A knowledge-driven approach for activity recognition in smart homes based on activity profiling

The Internet of Things (IoT) is a technology for seamlessly connecting a large number of small-end devices and enabling the development of many smart applications to control different aspects of our life; shifting us, ever-closer to living in a smart city. IoT makes it possible to convert our homes...

Full description

Saved in:
Bibliographic Details
Published inFuture generation computer systems Vol. 107; pp. 924 - 941
Main Authors Rawashdeh, Majdi, Al Zamil, Mohammed GH, Samarah, Samer, Hossain, M. Shamim, Muhammad, Ghulam
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2020
Subjects
Online AccessGet full text
ISSN0167-739X
1872-7115
DOI10.1016/j.future.2017.10.031

Cover

Abstract The Internet of Things (IoT) is a technology for seamlessly connecting a large number of small-end devices and enabling the development of many smart applications to control different aspects of our life; shifting us, ever-closer to living in a smart city. IoT makes it possible to convert our homes to smart environments in which sensors are responsible for handling inhabitants’ behaviours and monitor their daily activities. Activity Recognition (AR) is a new service within smart homes. It has been introduced as a solution to improve the quality of life of people such as elderly and children. AR is concerned with the assignment of an activity label to a sequence of sensors’ events that are generated from the smart infrastructure. To help in effectively recognizing home activities, classification algorithms are applied on segmented sequences that are extracted automatically. Segments are subject to error due to the existence of irrelevant data and difficulties in how segmentation is applied. This negatively affects the accuracy on the classification task. In addition, the data generated from the network is streamed in nature, and big data techniques need to be utilized. In this paper, we propose a model to improve Activity Recognition in smart homes. The proposed technique is based on defining a profile for each activity from training datasets. The profile will be used to induce extra features and will help in distinguishing residents’ activities (fingerprinting). To validate our model, real datasets have been used for the experiments, and results show a significant enhancement in accuracy, compared with traditional techniques. •Knowledge base solution for activity recognition in smart homes.•A comprehensive framework for data collection, processing and real-time recognition.•Building a distinguished profile for activities based on the chronological order of their sensors.
AbstractList The Internet of Things (IoT) is a technology for seamlessly connecting a large number of small-end devices and enabling the development of many smart applications to control different aspects of our life; shifting us, ever-closer to living in a smart city. IoT makes it possible to convert our homes to smart environments in which sensors are responsible for handling inhabitants’ behaviours and monitor their daily activities. Activity Recognition (AR) is a new service within smart homes. It has been introduced as a solution to improve the quality of life of people such as elderly and children. AR is concerned with the assignment of an activity label to a sequence of sensors’ events that are generated from the smart infrastructure. To help in effectively recognizing home activities, classification algorithms are applied on segmented sequences that are extracted automatically. Segments are subject to error due to the existence of irrelevant data and difficulties in how segmentation is applied. This negatively affects the accuracy on the classification task. In addition, the data generated from the network is streamed in nature, and big data techniques need to be utilized. In this paper, we propose a model to improve Activity Recognition in smart homes. The proposed technique is based on defining a profile for each activity from training datasets. The profile will be used to induce extra features and will help in distinguishing residents’ activities (fingerprinting). To validate our model, real datasets have been used for the experiments, and results show a significant enhancement in accuracy, compared with traditional techniques. •Knowledge base solution for activity recognition in smart homes.•A comprehensive framework for data collection, processing and real-time recognition.•Building a distinguished profile for activities based on the chronological order of their sensors.
Author Muhammad, Ghulam
Hossain, M. Shamim
Samarah, Samer
Rawashdeh, Majdi
Al Zamil, Mohammed GH
Author_xml – sequence: 1
  givenname: Majdi
  surname: Rawashdeh
  fullname: Rawashdeh, Majdi
  email: m.rawashdeh@psut.edu.jo
  organization: Department of Management Information System, Princess Sumaya University for Technology, Jordan
– sequence: 2
  givenname: Mohammed GH
  orcidid: 0000-0003-4533-5894
  surname: Al Zamil
  fullname: Al Zamil, Mohammed GH
  email: mohammedz@yu.edu.jo
  organization: Department of Computer Information Systems, Yarmouk University, Jordan
– sequence: 3
  givenname: Samer
  surname: Samarah
  fullname: Samarah, Samer
  email: samers@yu.edu.jo
  organization: Department of Computer Information Systems, Yarmouk University, Jordan
– sequence: 4
  givenname: M. Shamim
  orcidid: 0000-0001-5906-9422
  surname: Hossain
  fullname: Hossain, M. Shamim
  email: mshossain@ksu.edu.sa
  organization: Chair of Pervasive and Mobile Computing, King Saud University, Riyadh 11543, Saudi Arabia
– sequence: 5
  givenname: Ghulam
  orcidid: 0000-0002-9781-3969
  surname: Muhammad
  fullname: Muhammad, Ghulam
  organization: Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
BookMark eNqFkM1KAzEUhYNUsK2-gYu8wNT8zExmXAil-AcFNwruQiZzp02dJiVJK317M1RcuNDVhcM5h3u-CRpZZwGha0pmlNDyZjPr9nHvYcYIFUmaEU7P0JhWgmWC0mKExskmMsHr9ws0CWFDSHJyOkZyjj-s--yhXUHWenMAi9Vu553Sa9w5j5WO5mDiEXvQbmVNNM5iY3HYKh_x2m0h4EYFaHHSf8ypoDO9satLdN6pPsDV952it4f718VTtnx5fF7Ml5nmpIxZrQtNm0a1rORNlQNnjSI1yQuhVV4T2hWMNTUIyngpOppcnAmqRJXTqmvzmk_R7alXexeCh05qE9XwbPTK9JISOaCSG3lCJQdUg5pQpXD-K7zzJu07_he7O8UgDTsY8DJoA1ZDaxKsKFtn_i74Ajh2iQk
CitedBy_id crossref_primary_10_3390_su142013534
crossref_primary_10_1016_j_jpdc_2018_07_020
crossref_primary_10_3390_a14080242
crossref_primary_10_1016_j_procs_2021_12_235
crossref_primary_10_1016_j_future_2020_10_030
crossref_primary_10_1016_j_jnca_2018_04_015
crossref_primary_10_1109_JIOT_2024_3424905
crossref_primary_10_1016_j_eswa_2019_04_004
crossref_primary_10_1016_j_future_2023_05_023
crossref_primary_10_1016_j_inffus_2019_09_002
crossref_primary_10_1007_s11042_018_6919_z
crossref_primary_10_1016_j_future_2019_07_020
crossref_primary_10_1016_j_future_2019_07_055
crossref_primary_10_1016_j_future_2023_01_006
crossref_primary_10_1016_j_future_2019_09_020
crossref_primary_10_1109_JSEN_2020_3009368
crossref_primary_10_1016_j_iot_2019_100124
crossref_primary_10_1016_j_future_2022_03_006
crossref_primary_10_1109_TVT_2019_2917288
crossref_primary_10_3390_app11010010
crossref_primary_10_1016_j_compbiomed_2022_106060
crossref_primary_10_3390_s21216962
Cites_doi 10.1016/j.procs.2015.05.130
10.1145/1553374.1553453
10.1109/MC.2012.328
10.1016/j.eswa.2012.08.066
10.5339/qfarc.2014.ITPP0366
10.3109/17538157.2010.506252
10.1002/9780470379424.ch37
10.3390/s120505363
10.1504/IJES.2017.086723
10.1088/0967-3334/30/4/R01
10.1186/1743-0003-9-21
10.1109/MPRV.2014.52
10.1016/j.pmcj.2016.09.010
10.1016/j.pmcj.2012.11.004
10.1109/ACCESS.2017.2685531
10.1109/TSMCB.2012.2216873
10.1016/j.pmcj.2012.06.002
10.1016/j.pmcj.2012.07.003
10.1109/TSMCA.2009.2025137
10.1016/j.neucom.2014.08.069
10.1504/IJICT.2016.074840
10.1016/j.patcog.2017.02.028
10.1145/2499621
10.1016/j.jpdc.2016.10.005
10.1081/SAC-120017494
10.1145/2556288.2557278
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2017.10.031
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 941
ExternalDocumentID 10_1016_j_future_2017_10_031
S0167739X17311342
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-9c5c1bbad263b84e32ba090457ca4901f522b9e712367f12633271a78418fd493
IEDL.DBID AIKHN
ISSN 0167-739X
IngestDate Thu Apr 24 23:06:26 EDT 2025
Tue Jul 01 01:42:34 EDT 2025
Fri Feb 23 02:47:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Activity recognition
Smart cities
Internet of Things
Data mining
Smart homes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-9c5c1bbad263b84e32ba090457ca4901f522b9e712367f12633271a78418fd493
ORCID 0000-0002-9781-3969
0000-0003-4533-5894
0000-0001-5906-9422
PageCount 18
ParticipantIDs crossref_citationtrail_10_1016_j_future_2017_10_031
crossref_primary_10_1016_j_future_2017_10_031
elsevier_sciencedirect_doi_10_1016_j_future_2017_10_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References H. Lee, R. Grosse, R. Ranganath, A.Y. Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in: Proceedings of the 26th Annual International Conference on Machine Learning, ICML, Montreal, QC, Canada, 14–18 June 2009, pp. 609–616.
Kranz, Möller, Hammerla, Diewald, Plötz, Olivier, Roalter (b19) 2013; 9
Cook, Krishnan, Rashidi (b24) 2013; 43
A. Avci, S. Bosch, M. Marin-Perianu, R. Marin-Perianu, P. Havinga, Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: A survey, in: Architecture of computing systems, ARCS, 2010 23rd international conference on 2010, February pp. 1-10, VDE.
Patel, Park, Bonato, Chan, Rodgers (b20) 2012; 9
Hossain, Rahman, Muhammad (b34) 2017; 103
Samarah, Al Zamil, Aleroud, Rawashdeh, Alhamid, Alamri (b4) 2017; 5
Moskvina, Zhigljavsky (b2) 2003; 32
Al Zamil, Samarah, Rawashdeh, Hossain (b5) 2017
S. Mazilu, U. Blanke, M. Hardegger, G. Tröster, E. Gazit, J.M. Hausdorff, GaitAssist: A daily-life support and training system for parkinson’s disease patients with freezing of gait, in: Proceedings of the ACM Conference on Human Factors in Computing Systems, SIGCHI, Toronto, ON, Canada, 26 April–1 May 2014.
Figo, Diniz, Ferreira, Cardoso (b27) 2010; 14
Zamil, Samarah (b13) 2015; 7
M.Gh.Al. Zamil, S. Samarah, Application of design for verification to smart sensory systems, in: Qatar Foundation Annual Research Conference, 2014, November, (No. 1, p. ITPP0366).
Zamil, Samarah (b12) 2016; 8
Tapia, Intille, Larson (b6) 2004; 4
Cook, Crandall, Thomas, Krishnan (b7) 2013; 46
Liu, Wang, Su, Huang, Liu (b9) 2017; 68
Fahad, Khan, Rajarajan (b25) 2015; 149
Ordonez, Englebienne, de Toledo, van Kasteren, Sanchis, Krose (b23) 2014; 13
Al Zamil, Can (b18) 2011; 36
Preece, Goulermas, Kenney, Howard, Meijer, Crompton (b22) 2009; 30
Cook, Youngblood, Heierman, Gopalratnam, Rao, Litvin, Khawaja (b10) 2003
De la Torre, Hodgins, Bargteil, Martin, Macey, Collado, Beltran (b8) 2008
L. Liao, D. Fox, H. Kautz, Location-based activity recognition, in: Advances in Neural Information Processing Systems, 2006, pp. 787-794.
Hossain, Muhammad, Alamri (b35) 2017
Hossain, Muhammad, Abdul, Song, Gupta (b15) 2017
Minor, Cook (b32) 2017; 38
Zamil (b36) 2017; 9
S. Helal, R. Bose, S. Pickles, H. Elzabadani, J. King, Y. Kaddourah, The gator tech smart house: A programmable pervasive space, in: The Engineering Handbook of Smart Technology for Aging, Disability, and Independence, 2008, pp. 693-709.
Bulling, Blanke, Schiele (b21) 2014; 46
Krishnan, Cook (b37) 2014; 10
Okeyo, Chen, Wang, Sterritt (b3) 2014; 10
R.S. Huang, B.C. Chien, Activity recognition on multi-sensor data streams using distinguishing sequential patterns, in: The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013, 2A1-IOS-3b-1.
Ordóñez, Iglesias, De Toledo, Ledezma, Sanchis (b28) 2013; 40
Han, Han, Lee, Sarkar, Lee (b33) 2012; 12
Rashidi, Cook (b16) 2009; 39
Zamil (b26) 2015; 52
Minor (10.1016/j.future.2017.10.031_b32) 2017; 38
Kranz (10.1016/j.future.2017.10.031_b19) 2013; 9
Cook (10.1016/j.future.2017.10.031_b7) 2013; 46
Rashidi (10.1016/j.future.2017.10.031_b16) 2009; 39
10.1016/j.future.2017.10.031_b31
Zamil (10.1016/j.future.2017.10.031_b12) 2016; 8
10.1016/j.future.2017.10.031_b30
Okeyo (10.1016/j.future.2017.10.031_b3) 2014; 10
Moskvina (10.1016/j.future.2017.10.031_b2) 2003; 32
Tapia (10.1016/j.future.2017.10.031_b6) 2004; 4
Liu (10.1016/j.future.2017.10.031_b9) 2017; 68
De la Torre (10.1016/j.future.2017.10.031_b8) 2008
Zamil (10.1016/j.future.2017.10.031_b26) 2015; 52
Zamil (10.1016/j.future.2017.10.031_b13) 2015; 7
Al Zamil (10.1016/j.future.2017.10.031_b5) 2017
Patel (10.1016/j.future.2017.10.031_b20) 2012; 9
Figo (10.1016/j.future.2017.10.031_b27) 2010; 14
Ordóñez (10.1016/j.future.2017.10.031_b28) 2013; 40
Bulling (10.1016/j.future.2017.10.031_b21) 2014; 46
Zamil (10.1016/j.future.2017.10.031_b36) 2017; 9
10.1016/j.future.2017.10.031_b29
Cook (10.1016/j.future.2017.10.031_b10) 2003
Ordonez (10.1016/j.future.2017.10.031_b23) 2014; 13
Samarah (10.1016/j.future.2017.10.031_b4) 2017; 5
Preece (10.1016/j.future.2017.10.031_b22) 2009; 30
Han (10.1016/j.future.2017.10.031_b33) 2012; 12
Fahad (10.1016/j.future.2017.10.031_b25) 2015; 149
Hossain (10.1016/j.future.2017.10.031_b34) 2017; 103
Krishnan (10.1016/j.future.2017.10.031_b37) 2014; 10
10.1016/j.future.2017.10.031_b1
10.1016/j.future.2017.10.031_b14
Cook (10.1016/j.future.2017.10.031_b24) 2013; 43
Hossain (10.1016/j.future.2017.10.031_b35) 2017
10.1016/j.future.2017.10.031_b17
10.1016/j.future.2017.10.031_b11
Hossain (10.1016/j.future.2017.10.031_b15) 2017
Al Zamil (10.1016/j.future.2017.10.031_b18) 2011; 36
References_xml – volume: 40
  start-page: 1248
  year: 2013
  end-page: 1255
  ident: b28
  article-title: Online activity recognition using evolving classifiers
  publication-title: Expert Syst. Appl.
– volume: 10
  start-page: 155
  year: 2014
  end-page: 172
  ident: b3
  article-title: Dynamic sensor data segmentation for real-time knowledge-driven activity recognition
  publication-title: Perv. Mob. Comput.
– volume: 9
  start-page: 413
  year: 2017
  end-page: 425
  ident: b36
  article-title: A verifiable framework for smart sensory systems
  publication-title: Int. J. Embed. Syst.
– volume: 9
  start-page: 203
  year: 2013
  end-page: 215
  ident: b19
  article-title: The mobile fitness coach: Towards individualized skill assessment using personalized mobile devices
  publication-title: Perv. Mob. Comput.
– start-page: 1
  year: 2017
  end-page: 11
  ident: b35
  article-title: Smart healthcare monitoring: A voice pathology detection paradigm for smart cities
  publication-title: Multimedia Syst.
– volume: 5
  start-page: 3848
  year: 2017
  end-page: 3859
  ident: b4
  article-title: An efficient activity recognition framework: Toward privacy-sensitive health data sensing
  publication-title: IEEE Access
– start-page: 135
  year: 2008
  ident: b8
  publication-title: Guide to the Carnegiemellon University Multimodal Activity (cmu-mmac) Database
– volume: 52
  start-page: 1126
  year: 2015
  end-page: 1132
  ident: b26
  article-title: Verifying smart sensory systems on cloud computing frameworks
  publication-title: Procedia Comput. Sci.
– start-page: 521
  year: 2003
  end-page: 524
  ident: b10
  article-title: MavHome: An agent-based smart home
  publication-title: Pervasive Computing and Communications, 2003(PerCom 2003) Proceedings of the First IEEE International Conference on
– reference: A. Avci, S. Bosch, M. Marin-Perianu, R. Marin-Perianu, P. Havinga, Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: A survey, in: Architecture of computing systems, ARCS, 2010 23rd international conference on 2010, February pp. 1-10, VDE.
– volume: 46
  start-page: 62
  year: 2013
  end-page: 69
  ident: b7
  article-title: CASAS: A smart home in a box
  publication-title: Computer
– volume: 43
  start-page: 820
  year: 2013
  end-page: 828
  ident: b24
  article-title: Activity discovery and activity recognition: A new partnership
  publication-title: IEEE Trans. Cybernet.
– volume: 32
  start-page: 319
  year: 2003
  end-page: 352
  ident: b2
  article-title: An algorithm based on singular spectrum analysis for change-point detection
  publication-title: Commun. Statist.-Simul. Comput.
– reference: R.S. Huang, B.C. Chien, Activity recognition on multi-sensor data streams using distinguishing sequential patterns, in: The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013, 2A1-IOS-3b-1.
– volume: 7
  start-page: 265
  year: 2015
  end-page: 285
  ident: b13
  article-title: Dynamic rough-based clustering for vehicular ad-hoc networks
  publication-title: Int. J. Inform. Decis. Sci.
– volume: 14
  start-page: 645
  year: 2010
  end-page: 662
  ident: b27
  article-title: Preprocessing techniques for context recognition from accelerometer data
  publication-title: Perv. Mob. Comput.
– volume: 46
  start-page: 1
  year: 2014
  end-page: 33
  ident: b21
  article-title: A tutorial on human activity recognition using body-worn inertial sensors
  publication-title: ACM Comput. Surv.
– volume: 149
  start-page: 1286
  year: 2015
  end-page: 1298
  ident: b25
  article-title: Activity recognition in smart homes with self-verification of assignments
  publication-title: Neurocomputing
– volume: 103
  start-page: 11
  year: 2017
  end-page: 21
  ident: b34
  article-title: Cyber–physical cloud-oriented multi-sensory smart home framework for elderly people: An energy efficiency perspective
  publication-title: J. Parallel Distrib. Comput.
– volume: 36
  start-page: 100
  year: 2011
  end-page: 115
  ident: b18
  article-title: A model based on multi-features to enhance healthcare and medical document retrieval
  publication-title: Inform. Health Soc. Care
– volume: 38
  start-page: 77
  year: 2017
  end-page: 91
  ident: b32
  article-title: Forecasting occurrences of activities
  publication-title: Perv. Mob. Comput.
– volume: 39
  start-page: 949
  year: 2009
  end-page: 959
  ident: b16
  article-title: Keeping the resident in the loop: adapting the smart home to the user
  publication-title: IEEE Trans. Syst. Man Cybernet. A
– volume: 12
  start-page: 5363
  year: 2012
  end-page: 5379
  ident: b33
  article-title: A framework for supervising lifestyle diseases using long-term activity monitoring
  publication-title: Sensors
– reference: M.Gh.Al. Zamil, S. Samarah, Application of design for verification to smart sensory systems, in: Qatar Foundation Annual Research Conference, 2014, November, (No. 1, p. ITPP0366).
– volume: 4
  start-page: 158
  year: 2004
  end-page: 175
  ident: b6
  article-title: , March, Activity recognition in the home using simple and ubiquitous sensors
  publication-title: Pervasive
– reference: H. Lee, R. Grosse, R. Ranganath, A.Y. Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in: Proceedings of the 26th Annual International Conference on Machine Learning, ICML, Montreal, QC, Canada, 14–18 June 2009, pp. 609–616.
– volume: 8
  start-page: 140
  year: 2016
  end-page: 164
  ident: b12
  article-title: Dynamic event classification for intrusion and false alarm detection in vehicular ad hoc networks
  publication-title: Int. J. Inform. Commun. Technol.
– volume: 68
  start-page: 295
  year: 2017
  end-page: 309
  ident: b9
  article-title: Towards complex activity recognition using a Bayesian network-based probabilistic generative framework
  publication-title: Pattern Recognit.
– reference: S. Helal, R. Bose, S. Pickles, H. Elzabadani, J. King, Y. Kaddourah, The gator tech smart house: A programmable pervasive space, in: The Engineering Handbook of Smart Technology for Aging, Disability, and Independence, 2008, pp. 693-709.
– year: 2017
  ident: b15
  article-title: Cloud-assisted secure video transmission and sharing framework for smart cities
  publication-title: Future Gener. Comput. Syst.
– volume: 9
  start-page: 21
  year: 2012
  ident: b20
  article-title: A review of wearable sensors and systems with application in rehabilitation
  publication-title: J. Neuroeng. Rehab.
– reference: L. Liao, D. Fox, H. Kautz, Location-based activity recognition, in: Advances in Neural Information Processing Systems, 2006, pp. 787-794.
– reference: S. Mazilu, U. Blanke, M. Hardegger, G. Tröster, E. Gazit, J.M. Hausdorff, GaitAssist: A daily-life support and training system for parkinson’s disease patients with freezing of gait, in: Proceedings of the ACM Conference on Human Factors in Computing Systems, SIGCHI, Toronto, ON, Canada, 26 April–1 May 2014.
– start-page: 1
  year: 2017
  end-page: 15
  ident: b5
  article-title: An ODT-based abstraction for mining closed sequential temporal patterns in IoT-cloud smart homes
  publication-title: Cluster Comput.
– volume: 13
  start-page: 67
  year: 2014
  end-page: 75
  ident: b23
  article-title: In-home activity recognition: Bayesian inference for hidden markov models
  publication-title: Perv. Comput. IEEE
– volume: 30
  start-page: 21
  year: 2009
  end-page: 27
  ident: b22
  article-title: Activity identification using body-mounted sensors: A review of classification techniques
  publication-title: Physiol. Meas.
– volume: 10
  start-page: 138
  year: 2014
  end-page: 154
  ident: b37
  article-title: Activity recognition on streaming sensor data
  publication-title: Perv. Mob. Comput.
– volume: 52
  start-page: 1126
  year: 2015
  ident: 10.1016/j.future.2017.10.031_b26
  article-title: Verifying smart sensory systems on cloud computing frameworks
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.05.130
– ident: 10.1016/j.future.2017.10.031_b29
  doi: 10.1145/1553374.1553453
– volume: 46
  start-page: 62
  issue: 7
  year: 2013
  ident: 10.1016/j.future.2017.10.031_b7
  article-title: CASAS: A smart home in a box
  publication-title: Computer
  doi: 10.1109/MC.2012.328
– volume: 40
  start-page: 1248
  issue: 4
  year: 2013
  ident: 10.1016/j.future.2017.10.031_b28
  article-title: Online activity recognition using evolving classifiers
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.08.066
– ident: 10.1016/j.future.2017.10.031_b14
  doi: 10.5339/qfarc.2014.ITPP0366
– volume: 36
  start-page: 100
  issue: 2
  year: 2011
  ident: 10.1016/j.future.2017.10.031_b18
  article-title: A model based on multi-features to enhance healthcare and medical document retrieval
  publication-title: Inform. Health Soc. Care
  doi: 10.3109/17538157.2010.506252
– ident: 10.1016/j.future.2017.10.031_b11
  doi: 10.1002/9780470379424.ch37
– volume: 14
  start-page: 645
  year: 2010
  ident: 10.1016/j.future.2017.10.031_b27
  article-title: Preprocessing techniques for context recognition from accelerometer data
  publication-title: Perv. Mob. Comput.
– start-page: 521
  year: 2003
  ident: 10.1016/j.future.2017.10.031_b10
  article-title: MavHome: An agent-based smart home
– start-page: 135
  year: 2008
  ident: 10.1016/j.future.2017.10.031_b8
– volume: 12
  start-page: 5363
  issue: 5
  year: 2012
  ident: 10.1016/j.future.2017.10.031_b33
  article-title: A framework for supervising lifestyle diseases using long-term activity monitoring
  publication-title: Sensors
  doi: 10.3390/s120505363
– volume: 9
  start-page: 413
  issue: 5
  year: 2017
  ident: 10.1016/j.future.2017.10.031_b36
  article-title: A verifiable framework for smart sensory systems
  publication-title: Int. J. Embed. Syst.
  doi: 10.1504/IJES.2017.086723
– volume: 30
  start-page: 21
  year: 2009
  ident: 10.1016/j.future.2017.10.031_b22
  article-title: Activity identification using body-mounted sensors: A review of classification techniques
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/30/4/R01
– volume: 9
  start-page: 21
  issue: 1
  year: 2012
  ident: 10.1016/j.future.2017.10.031_b20
  article-title: A review of wearable sensors and systems with application in rehabilitation
  publication-title: J. Neuroeng. Rehab.
  doi: 10.1186/1743-0003-9-21
– volume: 13
  start-page: 67
  year: 2014
  ident: 10.1016/j.future.2017.10.031_b23
  article-title: In-home activity recognition: Bayesian inference for hidden markov models
  publication-title: Perv. Comput. IEEE
  doi: 10.1109/MPRV.2014.52
– start-page: 1
  year: 2017
  ident: 10.1016/j.future.2017.10.031_b35
  article-title: Smart healthcare monitoring: A voice pathology detection paradigm for smart cities
  publication-title: Multimedia Syst.
– volume: 38
  start-page: 77
  year: 2017
  ident: 10.1016/j.future.2017.10.031_b32
  article-title: Forecasting occurrences of activities
  publication-title: Perv. Mob. Comput.
  doi: 10.1016/j.pmcj.2016.09.010
– ident: 10.1016/j.future.2017.10.031_b1
– volume: 10
  start-page: 155
  year: 2014
  ident: 10.1016/j.future.2017.10.031_b3
  article-title: Dynamic sensor data segmentation for real-time knowledge-driven activity recognition
  publication-title: Perv. Mob. Comput.
  doi: 10.1016/j.pmcj.2012.11.004
– volume: 5
  start-page: 3848
  year: 2017
  ident: 10.1016/j.future.2017.10.031_b4
  article-title: An efficient activity recognition framework: Toward privacy-sensitive health data sensing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2685531
– ident: 10.1016/j.future.2017.10.031_b30
– volume: 43
  start-page: 820
  issue: 3
  year: 2013
  ident: 10.1016/j.future.2017.10.031_b24
  article-title: Activity discovery and activity recognition: A new partnership
  publication-title: IEEE Trans. Cybernet.
  doi: 10.1109/TSMCB.2012.2216873
– volume: 7
  start-page: 265
  issue: 3
  year: 2015
  ident: 10.1016/j.future.2017.10.031_b13
  article-title: Dynamic rough-based clustering for vehicular ad-hoc networks
  publication-title: Int. J. Inform. Decis. Sci.
– year: 2017
  ident: 10.1016/j.future.2017.10.031_b15
  article-title: Cloud-assisted secure video transmission and sharing framework for smart cities
  publication-title: Future Gener. Comput. Syst.
– volume: 9
  start-page: 203
  year: 2013
  ident: 10.1016/j.future.2017.10.031_b19
  article-title: The mobile fitness coach: Towards individualized skill assessment using personalized mobile devices
  publication-title: Perv. Mob. Comput.
  doi: 10.1016/j.pmcj.2012.06.002
– volume: 4
  start-page: 158
  year: 2004
  ident: 10.1016/j.future.2017.10.031_b6
  article-title: , March, Activity recognition in the home using simple and ubiquitous sensors
  publication-title: Pervasive
– volume: 10
  start-page: 138
  year: 2014
  ident: 10.1016/j.future.2017.10.031_b37
  article-title: Activity recognition on streaming sensor data
  publication-title: Perv. Mob. Comput.
  doi: 10.1016/j.pmcj.2012.07.003
– volume: 39
  start-page: 949
  issue: 5
  year: 2009
  ident: 10.1016/j.future.2017.10.031_b16
  article-title: Keeping the resident in the loop: adapting the smart home to the user
  publication-title: IEEE Trans. Syst. Man Cybernet. A
  doi: 10.1109/TSMCA.2009.2025137
– volume: 149
  start-page: 1286
  year: 2015
  ident: 10.1016/j.future.2017.10.031_b25
  article-title: Activity recognition in smart homes with self-verification of assignments
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.069
– volume: 8
  start-page: 140
  issue: 2–3
  year: 2016
  ident: 10.1016/j.future.2017.10.031_b12
  article-title: Dynamic event classification for intrusion and false alarm detection in vehicular ad hoc networks
  publication-title: Int. J. Inform. Commun. Technol.
  doi: 10.1504/IJICT.2016.074840
– volume: 68
  start-page: 295
  year: 2017
  ident: 10.1016/j.future.2017.10.031_b9
  article-title: Towards complex activity recognition using a Bayesian network-based probabilistic generative framework
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.02.028
– volume: 46
  start-page: 1
  year: 2014
  ident: 10.1016/j.future.2017.10.031_b21
  article-title: A tutorial on human activity recognition using body-worn inertial sensors
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2499621
– volume: 103
  start-page: 11
  year: 2017
  ident: 10.1016/j.future.2017.10.031_b34
  article-title: Cyber–physical cloud-oriented multi-sensory smart home framework for elderly people: An energy efficiency perspective
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2016.10.005
– start-page: 1
  year: 2017
  ident: 10.1016/j.future.2017.10.031_b5
  article-title: An ODT-based abstraction for mining closed sequential temporal patterns in IoT-cloud smart homes
  publication-title: Cluster Comput.
– volume: 32
  start-page: 319
  issue: 2
  year: 2003
  ident: 10.1016/j.future.2017.10.031_b2
  article-title: An algorithm based on singular spectrum analysis for change-point detection
  publication-title: Commun. Statist.-Simul. Comput.
  doi: 10.1081/SAC-120017494
– ident: 10.1016/j.future.2017.10.031_b17
  doi: 10.1145/2556288.2557278
– ident: 10.1016/j.future.2017.10.031_b31
SSID ssj0001731
Score 2.386876
Snippet The Internet of Things (IoT) is a technology for seamlessly connecting a large number of small-end devices and enabling the development of many smart...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 924
SubjectTerms Activity recognition
Data mining
Internet of Things
Smart cities
Smart homes
Title A knowledge-driven approach for activity recognition in smart homes based on activity profiling
URI https://dx.doi.org/10.1016/j.future.2017.10.031
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QLl58G_FBevBasI-l2yMhEtTIRUm4bdrubsTIQgCv_nanu-1GE6OJ12Ym6U7bb6bdb2YQuo54LrSVEbGwX4iQmSJK65hwy4QF_8cYdfnOj5P-eCruZ9GsgYYhF8bRKj32V5heorUf6Xlr9lbzee_JEeglVzMqOaVcAA63GFf9qIlag7uH8aQGZCcQSnw7hZBBV9K8qtIdjuMlu47mxenPHuqL1xkdoD0fLuJBNaND1MiKI7QfWjFgfzKPUTLA9esYSdcOwnAoF44hLsUuf8G1icA1Y2hZ4HmBNwv4WvyyXGQb7DxaimG8Fq46eoN3O0HT0e3zcEx87wRi4RKwJcpGlhqjU9bnJhYZZ0bfKIjfpNUCYoAc4i6jMllWcMspSHEmqXZ_IeM8FYqfomaxLLIzhLUycFDjmOc0F9ymRsAyappCaKN42o_biAd7JdYXFnf9Ld6SwCB7TSorJ87KbhSs3Eak1lpVhTX-kJdhKZJvGyQB7P9V8_zfmhdol7nrdfnocoma2_V7dgUxyNZ00E73g3b8TvsEx83cVQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6m7QAX3ojxzIFrGGnSpTlOE9PGHhc2abcoSVsxxLppG_8fp00rkBBIXCNbSp3ks5N-thG6D1nKtRUhsbBfCBeJJFLriDAbcAv-Lwioy3ceT9r9GX-eh_Ma6pa5MI5W6bG_wPQcrf1Iy1uztV4sWi-OQC-YnFPBKGUccLjBQ7jt1VGjMxj2JxUgO4GyxLdTKDPocppXUbrDcbzEg6N5Mfqzh_ridXpH6MCHi7hTzOgY1ZLsBB2WrRiwP5mnSHVw9TpG4o2DMFyWC8cQl2KXv-DaROCKMbTK8CLD2yV8LX5dLZMtdh4txjBeCRcdvcG7naFZ72na7RPfO4FYuATsiLShpcboOGgzE_GEBUY_SojfhNUcYoAU4i4jE5FXcEspSLFAUO3-QkZpzCU7R_VslSUXCGtp4KBGEUtpypmNDYdl1DSG0EayuB01ESvtpawvLO76W7yrkkH2pgorK2dlNwpWbiJSaa2Lwhp_yItyKdS3DaIA-3_VvPy35h3a60_HIzUaTIZXaD9wV-38AeYa1Xebj-QG4pGdufX77RMSo95E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+knowledge-driven+approach+for+activity+recognition+in+smart+homes+based+on+activity+profiling&rft.jtitle=Future+generation+computer+systems&rft.au=Rawashdeh%2C+Majdi&rft.au=Al+Zamil%2C+Mohammed+GH&rft.au=Samarah%2C+Samer&rft.au=Hossain%2C+M.+Shamim&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=0167-739X&rft.eissn=1872-7115&rft.volume=107&rft.spage=924&rft.epage=941&rft_id=info:doi/10.1016%2Fj.future.2017.10.031&rft.externalDocID=S0167739X17311342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon