Wearables-based multi-task gait and activity segmentation using recurrent neural networks
Human activity recognition (HAR) and cycle analysis, such as gait analysis, have become an integral part of daily lives from gesture recognition to step counting. As the available data and the possible application areas grow, an efficient solution without the need of handcrafted feature extraction i...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 432; pp. 250 - 261 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
07.04.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0925-2312 1872-8286 |
DOI | 10.1016/j.neucom.2020.08.079 |
Cover
Loading…
Abstract | Human activity recognition (HAR) and cycle analysis, such as gait analysis, have become an integral part of daily lives from gesture recognition to step counting. As the available data and the possible application areas grow, an efficient solution without the need of handcrafted feature extraction is needed. We propose a multi-task recurrent neural network architecture that uses inertial sensor data to both segment and recognise activities and cycles. The solution is validated using three publicly available datasets consisting of more than 120 subjects and 8 activities, 6 of which are cyclic. Our architecture is smaller than comparable HAR models while being robust to different sensor placements and channels. Our proposed solution outperforms or defines state-of-the-art for HAR and cycle analysis using inertial sensors. We achieve an overall activity F1-score of 92.6% and a phase detection F1-score of 98.2%. The gait analysis achieves a mean stride time error of 5.3 ± 51.9ms and swing duration error of 0.0 ± 5.9%. The overall step count error for all activities is −1.5 ± 2.8%. Thus, we provide a method that is not dependent on feature extraction and a model that is sensor and location independent. |
---|---|
AbstractList | Human activity recognition (HAR) and cycle analysis, such as gait analysis, have become an integral part of daily lives from gesture recognition to step counting. As the available data and the possible application areas grow, an efficient solution without the need of handcrafted feature extraction is needed. We propose a multi-task recurrent neural network architecture that uses inertial sensor data to both segment and recognise activities and cycles. The solution is validated using three publicly available datasets consisting of more than 120 subjects and 8 activities, 6 of which are cyclic. Our architecture is smaller than comparable HAR models while being robust to different sensor placements and channels. Our proposed solution outperforms or defines state-of-the-art for HAR and cycle analysis using inertial sensors. We achieve an overall activity F1-score of 92.6% and a phase detection F1-score of 98.2%. The gait analysis achieves a mean stride time error of 5.3 ± 51.9ms and swing duration error of 0.0 ± 5.9%. The overall step count error for all activities is −1.5 ± 2.8%. Thus, we provide a method that is not dependent on feature extraction and a model that is sensor and location independent. |
Author | Eskofier, Bjoern M. Klumpp, Philipp Christlein, Vincent Martindale, Chrsitine F. |
Author_xml | – sequence: 1 givenname: Chrsitine F. surname: Martindale fullname: Martindale, Chrsitine F. email: christine.f.martindale@fau.de organization: Machine Learning and Data Analytics Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany – sequence: 2 givenname: Vincent surname: Christlein fullname: Christlein, Vincent organization: Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany – sequence: 3 givenname: Philipp surname: Klumpp fullname: Klumpp, Philipp organization: Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany – sequence: 4 givenname: Bjoern M. surname: Eskofier fullname: Eskofier, Bjoern M. organization: Machine Learning and Data Analytics Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany |
BookMark | eNqFkM1Kw0AUhQepYFt9Axd5gcQ7M20ycSFI8Q8EN4q4Gm4mN2XadCIzk0rf3pS4cqGrAxe-wz3fjE1c54ixSw4ZB55fbTJHvel2mQABGagMivKETbkqRKqEyidsCqVYpkJyccZmIWwAeMFFOWUf74Qeq5ZCWmGgOtn1bbRpxLBN1mhjgq5O0ES7t_GQBFrvyEWMtnNJH6xbJ55M7_1wTIYfPLZDxK_Ob8M5O22wDXTxk3P2dn_3unpMn18enla3z6mRkMe0xBqxEQalzCFv-FI1dQmNNBUvFhWQaEhhbTgYQ0JiA3mZVwBioQpJCnI5Z4ux1_guBE-N_vR2h_6gOeijHr3Rox591KNB6UHPgF3_wowdh0WPtv0PvhlhGobtLXkdjCVnqLaDj6jrzv5d8A3oSoh4 |
CitedBy_id | crossref_primary_10_3389_fneur_2023_1247532 crossref_primary_10_1016_j_entcom_2024_100642 crossref_primary_10_14801_jkiit_2021_19_8_27 crossref_primary_10_1109_TMC_2022_3199015 crossref_primary_10_1109_JSEN_2024_3487018 crossref_primary_10_3390_s24010075 crossref_primary_10_1016_j_apergo_2022_103732 crossref_primary_10_1155_2023_4086380 crossref_primary_10_3390_s22041678 crossref_primary_10_1109_JSEN_2023_3295778 crossref_primary_10_1017_S026357472100179X crossref_primary_10_1109_JIOT_2024_3493380 crossref_primary_10_1109_JSEN_2022_3216459 crossref_primary_10_3389_fnins_2022_976594 crossref_primary_10_3390_s22155787 crossref_primary_10_3390_electronics12071509 crossref_primary_10_1007_s11042_024_18933_2 crossref_primary_10_1111_exsy_13274 crossref_primary_10_7746_jkros_2025_20_1_130 crossref_primary_10_1186_s12984_021_00883_7 crossref_primary_10_3390_jpm13121703 crossref_primary_10_3390_info15100593 crossref_primary_10_1109_JIOT_2023_3267335 crossref_primary_10_3390_electronics12010050 |
Cites_doi | 10.1093/ageing/afr055 10.1109/JBHI.2016.2636456 10.1109/TIM.2012.2236792 10.1109/WH.2016.7764572 10.1016/j.patrec.2018.02.010 10.3390/s18041055 10.1016/j.neucom.2015.08.096 10.1109/EMBC.2019.8856685 10.1016/j.asoc.2017.09.027 10.3390/s17112556 10.3390/s17071522 10.5220/0007916705070516 10.1249/MSS.0000000000000933 10.1371/journal.pone.0118723 10.1038/s41598-019-38748-8 10.3390/s18041091 10.1145/3090076 10.1007/BF02295996 10.3390/informatics5020026 10.3390/s18124189 10.1016/S0021-9290(99)00192-X 10.1109/TBME.2014.2368211 10.1089/tmj.2017.0264 10.1109/IJCNN.2019.8852299 10.3390/s16010115 10.1016/j.gaitpost.2017.07.030 10.1016/j.gaitpost.2009.07.128 10.3390/s17102328 10.5220/0007916806560663 10.1109/SII.2019.8700415 10.3390/s18061714 10.1016/j.eswa.2018.03.056 10.1016/j.gaitpost.2016.09.023 10.1016/j.neucom.2014.08.069 10.1162/089976698300017197 10.3390/s19081820 10.3390/s150922089 10.1109/TITB.2009.2036165 10.1109/PERCOM.2017.7917848 10.1145/3214277 10.1016/j.gaitpost.2018.06.012 10.3390/s18072146 10.1016/j.patrec.2012.12.014 10.1016/j.gaitpost.2019.09.007 10.1109/IJCNN.2017.7966182 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.neucom.2020.08.079 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-8286 |
EndPage | 261 |
ExternalDocumentID | 10_1016_j_neucom_2020_08_079 S0925231220317707 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- RIG SBC SEW SSH WUQ XPP |
ID | FETCH-LOGICAL-c306t-9adaaf2ca33606f158fd90f3cb174b0e2fe8adc10cce23af0696b0024873e8063 |
IEDL.DBID | .~1 |
ISSN | 0925-2312 |
IngestDate | Tue Jul 01 01:46:54 EDT 2025 Thu Apr 24 23:07:04 EDT 2025 Fri Feb 23 02:48:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Activity recognition Recurrent neural networks Inertial measurement units wearables Multi-task Gait analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-9adaaf2ca33606f158fd90f3cb174b0e2fe8adc10cce23af0696b0024873e8063 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1016_j_neucom_2020_08_079 crossref_citationtrail_10_1016_j_neucom_2020_08_079 elsevier_sciencedirect_doi_10_1016_j_neucom_2020_08_079 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-07 |
PublicationDateYYYYMMDD | 2021-04-07 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-07 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Nelson, Kaminsky, Dickin, Montoye (b0135) 2016; 48 Y. LeCun, Generalization and network design strategies, in: Connectionism in Perspective, Elsevier, 1989, pp. 143–155. https://www.semanticscholar.org/paper/Generalization-and-network-design-strategies-LeCun/01b6affe3ea4eae1978aec54e87087feb76d9215. Callisaya, Blizzard, Schmidt, Martin, McGinley, Sanders, Srikanth (b0250) 2011; 40 Storm, Heller, Mazzà (b0140) 2015; 10 Horst, Lapuschkin, Samek, Müller, Schöllhorn (b0165) 2019; 9 Tophøj, Petersen, Sæbye, Baad-Hansen, Wagner (b0285) 2018 Šprager, Jurič (b0290) 2018; 18 Liu, Nie, Liu, Rosenblum (b0010) 2016; 181 Y. Guan, T. Plötz, Ensembles of deep LSTM learners for activity recognition using wearables, Proc. ACM Interact. Mobile Wearable Ubiquit. Technol. 1 (2) (2017) 1–28. doi: 10.1145/3090076. Kingma, Ba (b0270) 2015 Yao, Hu, Zhao, Zhang, Abdelzaher (b0100) 2017 Seo, Park, Lee, Hyung, Lee, Kim, Choi, Shim (b0175) 2019 Martindale, Hoenig, Strohrmann, Eskofier (b0030) 2017; 17 Ordóñez, Roggen (b0230) 2016; 16 Zappi, Lombriser, Stiefmeier, Farella, Roggen, Benini, Tröster (b0050) 2008 M.G. Abdu-Aguye, W. Gomaa, Robust human activity recognition based on deep metric learning, in: ICINCO 2019 – Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics, vol. 1, 2019, pp. 656–663. N.Y. Hammerla, J. Fisher, P. Andras, L. Rochester, R. Walker, T. Ploetz, PD Disease state assessment in naturalistic environments using deep learning, Twenty-Ninth AAAI Conference on Artificial Intelligence. Murad, Pyun, Murad, Pyun (b0105) 2017; 17 Hesse, Helm, Krajnik, Gregoric, Mauritz (b0245) 1997; 11 Dietterich (b0260) 1998; 10 Tan, Aung, Tian, Chua, Yang (b0180) 2019; 74 De Wit, De Clercq, Aerts (b0235) 2000; 33 Gong, Goldman, Lach, Deepmotion: a deep convolutional neural network on inertial body sensors for gait assessment in multiple sclerosis*, in: 2016 IEEE Wireless Health (WH), IEEE, 2016, pp. 1–8. doi:10.1109/WH.2016.7764572. Martindale, Sprager, Eskofier (b0055) 2019; 19 Herssens, Verbecque, Hallemans, Vereeck, Van Rompaey, Saeys (b0280) 2018; 64 Gillani Fahad, Khan, Rajarajan (b0005) 2015; 149 Panahandeh, Mohammadiha, Leijon, Handel (b0025) 2013; 62 Sprager, Juric (b0145) 2015; 15 Khandelwal, Wickström (b0065) 2017; 51 S. Hochreiter, Untersuchungen zu dynamischen neuronalen Netzen, Diploma thesis, Technische Universit at Munich (1991) Khandelwal, Wickström (b0150) 2018; 59 Bachlin, Plotnik, Roggen, Maidan, Hausdorff, Giladi, Troster (b0200) 2010; 14 M. Gadaleta, G. Cisotto, M. Rossi, R.Z. Ur Rehman, L. Rochester, S. Del Din, Deep learning techniques for improving digital gait segmentation, in: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 1834–1837. doi:10.1109/EMBC.2019.8856685. Rampp, Barth, Schuelein, Gassmann, Klucken, Eskofier (b0155) 2015; 62 M.G. Abdu-Aguye, W. Gomaa, Competitive feature extraction for activity recognition based on wavelet transforms and adaptive pooling, in: Proceedings of the International Joint Conference on Neural Networks, vol. 2019-July, 2019. Wang, Chen, Hao, Peng, Hu (b0040) 2019; 119 Nweke, Teh, Al-garadi, Alo (b0075) 2018; 105 Keras: the python deep learning library, https://keras.io/, accessed: 2019-10-26. Hammerla, Halloran, Plötz (b0090) 2016 M.G. Abdu-Aguye, W. Gomaa, Versatl: Versatile transfer learning for imu-based activity recognition using convolutional neural networks, in: ICINCO 2019 – Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics, vol. 1, 2019, pp. 507–516. L. Peng, L. Chen, Z. Ye, Y. Zhang, AROMA: a deep multi-task learning based simple and complex human activity recognition method using wearable sensors, Proc. ACM Interact., Mobile Wearable Ubiquit. Technol. 2 (2) (2018) 1–16. doi:10.1145/3214277. M.S. Singh, V. Pondenkandath, B. Zhou, P. Lukowicz, M. Liwickit, Transforming sensor data to the image domain for deep learning – an application to footstep detection, in: 2017 International Joint Conference on Neural Networks (IJCNN), IEEE, 2017, pp. 2665–2672. doi:10.1109/IJCNN.2017.7966182 McNemar (b0255) 1947; 12 M.A. Alsheikh, A. Selim, D. Niyato, L. Doyle, S. Lin, H.-P. Tan, Deep activity recognition models with triaxial accelerometers, Workshops at the Thirtieth AAAI Conference on Artificial Intelligence. Chalvatzaki, Papageorgiou, Tzafestas, Maragos (b0240) 2017 Zheng, Wang, Ordieres-Meré, Zheng, Wang, Ordieres-Meré (b0020) 2018; 18 Moya Rueda, Grzeszick, Fink, Feldhorst, ten Hompel (b0095) 2018; 5 Hannink, Kautz, Pasluosta, Gasmann, Klucken, Eskofier (b0160) 2017; 21 Cho, Yoon, Cho, Yoon (b0115) 2018; 18 Kluge, Gaßner, Hannink, Pasluosta, Klucken, Eskofier (b0060) 2017; 17 Chavarriaga, Sagha, Calatroni, Digumarti, Tröster, Millán, Roggen (b0045) 2013; 34 C. Stamate, G. Magoulas, S. Kueppers, E. Nomikou, I. Daskalopoulos, M. Luchini, T. Moussouri, G. Roussos, Deep learning Parkinson’s from smartphone data, in: 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom), IEEE, 2017, pp. 31–40. doi:10.1109/PERCOM.2017.7917848 S. Rosati, G. Balestra, M. Knaflitz, Comparison of different sets of features for human activity recognition by wearable sensors, Sensors (Basel, Switzerland) 18 (12). doi: 10.3390/s18124189. S.Y. Tang, N.S. Hoang, C.K. Chui, J.H. Lim, C. Matthew C.H., Development of wearable gait assistive device using recurrent neural network, in: 2019 IEEE/SICE International Symposium on System Integration (SII), IEEE, 2019, pp. 626–631. doi:10.1109/SII.2019.8700415 Ignatov (b0080) 2018; 62 Hanlon, Anderson (b0265) 2009; 30 Kamišalić, Fister, Turkanović, Karakatič, Kamišalić, Fister, Turkanović, Karakatič (b0015) 2018; 18 Hannink, Kautz, Pasluosta, Barth, Schulein, Gassmann, Klucken, Eskofier (b0190) 2017 Horst (10.1016/j.neucom.2020.08.079_b0165) 2019; 9 10.1016/j.neucom.2020.08.079_b0225 10.1016/j.neucom.2020.08.079_b0185 10.1016/j.neucom.2020.08.079_b0220 Storm (10.1016/j.neucom.2020.08.079_b0140) 2015; 10 Kamišalić (10.1016/j.neucom.2020.08.079_b0015) 2018; 18 McNemar (10.1016/j.neucom.2020.08.079_b0255) 1947; 12 Nelson (10.1016/j.neucom.2020.08.079_b0135) 2016; 48 Tophøj (10.1016/j.neucom.2020.08.079_b0285) 2018 10.1016/j.neucom.2020.08.079_b0035 Zappi (10.1016/j.neucom.2020.08.079_b0050) 2008 Kluge (10.1016/j.neucom.2020.08.079_b0060) 2017; 17 10.1016/j.neucom.2020.08.079_b0110 10.1016/j.neucom.2020.08.079_b0275 Dietterich (10.1016/j.neucom.2020.08.079_b0260) 1998; 10 Hanlon (10.1016/j.neucom.2020.08.079_b0265) 2009; 30 De Wit (10.1016/j.neucom.2020.08.079_b0235) 2000; 33 Khandelwal (10.1016/j.neucom.2020.08.079_b0150) 2018; 59 10.1016/j.neucom.2020.08.079_b0195 Cho (10.1016/j.neucom.2020.08.079_b0115) 2018; 18 Callisaya (10.1016/j.neucom.2020.08.079_b0250) 2011; 40 10.1016/j.neucom.2020.08.079_b0070 Nweke (10.1016/j.neucom.2020.08.079_b0075) 2018; 105 Yao (10.1016/j.neucom.2020.08.079_b0100) 2017 Hannink (10.1016/j.neucom.2020.08.079_b0190) 2017 Hannink (10.1016/j.neucom.2020.08.079_b0160) 2017; 21 10.1016/j.neucom.2020.08.079_b0205 10.1016/j.neucom.2020.08.079_b0125 Murad (10.1016/j.neucom.2020.08.079_b0105) 2017; 17 10.1016/j.neucom.2020.08.079_b0120 Liu (10.1016/j.neucom.2020.08.079_b0010) 2016; 181 Wang (10.1016/j.neucom.2020.08.079_b0040) 2019; 119 10.1016/j.neucom.2020.08.079_b0085 Zheng (10.1016/j.neucom.2020.08.079_b0020) 2018; 18 Chalvatzaki (10.1016/j.neucom.2020.08.079_b0240) 2017 Ignatov (10.1016/j.neucom.2020.08.079_b0080) 2018; 62 Kingma (10.1016/j.neucom.2020.08.079_b0270) 2015 Seo (10.1016/j.neucom.2020.08.079_b0175) 2019 Martindale (10.1016/j.neucom.2020.08.079_b0030) 2017; 17 Ordóñez (10.1016/j.neucom.2020.08.079_b0230) 2016; 16 Khandelwal (10.1016/j.neucom.2020.08.079_b0065) 2017; 51 Hesse (10.1016/j.neucom.2020.08.079_b0245) 1997; 11 Hammerla (10.1016/j.neucom.2020.08.079_b0090) 2016 10.1016/j.neucom.2020.08.079_b0215 Tan (10.1016/j.neucom.2020.08.079_b0180) 2019; 74 Šprager (10.1016/j.neucom.2020.08.079_b0290) 2018; 18 Martindale (10.1016/j.neucom.2020.08.079_b0055) 2019; 19 Panahandeh (10.1016/j.neucom.2020.08.079_b0025) 2013; 62 10.1016/j.neucom.2020.08.079_b0130 Gillani Fahad (10.1016/j.neucom.2020.08.079_b0005) 2015; 149 Herssens (10.1016/j.neucom.2020.08.079_b0280) 2018; 64 10.1016/j.neucom.2020.08.079_b0210 10.1016/j.neucom.2020.08.079_b0170 Rampp (10.1016/j.neucom.2020.08.079_b0155) 2015; 62 Chavarriaga (10.1016/j.neucom.2020.08.079_b0045) 2013; 34 Sprager (10.1016/j.neucom.2020.08.079_b0145) 2015; 15 Bachlin (10.1016/j.neucom.2020.08.079_b0200) 2010; 14 Moya Rueda (10.1016/j.neucom.2020.08.079_b0095) 2018; 5 |
References_xml | – reference: Y. Guan, T. Plötz, Ensembles of deep LSTM learners for activity recognition using wearables, Proc. ACM Interact. Mobile Wearable Ubiquit. Technol. 1 (2) (2017) 1–28. doi: 10.1145/3090076. – year: 2018 ident: b0285 article-title: Validity and reliability evaluation of four commercial activity trackers’ step counting performance publication-title: Telemed. e-Health – start-page: 1533 year: 2016 end-page: 1540 ident: b0090 article-title: Deep, convolutional, and recurrent models for human activity recognition using wearables publication-title: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence – volume: 17 start-page: 2328 year: 2017 ident: b0030 article-title: Smart annotation of cyclic data using hierarchical hidden Markov models publication-title: Sensors – volume: 17 start-page: 2556 year: 2017 ident: b0105 article-title: Deep recurrent neural networks for human activity recognition publication-title: Sensors – volume: 19 start-page: 1820 year: 2019 ident: b0055 article-title: Hidden Markov model-based smart annotation for benchmark cyclic activity recognition database using wearables publication-title: Sensors – reference: C. Stamate, G. Magoulas, S. Kueppers, E. Nomikou, I. Daskalopoulos, M. Luchini, T. Moussouri, G. Roussos, Deep learning Parkinson’s from smartphone data, in: 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom), IEEE, 2017, pp. 31–40. doi:10.1109/PERCOM.2017.7917848 – start-page: 351 year: 2017 end-page: 360 ident: b0100 article-title: DeepSense: a unified deep learning framework for time-series mobile sensing data processing publication-title: Pro. of the 26th International Conference on World Wide Web (WWW) – volume: 119 start-page: 3 year: 2019 end-page: 11 ident: b0040 article-title: Deep learning for sensor-based activity recognition: a survey publication-title: Pattern Recogn. Lett. – volume: 18 start-page: 2146 year: 2018 ident: b0020 article-title: Comparison of data preprocessing approaches for applying deep learning to human activity recognition in the context of industry 4.0 publication-title: Sensors – volume: 74 start-page: 128 year: 2019 end-page: 134 ident: b0180 article-title: Time series classification using a modified LSTM approach from accelerometer-based data: a comparative study for gait cycle detection publication-title: Gait Posture – reference: M.A. Alsheikh, A. Selim, D. Niyato, L. Doyle, S. Lin, H.-P. Tan, Deep activity recognition models with triaxial accelerometers, Workshops at the Thirtieth AAAI Conference on Artificial Intelligence. – start-page: 101 year: 2017 end-page: 106 ident: b0240 article-title: Estimating double support in pathological gaits using an HMM-based analyzer for an intelligent robotic walker publication-title: 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) – reference: L. Peng, L. Chen, Z. Ye, Y. Zhang, AROMA: a deep multi-task learning based simple and complex human activity recognition method using wearable sensors, Proc. ACM Interact., Mobile Wearable Ubiquit. Technol. 2 (2) (2018) 1–16. doi:10.1145/3214277. – volume: 149 start-page: 1286 year: 2015 end-page: 1298 ident: b0005 article-title: Activity recognition in smart homes with self verification of assignments publication-title: Neurocomputing – year: 2015 ident: b0270 article-title: ADAM: a method for stochastic optimization publication-title: Proceedings of the 3rd International Conference on Learning Representations (ICLR) – volume: 5 start-page: 26 year: 2018 ident: b0095 article-title: Convolutional neural networks for human activity recognition using body-worn sensors publication-title: Informatics – volume: 62 start-page: 915 year: 2018 end-page: 922 ident: b0080 article-title: Real-time human activity recognition from accelerometer data using Convolutional Neural Networks publication-title: Appl. Soft Comput. – start-page: 17 year: 2008 end-page: 33 ident: b0050 article-title: Activity Recognition from On-Body Sensors: Accuracy-Power Trade-Off by Dynamic Sensor Selection publication-title: Wireless Sensor Networks – volume: 10 year: 2015 ident: b0140 article-title: Step detection and activity recognition accuracy of seven physical activity monitors publication-title: PLOS One – volume: 48 start-page: 1619 year: 2016 end-page: 1628 ident: b0135 article-title: Validity of consumer-based physical activity monitors for specific activity types publication-title: Med. Sci. Sports Exercise – year: 2017 ident: b0190 article-title: Mobile stride length estimation with deep convolutional neural networks publication-title: IEEE J. Biomed. Health Inf. – volume: 16 start-page: 115 year: 2016 ident: b0230 article-title: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition publication-title: Sensors – volume: 40 start-page: 481 year: 2011 end-page: 487 ident: b0250 article-title: Gait, gait variability and the risk of multiple incident falls in older people: a population-based study publication-title: Age Ageing – volume: 12 start-page: 153 year: 1947 end-page: 157 ident: b0255 article-title: Note on the sampling error of the difference between correlated proportions or percentages publication-title: Psychometrika – reference: M. Gadaleta, G. Cisotto, M. Rossi, R.Z. Ur Rehman, L. Rochester, S. Del Din, Deep learning techniques for improving digital gait segmentation, in: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 1834–1837. doi:10.1109/EMBC.2019.8856685. – volume: 64 start-page: 181 year: 2018 end-page: 190 ident: b0280 article-title: Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review publication-title: Gait Posture – volume: 30 start-page: 523 year: 2009 end-page: 527 ident: b0265 article-title: Real-time gait event detection using wearable sensors publication-title: Gait Posture – volume: 18 start-page: 1091 year: 2018 ident: b0290 article-title: Robust stride segmentation of inertial signals based on local cyclicity estimation publication-title: Sensors – volume: 105 start-page: 233 year: 2018 end-page: 261 ident: b0075 article-title: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: state of the art and research challenges publication-title: Expert Syst. Appl. – reference: Y. LeCun, Generalization and network design strategies, in: Connectionism in Perspective, Elsevier, 1989, pp. 143–155. https://www.semanticscholar.org/paper/Generalization-and-network-design-strategies-LeCun/01b6affe3ea4eae1978aec54e87087feb76d9215. – volume: 181 start-page: 108 year: 2016 end-page: 115 ident: b0010 article-title: From action to activity: sensor-based activity recognition publication-title: Neurocomputing – volume: 15 start-page: 22089 year: 2015 end-page: 22127 ident: b0145 article-title: Inertial sensor-based gait recognition: a review publication-title: Sensors – reference: N.Y. Hammerla, J. Fisher, P. Andras, L. Rochester, R. Walker, T. Ploetz, PD Disease state assessment in naturalistic environments using deep learning, Twenty-Ninth AAAI Conference on Artificial Intelligence. – volume: 18 start-page: 1714 year: 2018 ident: b0015 article-title: Sensors and functionalities of non-invasive wrist-wearable devices: a review publication-title: Sensors – reference: S. Hochreiter, Untersuchungen zu dynamischen neuronalen Netzen, Diploma thesis, Technische Universit at Munich (1991) – volume: 14 start-page: 436 year: 2010 end-page: 446 ident: b0200 article-title: Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom publication-title: IEEE Trans. Inf. Technol. Biomed. – reference: M.G. Abdu-Aguye, W. Gomaa, Competitive feature extraction for activity recognition based on wavelet transforms and adaptive pooling, in: Proceedings of the International Joint Conference on Neural Networks, vol. 2019-July, 2019. – reference: M.G. Abdu-Aguye, W. Gomaa, Robust human activity recognition based on deep metric learning, in: ICINCO 2019 – Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics, vol. 1, 2019, pp. 656–663. – volume: 62 start-page: 1073 year: 2013 end-page: 1083 ident: b0025 article-title: Continuous hidden markov model for pedestrian activity classification and gait analysis publication-title: IEEE Trans. Instrum. Meas. – volume: 33 start-page: 269 year: 2000 end-page: 278 ident: b0235 article-title: Biomechanical analysis of the stance phase during barefoot and shod running publication-title: J. Biomech. – volume: 51 start-page: 84 year: 2017 end-page: 90 ident: b0065 article-title: Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database publication-title: Gait Posture – reference: Gong, Goldman, Lach, Deepmotion: a deep convolutional neural network on inertial body sensors for gait assessment in multiple sclerosis*, in: 2016 IEEE Wireless Health (WH), IEEE, 2016, pp. 1–8. doi:10.1109/WH.2016.7764572. – reference: M.S. Singh, V. Pondenkandath, B. Zhou, P. Lukowicz, M. Liwickit, Transforming sensor data to the image domain for deep learning – an application to footstep detection, in: 2017 International Joint Conference on Neural Networks (IJCNN), IEEE, 2017, pp. 2665–2672. doi:10.1109/IJCNN.2017.7966182 – volume: 34 start-page: 2033 year: 2013 end-page: 2042 ident: b0045 article-title: The Opportunity challenge: a benchmark database for on-body sensor-based activity recognition publication-title: Pattern Recogn. Lett. – reference: M.G. Abdu-Aguye, W. Gomaa, Versatl: Versatile transfer learning for imu-based activity recognition using convolutional neural networks, in: ICINCO 2019 – Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics, vol. 1, 2019, pp. 507–516. – reference: S. Rosati, G. Balestra, M. Knaflitz, Comparison of different sets of features for human activity recognition by wearable sensors, Sensors (Basel, Switzerland) 18 (12). doi: 10.3390/s18124189. – start-page: 809 year: 2019 end-page: 815 ident: b0175 article-title: RNN-based on-line continuous gait phase estimation from shank-mounted IMUs to control ankle exoskeletons publication-title: 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR) – reference: Keras: the python deep learning library, https://keras.io/, accessed: 2019-10-26. – volume: 18 start-page: 1055 year: 2018 ident: b0115 article-title: Divide and conquer-based 1D CNN human activity recognition using test data sharpening publication-title: Sensors – volume: 9 start-page: 2391 year: 2019 ident: b0165 article-title: Explaining the unique nature of individual gait patterns with deep learning publication-title: Sci. Rep. – volume: 62 start-page: 1089 year: 2015 end-page: 1097 ident: b0155 article-title: Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients publication-title: IEEE Trans. Biomed. Eng. – volume: 59 start-page: 278 year: 2018 end-page: 285 ident: b0150 article-title: Novel methodology for estimating Initial Contact events from accelerometers positioned at different body locations publication-title: Gait Posture – volume: 17 start-page: 1522 year: 2017 ident: b0060 article-title: Towards mobile gait analysis: concurrent validity and test-retest reliability of an inertial measurement system for the assessment of spatio-temporal gait parameters publication-title: Sensors – volume: 10 start-page: 1895 year: 1998 end-page: 1923 ident: b0260 article-title: Approximate statistical tests for comparing supervised classification learning algorithms publication-title: Neural Comput. – reference: S.Y. Tang, N.S. Hoang, C.K. Chui, J.H. Lim, C. Matthew C.H., Development of wearable gait assistive device using recurrent neural network, in: 2019 IEEE/SICE International Symposium on System Integration (SII), IEEE, 2019, pp. 626–631. doi:10.1109/SII.2019.8700415 – volume: 21 start-page: 85 year: 2017 end-page: 93 ident: b0160 article-title: Sensor-based gait parameter extraction with deep convolutional neural networks publication-title: IEEE J. Biomed. Health Inf. – volume: 11 start-page: 15 year: 1997 end-page: 20 ident: b0245 article-title: Treadmill training with partial body weight support: influence of body weight release on the gait of hemiparetic patients publication-title: J. Neurol. Rehabil. – volume: 40 start-page: 481 issue: 4 year: 2011 ident: 10.1016/j.neucom.2020.08.079_b0250 article-title: Gait, gait variability and the risk of multiple incident falls in older people: a population-based study publication-title: Age Ageing doi: 10.1093/ageing/afr055 – volume: 21 start-page: 85 issue: 1 year: 2017 ident: 10.1016/j.neucom.2020.08.079_b0160 article-title: Sensor-based gait parameter extraction with deep convolutional neural networks publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2016.2636456 – start-page: 809 year: 2019 ident: 10.1016/j.neucom.2020.08.079_b0175 article-title: RNN-based on-line continuous gait phase estimation from shank-mounted IMUs to control ankle exoskeletons – volume: 62 start-page: 1073 issue: 5 year: 2013 ident: 10.1016/j.neucom.2020.08.079_b0025 article-title: Continuous hidden markov model for pedestrian activity classification and gait analysis publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2012.2236792 – ident: 10.1016/j.neucom.2020.08.079_b0210 doi: 10.1109/WH.2016.7764572 – start-page: 101 year: 2017 ident: 10.1016/j.neucom.2020.08.079_b0240 article-title: Estimating double support in pathological gaits using an HMM-based analyzer for an intelligent robotic walker – volume: 119 start-page: 3 year: 2019 ident: 10.1016/j.neucom.2020.08.079_b0040 article-title: Deep learning for sensor-based activity recognition: a survey publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2018.02.010 – volume: 18 start-page: 1055 issue: 4 year: 2018 ident: 10.1016/j.neucom.2020.08.079_b0115 article-title: Divide and conquer-based 1D CNN human activity recognition using test data sharpening publication-title: Sensors doi: 10.3390/s18041055 – start-page: 351 year: 2017 ident: 10.1016/j.neucom.2020.08.079_b0100 article-title: DeepSense: a unified deep learning framework for time-series mobile sensing data processing – volume: 181 start-page: 108 year: 2016 ident: 10.1016/j.neucom.2020.08.079_b0010 article-title: From action to activity: sensor-based activity recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.096 – ident: 10.1016/j.neucom.2020.08.079_b0185 doi: 10.1109/EMBC.2019.8856685 – volume: 62 start-page: 915 year: 2018 ident: 10.1016/j.neucom.2020.08.079_b0080 article-title: Real-time human activity recognition from accelerometer data using Convolutional Neural Networks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.09.027 – volume: 17 start-page: 2556 issue: 11 year: 2017 ident: 10.1016/j.neucom.2020.08.079_b0105 article-title: Deep recurrent neural networks for human activity recognition publication-title: Sensors doi: 10.3390/s17112556 – year: 2017 ident: 10.1016/j.neucom.2020.08.079_b0190 article-title: Mobile stride length estimation with deep convolutional neural networks publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2016.2636456 – ident: 10.1016/j.neucom.2020.08.079_b0225 – volume: 17 start-page: 1522 issue: 7 year: 2017 ident: 10.1016/j.neucom.2020.08.079_b0060 article-title: Towards mobile gait analysis: concurrent validity and test-retest reliability of an inertial measurement system for the assessment of spatio-temporal gait parameters publication-title: Sensors doi: 10.3390/s17071522 – ident: 10.1016/j.neucom.2020.08.079_b0120 doi: 10.5220/0007916705070516 – volume: 48 start-page: 1619 issue: 8 year: 2016 ident: 10.1016/j.neucom.2020.08.079_b0135 article-title: Validity of consumer-based physical activity monitors for specific activity types publication-title: Med. Sci. Sports Exercise doi: 10.1249/MSS.0000000000000933 – volume: 10 issue: 3 year: 2015 ident: 10.1016/j.neucom.2020.08.079_b0140 article-title: Step detection and activity recognition accuracy of seven physical activity monitors publication-title: PLOS One doi: 10.1371/journal.pone.0118723 – volume: 9 start-page: 2391 issue: 1 year: 2019 ident: 10.1016/j.neucom.2020.08.079_b0165 article-title: Explaining the unique nature of individual gait patterns with deep learning publication-title: Sci. Rep. doi: 10.1038/s41598-019-38748-8 – volume: 18 start-page: 1091 issue: 4 year: 2018 ident: 10.1016/j.neucom.2020.08.079_b0290 article-title: Robust stride segmentation of inertial signals based on local cyclicity estimation publication-title: Sensors doi: 10.3390/s18041091 – ident: 10.1016/j.neucom.2020.08.079_b0110 doi: 10.1145/3090076 – volume: 12 start-page: 153 issue: 2 year: 1947 ident: 10.1016/j.neucom.2020.08.079_b0255 article-title: Note on the sampling error of the difference between correlated proportions or percentages publication-title: Psychometrika doi: 10.1007/BF02295996 – volume: 5 start-page: 26 issue: 2 year: 2018 ident: 10.1016/j.neucom.2020.08.079_b0095 article-title: Convolutional neural networks for human activity recognition using body-worn sensors publication-title: Informatics doi: 10.3390/informatics5020026 – ident: 10.1016/j.neucom.2020.08.079_b0035 doi: 10.3390/s18124189 – volume: 33 start-page: 269 issue: 3 year: 2000 ident: 10.1016/j.neucom.2020.08.079_b0235 article-title: Biomechanical analysis of the stance phase during barefoot and shod running publication-title: J. Biomech. doi: 10.1016/S0021-9290(99)00192-X – volume: 62 start-page: 1089 issue: 4 year: 2015 ident: 10.1016/j.neucom.2020.08.079_b0155 article-title: Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2368211 – year: 2018 ident: 10.1016/j.neucom.2020.08.079_b0285 article-title: Validity and reliability evaluation of four commercial activity trackers’ step counting performance publication-title: Telemed. e-Health doi: 10.1089/tmj.2017.0264 – ident: 10.1016/j.neucom.2020.08.079_b0130 doi: 10.1109/IJCNN.2019.8852299 – volume: 11 start-page: 15 issue: 1 year: 1997 ident: 10.1016/j.neucom.2020.08.079_b0245 article-title: Treadmill training with partial body weight support: influence of body weight release on the gait of hemiparetic patients publication-title: J. Neurol. Rehabil. – volume: 16 start-page: 115 issue: 1 year: 2016 ident: 10.1016/j.neucom.2020.08.079_b0230 article-title: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition publication-title: Sensors doi: 10.3390/s16010115 – volume: 59 start-page: 278 year: 2018 ident: 10.1016/j.neucom.2020.08.079_b0150 article-title: Novel methodology for estimating Initial Contact events from accelerometers positioned at different body locations publication-title: Gait Posture doi: 10.1016/j.gaitpost.2017.07.030 – volume: 30 start-page: 523 issue: 4 year: 2009 ident: 10.1016/j.neucom.2020.08.079_b0265 article-title: Real-time gait event detection using wearable sensors publication-title: Gait Posture doi: 10.1016/j.gaitpost.2009.07.128 – volume: 17 start-page: 2328 issue: 10 year: 2017 ident: 10.1016/j.neucom.2020.08.079_b0030 article-title: Smart annotation of cyclic data using hierarchical hidden Markov models publication-title: Sensors doi: 10.3390/s17102328 – ident: 10.1016/j.neucom.2020.08.079_b0125 doi: 10.5220/0007916806560663 – ident: 10.1016/j.neucom.2020.08.079_b0170 doi: 10.1109/SII.2019.8700415 – volume: 18 start-page: 1714 issue: 6 year: 2018 ident: 10.1016/j.neucom.2020.08.079_b0015 article-title: Sensors and functionalities of non-invasive wrist-wearable devices: a review publication-title: Sensors doi: 10.3390/s18061714 – volume: 105 start-page: 233 year: 2018 ident: 10.1016/j.neucom.2020.08.079_b0075 article-title: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: state of the art and research challenges publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.03.056 – volume: 51 start-page: 84 year: 2017 ident: 10.1016/j.neucom.2020.08.079_b0065 article-title: Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database publication-title: Gait Posture doi: 10.1016/j.gaitpost.2016.09.023 – volume: 149 start-page: 1286 year: 2015 ident: 10.1016/j.neucom.2020.08.079_b0005 article-title: Activity recognition in smart homes with self verification of assignments publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.069 – volume: 10 start-page: 1895 issue: 7 year: 1998 ident: 10.1016/j.neucom.2020.08.079_b0260 article-title: Approximate statistical tests for comparing supervised classification learning algorithms publication-title: Neural Comput. doi: 10.1162/089976698300017197 – ident: 10.1016/j.neucom.2020.08.079_b0195 – start-page: 1533 year: 2016 ident: 10.1016/j.neucom.2020.08.079_b0090 article-title: Deep, convolutional, and recurrent models for human activity recognition using wearables – volume: 19 start-page: 1820 issue: 8 year: 2019 ident: 10.1016/j.neucom.2020.08.079_b0055 article-title: Hidden Markov model-based smart annotation for benchmark cyclic activity recognition database using wearables publication-title: Sensors doi: 10.3390/s19081820 – volume: 15 start-page: 22089 issue: 9 year: 2015 ident: 10.1016/j.neucom.2020.08.079_b0145 article-title: Inertial sensor-based gait recognition: a review publication-title: Sensors doi: 10.3390/s150922089 – ident: 10.1016/j.neucom.2020.08.079_b0275 – volume: 14 start-page: 436 issue: 2 year: 2010 ident: 10.1016/j.neucom.2020.08.079_b0200 article-title: Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2009.2036165 – ident: 10.1016/j.neucom.2020.08.079_b0205 doi: 10.1109/PERCOM.2017.7917848 – ident: 10.1016/j.neucom.2020.08.079_b0070 doi: 10.1145/3214277 – ident: 10.1016/j.neucom.2020.08.079_b0085 – year: 2015 ident: 10.1016/j.neucom.2020.08.079_b0270 article-title: ADAM: a method for stochastic optimization – volume: 64 start-page: 181 year: 2018 ident: 10.1016/j.neucom.2020.08.079_b0280 article-title: Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review publication-title: Gait Posture doi: 10.1016/j.gaitpost.2018.06.012 – volume: 18 start-page: 2146 issue: 7 year: 2018 ident: 10.1016/j.neucom.2020.08.079_b0020 article-title: Comparison of data preprocessing approaches for applying deep learning to human activity recognition in the context of industry 4.0 publication-title: Sensors doi: 10.3390/s18072146 – volume: 34 start-page: 2033 issue: 15 year: 2013 ident: 10.1016/j.neucom.2020.08.079_b0045 article-title: The Opportunity challenge: a benchmark database for on-body sensor-based activity recognition publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2012.12.014 – volume: 74 start-page: 128 year: 2019 ident: 10.1016/j.neucom.2020.08.079_b0180 article-title: Time series classification using a modified LSTM approach from accelerometer-based data: a comparative study for gait cycle detection publication-title: Gait Posture doi: 10.1016/j.gaitpost.2019.09.007 – ident: 10.1016/j.neucom.2020.08.079_b0215 doi: 10.1109/IJCNN.2017.7966182 – ident: 10.1016/j.neucom.2020.08.079_b0220 – start-page: 17 year: 2008 ident: 10.1016/j.neucom.2020.08.079_b0050 article-title: Activity Recognition from On-Body Sensors: Accuracy-Power Trade-Off by Dynamic Sensor Selection |
SSID | ssj0017129 |
Score | 2.4259043 |
Snippet | Human activity recognition (HAR) and cycle analysis, such as gait analysis, have become an integral part of daily lives from gesture recognition to step... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 250 |
SubjectTerms | Activity recognition Gait analysis Inertial measurement units Multi-task Recurrent neural networks wearables |
Title | Wearables-based multi-task gait and activity segmentation using recurrent neural networks |
URI | https://dx.doi.org/10.1016/j.neucom.2020.08.079 |
Volume | 432 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YE11HGaOB6riqqA1AUqyhQ5tlOVR6iadOW3c-ckFUgIJNbIVqLz-R7R931HyKXRUEfYzHgilQIaFLhSsWSIaYBkzJSMg9SpfU6i8bR_OwtnLTJsuDAIq6xjfxXTXbSun_Rqa_aWi0XvnkkOXZTPOfilEI5Rjup14NNXHxuYhy98Xunt8dDD1Q19zmG8crtGzAiHmskJeSKg66f09CXljPbITl0r0kH1OfukZfMDstvMYaD1tTwkT4_grkiBKjxMSoY6lKBXquKFztWipCo3FAkMOCeCFnb-VhOOcoqw9zld4U93lGmiKG8Jr8wrcHhxRKaj64fh2KtHJngaav_Sk8oolXGtggA6k8wP48xIlgU6hc4jZZZnNlZG-0xrywOVsUhGLk_HIrAxlCvHpJ2_5_YEydy-hoM0MlSqL7iV2kBii1jfGq5jFXRI0Fgq0bWeOI61eE0a4NhzUtk3QfsmOO1SyA7xNruWlZ7GH-tFcwjJN79IIOT_uvP03zvPyDZH5Aric8Q5aZertb2A0qNMu863umRrcHM3nnwCPdja8Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QOOjFtxGfe_Da0G5pt3skRAKCXISIp2a7uyX4qATK_3em3RJNjCZem27azM7Oo_2-bwi51QrqCJNqhyeCQ4MCRyoSLmIaIBm7UkR-Uqh9jsP-tH0_C2Y10q24MAirtLG_jOlFtLZXWtaareVi0Xp0BYMuymMM_JJzZJQ3UJ2qXSeNzmDYH29_JnCPlZJ7LHBwQcWgK2BemdkgbIRB2VRoeSKm66cM9SXr9A7Ini0Xaad8o0NSM9kR2a9GMVB7Mo_J8xN4LLKg1g7mJU0LoKCTy_UrnctFTmWmKXIYcFQEXZv5u-UcZRSR73O6wu_uqNREUeESHpmV-PD1CZn27ibdvmOnJjgKyv_cEVJLmTIlfR-ak9QLolQLN_VVAs1H4hqWmkhq5blKGebL1A1FWKTqiPsmgorllNSzj8ycIZ_bU7CXWgRStjkzQmnIbaHbNpqpSPpN4leWipWVFMfJFm9xhR17iUv7xmjfGAdectEkznbVspTU-ON-Xm1C_M01Yoj6v648__fKG7LTnzyM4tFgPLwguwyBLAjX4Zeknq825goqkTy5tp72CcMd3aI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearables-based+multi-task+gait+and+activity+segmentation+using+recurrent+neural+networks&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Martindale%2C+Chrsitine+F.&rft.au=Christlein%2C+Vincent&rft.au=Klumpp%2C+Philipp&rft.au=Eskofier%2C+Bjoern+M.&rft.date=2021-04-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=432&rft.spage=250&rft.epage=261&rft_id=info:doi/10.1016%2Fj.neucom.2020.08.079&rft.externalDocID=S0925231220317707 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |