Direct carbon dioxide hydrogenation to long-chain α-olefins over FeMnK catalysts
The catalytic hydrogenation of CO2 to high-carbon linear α-olefins (LAOs; C ≥ 4) has gained considerable attention. In this study, FeMnK catalysts were synthesised using an organic combustion method. The introduction of Mn promoted the dispersion of Fe species and enhanced the formation of the iron...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 358; p. 124440 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The catalytic hydrogenation of CO2 to high-carbon linear α-olefins (LAOs; C ≥ 4) has gained considerable attention. In this study, FeMnK catalysts were synthesised using an organic combustion method. The introduction of Mn promoted the dispersion of Fe species and enhanced the formation of the iron oxides, whereas the introduction of K promoter led to the formation of iron carbides and improved the carbon chain-growth capability of catalysts. The mechanistic studies revealed that the addition of Mn and K regulated the matching of reverse water gas shift and subsequent Fischer–Tropsch synthesis reactions by enhancing the formation and further conversion of CO intermediate. The selectivity and productivity of LAOs were 45.7 % and 0.236 g∙gcat−1∙h−1, respectively, under the reaction condition of 320 °C, 2 MPa and 20000 mL∙gcat−1∙h−1. Furthermore, FeMn0.1K0.1 exhibited excellent stability for up to 160-h on stream, demonstrating promising industrial application prospects for CO2 conversion into value-added fuels and chemicals.
[Display omitted]
•Fe catalysts decorated with Mn and K for CO2 hydrogenation to linear α-olefins.•Mn promotes the dispersion of Fe species and enhances the formation of FeOy phases.•K promotes the formation of Fe5C2 and improves the carbon chain-growth capability.•Mn and K promoters regulate the matching of RWGS and subsequent FTS reactions.•The as-prepared FeMn0.1K0.1 exhibits the best performance with excellent stability. |
---|---|
AbstractList | The catalytic hydrogenation of CO2 to high-carbon linear α-olefins (LAOs; C ≥ 4) has gained considerable attention. In this study, FeMnK catalysts were synthesised using an organic combustion method. The introduction of Mn promoted the dispersion of Fe species and enhanced the formation of the iron oxides, whereas the introduction of K promoter led to the formation of iron carbides and improved the carbon chain-growth capability of catalysts. The mechanistic studies revealed that the addition of Mn and K regulated the matching of reverse water gas shift and subsequent Fischer–Tropsch synthesis reactions by enhancing the formation and further conversion of CO intermediate. The selectivity and productivity of LAOs were 45.7 % and 0.236 g∙gcat−1∙h−1, respectively, under the reaction condition of 320 °C, 2 MPa and 20000 mL∙gcat−1∙h−1. Furthermore, FeMn0.1K0.1 exhibited excellent stability for up to 160-h on stream, demonstrating promising industrial application prospects for CO2 conversion into value-added fuels and chemicals.
[Display omitted]
•Fe catalysts decorated with Mn and K for CO2 hydrogenation to linear α-olefins.•Mn promotes the dispersion of Fe species and enhances the formation of FeOy phases.•K promotes the formation of Fe5C2 and improves the carbon chain-growth capability.•Mn and K promoters regulate the matching of RWGS and subsequent FTS reactions.•The as-prepared FeMn0.1K0.1 exhibits the best performance with excellent stability. |
ArticleNumber | 124440 |
Author | Bu, Xianni Ren, Hao Xin, Jing Zhang, Jian Li, Jiong Yang, Guoming Sun, Yuhan Gao, Peng Yang, Haiyan Wu, Chongchong Wang, Hao |
Author_xml | – sequence: 1 givenname: Hao surname: Ren fullname: Ren, Hao organization: CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China – sequence: 2 givenname: Haiyan surname: Yang fullname: Yang, Haiyan organization: CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China – sequence: 3 givenname: Jing surname: Xin fullname: Xin, Jing organization: CNOOC Institute of Chemicals & Advanced Materials, Beijing 102200, China – sequence: 4 givenname: Chongchong surname: Wu fullname: Wu, Chongchong organization: CNOOC Institute of Chemicals & Advanced Materials, Beijing 102200, China – sequence: 5 givenname: Hao surname: Wang fullname: Wang, Hao organization: CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China – sequence: 6 givenname: Jian surname: Zhang fullname: Zhang, Jian organization: CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China – sequence: 7 givenname: Xianni surname: Bu fullname: Bu, Xianni organization: CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China – sequence: 8 givenname: Guoming surname: Yang fullname: Yang, Guoming organization: CNOOC Institute of Chemicals & Advanced Materials, Beijing 102200, China – sequence: 9 givenname: Jiong surname: Li fullname: Li, Jiong organization: CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China – sequence: 10 givenname: Yuhan surname: Sun fullname: Sun, Yuhan email: sunyh@sari.ac.cn organization: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China – sequence: 11 givenname: Peng orcidid: 0000-0003-4859-4488 surname: Gao fullname: Gao, Peng email: gaopeng@sari.ac.cn organization: CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China |
BookMark | eNqFkM1KAzEUhYNUsK2-gYt5gan5m-mMC0GqVbEigq5DJrlpU8akJKHYx_JFfCanHVcudHXhwHc49xuhgfMOEDoneEIwKS_WE7lRMjUTiimfEMo5x0doSKopy1lVsQEa4pqWOWNTdoJGMa4xxpTRaohebmwAlTIlQ-Ndpq3_sBqy1U4HvwQnk-3S5LPWu2WuVtK67Osz9y0Y62LmtxCyOTy5x64gyXYXUzxFx0a2Ec5-7hi9zW9fZ_f54vnuYXa9yBXDZcrrhhFJlabdWlNWmDBVEFY0YBrDlTJUGaZMBbyuKgNlwQ0BKLWRRa0Y0wUbo8u-VwUfYwAjlE2HvSlI2wqCxV6OWItejtjLEb2cDua_4E2w7zLs_sOuegy6x7YWgojKglOgDxaF9vbvgm-sMYSY |
CitedBy_id | crossref_primary_10_1016_j_jcis_2025_01_263 crossref_primary_10_1021_acscatal_4c04954 crossref_primary_10_1021_acscatal_4c07784 |
Cites_doi | 10.1039/C8CS00502H 10.1002/anie.202210095 10.1016/j.apsusc.2023.158543 10.1038/s41467-021-25811-0 10.1021/acsami.8b11820 10.1039/b805427d 10.1021/acscatal.0c02429 10.1021/acs.iecr.5b04091 10.1021/acscatal.0c00810 10.1039/C8CY02275E 10.1021/acscatal.5b02594 10.1016/j.apcatb.2022.122050 10.1016/j.apcatb.2023.123052 10.1016/j.ces.2023.119228 10.1038/s41467-020-20214-z 10.1038/ncomms15174 10.1002/anie.201305308 10.1126/sciadv.abm3629 10.1016/j.apcatb.2020.119554 10.1002/cctc.201100186 10.1021/acscatal.2c06158 10.1039/c001514h 10.1021/acscatal.0c02611 10.1021/acs.iecr.7b01817 10.1039/C9CY01055F 10.1016/S1872-2067(22)64107-X 10.1016/j.apsusc.2020.146622 10.1021/acscatal.8b05060 10.1039/c1cs15008a 10.1073/pnas.1821231116 10.1016/j.apcatb.2020.119521 10.1016/j.apcatb.2021.120567 10.1021/acscatal.1c04961 10.1038/s42004-018-0012-4 10.1016/j.apcatb.2021.120287 10.1021/jp803174m 10.1002/anie.202009620 10.1016/j.apcatb.2016.09.072 10.1016/j.fuel.2021.122105 10.1039/C8TA05377D 10.1002/anie.201903298 10.1016/j.fuel.2012.12.081 10.1016/j.apcata.2022.118682 10.1021/acscatal.0c04627 10.1016/j.jcat.2011.05.020 10.1016/j.envres.2023.117715 10.1016/j.cej.2010.12.041 10.1073/pnas.0636830100 10.1002/anie.201200280 10.1002/anie.201603556 10.1016/j.jcou.2018.01.008 10.1039/D1CS00260K 10.1016/j.apcatb.2020.119302 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apcatb.2024.124440 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2024_124440 S0926337324007549 |
GroupedDBID | --K --M -~X .~1 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI ABFNM ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AXJTR BKOJK BLXMC CS3 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPD SSG SSZ T5K ~02 ~G- 0R~ AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AITUG AKBMS AKYEP AMRAJ ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ LX7 M41 NDZJH R2- SCE SSH VH1 WUQ XPP |
ID | FETCH-LOGICAL-c306t-9b31a2cd2244f68013c5135befbf4ccf2cf3cf8e4988fe654f1ee6dfa59c33d53 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Tue Jul 01 04:35:40 EDT 2025 Thu Apr 24 22:53:11 EDT 2025 Sat Aug 10 15:30:40 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Modified Fischer–Tropsch synthesis Long-chain α-olefins Carbon dioxide hydrogenation Iron catalysts |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-9b31a2cd2244f68013c5135befbf4ccf2cf3cf8e4988fe654f1ee6dfa59c33d53 |
ORCID | 0000-0003-4859-4488 |
ParticipantIDs | crossref_citationtrail_10_1016_j_apcatb_2024_124440 crossref_primary_10_1016_j_apcatb_2024_124440 elsevier_sciencedirect_doi_10_1016_j_apcatb_2024_124440 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-05 |
PublicationDateYYYYMMDD | 2024-12-05 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zavyalova, Holena, Schlögl, Baerns (bib31) 2011; 3 Gao, Zhong, Han, He, Sun (bib2) 2022; 61 Zhang, Xu, Yang, Zhu, Gao, Han (bib27) 2021; 295 Lu, Chen, Lei, Wen, Zhang (bib50) 2021; 281 Wei, Ge, Yao, Wen, Fang, Guo, Xu, Sun (bib6) 2017; 8 Wei, Tu, Jia, Liu, Lian, Wang, Zhang (bib25) 2020; 525 Fait, Ricci, Holena, Rabeah, Pohl, Linke, Kondratenko (bib30) 2019; 9 Pendyala, Jacobs, Mohandas, Luo, Hamdeh, Ji, Ribeiro, Davis (bib41) 2010; 140 Zhu, Wachs (bib37) 2015; 6 Zhou, Cheng, Kang, Zhou, Subramanian, Zhang, Wang (bib1) 2019; 48 Wang, Wang, Ma, Gong (bib3) 2011; 40 George, Petrenko, Neese (bib34) 2008; 112 Wang, Wu, Lin, Ji, Yan, Pei, Xie, Zong, Qiao (bib43) 2020; 10 Zhu, Mu, Liu, Zhang, Zhang, Cheng, Hang Yin, Yip, Song, Guo (bib48) 2023; 282 Wei, Yao, Han, Ge, Sun (bib9) 2021; 50 Arslan, Tian, Ali, Zhang, Xiong, Li, Luo, Chen, Wei (bib7) 2022; 12 Zhang, Cao, Zhang, Liu, Xu, Zhu, Tu, Han (bib10) 2021; 11 Xu, Cao, Xu (bib51) 2022; 641 Yang, Chun, Lee, Han, Lee, Kim (bib23) 2020; 10 Hakim, Marliza, Abu Tahari, Wan Isahak, Yusop, Mohamed Hisham, Yarmo (bib52) 2016; 55 Guo, Sun, Ji, Wei, Wen, Yao, Xu, Ge (bib24) 2018; 1 Baltrusaitis, Schuttlefield, Zeitler, Grassian (bib53) 2011; 170 Zhou, Gao (bib4) 2022; 43 Khan, Butolia, Jo, Irshad, Han, Nam, Kim (bib55) 2020; 10 Gong, Ye, Ding, Wang, Shi, Russell, Tang, Eddings, Zhang, Fan (bib32) 2020; 278 de Smit, Weckhuysen (bib40) 2008; 37 Ahmed, Irshad, Yoon, Karanwal, Sugiarto, Khan, Kim, Kim (bib46) 2023; 338 Wang, Zhang, Gao, Ma, Fan, Zhao (bib47) 2023; 641 Yao, Xiao, Makgae, Jie, Gonzalez-Cortes, Guan, Kirkland, Dilworth, Al-Megren, Alshihri, Dobson, Owen, Thomas, Edwards (bib16) 2020; 11 Landau, Meiri, Utsis, Vidruk Nehemya, Herskowitz (bib14) 2017; 56 Ma, Porosoff (bib15) 2019; 9 Wang, Li, Gao, Ma, Zhang, Zhao, Tsubaki (bib21) 2024; 242 Tu, Sun, Zhang, Liu, Malhi, Ma, Zhu, Han (bib26) 2021; 298 Guo, Sun, Ge, Tsubaki (bib5) 2018; 6 Wan, Zhao, Wei, Triana, Li, Arcifa, Allen, Cao, Patzke (bib49) 2021; 5589 Choi, Jang, Park, Kim, Lee, Choi, Lee (bib18) 2017; 202 Coenen, Gallucci, Mezari, Hensen, van Sint Annaland (bib54) 2018; 24 Huang, Zhang, Wei, Guo, Liu, Zhang, Xue, Sun (bib28) 2023; 1 Wang, Xu, Ma, Lin, Wang, Zhang, Ding (bib36) 2018; 10 Koeken, Torres Galvis, Davidian, Ruitenbeek, de Jong (bib39) 2012; 51 Yang, Dang, Cui, Bu, Li, Li, Sun, Gao (bib22) 2023; 321 Zhang, Ma, Fan, Zhao, Sun (bib45) 2013; 109 Keim (bib11) 2013; 52 Zhang, Huang, Tang, Yin, Kang, Zhang, Wang (bib20) 2022; 309 Lim, Rohde, Stubna, Bukowski, Costas, Ho, Münck, Nam, Que (bib33) 2003; 100 Yang, Skrypnik, Matvienko, Lund, Holena, Kondratenko (bib29) 2021; 282 Zhai, Xu, Gao, Liu, Li, Li, Fu, Jia, Xie, Zhao, Wang, Li, Zhang, Wen, Ma, Yu, Wei, Lin, Wang, An, Yu, Sun, Jiang, Sun, Zhong (bib35) 2016; 55 Dorner, Hardy, Williams, Willauer (bib13) 2010; 3 Liang, Sun, Ma, Duan, Li, Yang, Zhang, Su, Huang, Zhang (bib19) 2019; 9 Xu, Zhai, Deng, Xie, Liu, Wang, Ma (bib17) 2020; 59 Cui, Xu, Zhang, Yang, Gao, Wu, Li (bib44) 2011; 282 He, Cui, Qian, Zhang, Liu, Han (bib12) 2019; 116 Zhu, Wang, Zhang, Zhang, Li, Li, Senftle, Liu, Wang, Wang, Zhang, Fu, Song, Guo (bib42) 2022; 8 Zhu, Tian, Kurtz, Lunkenbein, Xu, Schlögl, Wachs, Han (bib38) 2019; 58 Zhang, Dang, Zhou, Gao, Petrus van Bavel, Wang, Li, Shi, Yang, Vovk, Gao, Sun (bib8) 2021; 2 Keim (10.1016/j.apcatb.2024.124440_bib11) 2013; 52 Wei (10.1016/j.apcatb.2024.124440_bib25) 2020; 525 Wang (10.1016/j.apcatb.2024.124440_bib47) 2023; 641 Yang (10.1016/j.apcatb.2024.124440_bib22) 2023; 321 Lim (10.1016/j.apcatb.2024.124440_bib33) 2003; 100 Wan (10.1016/j.apcatb.2024.124440_bib49) 2021; 5589 Huang (10.1016/j.apcatb.2024.124440_bib28) 2023; 1 Cui (10.1016/j.apcatb.2024.124440_bib44) 2011; 282 Arslan (10.1016/j.apcatb.2024.124440_bib7) 2022; 12 Gao (10.1016/j.apcatb.2024.124440_bib2) 2022; 61 Guo (10.1016/j.apcatb.2024.124440_bib24) 2018; 1 Baltrusaitis (10.1016/j.apcatb.2024.124440_bib53) 2011; 170 Hakim (10.1016/j.apcatb.2024.124440_bib52) 2016; 55 Fait (10.1016/j.apcatb.2024.124440_bib30) 2019; 9 Yu (10.1016/j.apcatb.2024.124440_sbref36) 2023; 13 Yang (10.1016/j.apcatb.2024.124440_bib29) 2021; 282 Zhang (10.1016/j.apcatb.2024.124440_bib8) 2021; 2 Choi (10.1016/j.apcatb.2024.124440_bib18) 2017; 202 Zhang (10.1016/j.apcatb.2024.124440_bib45) 2013; 109 Xu (10.1016/j.apcatb.2024.124440_bib17) 2020; 59 Zhou (10.1016/j.apcatb.2024.124440_bib4) 2022; 43 Zhang (10.1016/j.apcatb.2024.124440_bib20) 2022; 309 Wei (10.1016/j.apcatb.2024.124440_bib9) 2021; 50 Liang (10.1016/j.apcatb.2024.124440_bib19) 2019; 9 Ma (10.1016/j.apcatb.2024.124440_bib15) 2019; 9 Zhang (10.1016/j.apcatb.2024.124440_bib27) 2021; 295 He (10.1016/j.apcatb.2024.124440_bib12) 2019; 116 Gong (10.1016/j.apcatb.2024.124440_bib32) 2020; 278 Zavyalova (10.1016/j.apcatb.2024.124440_bib31) 2011; 3 Wang (10.1016/j.apcatb.2024.124440_bib3) 2011; 40 Wang (10.1016/j.apcatb.2024.124440_bib43) 2020; 10 Khan (10.1016/j.apcatb.2024.124440_bib55) 2020; 10 Wang (10.1016/j.apcatb.2024.124440_bib21) 2024; 242 Coenen (10.1016/j.apcatb.2024.124440_bib54) 2018; 24 Pendyala (10.1016/j.apcatb.2024.124440_bib41) 2010; 140 Koeken (10.1016/j.apcatb.2024.124440_bib39) 2012; 51 Yang (10.1016/j.apcatb.2024.124440_bib23) 2020; 10 Tu (10.1016/j.apcatb.2024.124440_bib26) 2021; 298 Zhu (10.1016/j.apcatb.2024.124440_bib38) 2019; 58 Landau (10.1016/j.apcatb.2024.124440_bib14) 2017; 56 Wei (10.1016/j.apcatb.2024.124440_bib6) 2017; 8 George (10.1016/j.apcatb.2024.124440_bib34) 2008; 112 Zhu (10.1016/j.apcatb.2024.124440_bib48) 2023; 282 Yao (10.1016/j.apcatb.2024.124440_bib16) 2020; 11 Dorner (10.1016/j.apcatb.2024.124440_bib13) 2010; 3 Zhai (10.1016/j.apcatb.2024.124440_sbref35) 2016; 55 de Smit (10.1016/j.apcatb.2024.124440_bib40) 2008; 37 Lu (10.1016/j.apcatb.2024.124440_bib50) 2021; 281 Guo (10.1016/j.apcatb.2024.124440_bib5) 2018; 6 Xu (10.1016/j.apcatb.2024.124440_bib51) 2022; 641 Zhu (10.1016/j.apcatb.2024.124440_bib42) 2022; 8 Zhou (10.1016/j.apcatb.2024.124440_bib1) 2019; 48 Wang (10.1016/j.apcatb.2024.124440_bib36) 2018; 10 Zhang (10.1016/j.apcatb.2024.124440_bib10) 2021; 11 Zhu (10.1016/j.apcatb.2024.124440_bib37) 2015; 6 Ahmed (10.1016/j.apcatb.2024.124440_bib46) 2023; 338 |
References_xml | – volume: 43 start-page: 2045 year: 2022 end-page: 2056 ident: bib4 article-title: Carbon dioxide hydrogenation to bulk chemicals and liquid fuels via heterogeneous catalysis publication-title: Chin. J. Catal. – volume: 9 start-page: 456 year: 2019 end-page: 464 ident: bib19 article-title: Mn decorated Na/Fe catalysts for CO publication-title: Catal. Sci. Technol. – volume: 170 start-page: 471 year: 2011 end-page: 481 ident: bib53 article-title: Carbon dioxide adsorption on oxide nanoparticle surfaces publication-title: Chem. Eng. J. – volume: 298 start-page: 120567 year: 2021 end-page: 120579 ident: bib26 article-title: Chemical and structural properties of Na decorated Fe publication-title: Appl. Catal. B Environ. – volume: 282 start-page: 119554 year: 2021 end-page: 119565 ident: bib29 article-title: Revealing property-performance relationships for efficient CO2 hydrogenation to higher hydrocarbons over Fe-based catalysts: Statistical analysis of literature data and its experimental validation publication-title: Appl. Catal. B Environ. – volume: 12 start-page: 2023 year: 2022 end-page: 2033 ident: bib7 article-title: Highly selective conversion of CO publication-title: ACS Catal. – volume: 9 start-page: 5111 year: 2019 end-page: 5121 ident: bib30 article-title: Understanding trends in methane oxidation to formaldehyde: statistical analysis of literature data and based hereon experiments publication-title: Catal. Sci. Technol. – volume: 278 start-page: 119302 year: 2020 end-page: 119313 ident: bib32 article-title: Effect of copper on highly effective Fe-Mn based catalysts during production of light olefins via Fischer-Tropsch process with low CO publication-title: Appl. Catal. B Environ. – volume: 3 start-page: 1935 year: 2011 end-page: 1947 ident: bib31 article-title: Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts publication-title: ChemCatChem – volume: 309 start-page: 122105 year: 2022 end-page: 122118 ident: bib20 article-title: Zn and Na promoted Fe catalysts for sustainable production of high-valued olefins by CO publication-title: Fuel – volume: 321 start-page: 122050 year: 2023 end-page: 122066 ident: bib22 article-title: Selective synthesis of olefins via CO publication-title: Appl. Catal. B Environ. – volume: 59 start-page: 21736 year: 2020 end-page: 21744 ident: bib17 article-title: Highly selective olefin production from CO2 hydrogenation on iron catalysts: a subtle synergy between manganese and sodium additives publication-title: Angew. Chem. Int. Ed. – volume: 112 start-page: 12936 year: 2008 end-page: 12943 ident: bib34 article-title: Prediction of iron K-edge absorption spectra using time-dependent density functional theory publication-title: J. Phy. Chem. A. – volume: 6 start-page: 722 year: 2015 end-page: 732 ident: bib37 article-title: Iron-based catalysts for the high-temperature water gas Shift (HT-WGS) Reaction: A Review publication-title: ACS Catal. – volume: 10 start-page: 43578 year: 2018 end-page: 43587 ident: bib36 article-title: Directly converting syngas to linear α-olefins over core–shell Fe publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 6389 year: 2020 end-page: 6401 ident: bib43 article-title: Iron-potassium on single-walled carbon nanotubes as efficient catalyst for CO publication-title: ACS Catal. – volume: 140 start-page: 98 year: 2010 end-page: 105 ident: bib41 article-title: –Tropsch synthesis: effect of water over iron-based catalysts, Catal publication-title: Letters – volume: 8 start-page: 15174 year: 2017 end-page: 15183 ident: bib6 article-title: Directly converting CO publication-title: Nat. Commun. – volume: 109 start-page: 116 year: 2013 end-page: 123 ident: bib45 article-title: Synthesis of light olefins from CO hydrogenation over Fe–Mn catalysts: Effect of carburization pretreatment publication-title: Fuel – volume: 5589 start-page: 5589 year: 2021 end-page: 5602 ident: bib49 article-title: , Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts publication-title: Nat. Commun. – volume: 3 start-page: 884 year: 2010 end-page: 890 ident: bib13 article-title: Heterogeneous catalytic CO publication-title: Energy Environ. Sci. – volume: 641 start-page: 158543 year: 2023 end-page: 158557 ident: bib47 article-title: CO publication-title: Appl. Surf. Sci. – volume: 52 start-page: 12492 year: 2013 end-page: 12496 ident: bib11 article-title: Oligomerization of Ethylene to α-Olefins: Discovery and development of the Shell Higher Olefin Process (SHOP) publication-title: Angew. Chem. Int. Ed. – volume: 24 start-page: 228 year: 2018 end-page: 239 ident: bib54 article-title: An in-situ IR study on the adsorption of CO publication-title: J. CO – volume: 242 start-page: 117715 year: 2024 end-page: 117735 ident: bib21 article-title: Novel heterogeneous Fe-based catalysts for carbon dioxide hydrogenation to long chain α-olefins-A review publication-title: Environ. Res. – volume: 338 start-page: 123052 year: 2023 end-page: 123056 ident: bib46 article-title: Evaluation of MgO as a promoter for the hydrogenation of CO publication-title: Appl. Catal. B Environ. – volume: 11 start-page: 2121 year: 2021 end-page: 2133 ident: bib10 article-title: Unraveling the role of zinc on bimetallic Fe publication-title: ACS Catal. – volume: 48 start-page: 3193 year: 2019 end-page: 3228 ident: bib1 article-title: New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO publication-title: Chem. Soc. Rev. – volume: 55 start-page: 7888 year: 2016 end-page: 7897 ident: bib52 article-title: Studies on CO publication-title: Ind. Eng. Chem. Res. – volume: 2 start-page: 100170 year: 2021 end-page: 100180 ident: bib8 article-title: Direct conversion of CO publication-title: Innovation – volume: 641 start-page: 118682 year: 2022 end-page: 118693 ident: bib51 article-title: Understanding kinetically interplaying reverse water-gas shift and Fischer-Tropsch synthesis during CO publication-title: Appl. Catal. A, Gen. – volume: 282 start-page: 119228 year: 2023 end-page: 119237 ident: bib48 article-title: Unveiling the promoting effect of potassium on the structural evolution of iron catalysts during CO publication-title: Chem. Eng. Sci. – volume: 1 start-page: 100004 year: 2023 end-page: 100011 ident: bib28 article-title: Layered double hydroxides derived CuFe-based catalysts for CO publication-title: Chem. Inorg. Mater. – volume: 8 start-page: 3629 year: 2022 end-page: 3642 ident: bib42 article-title: Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO publication-title: Sci. Adv. – volume: 55 start-page: 9902 year: 2016 end-page: 9907 ident: bib35 article-title: Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe publication-title: Angew. Chem. Int. Ed. – volume: 281 start-page: 119521 year: 2021 end-page: 119531 ident: bib50 article-title: Revealing the activity of different iron carbides for Fischer-Tropsch synthesis publication-title: Appl. Catal. B Environ. – volume: 50 start-page: 10764 year: 2021 end-page: 10805 ident: bib9 article-title: Towards the development of the emerging process of CO publication-title: Chem. Soc. Rev. – volume: 116 start-page: 12654 year: 2019 end-page: 12659 ident: bib12 article-title: Synthesis of liquid fuel via direct hydrogenation of CO publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 100 start-page: 3665 year: 2003 end-page: 3670 ident: bib33 article-title: An Fe publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 525 start-page: 146622 year: 2020 end-page: 146635 ident: bib25 article-title: The evolutions of carbon and iron species modified by Na and their tuning effect on the hydrogenation of CO publication-title: Appl. Surf. Sci. – volume: 37 start-page: 2758 year: 2008 end-page: 2781 ident: bib40 article-title: The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour publication-title: Chem. Soc. Rev. – volume: 202 start-page: 605 year: 2017 end-page: 610 ident: bib18 article-title: Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels publication-title: Appl. Catal. B Environ. – volume: 40 start-page: 3703 year: 2011 end-page: 3727 ident: bib3 article-title: Recent advances in catalytic hydrogenation of carbon dioxide publication-title: Chem. Soc. Rev. – volume: 295 start-page: 120287 year: 2021 end-page: 120298 ident: bib27 article-title: Uncovering the electronic effects of zinc on the structure of Fe publication-title: Appl. Catal. B Environ. – volume: 58 start-page: 9083 year: 2019 end-page: 9087 ident: bib38 article-title: Strong metal–support interactions between copper and iron oxide during the high-temperature water-gas shift reaction publication-title: Angew. Chem. Int. Ed. – volume: 56 start-page: 13334 year: 2017 end-page: 13355 ident: bib14 article-title: Conversion of CO publication-title: Ind. Eng. Chem. Res. – volume: 6 start-page: 23244 year: 2018 end-page: 23262 ident: bib5 article-title: Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C publication-title: J. Mat. Chem. A. – volume: 1 start-page: 11 year: 2018 end-page: 19 ident: bib24 article-title: Directly converting carbon dioxide to linear α-olefins on bio-promoted catalysts publication-title: Commun. Chem. – volume: 10 start-page: 10325 year: 2020 end-page: 10338 ident: bib55 article-title: Selective conversion of carbon dioxide into liquid hydrocarbons and long-chain α-olefins over Fe-amorphous AlO publication-title: ACS Catal. – volume: 51 start-page: 7190 year: 2012 end-page: 7193 ident: bib39 article-title: Suppression of carbon deposition in the iron-catalyzed production of lower olefins from synthesis gas publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 6395 year: 2020 end-page: 6407 ident: bib16 article-title: Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst publication-title: Nat. Commun. – volume: 61 start-page: 10095 year: 2022 end-page: 10109 ident: bib2 article-title: Green Carbon Science: Keeping the pace in practice publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 2639 year: 2019 end-page: 2656 ident: bib15 article-title: Development of tandem catalysts for CO publication-title: ACS Catal. – volume: 10 start-page: 10742 year: 2020 end-page: 10759 ident: bib23 article-title: Comparative study of olefin production from CO and CO publication-title: ACS Catal. – volume: 282 start-page: 35 year: 2011 end-page: 46 ident: bib44 article-title: Effect of pretreatment on precipitated Fe–Mo Fischer–Tropsch catalysts: Morphology, carburization, and catalytic performance publication-title: J. Catal. – volume: 48 start-page: 3193 year: 2019 ident: 10.1016/j.apcatb.2024.124440_bib1 article-title: New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00502H – volume: 61 start-page: 10095 year: 2022 ident: 10.1016/j.apcatb.2024.124440_bib2 article-title: Green Carbon Science: Keeping the pace in practice publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202210095 – volume: 140 start-page: 98 year: 2010 ident: 10.1016/j.apcatb.2024.124440_bib41 article-title: –Tropsch synthesis: effect of water over iron-based catalysts, Catal – volume: 641 start-page: 158543 year: 2023 ident: 10.1016/j.apcatb.2024.124440_bib47 article-title: CO2 hydrogenation to linear α-olefins on FeCx/ZnO catalysts: Effects of surface oxygen vacancies publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2023.158543 – volume: 5589 start-page: 5589 year: 2021 ident: 10.1016/j.apcatb.2024.124440_bib49 article-title: , Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts publication-title: Nat. Commun. doi: 10.1038/s41467-021-25811-0 – volume: 10 start-page: 43578 year: 2018 ident: 10.1016/j.apcatb.2024.124440_bib36 article-title: Directly converting syngas to linear α-olefins over core–shell Fe3O4@MnO2 catalysts publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b11820 – volume: 37 start-page: 2758 year: 2008 ident: 10.1016/j.apcatb.2024.124440_bib40 article-title: The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour publication-title: Chem. Soc. Rev. doi: 10.1039/b805427d – volume: 10 start-page: 10742 year: 2020 ident: 10.1016/j.apcatb.2024.124440_bib23 article-title: Comparative study of olefin production from CO and CO2 using Na- and K-promoted zinc ferrite publication-title: ACS Catal. doi: 10.1021/acscatal.0c02429 – volume: 55 start-page: 7888 year: 2016 ident: 10.1016/j.apcatb.2024.124440_bib52 article-title: Studies on CO2 adsorption and desorption properties from various types of iron oxides (FeO, Fe2O3, and Fe3O4) publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b04091 – volume: 10 start-page: 6389 year: 2020 ident: 10.1016/j.apcatb.2024.124440_bib43 article-title: Iron-potassium on single-walled carbon nanotubes as efficient catalyst for CO2 hydrogenation to heavy olefins publication-title: ACS Catal. doi: 10.1021/acscatal.0c00810 – volume: 9 start-page: 456 year: 2019 ident: 10.1016/j.apcatb.2024.124440_bib19 article-title: Mn decorated Na/Fe catalysts for CO2 hydrogenation to light olefins publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY02275E – volume: 6 start-page: 722 year: 2015 ident: 10.1016/j.apcatb.2024.124440_bib37 article-title: Iron-based catalysts for the high-temperature water gas Shift (HT-WGS) Reaction: A Review publication-title: ACS Catal. doi: 10.1021/acscatal.5b02594 – volume: 321 start-page: 122050 year: 2023 ident: 10.1016/j.apcatb.2024.124440_bib22 article-title: Selective synthesis of olefins via CO2 hydrogenation over transition-metal-doped iron-based catalysts publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2022.122050 – volume: 338 start-page: 123052 year: 2023 ident: 10.1016/j.apcatb.2024.124440_bib46 article-title: Evaluation of MgO as a promoter for the hydrogenation of CO2 to long-chain hydrocarbons over Fe-based catalysts publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2023.123052 – volume: 282 start-page: 119228 year: 2023 ident: 10.1016/j.apcatb.2024.124440_bib48 article-title: Unveiling the promoting effect of potassium on the structural evolution of iron catalysts during CO2 hydrogenation publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2023.119228 – volume: 11 start-page: 6395 year: 2020 ident: 10.1016/j.apcatb.2024.124440_bib16 article-title: Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst publication-title: Nat. Commun. doi: 10.1038/s41467-020-20214-z – volume: 8 start-page: 15174 year: 2017 ident: 10.1016/j.apcatb.2024.124440_bib6 article-title: Directly converting CO2 into a gasoline fuel publication-title: Nat. Commun. doi: 10.1038/ncomms15174 – volume: 52 start-page: 12492 year: 2013 ident: 10.1016/j.apcatb.2024.124440_bib11 article-title: Oligomerization of Ethylene to α-Olefins: Discovery and development of the Shell Higher Olefin Process (SHOP) publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201305308 – volume: 8 start-page: 3629 issue: 5 year: 2022 ident: 10.1016/j.apcatb.2024.124440_bib42 article-title: Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO2 hydrogenation publication-title: Sci. Adv. doi: 10.1126/sciadv.abm3629 – volume: 282 start-page: 119554 year: 2021 ident: 10.1016/j.apcatb.2024.124440_bib29 article-title: Revealing property-performance relationships for efficient CO2 hydrogenation to higher hydrocarbons over Fe-based catalysts: Statistical analysis of literature data and its experimental validation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119554 – volume: 3 start-page: 1935 year: 2011 ident: 10.1016/j.apcatb.2024.124440_bib31 article-title: Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts publication-title: ChemCatChem doi: 10.1002/cctc.201100186 – volume: 13 start-page: 3949 year: 2023 ident: 10.1016/j.apcatb.2024.124440_sbref36 article-title: Identifying the performance descriptor in direct syngas conversion to long-chain α-olefins over Ruthenium-based catalysts promoted by alkali metals publication-title: ACS Catal. doi: 10.1021/acscatal.2c06158 – volume: 3 start-page: 884 year: 2010 ident: 10.1016/j.apcatb.2024.124440_bib13 article-title: Heterogeneous catalytic CO2 conversion to value-added hydrocarbons publication-title: Energy Environ. Sci. doi: 10.1039/c001514h – volume: 10 start-page: 10325 year: 2020 ident: 10.1016/j.apcatb.2024.124440_bib55 article-title: Selective conversion of carbon dioxide into liquid hydrocarbons and long-chain α-olefins over Fe-amorphous AlOx bifunctional catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.0c02611 – volume: 56 start-page: 13334 year: 2017 ident: 10.1016/j.apcatb.2024.124440_bib14 article-title: Conversion of CO2, CO, and H2 in CO2 hydrogenation to fungible liquid fuels on Fe-based catalysts publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b01817 – volume: 9 start-page: 5111 year: 2019 ident: 10.1016/j.apcatb.2024.124440_bib30 article-title: Understanding trends in methane oxidation to formaldehyde: statistical analysis of literature data and based hereon experiments publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY01055F – volume: 43 start-page: 2045 year: 2022 ident: 10.1016/j.apcatb.2024.124440_bib4 article-title: Carbon dioxide hydrogenation to bulk chemicals and liquid fuels via heterogeneous catalysis publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(22)64107-X – volume: 525 start-page: 146622 year: 2020 ident: 10.1016/j.apcatb.2024.124440_bib25 article-title: The evolutions of carbon and iron species modified by Na and their tuning effect on the hydrogenation of CO2 to olefins publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146622 – volume: 2 start-page: 100170 year: 2021 ident: 10.1016/j.apcatb.2024.124440_bib8 article-title: Direct conversion of CO2 to a jet fuel over CoFe alloy catalysts publication-title: Innovation – volume: 9 start-page: 2639 year: 2019 ident: 10.1016/j.apcatb.2024.124440_bib15 article-title: Development of tandem catalysts for CO2 hydrogenation to olefins publication-title: ACS Catal. doi: 10.1021/acscatal.8b05060 – volume: 40 start-page: 3703 year: 2011 ident: 10.1016/j.apcatb.2024.124440_bib3 article-title: Recent advances in catalytic hydrogenation of carbon dioxide publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15008a – volume: 116 start-page: 12654 year: 2019 ident: 10.1016/j.apcatb.2024.124440_bib12 article-title: Synthesis of liquid fuel via direct hydrogenation of CO2 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1821231116 – volume: 281 start-page: 119521 year: 2021 ident: 10.1016/j.apcatb.2024.124440_bib50 article-title: Revealing the activity of different iron carbides for Fischer-Tropsch synthesis publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119521 – volume: 298 start-page: 120567 year: 2021 ident: 10.1016/j.apcatb.2024.124440_bib26 article-title: Chemical and structural properties of Na decorated Fe5C2-ZnO catalysts during hydrogenation of CO2 to linear α-olefins publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120567 – volume: 12 start-page: 2023 year: 2022 ident: 10.1016/j.apcatb.2024.124440_bib7 article-title: Highly selective conversion of CO2 or CO into precursors for kerosene-based aviation fuel via an aldol-aromatic mechanism publication-title: ACS Catal. doi: 10.1021/acscatal.1c04961 – volume: 1 start-page: 11 year: 2018 ident: 10.1016/j.apcatb.2024.124440_bib24 article-title: Directly converting carbon dioxide to linear α-olefins on bio-promoted catalysts publication-title: Commun. Chem. doi: 10.1038/s42004-018-0012-4 – volume: 295 start-page: 120287 year: 2021 ident: 10.1016/j.apcatb.2024.124440_bib27 article-title: Uncovering the electronic effects of zinc on the structure of Fe5C2-ZnO catalysts for CO2 hydrogenation to linear α-olefins publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120287 – volume: 112 start-page: 12936 year: 2008 ident: 10.1016/j.apcatb.2024.124440_bib34 article-title: Prediction of iron K-edge absorption spectra using time-dependent density functional theory publication-title: J. Phy. Chem. A. doi: 10.1021/jp803174m – volume: 1 start-page: 100004 year: 2023 ident: 10.1016/j.apcatb.2024.124440_bib28 article-title: Layered double hydroxides derived CuFe-based catalysts for CO2 hydrogenation to long-chain hydrocarbons publication-title: Chem. Inorg. Mater. – volume: 59 start-page: 21736 year: 2020 ident: 10.1016/j.apcatb.2024.124440_bib17 article-title: Highly selective olefin production from CO2 hydrogenation on iron catalysts: a subtle synergy between manganese and sodium additives publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202009620 – volume: 202 start-page: 605 year: 2017 ident: 10.1016/j.apcatb.2024.124440_bib18 article-title: Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.09.072 – volume: 309 start-page: 122105 year: 2022 ident: 10.1016/j.apcatb.2024.124440_bib20 article-title: Zn and Na promoted Fe catalysts for sustainable production of high-valued olefins by CO2 hydrogenation publication-title: Fuel doi: 10.1016/j.fuel.2021.122105 – volume: 6 start-page: 23244 year: 2018 ident: 10.1016/j.apcatb.2024.124440_bib5 article-title: Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C2+ hydrocarbons publication-title: J. Mat. Chem. A. doi: 10.1039/C8TA05377D – volume: 58 start-page: 9083 year: 2019 ident: 10.1016/j.apcatb.2024.124440_bib38 article-title: Strong metal–support interactions between copper and iron oxide during the high-temperature water-gas shift reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201903298 – volume: 109 start-page: 116 year: 2013 ident: 10.1016/j.apcatb.2024.124440_bib45 article-title: Synthesis of light olefins from CO hydrogenation over Fe–Mn catalysts: Effect of carburization pretreatment publication-title: Fuel doi: 10.1016/j.fuel.2012.12.081 – volume: 641 start-page: 118682 year: 2022 ident: 10.1016/j.apcatb.2024.124440_bib51 article-title: Understanding kinetically interplaying reverse water-gas shift and Fischer-Tropsch synthesis during CO2 hydrogenation over Fe-based catalysts publication-title: Appl. Catal. A, Gen. doi: 10.1016/j.apcata.2022.118682 – volume: 11 start-page: 2121 year: 2021 ident: 10.1016/j.apcatb.2024.124440_bib10 article-title: Unraveling the role of zinc on bimetallic Fe5C2–ZnO catalysts for highly selective carbon dioxide hydrogenation to high carbon α-olefins publication-title: ACS Catal. doi: 10.1021/acscatal.0c04627 – volume: 282 start-page: 35 year: 2011 ident: 10.1016/j.apcatb.2024.124440_bib44 article-title: Effect of pretreatment on precipitated Fe–Mo Fischer–Tropsch catalysts: Morphology, carburization, and catalytic performance publication-title: J. Catal. doi: 10.1016/j.jcat.2011.05.020 – volume: 242 start-page: 117715 year: 2024 ident: 10.1016/j.apcatb.2024.124440_bib21 article-title: Novel heterogeneous Fe-based catalysts for carbon dioxide hydrogenation to long chain α-olefins-A review publication-title: Environ. Res. doi: 10.1016/j.envres.2023.117715 – volume: 170 start-page: 471 year: 2011 ident: 10.1016/j.apcatb.2024.124440_bib53 article-title: Carbon dioxide adsorption on oxide nanoparticle surfaces publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.12.041 – volume: 100 start-page: 3665 year: 2003 ident: 10.1016/j.apcatb.2024.124440_bib33 article-title: An FeIV=O complex of a tetradentate tripodal nonheme ligand publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0636830100 – volume: 51 start-page: 7190 year: 2012 ident: 10.1016/j.apcatb.2024.124440_bib39 article-title: Suppression of carbon deposition in the iron-catalyzed production of lower olefins from synthesis gas publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201200280 – volume: 55 start-page: 9902 year: 2016 ident: 10.1016/j.apcatb.2024.124440_sbref35 article-title: Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201603556 – volume: 24 start-page: 228 year: 2018 ident: 10.1016/j.apcatb.2024.124440_bib54 article-title: An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2018.01.008 – volume: 50 start-page: 10764 year: 2021 ident: 10.1016/j.apcatb.2024.124440_bib9 article-title: Towards the development of the emerging process of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00260K – volume: 278 start-page: 119302 year: 2020 ident: 10.1016/j.apcatb.2024.124440_bib32 article-title: Effect of copper on highly effective Fe-Mn based catalysts during production of light olefins via Fischer-Tropsch process with low CO2 emission publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119302 |
SSID | ssj0002328 |
Score | 2.4950716 |
Snippet | The catalytic hydrogenation of CO2 to high-carbon linear α-olefins (LAOs; C ≥ 4) has gained considerable attention. In this study, FeMnK catalysts were... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 124440 |
SubjectTerms | Carbon dioxide hydrogenation Iron catalysts Long-chain α-olefins Modified Fischer–Tropsch synthesis |
Title | Direct carbon dioxide hydrogenation to long-chain α-olefins over FeMnK catalysts |
URI | https://dx.doi.org/10.1016/j.apcatb.2024.124440 |
Volume | 358 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSiQxEC4GPbgeFp1dcdZdycFrnO5O0j_HYXAYFQVRwVuTriTaMnQPMy04l32nfRGfaZP-2VGQFbx1N1XQVFXqS8JXVQBHnkSmvVhT4SlDuUK75uKE0zgTIcsM5zxw9c4Xl-H0lp_dibsejLtaGEerbHN_k9PrbN1-GbbWHM7zfHjtJUHIWOQ6ylnc466Ij_PIRfnx7zXNw-4Y6mxshamT7srnao6XnKOsMntKDPixAzp3BfIePL2CnMkOfG33imTU_M4u9HTRh61xN6KtD9uvugn2Ye9kXbRm1dpVu_wGV01eIygXWVkQlZfPudLkYaUWpY2f2jekKsmsLO4pPsi8IC9_aDnTJi-WxHE8yURfFOekvutZLavld7idnNyMp7QdpUDRngkqmmTMlwEqC9jchBaVGAqfiUwb6w9EE6BhaGLNkzg2OhTc-FqHykiRIGNKsD3YKMpC7wOJlVEJZpGJUHPBffssQxZ4iUbpC4UDYJ0FU2z7jLtxF7O0I5Q9po3dU2f3tLH7AOg_rXnTZ-MD-ahzTvomXlILBf_V_PFpzQP44t5qMov4CRvV4kn_sluSKjusY-4QNken59PLv0cc4tY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5V5VA4IFioKL8-wNHdJLazyYEDKl1t2W4lRCv1FpyxTYNWyWoTBHvhnRDvwTMxzg8tEgIJqbcoyUiT8eSbsfXNDMDzQKOwQWK5Cozj0iD9c0kqeZKrWOROShn5eufFSTw7k2_O1fkWfB9qYTytssf-DtNbtO7vjHtrjldFMX4XpFEsxMR3lKO4J9OeWTm3m8-0b6tfHr2mRX4RRdPD04MZ70cLcKQcueFpLkIdoaEAJl1MKC1QhULl1pF-iC5CJ9AlVqZJ4myspAutjY3TKkUhjB8VQbh_QxJc-LEJ-18veSWUorTwT9pxr95Qr9eSyvQKdZPTtjSS-z6y-jOXP8XDKzFuegdu98kpe9V9_13YsuUIdg6GmXAjuHWlfeEIdg8vq-RIrIeJ-h687YCUoV7nVclMUX0pjGUXG7OuyGFbZ2BNxZZV-YHjhS5K9uMbr5bWFWXNPKmUTe2inLP2cGlTN_V9OLsWA-_CdlmV9gGwxDiTYj5xE7RSyZCudSyiILWoQ2VwD8RgwQz7xuZ-vsYyGxhsH7PO7pm3e9bZfQ_4L6lV19jjH-9PhsXJfnPQjGLPXyUf_rfkM9iZnS6Os-Ojk_kjuOmftEwa9Ri2m_Un-4TyoSZ_2vofg_fX7fA_ASSvIDs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+carbon+dioxide+hydrogenation+to+long-chain+%CE%B1-olefins+over+FeMnK+catalysts&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Ren%2C+Hao&rft.au=Yang%2C+Haiyan&rft.au=Xin%2C+Jing&rft.au=Wu%2C+Chongchong&rft.date=2024-12-05&rft.issn=0926-3373&rft.volume=358&rft.spage=124440&rft_id=info:doi/10.1016%2Fj.apcatb.2024.124440&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2024_124440 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |