Direct carbon dioxide hydrogenation to long-chain α-olefins over FeMnK catalysts

The catalytic hydrogenation of CO2 to high-carbon linear α-olefins (LAOs; C ≥ 4) has gained considerable attention. In this study, FeMnK catalysts were synthesised using an organic combustion method. The introduction of Mn promoted the dispersion of Fe species and enhanced the formation of the iron...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 358; p. 124440
Main Authors Ren, Hao, Yang, Haiyan, Xin, Jing, Wu, Chongchong, Wang, Hao, Zhang, Jian, Bu, Xianni, Yang, Guoming, Li, Jiong, Sun, Yuhan, Gao, Peng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 05.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The catalytic hydrogenation of CO2 to high-carbon linear α-olefins (LAOs; C ≥ 4) has gained considerable attention. In this study, FeMnK catalysts were synthesised using an organic combustion method. The introduction of Mn promoted the dispersion of Fe species and enhanced the formation of the iron oxides, whereas the introduction of K promoter led to the formation of iron carbides and improved the carbon chain-growth capability of catalysts. The mechanistic studies revealed that the addition of Mn and K regulated the matching of reverse water gas shift and subsequent Fischer–Tropsch synthesis reactions by enhancing the formation and further conversion of CO intermediate. The selectivity and productivity of LAOs were 45.7 % and 0.236 g∙gcat−1∙h−1, respectively, under the reaction condition of 320 °C, 2 MPa and 20000 mL∙gcat−1∙h−1. Furthermore, FeMn0.1K0.1 exhibited excellent stability for up to 160-h on stream, demonstrating promising industrial application prospects for CO2 conversion into value-added fuels and chemicals. [Display omitted] •Fe catalysts decorated with Mn and K for CO2 hydrogenation to linear α-olefins.•Mn promotes the dispersion of Fe species and enhances the formation of FeOy phases.•K promotes the formation of Fe5C2 and improves the carbon chain-growth capability.•Mn and K promoters regulate the matching of RWGS and subsequent FTS reactions.•The as-prepared FeMn0.1K0.1 exhibits the best performance with excellent stability.
AbstractList The catalytic hydrogenation of CO2 to high-carbon linear α-olefins (LAOs; C ≥ 4) has gained considerable attention. In this study, FeMnK catalysts were synthesised using an organic combustion method. The introduction of Mn promoted the dispersion of Fe species and enhanced the formation of the iron oxides, whereas the introduction of K promoter led to the formation of iron carbides and improved the carbon chain-growth capability of catalysts. The mechanistic studies revealed that the addition of Mn and K regulated the matching of reverse water gas shift and subsequent Fischer–Tropsch synthesis reactions by enhancing the formation and further conversion of CO intermediate. The selectivity and productivity of LAOs were 45.7 % and 0.236 g∙gcat−1∙h−1, respectively, under the reaction condition of 320 °C, 2 MPa and 20000 mL∙gcat−1∙h−1. Furthermore, FeMn0.1K0.1 exhibited excellent stability for up to 160-h on stream, demonstrating promising industrial application prospects for CO2 conversion into value-added fuels and chemicals. [Display omitted] •Fe catalysts decorated with Mn and K for CO2 hydrogenation to linear α-olefins.•Mn promotes the dispersion of Fe species and enhances the formation of FeOy phases.•K promotes the formation of Fe5C2 and improves the carbon chain-growth capability.•Mn and K promoters regulate the matching of RWGS and subsequent FTS reactions.•The as-prepared FeMn0.1K0.1 exhibits the best performance with excellent stability.
ArticleNumber 124440
Author Bu, Xianni
Ren, Hao
Xin, Jing
Zhang, Jian
Li, Jiong
Yang, Guoming
Sun, Yuhan
Gao, Peng
Yang, Haiyan
Wu, Chongchong
Wang, Hao
Author_xml – sequence: 1
  givenname: Hao
  surname: Ren
  fullname: Ren, Hao
  organization: CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
– sequence: 2
  givenname: Haiyan
  surname: Yang
  fullname: Yang, Haiyan
  organization: CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
– sequence: 3
  givenname: Jing
  surname: Xin
  fullname: Xin, Jing
  organization: CNOOC Institute of Chemicals & Advanced Materials, Beijing 102200, China
– sequence: 4
  givenname: Chongchong
  surname: Wu
  fullname: Wu, Chongchong
  organization: CNOOC Institute of Chemicals & Advanced Materials, Beijing 102200, China
– sequence: 5
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  organization: CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
– sequence: 6
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
  organization: CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
– sequence: 7
  givenname: Xianni
  surname: Bu
  fullname: Bu, Xianni
  organization: CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
– sequence: 8
  givenname: Guoming
  surname: Yang
  fullname: Yang, Guoming
  organization: CNOOC Institute of Chemicals & Advanced Materials, Beijing 102200, China
– sequence: 9
  givenname: Jiong
  surname: Li
  fullname: Li, Jiong
  organization: CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
– sequence: 10
  givenname: Yuhan
  surname: Sun
  fullname: Sun, Yuhan
  email: sunyh@sari.ac.cn
  organization: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
– sequence: 11
  givenname: Peng
  orcidid: 0000-0003-4859-4488
  surname: Gao
  fullname: Gao, Peng
  email: gaopeng@sari.ac.cn
  organization: CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
BookMark eNqFkM1KAzEUhYNUsK2-gYt5gan5m-mMC0GqVbEigq5DJrlpU8akJKHYx_JFfCanHVcudHXhwHc49xuhgfMOEDoneEIwKS_WE7lRMjUTiimfEMo5x0doSKopy1lVsQEa4pqWOWNTdoJGMa4xxpTRaohebmwAlTIlQ-Ndpq3_sBqy1U4HvwQnk-3S5LPWu2WuVtK67Osz9y0Y62LmtxCyOTy5x64gyXYXUzxFx0a2Ec5-7hi9zW9fZ_f54vnuYXa9yBXDZcrrhhFJlabdWlNWmDBVEFY0YBrDlTJUGaZMBbyuKgNlwQ0BKLWRRa0Y0wUbo8u-VwUfYwAjlE2HvSlI2wqCxV6OWItejtjLEb2cDua_4E2w7zLs_sOuegy6x7YWgojKglOgDxaF9vbvgm-sMYSY
CitedBy_id crossref_primary_10_1016_j_jcis_2025_01_263
crossref_primary_10_1021_acscatal_4c04954
crossref_primary_10_1021_acscatal_4c07784
Cites_doi 10.1039/C8CS00502H
10.1002/anie.202210095
10.1016/j.apsusc.2023.158543
10.1038/s41467-021-25811-0
10.1021/acsami.8b11820
10.1039/b805427d
10.1021/acscatal.0c02429
10.1021/acs.iecr.5b04091
10.1021/acscatal.0c00810
10.1039/C8CY02275E
10.1021/acscatal.5b02594
10.1016/j.apcatb.2022.122050
10.1016/j.apcatb.2023.123052
10.1016/j.ces.2023.119228
10.1038/s41467-020-20214-z
10.1038/ncomms15174
10.1002/anie.201305308
10.1126/sciadv.abm3629
10.1016/j.apcatb.2020.119554
10.1002/cctc.201100186
10.1021/acscatal.2c06158
10.1039/c001514h
10.1021/acscatal.0c02611
10.1021/acs.iecr.7b01817
10.1039/C9CY01055F
10.1016/S1872-2067(22)64107-X
10.1016/j.apsusc.2020.146622
10.1021/acscatal.8b05060
10.1039/c1cs15008a
10.1073/pnas.1821231116
10.1016/j.apcatb.2020.119521
10.1016/j.apcatb.2021.120567
10.1021/acscatal.1c04961
10.1038/s42004-018-0012-4
10.1016/j.apcatb.2021.120287
10.1021/jp803174m
10.1002/anie.202009620
10.1016/j.apcatb.2016.09.072
10.1016/j.fuel.2021.122105
10.1039/C8TA05377D
10.1002/anie.201903298
10.1016/j.fuel.2012.12.081
10.1016/j.apcata.2022.118682
10.1021/acscatal.0c04627
10.1016/j.jcat.2011.05.020
10.1016/j.envres.2023.117715
10.1016/j.cej.2010.12.041
10.1073/pnas.0636830100
10.1002/anie.201200280
10.1002/anie.201603556
10.1016/j.jcou.2018.01.008
10.1039/D1CS00260K
10.1016/j.apcatb.2020.119302
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apcatb.2024.124440
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2024_124440
S0926337324007549
GroupedDBID --K
--M
-~X
.~1
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
ABFNM
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPD
SSG
SSZ
T5K
~02
~G-
0R~
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AITUG
AKBMS
AKYEP
AMRAJ
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
LX7
M41
NDZJH
R2-
SCE
SSH
VH1
WUQ
XPP
ID FETCH-LOGICAL-c306t-9b31a2cd2244f68013c5135befbf4ccf2cf3cf8e4988fe654f1ee6dfa59c33d53
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Tue Jul 01 04:35:40 EDT 2025
Thu Apr 24 22:53:11 EDT 2025
Sat Aug 10 15:30:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Modified Fischer–Tropsch synthesis
Long-chain α-olefins
Carbon dioxide hydrogenation
Iron catalysts
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-9b31a2cd2244f68013c5135befbf4ccf2cf3cf8e4988fe654f1ee6dfa59c33d53
ORCID 0000-0003-4859-4488
ParticipantIDs crossref_citationtrail_10_1016_j_apcatb_2024_124440
crossref_primary_10_1016_j_apcatb_2024_124440
elsevier_sciencedirect_doi_10_1016_j_apcatb_2024_124440
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-05
PublicationDateYYYYMMDD 2024-12-05
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-05
  day: 05
PublicationDecade 2020
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zavyalova, Holena, Schlögl, Baerns (bib31) 2011; 3
Gao, Zhong, Han, He, Sun (bib2) 2022; 61
Zhang, Xu, Yang, Zhu, Gao, Han (bib27) 2021; 295
Lu, Chen, Lei, Wen, Zhang (bib50) 2021; 281
Wei, Ge, Yao, Wen, Fang, Guo, Xu, Sun (bib6) 2017; 8
Wei, Tu, Jia, Liu, Lian, Wang, Zhang (bib25) 2020; 525
Fait, Ricci, Holena, Rabeah, Pohl, Linke, Kondratenko (bib30) 2019; 9
Pendyala, Jacobs, Mohandas, Luo, Hamdeh, Ji, Ribeiro, Davis (bib41) 2010; 140
Zhu, Wachs (bib37) 2015; 6
Zhou, Cheng, Kang, Zhou, Subramanian, Zhang, Wang (bib1) 2019; 48
Wang, Wang, Ma, Gong (bib3) 2011; 40
George, Petrenko, Neese (bib34) 2008; 112
Wang, Wu, Lin, Ji, Yan, Pei, Xie, Zong, Qiao (bib43) 2020; 10
Zhu, Mu, Liu, Zhang, Zhang, Cheng, Hang Yin, Yip, Song, Guo (bib48) 2023; 282
Wei, Yao, Han, Ge, Sun (bib9) 2021; 50
Arslan, Tian, Ali, Zhang, Xiong, Li, Luo, Chen, Wei (bib7) 2022; 12
Zhang, Cao, Zhang, Liu, Xu, Zhu, Tu, Han (bib10) 2021; 11
Xu, Cao, Xu (bib51) 2022; 641
Yang, Chun, Lee, Han, Lee, Kim (bib23) 2020; 10
Hakim, Marliza, Abu Tahari, Wan Isahak, Yusop, Mohamed Hisham, Yarmo (bib52) 2016; 55
Guo, Sun, Ji, Wei, Wen, Yao, Xu, Ge (bib24) 2018; 1
Baltrusaitis, Schuttlefield, Zeitler, Grassian (bib53) 2011; 170
Zhou, Gao (bib4) 2022; 43
Khan, Butolia, Jo, Irshad, Han, Nam, Kim (bib55) 2020; 10
Gong, Ye, Ding, Wang, Shi, Russell, Tang, Eddings, Zhang, Fan (bib32) 2020; 278
de Smit, Weckhuysen (bib40) 2008; 37
Ahmed, Irshad, Yoon, Karanwal, Sugiarto, Khan, Kim, Kim (bib46) 2023; 338
Wang, Zhang, Gao, Ma, Fan, Zhao (bib47) 2023; 641
Yao, Xiao, Makgae, Jie, Gonzalez-Cortes, Guan, Kirkland, Dilworth, Al-Megren, Alshihri, Dobson, Owen, Thomas, Edwards (bib16) 2020; 11
Landau, Meiri, Utsis, Vidruk Nehemya, Herskowitz (bib14) 2017; 56
Ma, Porosoff (bib15) 2019; 9
Wang, Li, Gao, Ma, Zhang, Zhao, Tsubaki (bib21) 2024; 242
Tu, Sun, Zhang, Liu, Malhi, Ma, Zhu, Han (bib26) 2021; 298
Guo, Sun, Ge, Tsubaki (bib5) 2018; 6
Wan, Zhao, Wei, Triana, Li, Arcifa, Allen, Cao, Patzke (bib49) 2021; 5589
Choi, Jang, Park, Kim, Lee, Choi, Lee (bib18) 2017; 202
Coenen, Gallucci, Mezari, Hensen, van Sint Annaland (bib54) 2018; 24
Huang, Zhang, Wei, Guo, Liu, Zhang, Xue, Sun (bib28) 2023; 1
Wang, Xu, Ma, Lin, Wang, Zhang, Ding (bib36) 2018; 10
Koeken, Torres Galvis, Davidian, Ruitenbeek, de Jong (bib39) 2012; 51
Yang, Dang, Cui, Bu, Li, Li, Sun, Gao (bib22) 2023; 321
Zhang, Ma, Fan, Zhao, Sun (bib45) 2013; 109
Keim (bib11) 2013; 52
Zhang, Huang, Tang, Yin, Kang, Zhang, Wang (bib20) 2022; 309
Lim, Rohde, Stubna, Bukowski, Costas, Ho, Münck, Nam, Que (bib33) 2003; 100
Yang, Skrypnik, Matvienko, Lund, Holena, Kondratenko (bib29) 2021; 282
Zhai, Xu, Gao, Liu, Li, Li, Fu, Jia, Xie, Zhao, Wang, Li, Zhang, Wen, Ma, Yu, Wei, Lin, Wang, An, Yu, Sun, Jiang, Sun, Zhong (bib35) 2016; 55
Dorner, Hardy, Williams, Willauer (bib13) 2010; 3
Liang, Sun, Ma, Duan, Li, Yang, Zhang, Su, Huang, Zhang (bib19) 2019; 9
Xu, Zhai, Deng, Xie, Liu, Wang, Ma (bib17) 2020; 59
Cui, Xu, Zhang, Yang, Gao, Wu, Li (bib44) 2011; 282
He, Cui, Qian, Zhang, Liu, Han (bib12) 2019; 116
Zhu, Wang, Zhang, Zhang, Li, Li, Senftle, Liu, Wang, Wang, Zhang, Fu, Song, Guo (bib42) 2022; 8
Zhu, Tian, Kurtz, Lunkenbein, Xu, Schlögl, Wachs, Han (bib38) 2019; 58
Zhang, Dang, Zhou, Gao, Petrus van Bavel, Wang, Li, Shi, Yang, Vovk, Gao, Sun (bib8) 2021; 2
Keim (10.1016/j.apcatb.2024.124440_bib11) 2013; 52
Wei (10.1016/j.apcatb.2024.124440_bib25) 2020; 525
Wang (10.1016/j.apcatb.2024.124440_bib47) 2023; 641
Yang (10.1016/j.apcatb.2024.124440_bib22) 2023; 321
Lim (10.1016/j.apcatb.2024.124440_bib33) 2003; 100
Wan (10.1016/j.apcatb.2024.124440_bib49) 2021; 5589
Huang (10.1016/j.apcatb.2024.124440_bib28) 2023; 1
Cui (10.1016/j.apcatb.2024.124440_bib44) 2011; 282
Arslan (10.1016/j.apcatb.2024.124440_bib7) 2022; 12
Gao (10.1016/j.apcatb.2024.124440_bib2) 2022; 61
Guo (10.1016/j.apcatb.2024.124440_bib24) 2018; 1
Baltrusaitis (10.1016/j.apcatb.2024.124440_bib53) 2011; 170
Hakim (10.1016/j.apcatb.2024.124440_bib52) 2016; 55
Fait (10.1016/j.apcatb.2024.124440_bib30) 2019; 9
Yu (10.1016/j.apcatb.2024.124440_sbref36) 2023; 13
Yang (10.1016/j.apcatb.2024.124440_bib29) 2021; 282
Zhang (10.1016/j.apcatb.2024.124440_bib8) 2021; 2
Choi (10.1016/j.apcatb.2024.124440_bib18) 2017; 202
Zhang (10.1016/j.apcatb.2024.124440_bib45) 2013; 109
Xu (10.1016/j.apcatb.2024.124440_bib17) 2020; 59
Zhou (10.1016/j.apcatb.2024.124440_bib4) 2022; 43
Zhang (10.1016/j.apcatb.2024.124440_bib20) 2022; 309
Wei (10.1016/j.apcatb.2024.124440_bib9) 2021; 50
Liang (10.1016/j.apcatb.2024.124440_bib19) 2019; 9
Ma (10.1016/j.apcatb.2024.124440_bib15) 2019; 9
Zhang (10.1016/j.apcatb.2024.124440_bib27) 2021; 295
He (10.1016/j.apcatb.2024.124440_bib12) 2019; 116
Gong (10.1016/j.apcatb.2024.124440_bib32) 2020; 278
Zavyalova (10.1016/j.apcatb.2024.124440_bib31) 2011; 3
Wang (10.1016/j.apcatb.2024.124440_bib3) 2011; 40
Wang (10.1016/j.apcatb.2024.124440_bib43) 2020; 10
Khan (10.1016/j.apcatb.2024.124440_bib55) 2020; 10
Wang (10.1016/j.apcatb.2024.124440_bib21) 2024; 242
Coenen (10.1016/j.apcatb.2024.124440_bib54) 2018; 24
Pendyala (10.1016/j.apcatb.2024.124440_bib41) 2010; 140
Koeken (10.1016/j.apcatb.2024.124440_bib39) 2012; 51
Yang (10.1016/j.apcatb.2024.124440_bib23) 2020; 10
Tu (10.1016/j.apcatb.2024.124440_bib26) 2021; 298
Zhu (10.1016/j.apcatb.2024.124440_bib38) 2019; 58
Landau (10.1016/j.apcatb.2024.124440_bib14) 2017; 56
Wei (10.1016/j.apcatb.2024.124440_bib6) 2017; 8
George (10.1016/j.apcatb.2024.124440_bib34) 2008; 112
Zhu (10.1016/j.apcatb.2024.124440_bib48) 2023; 282
Yao (10.1016/j.apcatb.2024.124440_bib16) 2020; 11
Dorner (10.1016/j.apcatb.2024.124440_bib13) 2010; 3
Zhai (10.1016/j.apcatb.2024.124440_sbref35) 2016; 55
de Smit (10.1016/j.apcatb.2024.124440_bib40) 2008; 37
Lu (10.1016/j.apcatb.2024.124440_bib50) 2021; 281
Guo (10.1016/j.apcatb.2024.124440_bib5) 2018; 6
Xu (10.1016/j.apcatb.2024.124440_bib51) 2022; 641
Zhu (10.1016/j.apcatb.2024.124440_bib42) 2022; 8
Zhou (10.1016/j.apcatb.2024.124440_bib1) 2019; 48
Wang (10.1016/j.apcatb.2024.124440_bib36) 2018; 10
Zhang (10.1016/j.apcatb.2024.124440_bib10) 2021; 11
Zhu (10.1016/j.apcatb.2024.124440_bib37) 2015; 6
Ahmed (10.1016/j.apcatb.2024.124440_bib46) 2023; 338
References_xml – volume: 43
  start-page: 2045
  year: 2022
  end-page: 2056
  ident: bib4
  article-title: Carbon dioxide hydrogenation to bulk chemicals and liquid fuels via heterogeneous catalysis
  publication-title: Chin. J. Catal.
– volume: 9
  start-page: 456
  year: 2019
  end-page: 464
  ident: bib19
  article-title: Mn decorated Na/Fe catalysts for CO
  publication-title: Catal. Sci. Technol.
– volume: 170
  start-page: 471
  year: 2011
  end-page: 481
  ident: bib53
  article-title: Carbon dioxide adsorption on oxide nanoparticle surfaces
  publication-title: Chem. Eng. J.
– volume: 298
  start-page: 120567
  year: 2021
  end-page: 120579
  ident: bib26
  article-title: Chemical and structural properties of Na decorated Fe
  publication-title: Appl. Catal. B Environ.
– volume: 282
  start-page: 119554
  year: 2021
  end-page: 119565
  ident: bib29
  article-title: Revealing property-performance relationships for efficient CO2 hydrogenation to higher hydrocarbons over Fe-based catalysts: Statistical analysis of literature data and its experimental validation
  publication-title: Appl. Catal. B Environ.
– volume: 12
  start-page: 2023
  year: 2022
  end-page: 2033
  ident: bib7
  article-title: Highly selective conversion of CO
  publication-title: ACS Catal.
– volume: 9
  start-page: 5111
  year: 2019
  end-page: 5121
  ident: bib30
  article-title: Understanding trends in methane oxidation to formaldehyde: statistical analysis of literature data and based hereon experiments
  publication-title: Catal. Sci. Technol.
– volume: 278
  start-page: 119302
  year: 2020
  end-page: 119313
  ident: bib32
  article-title: Effect of copper on highly effective Fe-Mn based catalysts during production of light olefins via Fischer-Tropsch process with low CO
  publication-title: Appl. Catal. B Environ.
– volume: 3
  start-page: 1935
  year: 2011
  end-page: 1947
  ident: bib31
  article-title: Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts
  publication-title: ChemCatChem
– volume: 309
  start-page: 122105
  year: 2022
  end-page: 122118
  ident: bib20
  article-title: Zn and Na promoted Fe catalysts for sustainable production of high-valued olefins by CO
  publication-title: Fuel
– volume: 321
  start-page: 122050
  year: 2023
  end-page: 122066
  ident: bib22
  article-title: Selective synthesis of olefins via CO
  publication-title: Appl. Catal. B Environ.
– volume: 59
  start-page: 21736
  year: 2020
  end-page: 21744
  ident: bib17
  article-title: Highly selective olefin production from CO2 hydrogenation on iron catalysts: a subtle synergy between manganese and sodium additives
  publication-title: Angew. Chem. Int. Ed.
– volume: 112
  start-page: 12936
  year: 2008
  end-page: 12943
  ident: bib34
  article-title: Prediction of iron K-edge absorption spectra using time-dependent density functional theory
  publication-title: J. Phy. Chem. A.
– volume: 6
  start-page: 722
  year: 2015
  end-page: 732
  ident: bib37
  article-title: Iron-based catalysts for the high-temperature water gas Shift (HT-WGS) Reaction: A Review
  publication-title: ACS Catal.
– volume: 10
  start-page: 43578
  year: 2018
  end-page: 43587
  ident: bib36
  article-title: Directly converting syngas to linear α-olefins over core–shell Fe
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 6389
  year: 2020
  end-page: 6401
  ident: bib43
  article-title: Iron-potassium on single-walled carbon nanotubes as efficient catalyst for CO
  publication-title: ACS Catal.
– volume: 140
  start-page: 98
  year: 2010
  end-page: 105
  ident: bib41
  article-title: –Tropsch synthesis: effect of water over iron-based catalysts, Catal
  publication-title: Letters
– volume: 8
  start-page: 15174
  year: 2017
  end-page: 15183
  ident: bib6
  article-title: Directly converting CO
  publication-title: Nat. Commun.
– volume: 109
  start-page: 116
  year: 2013
  end-page: 123
  ident: bib45
  article-title: Synthesis of light olefins from CO hydrogenation over Fe–Mn catalysts: Effect of carburization pretreatment
  publication-title: Fuel
– volume: 5589
  start-page: 5589
  year: 2021
  end-page: 5602
  ident: bib49
  article-title: , Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts
  publication-title: Nat. Commun.
– volume: 3
  start-page: 884
  year: 2010
  end-page: 890
  ident: bib13
  article-title: Heterogeneous catalytic CO
  publication-title: Energy Environ. Sci.
– volume: 641
  start-page: 158543
  year: 2023
  end-page: 158557
  ident: bib47
  article-title: CO
  publication-title: Appl. Surf. Sci.
– volume: 52
  start-page: 12492
  year: 2013
  end-page: 12496
  ident: bib11
  article-title: Oligomerization of Ethylene to α-Olefins: Discovery and development of the Shell Higher Olefin Process (SHOP)
  publication-title: Angew. Chem. Int. Ed.
– volume: 24
  start-page: 228
  year: 2018
  end-page: 239
  ident: bib54
  article-title: An in-situ IR study on the adsorption of CO
  publication-title: J. CO
– volume: 242
  start-page: 117715
  year: 2024
  end-page: 117735
  ident: bib21
  article-title: Novel heterogeneous Fe-based catalysts for carbon dioxide hydrogenation to long chain α-olefins-A review
  publication-title: Environ. Res.
– volume: 338
  start-page: 123052
  year: 2023
  end-page: 123056
  ident: bib46
  article-title: Evaluation of MgO as a promoter for the hydrogenation of CO
  publication-title: Appl. Catal. B Environ.
– volume: 11
  start-page: 2121
  year: 2021
  end-page: 2133
  ident: bib10
  article-title: Unraveling the role of zinc on bimetallic Fe
  publication-title: ACS Catal.
– volume: 48
  start-page: 3193
  year: 2019
  end-page: 3228
  ident: bib1
  article-title: New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO
  publication-title: Chem. Soc. Rev.
– volume: 55
  start-page: 7888
  year: 2016
  end-page: 7897
  ident: bib52
  article-title: Studies on CO
  publication-title: Ind. Eng. Chem. Res.
– volume: 2
  start-page: 100170
  year: 2021
  end-page: 100180
  ident: bib8
  article-title: Direct conversion of CO
  publication-title: Innovation
– volume: 641
  start-page: 118682
  year: 2022
  end-page: 118693
  ident: bib51
  article-title: Understanding kinetically interplaying reverse water-gas shift and Fischer-Tropsch synthesis during CO
  publication-title: Appl. Catal. A, Gen.
– volume: 282
  start-page: 119228
  year: 2023
  end-page: 119237
  ident: bib48
  article-title: Unveiling the promoting effect of potassium on the structural evolution of iron catalysts during CO
  publication-title: Chem. Eng. Sci.
– volume: 1
  start-page: 100004
  year: 2023
  end-page: 100011
  ident: bib28
  article-title: Layered double hydroxides derived CuFe-based catalysts for CO
  publication-title: Chem. Inorg. Mater.
– volume: 8
  start-page: 3629
  year: 2022
  end-page: 3642
  ident: bib42
  article-title: Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO
  publication-title: Sci. Adv.
– volume: 55
  start-page: 9902
  year: 2016
  end-page: 9907
  ident: bib35
  article-title: Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe
  publication-title: Angew. Chem. Int. Ed.
– volume: 281
  start-page: 119521
  year: 2021
  end-page: 119531
  ident: bib50
  article-title: Revealing the activity of different iron carbides for Fischer-Tropsch synthesis
  publication-title: Appl. Catal. B Environ.
– volume: 50
  start-page: 10764
  year: 2021
  end-page: 10805
  ident: bib9
  article-title: Towards the development of the emerging process of CO
  publication-title: Chem. Soc. Rev.
– volume: 116
  start-page: 12654
  year: 2019
  end-page: 12659
  ident: bib12
  article-title: Synthesis of liquid fuel via direct hydrogenation of CO
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 100
  start-page: 3665
  year: 2003
  end-page: 3670
  ident: bib33
  article-title: An Fe
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 525
  start-page: 146622
  year: 2020
  end-page: 146635
  ident: bib25
  article-title: The evolutions of carbon and iron species modified by Na and their tuning effect on the hydrogenation of CO
  publication-title: Appl. Surf. Sci.
– volume: 37
  start-page: 2758
  year: 2008
  end-page: 2781
  ident: bib40
  article-title: The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour
  publication-title: Chem. Soc. Rev.
– volume: 202
  start-page: 605
  year: 2017
  end-page: 610
  ident: bib18
  article-title: Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels
  publication-title: Appl. Catal. B Environ.
– volume: 40
  start-page: 3703
  year: 2011
  end-page: 3727
  ident: bib3
  article-title: Recent advances in catalytic hydrogenation of carbon dioxide
  publication-title: Chem. Soc. Rev.
– volume: 295
  start-page: 120287
  year: 2021
  end-page: 120298
  ident: bib27
  article-title: Uncovering the electronic effects of zinc on the structure of Fe
  publication-title: Appl. Catal. B Environ.
– volume: 58
  start-page: 9083
  year: 2019
  end-page: 9087
  ident: bib38
  article-title: Strong metal–support interactions between copper and iron oxide during the high-temperature water-gas shift reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 56
  start-page: 13334
  year: 2017
  end-page: 13355
  ident: bib14
  article-title: Conversion of CO
  publication-title: Ind. Eng. Chem. Res.
– volume: 6
  start-page: 23244
  year: 2018
  end-page: 23262
  ident: bib5
  article-title: Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C
  publication-title: J. Mat. Chem. A.
– volume: 1
  start-page: 11
  year: 2018
  end-page: 19
  ident: bib24
  article-title: Directly converting carbon dioxide to linear α-olefins on bio-promoted catalysts
  publication-title: Commun. Chem.
– volume: 10
  start-page: 10325
  year: 2020
  end-page: 10338
  ident: bib55
  article-title: Selective conversion of carbon dioxide into liquid hydrocarbons and long-chain α-olefins over Fe-amorphous AlO
  publication-title: ACS Catal.
– volume: 51
  start-page: 7190
  year: 2012
  end-page: 7193
  ident: bib39
  article-title: Suppression of carbon deposition in the iron-catalyzed production of lower olefins from synthesis gas
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 6395
  year: 2020
  end-page: 6407
  ident: bib16
  article-title: Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst
  publication-title: Nat. Commun.
– volume: 61
  start-page: 10095
  year: 2022
  end-page: 10109
  ident: bib2
  article-title: Green Carbon Science: Keeping the pace in practice
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 2639
  year: 2019
  end-page: 2656
  ident: bib15
  article-title: Development of tandem catalysts for CO
  publication-title: ACS Catal.
– volume: 10
  start-page: 10742
  year: 2020
  end-page: 10759
  ident: bib23
  article-title: Comparative study of olefin production from CO and CO
  publication-title: ACS Catal.
– volume: 282
  start-page: 35
  year: 2011
  end-page: 46
  ident: bib44
  article-title: Effect of pretreatment on precipitated Fe–Mo Fischer–Tropsch catalysts: Morphology, carburization, and catalytic performance
  publication-title: J. Catal.
– volume: 48
  start-page: 3193
  year: 2019
  ident: 10.1016/j.apcatb.2024.124440_bib1
  article-title: New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00502H
– volume: 61
  start-page: 10095
  year: 2022
  ident: 10.1016/j.apcatb.2024.124440_bib2
  article-title: Green Carbon Science: Keeping the pace in practice
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202210095
– volume: 140
  start-page: 98
  year: 2010
  ident: 10.1016/j.apcatb.2024.124440_bib41
  article-title: –Tropsch synthesis: effect of water over iron-based catalysts, Catal
– volume: 641
  start-page: 158543
  year: 2023
  ident: 10.1016/j.apcatb.2024.124440_bib47
  article-title: CO2 hydrogenation to linear α-olefins on FeCx/ZnO catalysts: Effects of surface oxygen vacancies
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2023.158543
– volume: 5589
  start-page: 5589
  year: 2021
  ident: 10.1016/j.apcatb.2024.124440_bib49
  article-title: , Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25811-0
– volume: 10
  start-page: 43578
  year: 2018
  ident: 10.1016/j.apcatb.2024.124440_bib36
  article-title: Directly converting syngas to linear α-olefins over core–shell Fe3O4@MnO2 catalysts
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b11820
– volume: 37
  start-page: 2758
  year: 2008
  ident: 10.1016/j.apcatb.2024.124440_bib40
  article-title: The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b805427d
– volume: 10
  start-page: 10742
  year: 2020
  ident: 10.1016/j.apcatb.2024.124440_bib23
  article-title: Comparative study of olefin production from CO and CO2 using Na- and K-promoted zinc ferrite
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02429
– volume: 55
  start-page: 7888
  year: 2016
  ident: 10.1016/j.apcatb.2024.124440_bib52
  article-title: Studies on CO2 adsorption and desorption properties from various types of iron oxides (FeO, Fe2O3, and Fe3O4)
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b04091
– volume: 10
  start-page: 6389
  year: 2020
  ident: 10.1016/j.apcatb.2024.124440_bib43
  article-title: Iron-potassium on single-walled carbon nanotubes as efficient catalyst for CO2 hydrogenation to heavy olefins
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00810
– volume: 9
  start-page: 456
  year: 2019
  ident: 10.1016/j.apcatb.2024.124440_bib19
  article-title: Mn decorated Na/Fe catalysts for CO2 hydrogenation to light olefins
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C8CY02275E
– volume: 6
  start-page: 722
  year: 2015
  ident: 10.1016/j.apcatb.2024.124440_bib37
  article-title: Iron-based catalysts for the high-temperature water gas Shift (HT-WGS) Reaction: A Review
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02594
– volume: 321
  start-page: 122050
  year: 2023
  ident: 10.1016/j.apcatb.2024.124440_bib22
  article-title: Selective synthesis of olefins via CO2 hydrogenation over transition-metal-doped iron-based catalysts
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2022.122050
– volume: 338
  start-page: 123052
  year: 2023
  ident: 10.1016/j.apcatb.2024.124440_bib46
  article-title: Evaluation of MgO as a promoter for the hydrogenation of CO2 to long-chain hydrocarbons over Fe-based catalysts
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2023.123052
– volume: 282
  start-page: 119228
  year: 2023
  ident: 10.1016/j.apcatb.2024.124440_bib48
  article-title: Unveiling the promoting effect of potassium on the structural evolution of iron catalysts during CO2 hydrogenation
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2023.119228
– volume: 11
  start-page: 6395
  year: 2020
  ident: 10.1016/j.apcatb.2024.124440_bib16
  article-title: Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20214-z
– volume: 8
  start-page: 15174
  year: 2017
  ident: 10.1016/j.apcatb.2024.124440_bib6
  article-title: Directly converting CO2 into a gasoline fuel
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15174
– volume: 52
  start-page: 12492
  year: 2013
  ident: 10.1016/j.apcatb.2024.124440_bib11
  article-title: Oligomerization of Ethylene to α-Olefins: Discovery and development of the Shell Higher Olefin Process (SHOP)
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201305308
– volume: 8
  start-page: 3629
  issue: 5
  year: 2022
  ident: 10.1016/j.apcatb.2024.124440_bib42
  article-title: Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO2 hydrogenation
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abm3629
– volume: 282
  start-page: 119554
  year: 2021
  ident: 10.1016/j.apcatb.2024.124440_bib29
  article-title: Revealing property-performance relationships for efficient CO2 hydrogenation to higher hydrocarbons over Fe-based catalysts: Statistical analysis of literature data and its experimental validation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119554
– volume: 3
  start-page: 1935
  year: 2011
  ident: 10.1016/j.apcatb.2024.124440_bib31
  article-title: Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201100186
– volume: 13
  start-page: 3949
  year: 2023
  ident: 10.1016/j.apcatb.2024.124440_sbref36
  article-title: Identifying the performance descriptor in direct syngas conversion to long-chain α-olefins over Ruthenium-based catalysts promoted by alkali metals
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c06158
– volume: 3
  start-page: 884
  year: 2010
  ident: 10.1016/j.apcatb.2024.124440_bib13
  article-title: Heterogeneous catalytic CO2 conversion to value-added hydrocarbons
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c001514h
– volume: 10
  start-page: 10325
  year: 2020
  ident: 10.1016/j.apcatb.2024.124440_bib55
  article-title: Selective conversion of carbon dioxide into liquid hydrocarbons and long-chain α-olefins over Fe-amorphous AlOx bifunctional catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02611
– volume: 56
  start-page: 13334
  year: 2017
  ident: 10.1016/j.apcatb.2024.124440_bib14
  article-title: Conversion of CO2, CO, and H2 in CO2 hydrogenation to fungible liquid fuels on Fe-based catalysts
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b01817
– volume: 9
  start-page: 5111
  year: 2019
  ident: 10.1016/j.apcatb.2024.124440_bib30
  article-title: Understanding trends in methane oxidation to formaldehyde: statistical analysis of literature data and based hereon experiments
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C9CY01055F
– volume: 43
  start-page: 2045
  year: 2022
  ident: 10.1016/j.apcatb.2024.124440_bib4
  article-title: Carbon dioxide hydrogenation to bulk chemicals and liquid fuels via heterogeneous catalysis
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(22)64107-X
– volume: 525
  start-page: 146622
  year: 2020
  ident: 10.1016/j.apcatb.2024.124440_bib25
  article-title: The evolutions of carbon and iron species modified by Na and their tuning effect on the hydrogenation of CO2 to olefins
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.146622
– volume: 2
  start-page: 100170
  year: 2021
  ident: 10.1016/j.apcatb.2024.124440_bib8
  article-title: Direct conversion of CO2 to a jet fuel over CoFe alloy catalysts
  publication-title: Innovation
– volume: 9
  start-page: 2639
  year: 2019
  ident: 10.1016/j.apcatb.2024.124440_bib15
  article-title: Development of tandem catalysts for CO2 hydrogenation to olefins
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b05060
– volume: 40
  start-page: 3703
  year: 2011
  ident: 10.1016/j.apcatb.2024.124440_bib3
  article-title: Recent advances in catalytic hydrogenation of carbon dioxide
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c1cs15008a
– volume: 116
  start-page: 12654
  year: 2019
  ident: 10.1016/j.apcatb.2024.124440_bib12
  article-title: Synthesis of liquid fuel via direct hydrogenation of CO2
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1821231116
– volume: 281
  start-page: 119521
  year: 2021
  ident: 10.1016/j.apcatb.2024.124440_bib50
  article-title: Revealing the activity of different iron carbides for Fischer-Tropsch synthesis
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119521
– volume: 298
  start-page: 120567
  year: 2021
  ident: 10.1016/j.apcatb.2024.124440_bib26
  article-title: Chemical and structural properties of Na decorated Fe5C2-ZnO catalysts during hydrogenation of CO2 to linear α-olefins
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120567
– volume: 12
  start-page: 2023
  year: 2022
  ident: 10.1016/j.apcatb.2024.124440_bib7
  article-title: Highly selective conversion of CO2 or CO into precursors for kerosene-based aviation fuel via an aldol-aromatic mechanism
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c04961
– volume: 1
  start-page: 11
  year: 2018
  ident: 10.1016/j.apcatb.2024.124440_bib24
  article-title: Directly converting carbon dioxide to linear α-olefins on bio-promoted catalysts
  publication-title: Commun. Chem.
  doi: 10.1038/s42004-018-0012-4
– volume: 295
  start-page: 120287
  year: 2021
  ident: 10.1016/j.apcatb.2024.124440_bib27
  article-title: Uncovering the electronic effects of zinc on the structure of Fe5C2-ZnO catalysts for CO2 hydrogenation to linear α-olefins
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120287
– volume: 112
  start-page: 12936
  year: 2008
  ident: 10.1016/j.apcatb.2024.124440_bib34
  article-title: Prediction of iron K-edge absorption spectra using time-dependent density functional theory
  publication-title: J. Phy. Chem. A.
  doi: 10.1021/jp803174m
– volume: 1
  start-page: 100004
  year: 2023
  ident: 10.1016/j.apcatb.2024.124440_bib28
  article-title: Layered double hydroxides derived CuFe-based catalysts for CO2 hydrogenation to long-chain hydrocarbons
  publication-title: Chem. Inorg. Mater.
– volume: 59
  start-page: 21736
  year: 2020
  ident: 10.1016/j.apcatb.2024.124440_bib17
  article-title: Highly selective olefin production from CO2 hydrogenation on iron catalysts: a subtle synergy between manganese and sodium additives
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202009620
– volume: 202
  start-page: 605
  year: 2017
  ident: 10.1016/j.apcatb.2024.124440_bib18
  article-title: Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.09.072
– volume: 309
  start-page: 122105
  year: 2022
  ident: 10.1016/j.apcatb.2024.124440_bib20
  article-title: Zn and Na promoted Fe catalysts for sustainable production of high-valued olefins by CO2 hydrogenation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.122105
– volume: 6
  start-page: 23244
  year: 2018
  ident: 10.1016/j.apcatb.2024.124440_bib5
  article-title: Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C2+ hydrocarbons
  publication-title: J. Mat. Chem. A.
  doi: 10.1039/C8TA05377D
– volume: 58
  start-page: 9083
  year: 2019
  ident: 10.1016/j.apcatb.2024.124440_bib38
  article-title: Strong metal–support interactions between copper and iron oxide during the high-temperature water-gas shift reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201903298
– volume: 109
  start-page: 116
  year: 2013
  ident: 10.1016/j.apcatb.2024.124440_bib45
  article-title: Synthesis of light olefins from CO hydrogenation over Fe–Mn catalysts: Effect of carburization pretreatment
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.12.081
– volume: 641
  start-page: 118682
  year: 2022
  ident: 10.1016/j.apcatb.2024.124440_bib51
  article-title: Understanding kinetically interplaying reverse water-gas shift and Fischer-Tropsch synthesis during CO2 hydrogenation over Fe-based catalysts
  publication-title: Appl. Catal. A, Gen.
  doi: 10.1016/j.apcata.2022.118682
– volume: 11
  start-page: 2121
  year: 2021
  ident: 10.1016/j.apcatb.2024.124440_bib10
  article-title: Unraveling the role of zinc on bimetallic Fe5C2–ZnO catalysts for highly selective carbon dioxide hydrogenation to high carbon α-olefins
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c04627
– volume: 282
  start-page: 35
  year: 2011
  ident: 10.1016/j.apcatb.2024.124440_bib44
  article-title: Effect of pretreatment on precipitated Fe–Mo Fischer–Tropsch catalysts: Morphology, carburization, and catalytic performance
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2011.05.020
– volume: 242
  start-page: 117715
  year: 2024
  ident: 10.1016/j.apcatb.2024.124440_bib21
  article-title: Novel heterogeneous Fe-based catalysts for carbon dioxide hydrogenation to long chain α-olefins-A review
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2023.117715
– volume: 170
  start-page: 471
  year: 2011
  ident: 10.1016/j.apcatb.2024.124440_bib53
  article-title: Carbon dioxide adsorption on oxide nanoparticle surfaces
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.12.041
– volume: 100
  start-page: 3665
  year: 2003
  ident: 10.1016/j.apcatb.2024.124440_bib33
  article-title: An FeIV=O complex of a tetradentate tripodal nonheme ligand
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0636830100
– volume: 51
  start-page: 7190
  year: 2012
  ident: 10.1016/j.apcatb.2024.124440_bib39
  article-title: Suppression of carbon deposition in the iron-catalyzed production of lower olefins from synthesis gas
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201200280
– volume: 55
  start-page: 9902
  year: 2016
  ident: 10.1016/j.apcatb.2024.124440_sbref35
  article-title: Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201603556
– volume: 24
  start-page: 228
  year: 2018
  ident: 10.1016/j.apcatb.2024.124440_bib54
  article-title: An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2018.01.008
– volume: 50
  start-page: 10764
  year: 2021
  ident: 10.1016/j.apcatb.2024.124440_bib9
  article-title: Towards the development of the emerging process of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00260K
– volume: 278
  start-page: 119302
  year: 2020
  ident: 10.1016/j.apcatb.2024.124440_bib32
  article-title: Effect of copper on highly effective Fe-Mn based catalysts during production of light olefins via Fischer-Tropsch process with low CO2 emission
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119302
SSID ssj0002328
Score 2.4950716
Snippet The catalytic hydrogenation of CO2 to high-carbon linear α-olefins (LAOs; C ≥ 4) has gained considerable attention. In this study, FeMnK catalysts were...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 124440
SubjectTerms Carbon dioxide hydrogenation
Iron catalysts
Long-chain α-olefins
Modified Fischer–Tropsch synthesis
Title Direct carbon dioxide hydrogenation to long-chain α-olefins over FeMnK catalysts
URI https://dx.doi.org/10.1016/j.apcatb.2024.124440
Volume 358
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSiQxEC4GPbgeFp1dcdZdycFrnO5O0j_HYXAYFQVRwVuTriTaMnQPMy04l32nfRGfaZP-2VGQFbx1N1XQVFXqS8JXVQBHnkSmvVhT4SlDuUK75uKE0zgTIcsM5zxw9c4Xl-H0lp_dibsejLtaGEerbHN_k9PrbN1-GbbWHM7zfHjtJUHIWOQ6ylnc466Ij_PIRfnx7zXNw-4Y6mxshamT7srnao6XnKOsMntKDPixAzp3BfIePL2CnMkOfG33imTU_M4u9HTRh61xN6KtD9uvugn2Ye9kXbRm1dpVu_wGV01eIygXWVkQlZfPudLkYaUWpY2f2jekKsmsLO4pPsi8IC9_aDnTJi-WxHE8yURfFOekvutZLavld7idnNyMp7QdpUDRngkqmmTMlwEqC9jchBaVGAqfiUwb6w9EE6BhaGLNkzg2OhTc-FqHykiRIGNKsD3YKMpC7wOJlVEJZpGJUHPBffssQxZ4iUbpC4UDYJ0FU2z7jLtxF7O0I5Q9po3dU2f3tLH7AOg_rXnTZ-MD-ahzTvomXlILBf_V_PFpzQP44t5qMov4CRvV4kn_sluSKjusY-4QNken59PLv0cc4tY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5V5VA4IFioKL8-wNHdJLazyYEDKl1t2W4lRCv1FpyxTYNWyWoTBHvhnRDvwTMxzg8tEgIJqbcoyUiT8eSbsfXNDMDzQKOwQWK5Cozj0iD9c0kqeZKrWOROShn5eufFSTw7k2_O1fkWfB9qYTytssf-DtNbtO7vjHtrjldFMX4XpFEsxMR3lKO4J9OeWTm3m8-0b6tfHr2mRX4RRdPD04MZ70cLcKQcueFpLkIdoaEAJl1MKC1QhULl1pF-iC5CJ9AlVqZJ4myspAutjY3TKkUhjB8VQbh_QxJc-LEJ-18veSWUorTwT9pxr95Qr9eSyvQKdZPTtjSS-z6y-jOXP8XDKzFuegdu98kpe9V9_13YsuUIdg6GmXAjuHWlfeEIdg8vq-RIrIeJ-h687YCUoV7nVclMUX0pjGUXG7OuyGFbZ2BNxZZV-YHjhS5K9uMbr5bWFWXNPKmUTe2inLP2cGlTN_V9OLsWA-_CdlmV9gGwxDiTYj5xE7RSyZCudSyiILWoQ2VwD8RgwQz7xuZ-vsYyGxhsH7PO7pm3e9bZfQ_4L6lV19jjH-9PhsXJfnPQjGLPXyUf_rfkM9iZnS6Os-Ojk_kjuOmftEwa9Ri2m_Un-4TyoSZ_2vofg_fX7fA_ASSvIDs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+carbon+dioxide+hydrogenation+to+long-chain+%CE%B1-olefins+over+FeMnK+catalysts&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Ren%2C+Hao&rft.au=Yang%2C+Haiyan&rft.au=Xin%2C+Jing&rft.au=Wu%2C+Chongchong&rft.date=2024-12-05&rft.issn=0926-3373&rft.volume=358&rft.spage=124440&rft_id=info:doi/10.1016%2Fj.apcatb.2024.124440&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2024_124440
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon