Wearables-based multi-task gait and activity segmentation using recurrent neural networks

Human activity recognition (HAR) and cycle analysis, such as gait analysis, have become an integral part of daily lives from gesture recognition to step counting. As the available data and the possible application areas grow, an efficient solution without the need of handcrafted feature extraction i...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 432; pp. 250 - 261
Main Authors Martindale, Chrsitine F., Christlein, Vincent, Klumpp, Philipp, Eskofier, Bjoern M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 07.04.2021
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2020.08.079

Cover

Loading…
Abstract Human activity recognition (HAR) and cycle analysis, such as gait analysis, have become an integral part of daily lives from gesture recognition to step counting. As the available data and the possible application areas grow, an efficient solution without the need of handcrafted feature extraction is needed. We propose a multi-task recurrent neural network architecture that uses inertial sensor data to both segment and recognise activities and cycles. The solution is validated using three publicly available datasets consisting of more than 120 subjects and 8 activities, 6 of which are cyclic. Our architecture is smaller than comparable HAR models while being robust to different sensor placements and channels. Our proposed solution outperforms or defines state-of-the-art for HAR and cycle analysis using inertial sensors. We achieve an overall activity F1-score of 92.6% and a phase detection F1-score of 98.2%. The gait analysis achieves a mean stride time error of 5.3 ± 51.9ms and swing duration error of 0.0 ± 5.9%. The overall step count error for all activities is −1.5 ± 2.8%. Thus, we provide a method that is not dependent on feature extraction and a model that is sensor and location independent.
AbstractList Human activity recognition (HAR) and cycle analysis, such as gait analysis, have become an integral part of daily lives from gesture recognition to step counting. As the available data and the possible application areas grow, an efficient solution without the need of handcrafted feature extraction is needed. We propose a multi-task recurrent neural network architecture that uses inertial sensor data to both segment and recognise activities and cycles. The solution is validated using three publicly available datasets consisting of more than 120 subjects and 8 activities, 6 of which are cyclic. Our architecture is smaller than comparable HAR models while being robust to different sensor placements and channels. Our proposed solution outperforms or defines state-of-the-art for HAR and cycle analysis using inertial sensors. We achieve an overall activity F1-score of 92.6% and a phase detection F1-score of 98.2%. The gait analysis achieves a mean stride time error of 5.3 ± 51.9ms and swing duration error of 0.0 ± 5.9%. The overall step count error for all activities is −1.5 ± 2.8%. Thus, we provide a method that is not dependent on feature extraction and a model that is sensor and location independent.
Author Eskofier, Bjoern M.
Klumpp, Philipp
Christlein, Vincent
Martindale, Chrsitine F.
Author_xml – sequence: 1
  givenname: Chrsitine F.
  surname: Martindale
  fullname: Martindale, Chrsitine F.
  email: christine.f.martindale@fau.de
  organization: Machine Learning and Data Analytics Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
– sequence: 2
  givenname: Vincent
  surname: Christlein
  fullname: Christlein, Vincent
  organization: Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
– sequence: 3
  givenname: Philipp
  surname: Klumpp
  fullname: Klumpp, Philipp
  organization: Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
– sequence: 4
  givenname: Bjoern M.
  surname: Eskofier
  fullname: Eskofier, Bjoern M.
  organization: Machine Learning and Data Analytics Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
BookMark eNqFkM1Kw0AUhQepYFt9Axd5gcQ7M20ycSFI8Q8EN4q4Gm4mN2XadCIzk0rf3pS4cqGrAxe-wz3fjE1c54ixSw4ZB55fbTJHvel2mQABGagMivKETbkqRKqEyidsCqVYpkJyccZmIWwAeMFFOWUf74Qeq5ZCWmGgOtn1bbRpxLBN1mhjgq5O0ES7t_GQBFrvyEWMtnNJH6xbJ55M7_1wTIYfPLZDxK_Ob8M5O22wDXTxk3P2dn_3unpMn18enla3z6mRkMe0xBqxEQalzCFv-FI1dQmNNBUvFhWQaEhhbTgYQ0JiA3mZVwBioQpJCnI5Z4ux1_guBE-N_vR2h_6gOeijHr3Rox591KNB6UHPgF3_wowdh0WPtv0PvhlhGobtLXkdjCVnqLaDj6jrzv5d8A3oSoh4
CitedBy_id crossref_primary_10_3389_fneur_2023_1247532
crossref_primary_10_1016_j_entcom_2024_100642
crossref_primary_10_14801_jkiit_2021_19_8_27
crossref_primary_10_1109_TMC_2022_3199015
crossref_primary_10_1109_JSEN_2024_3487018
crossref_primary_10_3390_s24010075
crossref_primary_10_1016_j_apergo_2022_103732
crossref_primary_10_1155_2023_4086380
crossref_primary_10_3390_s22041678
crossref_primary_10_1109_JSEN_2023_3295778
crossref_primary_10_1017_S026357472100179X
crossref_primary_10_1109_JIOT_2024_3493380
crossref_primary_10_1109_JSEN_2022_3216459
crossref_primary_10_3389_fnins_2022_976594
crossref_primary_10_3390_s22155787
crossref_primary_10_3390_electronics12071509
crossref_primary_10_1007_s11042_024_18933_2
crossref_primary_10_1111_exsy_13274
crossref_primary_10_7746_jkros_2025_20_1_130
crossref_primary_10_1186_s12984_021_00883_7
crossref_primary_10_3390_jpm13121703
crossref_primary_10_3390_info15100593
crossref_primary_10_1109_JIOT_2023_3267335
crossref_primary_10_3390_electronics12010050
Cites_doi 10.1093/ageing/afr055
10.1109/JBHI.2016.2636456
10.1109/TIM.2012.2236792
10.1109/WH.2016.7764572
10.1016/j.patrec.2018.02.010
10.3390/s18041055
10.1016/j.neucom.2015.08.096
10.1109/EMBC.2019.8856685
10.1016/j.asoc.2017.09.027
10.3390/s17112556
10.3390/s17071522
10.5220/0007916705070516
10.1249/MSS.0000000000000933
10.1371/journal.pone.0118723
10.1038/s41598-019-38748-8
10.3390/s18041091
10.1145/3090076
10.1007/BF02295996
10.3390/informatics5020026
10.3390/s18124189
10.1016/S0021-9290(99)00192-X
10.1109/TBME.2014.2368211
10.1089/tmj.2017.0264
10.1109/IJCNN.2019.8852299
10.3390/s16010115
10.1016/j.gaitpost.2017.07.030
10.1016/j.gaitpost.2009.07.128
10.3390/s17102328
10.5220/0007916806560663
10.1109/SII.2019.8700415
10.3390/s18061714
10.1016/j.eswa.2018.03.056
10.1016/j.gaitpost.2016.09.023
10.1016/j.neucom.2014.08.069
10.1162/089976698300017197
10.3390/s19081820
10.3390/s150922089
10.1109/TITB.2009.2036165
10.1109/PERCOM.2017.7917848
10.1145/3214277
10.1016/j.gaitpost.2018.06.012
10.3390/s18072146
10.1016/j.patrec.2012.12.014
10.1016/j.gaitpost.2019.09.007
10.1109/IJCNN.2017.7966182
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2020.08.079
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 261
ExternalDocumentID 10_1016_j_neucom_2020_08_079
S0925231220317707
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SEW
SSH
WUQ
XPP
ID FETCH-LOGICAL-c306t-9adaaf2ca33606f158fd90f3cb174b0e2fe8adc10cce23af0696b0024873e8063
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Tue Jul 01 01:46:54 EDT 2025
Thu Apr 24 23:07:04 EDT 2025
Fri Feb 23 02:48:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Activity recognition
Recurrent neural networks
Inertial measurement units
wearables
Multi-task
Gait analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-9adaaf2ca33606f158fd90f3cb174b0e2fe8adc10cce23af0696b0024873e8063
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_neucom_2020_08_079
crossref_citationtrail_10_1016_j_neucom_2020_08_079
elsevier_sciencedirect_doi_10_1016_j_neucom_2020_08_079
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-07
PublicationDateYYYYMMDD 2021-04-07
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-07
  day: 07
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nelson, Kaminsky, Dickin, Montoye (b0135) 2016; 48
Y. LeCun, Generalization and network design strategies, in: Connectionism in Perspective, Elsevier, 1989, pp. 143–155. https://www.semanticscholar.org/paper/Generalization-and-network-design-strategies-LeCun/01b6affe3ea4eae1978aec54e87087feb76d9215.
Callisaya, Blizzard, Schmidt, Martin, McGinley, Sanders, Srikanth (b0250) 2011; 40
Storm, Heller, Mazzà (b0140) 2015; 10
Horst, Lapuschkin, Samek, Müller, Schöllhorn (b0165) 2019; 9
Tophøj, Petersen, Sæbye, Baad-Hansen, Wagner (b0285) 2018
Šprager, Jurič (b0290) 2018; 18
Liu, Nie, Liu, Rosenblum (b0010) 2016; 181
Y. Guan, T. Plötz, Ensembles of deep LSTM learners for activity recognition using wearables, Proc. ACM Interact. Mobile Wearable Ubiquit. Technol. 1 (2) (2017) 1–28. doi: 10.1145/3090076.
Kingma, Ba (b0270) 2015
Yao, Hu, Zhao, Zhang, Abdelzaher (b0100) 2017
Seo, Park, Lee, Hyung, Lee, Kim, Choi, Shim (b0175) 2019
Martindale, Hoenig, Strohrmann, Eskofier (b0030) 2017; 17
Ordóñez, Roggen (b0230) 2016; 16
Zappi, Lombriser, Stiefmeier, Farella, Roggen, Benini, Tröster (b0050) 2008
M.G. Abdu-Aguye, W. Gomaa, Robust human activity recognition based on deep metric learning, in: ICINCO 2019 – Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics, vol. 1, 2019, pp. 656–663.
N.Y. Hammerla, J. Fisher, P. Andras, L. Rochester, R. Walker, T. Ploetz, PD Disease state assessment in naturalistic environments using deep learning, Twenty-Ninth AAAI Conference on Artificial Intelligence.
Murad, Pyun, Murad, Pyun (b0105) 2017; 17
Hesse, Helm, Krajnik, Gregoric, Mauritz (b0245) 1997; 11
Dietterich (b0260) 1998; 10
Tan, Aung, Tian, Chua, Yang (b0180) 2019; 74
De Wit, De Clercq, Aerts (b0235) 2000; 33
Gong, Goldman, Lach, Deepmotion: a deep convolutional neural network on inertial body sensors for gait assessment in multiple sclerosis*, in: 2016 IEEE Wireless Health (WH), IEEE, 2016, pp. 1–8. doi:10.1109/WH.2016.7764572.
Martindale, Sprager, Eskofier (b0055) 2019; 19
Herssens, Verbecque, Hallemans, Vereeck, Van Rompaey, Saeys (b0280) 2018; 64
Gillani Fahad, Khan, Rajarajan (b0005) 2015; 149
Panahandeh, Mohammadiha, Leijon, Handel (b0025) 2013; 62
Sprager, Juric (b0145) 2015; 15
Khandelwal, Wickström (b0065) 2017; 51
S. Hochreiter, Untersuchungen zu dynamischen neuronalen Netzen, Diploma thesis, Technische Universit at Munich (1991)
Khandelwal, Wickström (b0150) 2018; 59
Bachlin, Plotnik, Roggen, Maidan, Hausdorff, Giladi, Troster (b0200) 2010; 14
M. Gadaleta, G. Cisotto, M. Rossi, R.Z. Ur Rehman, L. Rochester, S. Del Din, Deep learning techniques for improving digital gait segmentation, in: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 1834–1837. doi:10.1109/EMBC.2019.8856685.
Rampp, Barth, Schuelein, Gassmann, Klucken, Eskofier (b0155) 2015; 62
M.G. Abdu-Aguye, W. Gomaa, Competitive feature extraction for activity recognition based on wavelet transforms and adaptive pooling, in: Proceedings of the International Joint Conference on Neural Networks, vol. 2019-July, 2019.
Wang, Chen, Hao, Peng, Hu (b0040) 2019; 119
Nweke, Teh, Al-garadi, Alo (b0075) 2018; 105
Keras: the python deep learning library, https://keras.io/, accessed: 2019-10-26.
Hammerla, Halloran, Plötz (b0090) 2016
M.G. Abdu-Aguye, W. Gomaa, Versatl: Versatile transfer learning for imu-based activity recognition using convolutional neural networks, in: ICINCO 2019 – Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics, vol. 1, 2019, pp. 507–516.
L. Peng, L. Chen, Z. Ye, Y. Zhang, AROMA: a deep multi-task learning based simple and complex human activity recognition method using wearable sensors, Proc. ACM Interact., Mobile Wearable Ubiquit. Technol. 2 (2) (2018) 1–16. doi:10.1145/3214277.
M.S. Singh, V. Pondenkandath, B. Zhou, P. Lukowicz, M. Liwickit, Transforming sensor data to the image domain for deep learning – an application to footstep detection, in: 2017 International Joint Conference on Neural Networks (IJCNN), IEEE, 2017, pp. 2665–2672. doi:10.1109/IJCNN.2017.7966182
McNemar (b0255) 1947; 12
M.A. Alsheikh, A. Selim, D. Niyato, L. Doyle, S. Lin, H.-P. Tan, Deep activity recognition models with triaxial accelerometers, Workshops at the Thirtieth AAAI Conference on Artificial Intelligence.
Chalvatzaki, Papageorgiou, Tzafestas, Maragos (b0240) 2017
Zheng, Wang, Ordieres-Meré, Zheng, Wang, Ordieres-Meré (b0020) 2018; 18
Moya Rueda, Grzeszick, Fink, Feldhorst, ten Hompel (b0095) 2018; 5
Hannink, Kautz, Pasluosta, Gasmann, Klucken, Eskofier (b0160) 2017; 21
Cho, Yoon, Cho, Yoon (b0115) 2018; 18
Kluge, Gaßner, Hannink, Pasluosta, Klucken, Eskofier (b0060) 2017; 17
Chavarriaga, Sagha, Calatroni, Digumarti, Tröster, Millán, Roggen (b0045) 2013; 34
C. Stamate, G. Magoulas, S. Kueppers, E. Nomikou, I. Daskalopoulos, M. Luchini, T. Moussouri, G. Roussos, Deep learning Parkinson’s from smartphone data, in: 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom), IEEE, 2017, pp. 31–40. doi:10.1109/PERCOM.2017.7917848
S. Rosati, G. Balestra, M. Knaflitz, Comparison of different sets of features for human activity recognition by wearable sensors, Sensors (Basel, Switzerland) 18 (12). doi: 10.3390/s18124189.
S.Y. Tang, N.S. Hoang, C.K. Chui, J.H. Lim, C. Matthew C.H., Development of wearable gait assistive device using recurrent neural network, in: 2019 IEEE/SICE International Symposium on System Integration (SII), IEEE, 2019, pp. 626–631. doi:10.1109/SII.2019.8700415
Ignatov (b0080) 2018; 62
Hanlon, Anderson (b0265) 2009; 30
Kamišalić, Fister, Turkanović, Karakatič, Kamišalić, Fister, Turkanović, Karakatič (b0015) 2018; 18
Hannink, Kautz, Pasluosta, Barth, Schulein, Gassmann, Klucken, Eskofier (b0190) 2017
Horst (10.1016/j.neucom.2020.08.079_b0165) 2019; 9
10.1016/j.neucom.2020.08.079_b0225
10.1016/j.neucom.2020.08.079_b0185
10.1016/j.neucom.2020.08.079_b0220
Storm (10.1016/j.neucom.2020.08.079_b0140) 2015; 10
Kamišalić (10.1016/j.neucom.2020.08.079_b0015) 2018; 18
McNemar (10.1016/j.neucom.2020.08.079_b0255) 1947; 12
Nelson (10.1016/j.neucom.2020.08.079_b0135) 2016; 48
Tophøj (10.1016/j.neucom.2020.08.079_b0285) 2018
10.1016/j.neucom.2020.08.079_b0035
Zappi (10.1016/j.neucom.2020.08.079_b0050) 2008
Kluge (10.1016/j.neucom.2020.08.079_b0060) 2017; 17
10.1016/j.neucom.2020.08.079_b0110
10.1016/j.neucom.2020.08.079_b0275
Dietterich (10.1016/j.neucom.2020.08.079_b0260) 1998; 10
Hanlon (10.1016/j.neucom.2020.08.079_b0265) 2009; 30
De Wit (10.1016/j.neucom.2020.08.079_b0235) 2000; 33
Khandelwal (10.1016/j.neucom.2020.08.079_b0150) 2018; 59
10.1016/j.neucom.2020.08.079_b0195
Cho (10.1016/j.neucom.2020.08.079_b0115) 2018; 18
Callisaya (10.1016/j.neucom.2020.08.079_b0250) 2011; 40
10.1016/j.neucom.2020.08.079_b0070
Nweke (10.1016/j.neucom.2020.08.079_b0075) 2018; 105
Yao (10.1016/j.neucom.2020.08.079_b0100) 2017
Hannink (10.1016/j.neucom.2020.08.079_b0190) 2017
Hannink (10.1016/j.neucom.2020.08.079_b0160) 2017; 21
10.1016/j.neucom.2020.08.079_b0205
10.1016/j.neucom.2020.08.079_b0125
Murad (10.1016/j.neucom.2020.08.079_b0105) 2017; 17
10.1016/j.neucom.2020.08.079_b0120
Liu (10.1016/j.neucom.2020.08.079_b0010) 2016; 181
Wang (10.1016/j.neucom.2020.08.079_b0040) 2019; 119
10.1016/j.neucom.2020.08.079_b0085
Zheng (10.1016/j.neucom.2020.08.079_b0020) 2018; 18
Chalvatzaki (10.1016/j.neucom.2020.08.079_b0240) 2017
Ignatov (10.1016/j.neucom.2020.08.079_b0080) 2018; 62
Kingma (10.1016/j.neucom.2020.08.079_b0270) 2015
Seo (10.1016/j.neucom.2020.08.079_b0175) 2019
Martindale (10.1016/j.neucom.2020.08.079_b0030) 2017; 17
Ordóñez (10.1016/j.neucom.2020.08.079_b0230) 2016; 16
Khandelwal (10.1016/j.neucom.2020.08.079_b0065) 2017; 51
Hesse (10.1016/j.neucom.2020.08.079_b0245) 1997; 11
Hammerla (10.1016/j.neucom.2020.08.079_b0090) 2016
10.1016/j.neucom.2020.08.079_b0215
Tan (10.1016/j.neucom.2020.08.079_b0180) 2019; 74
Šprager (10.1016/j.neucom.2020.08.079_b0290) 2018; 18
Martindale (10.1016/j.neucom.2020.08.079_b0055) 2019; 19
Panahandeh (10.1016/j.neucom.2020.08.079_b0025) 2013; 62
10.1016/j.neucom.2020.08.079_b0130
Gillani Fahad (10.1016/j.neucom.2020.08.079_b0005) 2015; 149
Herssens (10.1016/j.neucom.2020.08.079_b0280) 2018; 64
10.1016/j.neucom.2020.08.079_b0210
10.1016/j.neucom.2020.08.079_b0170
Rampp (10.1016/j.neucom.2020.08.079_b0155) 2015; 62
Chavarriaga (10.1016/j.neucom.2020.08.079_b0045) 2013; 34
Sprager (10.1016/j.neucom.2020.08.079_b0145) 2015; 15
Bachlin (10.1016/j.neucom.2020.08.079_b0200) 2010; 14
Moya Rueda (10.1016/j.neucom.2020.08.079_b0095) 2018; 5
References_xml – reference: Y. Guan, T. Plötz, Ensembles of deep LSTM learners for activity recognition using wearables, Proc. ACM Interact. Mobile Wearable Ubiquit. Technol. 1 (2) (2017) 1–28. doi: 10.1145/3090076.
– year: 2018
  ident: b0285
  article-title: Validity and reliability evaluation of four commercial activity trackers’ step counting performance
  publication-title: Telemed. e-Health
– start-page: 1533
  year: 2016
  end-page: 1540
  ident: b0090
  article-title: Deep, convolutional, and recurrent models for human activity recognition using wearables
  publication-title: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence
– volume: 17
  start-page: 2328
  year: 2017
  ident: b0030
  article-title: Smart annotation of cyclic data using hierarchical hidden Markov models
  publication-title: Sensors
– volume: 17
  start-page: 2556
  year: 2017
  ident: b0105
  article-title: Deep recurrent neural networks for human activity recognition
  publication-title: Sensors
– volume: 19
  start-page: 1820
  year: 2019
  ident: b0055
  article-title: Hidden Markov model-based smart annotation for benchmark cyclic activity recognition database using wearables
  publication-title: Sensors
– reference: C. Stamate, G. Magoulas, S. Kueppers, E. Nomikou, I. Daskalopoulos, M. Luchini, T. Moussouri, G. Roussos, Deep learning Parkinson’s from smartphone data, in: 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom), IEEE, 2017, pp. 31–40. doi:10.1109/PERCOM.2017.7917848
– start-page: 351
  year: 2017
  end-page: 360
  ident: b0100
  article-title: DeepSense: a unified deep learning framework for time-series mobile sensing data processing
  publication-title: Pro. of the 26th International Conference on World Wide Web (WWW)
– volume: 119
  start-page: 3
  year: 2019
  end-page: 11
  ident: b0040
  article-title: Deep learning for sensor-based activity recognition: a survey
  publication-title: Pattern Recogn. Lett.
– volume: 18
  start-page: 2146
  year: 2018
  ident: b0020
  article-title: Comparison of data preprocessing approaches for applying deep learning to human activity recognition in the context of industry 4.0
  publication-title: Sensors
– volume: 74
  start-page: 128
  year: 2019
  end-page: 134
  ident: b0180
  article-title: Time series classification using a modified LSTM approach from accelerometer-based data: a comparative study for gait cycle detection
  publication-title: Gait Posture
– reference: M.A. Alsheikh, A. Selim, D. Niyato, L. Doyle, S. Lin, H.-P. Tan, Deep activity recognition models with triaxial accelerometers, Workshops at the Thirtieth AAAI Conference on Artificial Intelligence.
– start-page: 101
  year: 2017
  end-page: 106
  ident: b0240
  article-title: Estimating double support in pathological gaits using an HMM-based analyzer for an intelligent robotic walker
  publication-title: 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)
– reference: L. Peng, L. Chen, Z. Ye, Y. Zhang, AROMA: a deep multi-task learning based simple and complex human activity recognition method using wearable sensors, Proc. ACM Interact., Mobile Wearable Ubiquit. Technol. 2 (2) (2018) 1–16. doi:10.1145/3214277.
– volume: 149
  start-page: 1286
  year: 2015
  end-page: 1298
  ident: b0005
  article-title: Activity recognition in smart homes with self verification of assignments
  publication-title: Neurocomputing
– year: 2015
  ident: b0270
  article-title: ADAM: a method for stochastic optimization
  publication-title: Proceedings of the 3rd International Conference on Learning Representations (ICLR)
– volume: 5
  start-page: 26
  year: 2018
  ident: b0095
  article-title: Convolutional neural networks for human activity recognition using body-worn sensors
  publication-title: Informatics
– volume: 62
  start-page: 915
  year: 2018
  end-page: 922
  ident: b0080
  article-title: Real-time human activity recognition from accelerometer data using Convolutional Neural Networks
  publication-title: Appl. Soft Comput.
– start-page: 17
  year: 2008
  end-page: 33
  ident: b0050
  article-title: Activity Recognition from On-Body Sensors: Accuracy-Power Trade-Off by Dynamic Sensor Selection
  publication-title: Wireless Sensor Networks
– volume: 10
  year: 2015
  ident: b0140
  article-title: Step detection and activity recognition accuracy of seven physical activity monitors
  publication-title: PLOS One
– volume: 48
  start-page: 1619
  year: 2016
  end-page: 1628
  ident: b0135
  article-title: Validity of consumer-based physical activity monitors for specific activity types
  publication-title: Med. Sci. Sports Exercise
– year: 2017
  ident: b0190
  article-title: Mobile stride length estimation with deep convolutional neural networks
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 16
  start-page: 115
  year: 2016
  ident: b0230
  article-title: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition
  publication-title: Sensors
– volume: 40
  start-page: 481
  year: 2011
  end-page: 487
  ident: b0250
  article-title: Gait, gait variability and the risk of multiple incident falls in older people: a population-based study
  publication-title: Age Ageing
– volume: 12
  start-page: 153
  year: 1947
  end-page: 157
  ident: b0255
  article-title: Note on the sampling error of the difference between correlated proportions or percentages
  publication-title: Psychometrika
– reference: M. Gadaleta, G. Cisotto, M. Rossi, R.Z. Ur Rehman, L. Rochester, S. Del Din, Deep learning techniques for improving digital gait segmentation, in: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 1834–1837. doi:10.1109/EMBC.2019.8856685.
– volume: 64
  start-page: 181
  year: 2018
  end-page: 190
  ident: b0280
  article-title: Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review
  publication-title: Gait Posture
– volume: 30
  start-page: 523
  year: 2009
  end-page: 527
  ident: b0265
  article-title: Real-time gait event detection using wearable sensors
  publication-title: Gait Posture
– volume: 18
  start-page: 1091
  year: 2018
  ident: b0290
  article-title: Robust stride segmentation of inertial signals based on local cyclicity estimation
  publication-title: Sensors
– volume: 105
  start-page: 233
  year: 2018
  end-page: 261
  ident: b0075
  article-title: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: state of the art and research challenges
  publication-title: Expert Syst. Appl.
– reference: Y. LeCun, Generalization and network design strategies, in: Connectionism in Perspective, Elsevier, 1989, pp. 143–155. https://www.semanticscholar.org/paper/Generalization-and-network-design-strategies-LeCun/01b6affe3ea4eae1978aec54e87087feb76d9215.
– volume: 181
  start-page: 108
  year: 2016
  end-page: 115
  ident: b0010
  article-title: From action to activity: sensor-based activity recognition
  publication-title: Neurocomputing
– volume: 15
  start-page: 22089
  year: 2015
  end-page: 22127
  ident: b0145
  article-title: Inertial sensor-based gait recognition: a review
  publication-title: Sensors
– reference: N.Y. Hammerla, J. Fisher, P. Andras, L. Rochester, R. Walker, T. Ploetz, PD Disease state assessment in naturalistic environments using deep learning, Twenty-Ninth AAAI Conference on Artificial Intelligence.
– volume: 18
  start-page: 1714
  year: 2018
  ident: b0015
  article-title: Sensors and functionalities of non-invasive wrist-wearable devices: a review
  publication-title: Sensors
– reference: S. Hochreiter, Untersuchungen zu dynamischen neuronalen Netzen, Diploma thesis, Technische Universit at Munich (1991)
– volume: 14
  start-page: 436
  year: 2010
  end-page: 446
  ident: b0200
  article-title: Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– reference: M.G. Abdu-Aguye, W. Gomaa, Competitive feature extraction for activity recognition based on wavelet transforms and adaptive pooling, in: Proceedings of the International Joint Conference on Neural Networks, vol. 2019-July, 2019.
– reference: M.G. Abdu-Aguye, W. Gomaa, Robust human activity recognition based on deep metric learning, in: ICINCO 2019 – Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics, vol. 1, 2019, pp. 656–663.
– volume: 62
  start-page: 1073
  year: 2013
  end-page: 1083
  ident: b0025
  article-title: Continuous hidden markov model for pedestrian activity classification and gait analysis
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 33
  start-page: 269
  year: 2000
  end-page: 278
  ident: b0235
  article-title: Biomechanical analysis of the stance phase during barefoot and shod running
  publication-title: J. Biomech.
– volume: 51
  start-page: 84
  year: 2017
  end-page: 90
  ident: b0065
  article-title: Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database
  publication-title: Gait Posture
– reference: Gong, Goldman, Lach, Deepmotion: a deep convolutional neural network on inertial body sensors for gait assessment in multiple sclerosis*, in: 2016 IEEE Wireless Health (WH), IEEE, 2016, pp. 1–8. doi:10.1109/WH.2016.7764572.
– reference: M.S. Singh, V. Pondenkandath, B. Zhou, P. Lukowicz, M. Liwickit, Transforming sensor data to the image domain for deep learning – an application to footstep detection, in: 2017 International Joint Conference on Neural Networks (IJCNN), IEEE, 2017, pp. 2665–2672. doi:10.1109/IJCNN.2017.7966182
– volume: 34
  start-page: 2033
  year: 2013
  end-page: 2042
  ident: b0045
  article-title: The Opportunity challenge: a benchmark database for on-body sensor-based activity recognition
  publication-title: Pattern Recogn. Lett.
– reference: M.G. Abdu-Aguye, W. Gomaa, Versatl: Versatile transfer learning for imu-based activity recognition using convolutional neural networks, in: ICINCO 2019 – Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics, vol. 1, 2019, pp. 507–516.
– reference: S. Rosati, G. Balestra, M. Knaflitz, Comparison of different sets of features for human activity recognition by wearable sensors, Sensors (Basel, Switzerland) 18 (12). doi: 10.3390/s18124189.
– start-page: 809
  year: 2019
  end-page: 815
  ident: b0175
  article-title: RNN-based on-line continuous gait phase estimation from shank-mounted IMUs to control ankle exoskeletons
  publication-title: 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)
– reference: Keras: the python deep learning library, https://keras.io/, accessed: 2019-10-26.
– volume: 18
  start-page: 1055
  year: 2018
  ident: b0115
  article-title: Divide and conquer-based 1D CNN human activity recognition using test data sharpening
  publication-title: Sensors
– volume: 9
  start-page: 2391
  year: 2019
  ident: b0165
  article-title: Explaining the unique nature of individual gait patterns with deep learning
  publication-title: Sci. Rep.
– volume: 62
  start-page: 1089
  year: 2015
  end-page: 1097
  ident: b0155
  article-title: Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 59
  start-page: 278
  year: 2018
  end-page: 285
  ident: b0150
  article-title: Novel methodology for estimating Initial Contact events from accelerometers positioned at different body locations
  publication-title: Gait Posture
– volume: 17
  start-page: 1522
  year: 2017
  ident: b0060
  article-title: Towards mobile gait analysis: concurrent validity and test-retest reliability of an inertial measurement system for the assessment of spatio-temporal gait parameters
  publication-title: Sensors
– volume: 10
  start-page: 1895
  year: 1998
  end-page: 1923
  ident: b0260
  article-title: Approximate statistical tests for comparing supervised classification learning algorithms
  publication-title: Neural Comput.
– reference: S.Y. Tang, N.S. Hoang, C.K. Chui, J.H. Lim, C. Matthew C.H., Development of wearable gait assistive device using recurrent neural network, in: 2019 IEEE/SICE International Symposium on System Integration (SII), IEEE, 2019, pp. 626–631. doi:10.1109/SII.2019.8700415
– volume: 21
  start-page: 85
  year: 2017
  end-page: 93
  ident: b0160
  article-title: Sensor-based gait parameter extraction with deep convolutional neural networks
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 11
  start-page: 15
  year: 1997
  end-page: 20
  ident: b0245
  article-title: Treadmill training with partial body weight support: influence of body weight release on the gait of hemiparetic patients
  publication-title: J. Neurol. Rehabil.
– volume: 40
  start-page: 481
  issue: 4
  year: 2011
  ident: 10.1016/j.neucom.2020.08.079_b0250
  article-title: Gait, gait variability and the risk of multiple incident falls in older people: a population-based study
  publication-title: Age Ageing
  doi: 10.1093/ageing/afr055
– volume: 21
  start-page: 85
  issue: 1
  year: 2017
  ident: 10.1016/j.neucom.2020.08.079_b0160
  article-title: Sensor-based gait parameter extraction with deep convolutional neural networks
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2016.2636456
– start-page: 809
  year: 2019
  ident: 10.1016/j.neucom.2020.08.079_b0175
  article-title: RNN-based on-line continuous gait phase estimation from shank-mounted IMUs to control ankle exoskeletons
– volume: 62
  start-page: 1073
  issue: 5
  year: 2013
  ident: 10.1016/j.neucom.2020.08.079_b0025
  article-title: Continuous hidden markov model for pedestrian activity classification and gait analysis
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2012.2236792
– ident: 10.1016/j.neucom.2020.08.079_b0210
  doi: 10.1109/WH.2016.7764572
– start-page: 101
  year: 2017
  ident: 10.1016/j.neucom.2020.08.079_b0240
  article-title: Estimating double support in pathological gaits using an HMM-based analyzer for an intelligent robotic walker
– volume: 119
  start-page: 3
  year: 2019
  ident: 10.1016/j.neucom.2020.08.079_b0040
  article-title: Deep learning for sensor-based activity recognition: a survey
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2018.02.010
– volume: 18
  start-page: 1055
  issue: 4
  year: 2018
  ident: 10.1016/j.neucom.2020.08.079_b0115
  article-title: Divide and conquer-based 1D CNN human activity recognition using test data sharpening
  publication-title: Sensors
  doi: 10.3390/s18041055
– start-page: 351
  year: 2017
  ident: 10.1016/j.neucom.2020.08.079_b0100
  article-title: DeepSense: a unified deep learning framework for time-series mobile sensing data processing
– volume: 181
  start-page: 108
  year: 2016
  ident: 10.1016/j.neucom.2020.08.079_b0010
  article-title: From action to activity: sensor-based activity recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.096
– ident: 10.1016/j.neucom.2020.08.079_b0185
  doi: 10.1109/EMBC.2019.8856685
– volume: 62
  start-page: 915
  year: 2018
  ident: 10.1016/j.neucom.2020.08.079_b0080
  article-title: Real-time human activity recognition from accelerometer data using Convolutional Neural Networks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.09.027
– volume: 17
  start-page: 2556
  issue: 11
  year: 2017
  ident: 10.1016/j.neucom.2020.08.079_b0105
  article-title: Deep recurrent neural networks for human activity recognition
  publication-title: Sensors
  doi: 10.3390/s17112556
– year: 2017
  ident: 10.1016/j.neucom.2020.08.079_b0190
  article-title: Mobile stride length estimation with deep convolutional neural networks
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2016.2636456
– ident: 10.1016/j.neucom.2020.08.079_b0225
– volume: 17
  start-page: 1522
  issue: 7
  year: 2017
  ident: 10.1016/j.neucom.2020.08.079_b0060
  article-title: Towards mobile gait analysis: concurrent validity and test-retest reliability of an inertial measurement system for the assessment of spatio-temporal gait parameters
  publication-title: Sensors
  doi: 10.3390/s17071522
– ident: 10.1016/j.neucom.2020.08.079_b0120
  doi: 10.5220/0007916705070516
– volume: 48
  start-page: 1619
  issue: 8
  year: 2016
  ident: 10.1016/j.neucom.2020.08.079_b0135
  article-title: Validity of consumer-based physical activity monitors for specific activity types
  publication-title: Med. Sci. Sports Exercise
  doi: 10.1249/MSS.0000000000000933
– volume: 10
  issue: 3
  year: 2015
  ident: 10.1016/j.neucom.2020.08.079_b0140
  article-title: Step detection and activity recognition accuracy of seven physical activity monitors
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0118723
– volume: 9
  start-page: 2391
  issue: 1
  year: 2019
  ident: 10.1016/j.neucom.2020.08.079_b0165
  article-title: Explaining the unique nature of individual gait patterns with deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-38748-8
– volume: 18
  start-page: 1091
  issue: 4
  year: 2018
  ident: 10.1016/j.neucom.2020.08.079_b0290
  article-title: Robust stride segmentation of inertial signals based on local cyclicity estimation
  publication-title: Sensors
  doi: 10.3390/s18041091
– ident: 10.1016/j.neucom.2020.08.079_b0110
  doi: 10.1145/3090076
– volume: 12
  start-page: 153
  issue: 2
  year: 1947
  ident: 10.1016/j.neucom.2020.08.079_b0255
  article-title: Note on the sampling error of the difference between correlated proportions or percentages
  publication-title: Psychometrika
  doi: 10.1007/BF02295996
– volume: 5
  start-page: 26
  issue: 2
  year: 2018
  ident: 10.1016/j.neucom.2020.08.079_b0095
  article-title: Convolutional neural networks for human activity recognition using body-worn sensors
  publication-title: Informatics
  doi: 10.3390/informatics5020026
– ident: 10.1016/j.neucom.2020.08.079_b0035
  doi: 10.3390/s18124189
– volume: 33
  start-page: 269
  issue: 3
  year: 2000
  ident: 10.1016/j.neucom.2020.08.079_b0235
  article-title: Biomechanical analysis of the stance phase during barefoot and shod running
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(99)00192-X
– volume: 62
  start-page: 1089
  issue: 4
  year: 2015
  ident: 10.1016/j.neucom.2020.08.079_b0155
  article-title: Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2368211
– year: 2018
  ident: 10.1016/j.neucom.2020.08.079_b0285
  article-title: Validity and reliability evaluation of four commercial activity trackers’ step counting performance
  publication-title: Telemed. e-Health
  doi: 10.1089/tmj.2017.0264
– ident: 10.1016/j.neucom.2020.08.079_b0130
  doi: 10.1109/IJCNN.2019.8852299
– volume: 11
  start-page: 15
  issue: 1
  year: 1997
  ident: 10.1016/j.neucom.2020.08.079_b0245
  article-title: Treadmill training with partial body weight support: influence of body weight release on the gait of hemiparetic patients
  publication-title: J. Neurol. Rehabil.
– volume: 16
  start-page: 115
  issue: 1
  year: 2016
  ident: 10.1016/j.neucom.2020.08.079_b0230
  article-title: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition
  publication-title: Sensors
  doi: 10.3390/s16010115
– volume: 59
  start-page: 278
  year: 2018
  ident: 10.1016/j.neucom.2020.08.079_b0150
  article-title: Novel methodology for estimating Initial Contact events from accelerometers positioned at different body locations
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2017.07.030
– volume: 30
  start-page: 523
  issue: 4
  year: 2009
  ident: 10.1016/j.neucom.2020.08.079_b0265
  article-title: Real-time gait event detection using wearable sensors
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.07.128
– volume: 17
  start-page: 2328
  issue: 10
  year: 2017
  ident: 10.1016/j.neucom.2020.08.079_b0030
  article-title: Smart annotation of cyclic data using hierarchical hidden Markov models
  publication-title: Sensors
  doi: 10.3390/s17102328
– ident: 10.1016/j.neucom.2020.08.079_b0125
  doi: 10.5220/0007916806560663
– ident: 10.1016/j.neucom.2020.08.079_b0170
  doi: 10.1109/SII.2019.8700415
– volume: 18
  start-page: 1714
  issue: 6
  year: 2018
  ident: 10.1016/j.neucom.2020.08.079_b0015
  article-title: Sensors and functionalities of non-invasive wrist-wearable devices: a review
  publication-title: Sensors
  doi: 10.3390/s18061714
– volume: 105
  start-page: 233
  year: 2018
  ident: 10.1016/j.neucom.2020.08.079_b0075
  article-title: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: state of the art and research challenges
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.03.056
– volume: 51
  start-page: 84
  year: 2017
  ident: 10.1016/j.neucom.2020.08.079_b0065
  article-title: Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2016.09.023
– volume: 149
  start-page: 1286
  year: 2015
  ident: 10.1016/j.neucom.2020.08.079_b0005
  article-title: Activity recognition in smart homes with self verification of assignments
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.069
– volume: 10
  start-page: 1895
  issue: 7
  year: 1998
  ident: 10.1016/j.neucom.2020.08.079_b0260
  article-title: Approximate statistical tests for comparing supervised classification learning algorithms
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017197
– ident: 10.1016/j.neucom.2020.08.079_b0195
– start-page: 1533
  year: 2016
  ident: 10.1016/j.neucom.2020.08.079_b0090
  article-title: Deep, convolutional, and recurrent models for human activity recognition using wearables
– volume: 19
  start-page: 1820
  issue: 8
  year: 2019
  ident: 10.1016/j.neucom.2020.08.079_b0055
  article-title: Hidden Markov model-based smart annotation for benchmark cyclic activity recognition database using wearables
  publication-title: Sensors
  doi: 10.3390/s19081820
– volume: 15
  start-page: 22089
  issue: 9
  year: 2015
  ident: 10.1016/j.neucom.2020.08.079_b0145
  article-title: Inertial sensor-based gait recognition: a review
  publication-title: Sensors
  doi: 10.3390/s150922089
– ident: 10.1016/j.neucom.2020.08.079_b0275
– volume: 14
  start-page: 436
  issue: 2
  year: 2010
  ident: 10.1016/j.neucom.2020.08.079_b0200
  article-title: Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2009.2036165
– ident: 10.1016/j.neucom.2020.08.079_b0205
  doi: 10.1109/PERCOM.2017.7917848
– ident: 10.1016/j.neucom.2020.08.079_b0070
  doi: 10.1145/3214277
– ident: 10.1016/j.neucom.2020.08.079_b0085
– year: 2015
  ident: 10.1016/j.neucom.2020.08.079_b0270
  article-title: ADAM: a method for stochastic optimization
– volume: 64
  start-page: 181
  year: 2018
  ident: 10.1016/j.neucom.2020.08.079_b0280
  article-title: Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.06.012
– volume: 18
  start-page: 2146
  issue: 7
  year: 2018
  ident: 10.1016/j.neucom.2020.08.079_b0020
  article-title: Comparison of data preprocessing approaches for applying deep learning to human activity recognition in the context of industry 4.0
  publication-title: Sensors
  doi: 10.3390/s18072146
– volume: 34
  start-page: 2033
  issue: 15
  year: 2013
  ident: 10.1016/j.neucom.2020.08.079_b0045
  article-title: The Opportunity challenge: a benchmark database for on-body sensor-based activity recognition
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2012.12.014
– volume: 74
  start-page: 128
  year: 2019
  ident: 10.1016/j.neucom.2020.08.079_b0180
  article-title: Time series classification using a modified LSTM approach from accelerometer-based data: a comparative study for gait cycle detection
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2019.09.007
– ident: 10.1016/j.neucom.2020.08.079_b0215
  doi: 10.1109/IJCNN.2017.7966182
– ident: 10.1016/j.neucom.2020.08.079_b0220
– start-page: 17
  year: 2008
  ident: 10.1016/j.neucom.2020.08.079_b0050
  article-title: Activity Recognition from On-Body Sensors: Accuracy-Power Trade-Off by Dynamic Sensor Selection
SSID ssj0017129
Score 2.4259043
Snippet Human activity recognition (HAR) and cycle analysis, such as gait analysis, have become an integral part of daily lives from gesture recognition to step...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 250
SubjectTerms Activity recognition
Gait analysis
Inertial measurement units
Multi-task
Recurrent neural networks
wearables
Title Wearables-based multi-task gait and activity segmentation using recurrent neural networks
URI https://dx.doi.org/10.1016/j.neucom.2020.08.079
Volume 432
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YE11HGaOB6riqqA1AUqyhQ5tlOVR6iadOW3c-ckFUgIJNbIVqLz-R7R931HyKXRUEfYzHgilQIaFLhSsWSIaYBkzJSMg9SpfU6i8bR_OwtnLTJsuDAIq6xjfxXTXbSun_Rqa_aWi0XvnkkOXZTPOfilEI5Rjup14NNXHxuYhy98Xunt8dDD1Q19zmG8crtGzAiHmskJeSKg66f09CXljPbITl0r0kH1OfukZfMDstvMYaD1tTwkT4_grkiBKjxMSoY6lKBXquKFztWipCo3FAkMOCeCFnb-VhOOcoqw9zld4U93lGmiKG8Jr8wrcHhxRKaj64fh2KtHJngaav_Sk8oolXGtggA6k8wP48xIlgU6hc4jZZZnNlZG-0xrywOVsUhGLk_HIrAxlCvHpJ2_5_YEydy-hoM0MlSqL7iV2kBii1jfGq5jFXRI0Fgq0bWeOI61eE0a4NhzUtk3QfsmOO1SyA7xNruWlZ7GH-tFcwjJN79IIOT_uvP03zvPyDZH5Aric8Q5aZertb2A0qNMu863umRrcHM3nnwCPdja8Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QOOjFtxGfe_Da0G5pt3skRAKCXISIp2a7uyX4qATK_3em3RJNjCZem27azM7Oo_2-bwi51QrqCJNqhyeCQ4MCRyoSLmIaIBm7UkR-Uqh9jsP-tH0_C2Y10q24MAirtLG_jOlFtLZXWtaareVi0Xp0BYMuymMM_JJzZJQ3UJ2qXSeNzmDYH29_JnCPlZJ7LHBwQcWgK2BemdkgbIRB2VRoeSKm66cM9SXr9A7Ini0Xaad8o0NSM9kR2a9GMVB7Mo_J8xN4LLKg1g7mJU0LoKCTy_UrnctFTmWmKXIYcFQEXZv5u-UcZRSR73O6wu_uqNREUeESHpmV-PD1CZn27ibdvmOnJjgKyv_cEVJLmTIlfR-ak9QLolQLN_VVAs1H4hqWmkhq5blKGebL1A1FWKTqiPsmgorllNSzj8ycIZ_bU7CXWgRStjkzQmnIbaHbNpqpSPpN4leWipWVFMfJFm9xhR17iUv7xmjfGAdectEkznbVspTU-ON-Xm1C_M01Yoj6v648__fKG7LTnzyM4tFgPLwguwyBLAjX4Zeknq825goqkTy5tp72CcMd3aI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearables-based+multi-task+gait+and+activity+segmentation+using+recurrent+neural+networks&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Martindale%2C+Chrsitine+F.&rft.au=Christlein%2C+Vincent&rft.au=Klumpp%2C+Philipp&rft.au=Eskofier%2C+Bjoern+M.&rft.date=2021-04-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=432&rft.spage=250&rft.epage=261&rft_id=info:doi/10.1016%2Fj.neucom.2020.08.079&rft.externalDocID=S0925231220317707
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon