionalization of three-dimensional covalent organic frameworks for selective extraction of lanthanide ions publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.201712246 – volume: 3 start-page: 4854 year: 2011 ident: 10.1016/j.apsusc.2021.149047_b0330 article-title: Ultra-sensitive and wide-dynamic-range sensors based on dense arrays of carbon nanotube tips publication-title: Nanoscale doi: 10.1039/c1nr10899a – volume: 42 start-page: 548 year: 2013 ident: 10.1016/j.apsusc.2021.149047_b0015 article-title: Covalent Organic Frameworks (COFs): from Design to Applications publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35072F – volume: 127 start-page: 135 year: 2019 ident: 10.1016/j.apsusc.2021.149047_b0230 article-title: An electrochemical biosensor based on novel butylamine capped CZTS nanoparticles immobilized by uricase for uric acid detection publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.12.008 – volume: 57 start-page: 279 year: 2015 ident: 10.1016/j.apsusc.2021.149047_b0235 article-title: An electrochemical sensor for gallic acid based on Fe2O3/electro-reduced graphene oxide composite: estimation for the antioxidant capacity index of wines publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2015.07.025 – volume: 188 start-page: 578 year: 2018 ident: 10.1016/j.apsusc.2021.149047_b0155 article-title: Covalent organic framework as a novel electrochemical platform for highly sensitive and stable detection of lead publication-title: Talanta doi: 10.1016/j.talanta.2018.06.032 – volume: 6 start-page: 3931 year: 2015 ident: 10.1016/j.apsusc.2021.149047_b0130 article-title: Chemical Sensing in Two Dimensional Porous Covalent Organic Nanosheets publication-title: Chem. Sci. doi: 10.1039/C5SC00512D – ident: 10.1016/j.apsusc.2021.149047_b0120 doi: 10.1016/j.micromeso.2020.110122 – volume: 48 start-page: 263 year: 2006 ident: 10.1016/j.apsusc.2021.149047_b0215 article-title: Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2005.10.010 – volume: 279 start-page: 53 year: 2019 ident: 10.1016/j.apsusc.2021.149047_b0245 article-title: MoS2 based ultra-low-cost, flexible, non-enzymatic and non-invasive electrochemical sensor for highly selective detection of uric acid in human urine samples publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2018.09.106 – volume: 539 start-page: 104 year: 2017 ident: 10.1016/j.apsusc.2021.149047_b0270 article-title: Design of titanium nitride and wolfram carbide-doped RGO/GC electrodes for determination of gallic acid publication-title: Anal. Biochem. doi: 10.1016/j.ab.2017.10.018 – volume: 114 start-page: 30 year: 2018 ident: 10.1016/j.apsusc.2021.149047_b0285 article-title: A simple ultrasensitive electrochemical sensor for simultaneous determination of gallic acid and uric acid in human urine and fruit juices based on zirconia-choline chloride-gold nanoparticles-modified carbon paste electrode publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.05.009 – volume: 10 start-page: 19554 year: 2018 ident: 10.1016/j.apsusc.2021.149047_b0150 article-title: Palladium supported on an amphiphilic triazine–urea-functionalized porous organic polymer as a highly efficient electrocatalyst for electrochemical sensing of rutin in human plasma publication-title: ACS ACS Appl. Mater. Interf. doi: 10.1021/acsami.8b00579 |
SSID | ssj0012873 |
Score | 2.5067601 |
Snippet | [Display omitted]
•Constructed a triazine-COFs with high surface area via a simple method.•Developed a hydrophilic N, O- rich carboxylated... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 149047 |
SubjectTerms | Carboxylation Covalent organic frameworks Gallic acid Gold nanoparticles Uric acid |
Title | Construction of hydrophilic N, O-rich carboxylated triazine-covalent organic frameworks for the application in selective simultaneous electrochemical detection |
URI | https://dx.doi.org/10.1016/j.apsusc.2021.149047 |
Volume | 545 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEG7EXJKDGGPwFalDjra7M9M9j6NIZI1kPSSCt6FfhSsys-ysoBf_in_VqnnICiFCjt10w9BdU_V1d9X3CfE9xNonOjXSGvqbFOZe5s4X0uI4dmlmyVny1cCvaTq5Uj-v9fWaOB1qYTitsvf9nU9vvXXfM-pXczSfzUa_mUeE2bfiqAUGXMSnVMZWfvz0muZB7rd7ZabBXB0UD-VzbY6XoZNow0SGcUQuoxizyMrfwtNKyDnbFBs9VoST7nM-i7VQbYlPKwyCX8QzC24OFLBQI9w8-kU951sSB9MjuJTk527AmYWtHx7vCFh6YKEO5pSWriYzo6ADnbSTAxwytRogLAuEDWHlgRtmFTStbA55SGhmnItoqlDfN9CL6biefQB8WLYpXtW2uDr78ed0InvNBeno8LCUhXOogjZGZWGcWMREZyrEudbGR0h9NgTlPKY6JqzprMmVjdB6ZIJjglLJV7Fe1VXYEYA4jpDgGUaFV0obG6VIR3eFKTWLJN8VybDUpesJyVkX464cMs9uy26DSt6gstugXSFfZ807Qo53xmfDLpZvDKukmPHPmXv_PXNffOQWPzpF-kCskxmEb4RdlvawNc5D8eHk_GIyfQFvMPSi |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXacmg5VEBb0VJgDhwxu0nsbHKsqq4W2F0OtNLeIn-NuqhKVs0itRf-Cn-VmXxUi4So1GMcW4oy45lne_yeEB9CrH2iUyOtodmkMPMycz6XFoexS0eWgiVvDczm6eRKfVnoxZY47-_CcFllF_vbmN5E665l0P3NwWq5HHxnHhFm34qjBhjk2-KZounLMgaffj3UeVD8bY-ZqTdfD4r7-3NNkZehpWjNTIZxRDEjH7LKyr_y00bOGb8Q-x1YhLP2e16KrVC-Es83KAQPxG9W3Ow5YKFCuL73t9WKt0kczD_CN0mB7hqcubXV3f0NIUsPrNTBpNLSVeRnlHWg1XZygH2pVg0EZoHAIWyccMOyhLrRzaEQCfWSixFNGaqfNXRqOq6jHwAf1k2NV3korsYXl-cT2YkuSEerh7XMnUMVtDFqFIaJRUz0SIU409r4CKnNhqCcx1THBDadNZmyEVqPzHBMWCo5EjtlVYbXAhCHERI-wyj3SmljoxRp7a4wpcc8yY5F0v_qwnWM5CyMcVP0pWc_itZABRuoaA10LOTDqFXLyPFI_1FvxeIvzyooafx35MmTR74Xu5PL2bSYfp5_fSP2-A2fQEX6VOyQS4S3BGTW9l3jqH8AAez2MA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+hydrophilic+N%2C+O-rich+carboxylated+triazine-covalent+organic+frameworks+for+the+application+in+selective+simultaneous+electrochemical+detection&rft.jtitle=Applied+surface+science&rft.au=Lin%2C+Xiaogeng&rft.au=Deng%2C+Yanhua&rft.au=He%2C+Yasan&rft.au=Chen%2C+Jianhua&rft.date=2021-04-15&rft.pub=Elsevier+B.V&rft.issn=0169-4332&rft.eissn=1873-5584&rft.volume=545&rft_id=info:doi/10.1016%2Fj.apsusc.2021.149047&rft.externalDocID=S0169433221001239 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon |