An experimental and new study on thermal conductivity and zeta potential of Fe3O4/water nanofluid: Machine learning modeling and proposing a new correlation

It is important to predict the thermophysical properties of nanofluids, which have higher heat transfer performance compared to the base fluid, without the need for experimental studies. In this study, two different artificial neural networks were created to predict the thermal conductivity and zeta...

Full description

Saved in:
Bibliographic Details
Published inPowder technology Vol. 420; p. 118388
Main Authors Sahin, Fevzi, Genc, Omer, Gökcek, Murat, Çolak, Andaç Batur
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is important to predict the thermophysical properties of nanofluids, which have higher heat transfer performance compared to the base fluid, without the need for experimental studies. In this study, two different artificial neural networks were created to predict the thermal conductivity and zeta potential of Fe3O4/water nanofluid. The thermal conductivity and zeta potential of the Fe3O4/water nanofluid prepared at three different concentrations were experimentally measured. An innovative mathematical correlation is proposed to calculate thermal conductivity based on temperature and concentration using the obtained experimental data. Considering that the correlations in the literature can generally be calculated according to concentration, the novelty of the proposed model stands out. The calculated values for thermal conductivity and zeta potential of the created artificial neural network and the new mathematical correlation were compared with the results of the experiments. In addition, a comprehensive performance analysis was made by calculating different performance parameters. The R values of the neural network models were above 0.99 and mean squared error values were obtained as 1.47E-05 and 1.58E-06, respectively. In addition, the mean deviation values calculated for the thermal conductivity of the network model were 0.03%, while it was 0.05% for the new mathematical correlation. The study results showed that ANN models can predict the thermal conductivity and zeta potential of Fe3O4/water nanofluid with high accuracy. The proposed new mathematical correlation was also found to have higher error rates compared to the ANN model, although it was able to calculate thermal conductivity values with high accuracy. [Display omitted] •Fe3O4/water nanofluid prepared in three different concentrations.•Thermal conductivity and zeta potential values were experimentally measured.•Two different artificial neural networks were created.•Thermal conductivity and zeta potential values were predicted.•Experimental values are found compatible with ANN outputs.
AbstractList It is important to predict the thermophysical properties of nanofluids, which have higher heat transfer performance compared to the base fluid, without the need for experimental studies. In this study, two different artificial neural networks were created to predict the thermal conductivity and zeta potential of Fe3O4/water nanofluid. The thermal conductivity and zeta potential of the Fe3O4/water nanofluid prepared at three different concentrations were experimentally measured. An innovative mathematical correlation is proposed to calculate thermal conductivity based on temperature and concentration using the obtained experimental data. Considering that the correlations in the literature can generally be calculated according to concentration, the novelty of the proposed model stands out. The calculated values for thermal conductivity and zeta potential of the created artificial neural network and the new mathematical correlation were compared with the results of the experiments. In addition, a comprehensive performance analysis was made by calculating different performance parameters. The R values of the neural network models were above 0.99 and mean squared error values were obtained as 1.47E-05 and 1.58E-06, respectively. In addition, the mean deviation values calculated for the thermal conductivity of the network model were 0.03%, while it was 0.05% for the new mathematical correlation. The study results showed that ANN models can predict the thermal conductivity and zeta potential of Fe3O4/water nanofluid with high accuracy. The proposed new mathematical correlation was also found to have higher error rates compared to the ANN model, although it was able to calculate thermal conductivity values with high accuracy. [Display omitted] •Fe3O4/water nanofluid prepared in three different concentrations.•Thermal conductivity and zeta potential values were experimentally measured.•Two different artificial neural networks were created.•Thermal conductivity and zeta potential values were predicted.•Experimental values are found compatible with ANN outputs.
ArticleNumber 118388
Author Çolak, Andaç Batur
Sahin, Fevzi
Gökcek, Murat
Genc, Omer
Author_xml – sequence: 1
  givenname: Fevzi
  surname: Sahin
  fullname: Sahin, Fevzi
  organization: Ondokuz Mayıs University, Mechanical Engineering Department, 55200 Samsun, Türkiye
– sequence: 2
  givenname: Omer
  surname: Genc
  fullname: Genc, Omer
  organization: Nigde Omer Halisdemir University, Mechanical Engineering Department, 51100 Nigde, Türkiye
– sequence: 3
  givenname: Murat
  surname: Gökcek
  fullname: Gökcek, Murat
  organization: Nigde Omer Halisdemir University, Mechanical Engineering Department, 51100 Nigde, Türkiye
– sequence: 4
  givenname: Andaç Batur
  surname: Çolak
  fullname: Çolak, Andaç Batur
  email: abcolak@ticaret.edu.tr
  organization: Istanbul Commerce University, Information Technologies Application and Research Center, 34445 Istanbul, Türkiye
BookMark eNp9kMFOAjEQhhuDiYC-gYe-wMJ0u-x2PZgQImqC4aKJt6a2s1KytJtuAfFZfFgX8OxpZvLP_8_kG5Ce8w4JuWUwYsDy8XrU-H1EPUoh5SPGBBfigvSZKHjCU_HeI30AniaTksEVGbTtGgByzqBPfqaO4leDwW7QRVVT5Qx1uKdt3JoD9Y7GFYZNJ2jvzFZHu7PxcNr6xqho42Pns53uKzpHvszGexUxUKecr-qtNXf0RemVdUhrVMFZ90k33mB9bI4xTfCNb0_T6bD2IWCtovXumlxWqm7x5q8Oydv84XX2lCyWj8-z6SLRHPKYlHleadSVykymgItCFJUqymKiKwNlliNozrTgmSrSnE8gU0yXGQPAIufiw_Ahyc65Ovi2DVjJpuOhwkEykEfCci3PhOWRsDwT7mz3Zxt2v-0sBtlqi06jsQF1lMbb_wN-AWoJi7o
CitedBy_id crossref_primary_10_1016_j_powtec_2023_118974
crossref_primary_10_1016_j_powtec_2024_119649
crossref_primary_10_1016_j_powtec_2023_119005
crossref_primary_10_3390_fluids9010020
crossref_primary_10_1016_j_egyr_2023_08_001
crossref_primary_10_1016_j_rineng_2023_101114
crossref_primary_10_1093_ijlct_ctae047
crossref_primary_10_1016_j_powtec_2023_118706
crossref_primary_10_1080_10407790_2023_2300691
crossref_primary_10_1016_j_energy_2023_128176
crossref_primary_10_33889_IJMEMS_2023_8_5_047
crossref_primary_10_1016_j_heliyon_2024_e26279
crossref_primary_10_1016_j_powtec_2024_120074
crossref_primary_10_3390_molecules28155799
crossref_primary_10_3390_sym16070804
crossref_primary_10_1016_j_heliyon_2023_e18938
crossref_primary_10_3390_en17061351
crossref_primary_10_1007_s10973_023_12642_y
crossref_primary_10_1007_s10973_024_13249_7
crossref_primary_10_1007_s42452_023_05574_7
crossref_primary_10_1016_j_powtec_2023_118960
crossref_primary_10_1016_j_powtec_2023_119089
Cites_doi 10.1016/j.powtec.2020.10.089
10.1016/j.icheatmasstransfer.2016.03.010
10.1007/s10973-018-7974-4
10.1016/j.icheatmasstransfer.2015.11.002
10.1016/j.ijheatmasstransfer.2010.11.039
10.1016/j.ijthermalsci.2011.07.009
10.1016/j.ijheatmasstransfer.2018.02.089
10.1016/j.molliq.2020.114165
10.1016/j.molliq.2017.02.015
10.1016/j.powtec.2018.11.051
10.1115/1.4031730
10.1016/j.icheatmasstransfer.2015.06.002
10.1016/j.powtec.2020.02.026
10.1016/j.ijheatmasstransfer.2021.122082
10.1016/j.enconman.2018.10.047
10.1016/j.powtec.2019.07.086
10.1016/j.applthermaleng.2020.115499
10.1016/j.applthermaleng.2022.119321
10.1016/j.powtec.2016.05.040
10.1016/j.powtec.2019.11.098
10.1016/j.icheatmasstransfer.2017.12.011
10.1016/j.powtec.2020.01.006
10.1016/j.jcis.2021.08.015
10.1016/j.molliq.2021.115455
10.1016/j.expthermflusci.2014.02.011
10.1007/s10973-020-09756-y
10.1016/j.powtec.2013.01.039
10.1007/s10765-017-2218-6
10.1016/j.powtec.2022.118085
10.1016/j.powtec.2019.10.008
10.1590/0104-6632.20150324s00003518
10.1016/j.ijheatmasstransfer.2019.01.148
10.1016/j.powtec.2021.09.014
10.1007/s10973-017-6790-6
10.1007/s10973-019-08682-y
10.1016/j.powtec.2022.118097
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.powtec.2023.118388
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-328X
ExternalDocumentID 10_1016_j_powtec_2023_118388
S0032591023001729
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AAXUO
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSM
SSZ
T5K
~02
~G-
29O
8WZ
A6W
AAHBH
AAQXK
AAXKI
AAYXX
ABFNM
ABTAH
ABXDB
ACNNM
ADMUD
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCB
SCE
T9H
WUQ
XPP
ZY4
ID FETCH-LOGICAL-c306t-966fcecfa4d4a038787fa7975cfd0946e0c31c834a7263504a1c94100e7638bd3
IEDL.DBID AIKHN
ISSN 0032-5910
IngestDate Thu Sep 26 18:42:03 EDT 2024
Fri Feb 23 02:38:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fe3O4
Thermal conductivity
Artificial neural network
Nanofluid
Zeta potential
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-966fcecfa4d4a038787fa7975cfd0946e0c31c834a7263504a1c94100e7638bd3
ParticipantIDs crossref_primary_10_1016_j_powtec_2023_118388
elsevier_sciencedirect_doi_10_1016_j_powtec_2023_118388
PublicationCentury 2000
PublicationDate 2023-04-15
PublicationDateYYYYMMDD 2023-04-15
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Powder technology
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Leong, Najwa, Ku Ahmad, Ong (bb0075) 2017; 38
Aminian (bb0145) 2016; 301
Sahin, Namli (bb0185) 2020
Ma, Zhai, Wang, Yao, Wang (bb0150) 2020; 362
Ma, Zhai, Yao, Li, Wang (bb0060) 2021; 379
Wang, Yan, Gao, Chen (bb0135) 2019; 6
Fang, Tang, Su, Zheng, Xu, Ding, Liao (bb0005) 2020; 177
Gao, Wang, Sasmito, Mujumdar (bb0205) 2018; 123
Azizian, Doroodchi, Moghtaderi (bb0065) 2016; 138
Esfe, Toghraie, Amoozadkhalili (bb0105) 2023; 415
Topuz, Engin, Alper Özalp, Erdoğan, Mert, Yeter (bb0190) 2018; 131
Pattanaik, Cheekati, Varma, Ramanujan (bb0015) 2022; 183
Khosrojerdi, Vakili, Yahyaei, Kalhor (bb0115) 2016; 74
Mbambo, Madito, Khamliche, Mtshali, Khumalo, Madiba, Mothudi, Maaza (bb0020) 2020; 10
Kim, Tserengombo, Choi, Noh, Huh, Choi, Chung, Kim, Jeong (bb0050) 2018; 91
Zhai, Li, Wang, Li (bb0055) 2019; 343
Said, Abdelkareem, Rezk, Nassef, Atwany (bb0080) 2020; 364
Ahammed, Asirvatham, Titus, Bose, Wongwises (bb0220) 2016; 70
Bhattad, Sarkar, Ghosh (bb0195) 2019; 139
Akhgar, Toghraie, Sina, Afrand (bb0100) 2019; 355
Liu, Zhang, Lv, Qiao, Rao (bb0210) 2020; 319
Rostamian, Biglari, Saedodin, Hemmat Esfe (bb0130) 2017; 231
Awan, Al-Yaseri, Akhondzadeh, Iglauer, Keshavarz (bb0175) 2022; 607
Min Go, Shin, Son, Lee, Cha, Kyu Kwak (bb0035) 2022
Ajeeb, Thieleke da Silva, Murshed (bb0045) 2023; 218
Balaji, Rajendiran, Selvam, Lal (bb0165) 2021; 394
Moradi, Zareh, Afrand, Khayat (bb0215) 2020; 362
Mbambo, Khamlich, Khamliche, Moodley, Kaviyarasu, Madiba, Madito, Khenfouch, Kennedy, Henini, Manikandan, Maaza (bb0030) 2020; 1
Hemmat Esfe, Amoozadkhalili, Toghraie (bb0110) 2023; 415
Moldoveanu, Minea, Huminic, Huminic (bb0200) 2019; 137
Yashawantha, Vinod (bb0125) 2021; 145
Kazemi-Beydokhti, Azizi Namaghi, Haj Asgarkhani, Zeinali Heris, Prediction of stability and thermal conductivity of SnO2 nanofluid via statistical method and an artificial neural network (bb0090) 2015; 32
Saghafifar, Omar, Mohammadi, Alashkar, Gadalla (bb0010) 2019; 198
Benos, Karvelas, Sarris (bb0095) 2019; 135
Li, Zhai, Jin, Wang, Wang, Ma (bb0155) 2020; 363
Tiwari, Pandya, Said, Chhatbar, Al-Turki, Patel (bb0170) 2021; 329
Yang, Liu (bb0085) 2011; 50
Hemmat Esfe, Afrand, Yan, Akbari (bb0140) 2015; 66
Singh, Gupta (bb0180) 2019
Hemmat Esfe, Saedodin (bb0160) 2014; 55
Maaza, Khamliche, Akbari, Kana, Tandjigora, Beukes, Genu, Kaviyarasu, Cloete, Lekala, Gibaud, Henini (bb0025) 2022; 1
Hojjat, Etemad, Bagheri, Thibault (bb0120) 2011; 54
Witharana, Palabiyik, Musina, Ding (bb0070) 2013; 239
Khatoon, Kumar Choudhary, Kumar, Siraj Alam, Pandey, Singh, Naresh (bb0040) 2022
Witharana (10.1016/j.powtec.2023.118388_bb0070) 2013; 239
Mbambo (10.1016/j.powtec.2023.118388_bb0030) 2020; 1
Wang (10.1016/j.powtec.2023.118388_bb0135) 2019; 6
Awan (10.1016/j.powtec.2023.118388_bb0175) 2022; 607
Topuz (10.1016/j.powtec.2023.118388_bb0190) 2018; 131
Li (10.1016/j.powtec.2023.118388_bb0155) 2020; 363
Said (10.1016/j.powtec.2023.118388_bb0080) 2020; 364
Hojjat (10.1016/j.powtec.2023.118388_bb0120) 2011; 54
Akhgar (10.1016/j.powtec.2023.118388_bb0100) 2019; 355
Kazemi-Beydokhti (10.1016/j.powtec.2023.118388_bb0090) 2015; 32
Benos (10.1016/j.powtec.2023.118388_bb0095) 2019; 135
Ahammed (10.1016/j.powtec.2023.118388_bb0220) 2016; 70
Min Go (10.1016/j.powtec.2023.118388_bb0035) 2022
Azizian (10.1016/j.powtec.2023.118388_bb0065) 2016; 138
Fang (10.1016/j.powtec.2023.118388_bb0005) 2020; 177
Leong (10.1016/j.powtec.2023.118388_bb0075) 2017; 38
Tiwari (10.1016/j.powtec.2023.118388_bb0170) 2021; 329
Moldoveanu (10.1016/j.powtec.2023.118388_bb0200) 2019; 137
Balaji (10.1016/j.powtec.2023.118388_bb0165) 2021; 394
Yashawantha (10.1016/j.powtec.2023.118388_bb0125) 2021; 145
Hemmat Esfe (10.1016/j.powtec.2023.118388_bb0140) 2015; 66
Sahin (10.1016/j.powtec.2023.118388_bb0185) 2020
Esfe (10.1016/j.powtec.2023.118388_bb0105) 2023; 415
Gao (10.1016/j.powtec.2023.118388_bb0205) 2018; 123
Mbambo (10.1016/j.powtec.2023.118388_bb0020) 2020; 10
Zhai (10.1016/j.powtec.2023.118388_bb0055) 2019; 343
Hemmat Esfe (10.1016/j.powtec.2023.118388_bb0110) 2023; 415
Rostamian (10.1016/j.powtec.2023.118388_bb0130) 2017; 231
Saghafifar (10.1016/j.powtec.2023.118388_bb0010) 2019; 198
Hemmat Esfe (10.1016/j.powtec.2023.118388_bb0160) 2014; 55
Singh (10.1016/j.powtec.2023.118388_bb0180) 2019
Maaza (10.1016/j.powtec.2023.118388_bb0025) 2022; 1
Ajeeb (10.1016/j.powtec.2023.118388_bb0045) 2023; 218
Ma (10.1016/j.powtec.2023.118388_bb0060) 2021; 379
Aminian (10.1016/j.powtec.2023.118388_bb0145) 2016; 301
Ma (10.1016/j.powtec.2023.118388_bb0150) 2020; 362
Moradi (10.1016/j.powtec.2023.118388_bb0215) 2020; 362
Kim (10.1016/j.powtec.2023.118388_bb0050) 2018; 91
Yang (10.1016/j.powtec.2023.118388_bb0085) 2011; 50
Liu (10.1016/j.powtec.2023.118388_bb0210) 2020; 319
Bhattad (10.1016/j.powtec.2023.118388_bb0195) 2019; 139
Pattanaik (10.1016/j.powtec.2023.118388_bb0015) 2022; 183
Khatoon (10.1016/j.powtec.2023.118388_bb0040) 2022
Khosrojerdi (10.1016/j.powtec.2023.118388_bb0115) 2016; 74
References_xml – volume: 145
  start-page: 609
  year: 2021
  end-page: 630
  ident: bb0125
  article-title: ANN modelling and experimental investigation on effective thermal conductivity of ethylene glycol:water nanofluids
  publication-title: J. Therm. Anal. Calorim.
  contributor:
    fullname: Vinod
– volume: 177
  year: 2020
  ident: bb0005
  article-title: Investigation into optimal control of terminal unit of air conditioning system for reducing energy consumption
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Liao
– volume: 1
  start-page: 1
  year: 2020
  end-page: 14
  ident: bb0030
  article-title: Remarkable thermal conductivity enhancement in Ag—decorated graphene nanocomposites based nanofluid by laser liquid solid interaction in ethylene glycol
  publication-title: Sci. Rep.
  contributor:
    fullname: Maaza
– volume: 379
  start-page: 373
  year: 2021
  end-page: 383
  ident: bb0060
  article-title: Effect of surfactant on the rheological behavior and thermophysical properties of hybrid nanofluids
  publication-title: Powder Technol.
  contributor:
    fullname: Wang
– volume: 183
  year: 2022
  ident: bb0015
  article-title: Superior cooling performance of low footprint, hybrid magneto-fluidic heat transfer devices
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Ramanujan
– volume: 138
  year: 2016
  ident: bb0065
  article-title: Influence of controlled aggregation on thermal conductivity of nanofluids
  publication-title: J. Heat Transf.
  contributor:
    fullname: Moghtaderi
– volume: 91
  start-page: 95
  year: 2018
  end-page: 102
  ident: bb0050
  article-title: Experimental investigation of dispersion characteristics and thermal conductivity of various surfactants on carbon based nanomaterial
  publication-title: Int. Commun. Heat Mass Transf.
  contributor:
    fullname: Jeong
– volume: 415
  year: 2023
  ident: bb0105
  article-title: Optimization and design of ANN with Levenberg-Marquardt algorithm to increase the accuracy in predicting the viscosity of SAE40 oil-based hybrid nano-lubricant
  publication-title: Powder Technol.
  contributor:
    fullname: Amoozadkhalili
– volume: 38
  year: 2017
  ident: bb0075
  article-title: Investigation on stability and optical properties of titanium dioxide and aluminum oxide water-based Nanofluids
  publication-title: Int. J. Thermophys.
  contributor:
    fullname: Ong
– volume: 355
  start-page: 602
  year: 2019
  end-page: 610
  ident: bb0100
  article-title: Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO2/water-ethylene glycol hybrid nanofluid
  publication-title: Powder Technol.
  contributor:
    fullname: Afrand
– volume: 50
  start-page: 2402
  year: 2011
  end-page: 2412
  ident: bb0085
  article-title: Pool boiling heat transfer of functionalized nanofluid under sub-atmospheric pressures
  publication-title: Int. J. Therm. Sci.
  contributor:
    fullname: Liu
– volume: 363
  start-page: 360
  year: 2020
  end-page: 368
  ident: bb0155
  article-title: Stability, thermal performance and artificial neural network modeling of viscosity and thermal conductivity of Al2O3-ethylene glycol nanofluids
  publication-title: Powder Technol.
  contributor:
    fullname: Ma
– volume: 329
  year: 2021
  ident: bb0170
  article-title: 3S (Sonication, surfactant, stability) impact on the viscosity of hybrid nanofluid with different base fluids: an experimental study
  publication-title: J. Mol. Liq.
  contributor:
    fullname: Patel
– volume: 135
  start-page: 548
  year: 2019
  end-page: 560
  ident: bb0095
  article-title: A theoretical model for the magnetohydrodynamic natural convection of a CNT-water nanofluid incorporating a renovated Hamilton-Crosser model
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Sarris
– volume: 218
  year: 2023
  ident: bb0045
  article-title: Experimental investigation of heat transfer performance of Al2O3 nanofluids in a compact plate heat exchanger
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Murshed
– volume: 55
  start-page: 1
  year: 2014
  end-page: 5
  ident: bb0160
  article-title: An experimental investigation and new correlation of viscosity of ZnO-EG nanofluid at various temperatures and different solid volume fractions
  publication-title: Exp. Thermal Fluid Sci.
  contributor:
    fullname: Saedodin
– volume: 6
  start-page: 1504
  year: 2019
  end-page: 1512
  ident: bb0135
  article-title: Prediction of thermal conductivity of various nanofluids with ethylene glycol using artificial neural network
  publication-title: J. Therm. Sci.
  contributor:
    fullname: Chen
– volume: 137
  start-page: 583
  year: 2019
  end-page: 592
  ident: bb0200
  article-title: Al2O3/TiO2 hybrid nanofluids thermal conductivity: an experimental approach
  publication-title: J. Therm. Anal. Calorim.
  contributor:
    fullname: Huminic
– volume: 364
  start-page: 795
  year: 2020
  end-page: 809
  ident: bb0080
  article-title: Stability, thermophysical and electrical properties of synthesized carbon nanofiber and reduced-graphene oxide-based nanofluids and their hybrid along with fuzzy modeling approach
  publication-title: Powder Technol.
  contributor:
    fullname: Atwany
– volume: 66
  start-page: 246
  year: 2015
  end-page: 249
  ident: bb0140
  article-title: Applicability of artificial neural network and nonlinear regression to predict thermal conductivity modeling of Al2O3-water nanofluids using experimental data
  publication-title: Int. Commun. Heat Mass Transf.
  contributor:
    fullname: Akbari
– volume: 319
  year: 2020
  ident: bb0210
  article-title: Preparation and thermo-physical properties of stable graphene/water nanofluids for thermal management
  publication-title: J. Mol. Liq.
  contributor:
    fullname: Rao
– volume: 198
  year: 2019
  ident: bb0010
  article-title: A review of unconventional bottoming cycles for waste heat recovery: Part I – Analysis, design, and optimization
  publication-title: Energy Convers. Manag.
  contributor:
    fullname: Gadalla
– volume: 343
  start-page: 215
  year: 2019
  end-page: 224
  ident: bb0055
  article-title: Evaluation of surfactant on stability and thermal performance of Al2O3-ethylene glycol (EG) nanofluids
  publication-title: Powder Technol.
  contributor:
    fullname: Li
– volume: 54
  start-page: 1017
  year: 2011
  end-page: 1023
  ident: bb0120
  article-title: Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Thibault
– volume: 139
  start-page: 3777
  year: 2019
  end-page: 3787
  ident: bb0195
  article-title: Hydrothermal performance of different alumina hybrid nanofluid types in plate heat exchanger: experimental study
  publication-title: J. Therm. Anal. Calorim.
  contributor:
    fullname: Ghosh
– volume: 301
  start-page: 288
  year: 2016
  end-page: 309
  ident: bb0145
  article-title: Predicting the effective thermal conductivity of nanofluids for intensification of heat transfer using artificial neural network
  publication-title: Powder Technol.
  contributor:
    fullname: Aminian
– volume: 10
  start-page: 1
  year: 2020
  end-page: 10
  ident: bb0020
  article-title: Thermal conductivity enhancement in gold decorated graphene nanosheets in ethylene glycol based nanofluid
  publication-title: Sci. Rep.
  contributor:
    fullname: Maaza
– start-page: 741
  year: 2019
  end-page: 747
  ident: bb0180
  article-title: Characterisation and zeta potential measurements of CuO–water nanofluids, Lecture Notes in Mechanical Engineering
  contributor:
    fullname: Gupta
– volume: 1
  start-page: 1
  year: 2022
  end-page: 12
  ident: bb0025
  article-title: A novel approach for engineering efficient nanofluids by radiolysis
  publication-title: Sci. Rep.
  contributor:
    fullname: Henini
– volume: 239
  start-page: 72
  year: 2013
  end-page: 77
  ident: bb0070
  article-title: Stability of glycol nanofluids — the theory and experiment
  publication-title: Powder Technol.
  contributor:
    fullname: Ding
– volume: 70
  start-page: 66
  year: 2016
  end-page: 74
  ident: bb0220
  article-title: Measurement of thermal conductivity of graphene–water nanofluid at below and above ambient temperatures
  publication-title: Int. Commun. Heat Mass Transf.
  contributor:
    fullname: Wongwises
– year: 2020
  ident: bb0185
  article-title: Thermal performances and stabilities of nanofluids in an electrical oil heater
  publication-title: J. Therm. Anal. Calorim.
  contributor:
    fullname: Namli
– volume: 415
  year: 2023
  ident: bb0110
  article-title: Determining the optimal structure for accurate estimation of the dynamic viscosity of oil-based hybrid nanofluid containing MgO and MWCNTs nanoparticles using multilayer perceptron neural networks with Levenberg-Marquardt Algorithm
  publication-title: Powder Technol.
  contributor:
    fullname: Toghraie
– volume: 394
  start-page: 1141
  year: 2021
  end-page: 1157
  ident: bb0165
  article-title: Enhanced heat transfer characteristics of water based hybrid nanofluids with graphene nanoplatelets and multi walled carbon nanotubes
  publication-title: Powder Technol.
  contributor:
    fullname: Lal
– volume: 74
  start-page: 11
  year: 2016
  end-page: 17
  ident: bb0115
  article-title: Thermal conductivity modeling of graphene nanoplatelets/deionized water nanofluid by MLP neural network and theoretical modeling using experimental results
  publication-title: Int. Commun. Heat Mass Transf.
  contributor:
    fullname: Kalhor
– year: 2022
  ident: bb0035
  article-title: Theoretical study on enhancement of heat transfer of nanofluids with functionalized graphene flakes in confined nanopipe system
  publication-title: J. Ind. Eng. Chem.
  contributor:
    fullname: Kyu Kwak
– volume: 607
  start-page: 401
  year: 2022
  end-page: 411
  ident: bb0175
  article-title: Influence of mineralogy and surfactant concentration on zeta potential in intact sandstone at high pressure
  publication-title: J. Colloid Interface Sci.
  contributor:
    fullname: Keshavarz
– volume: 362
  start-page: 257
  year: 2020
  end-page: 266
  ident: bb0150
  article-title: Statistical image analysis of uniformity of hybrid nanofluids and prediction models of thermophysical parameters based on artificial neural network (ANN)
  publication-title: Powder Technol.
  contributor:
    fullname: Wang
– volume: 131
  start-page: 2843
  year: 2018
  end-page: 2863
  ident: bb0190
  article-title: Experimental investigation of optimum thermal performance and pressure drop of water-based Al2O3, TiO2and ZnO nanofluids flowing inside a circular microchannel
  publication-title: J. Therm. Anal. Calorim.
  contributor:
    fullname: Yeter
– volume: 231
  start-page: 364
  year: 2017
  end-page: 369
  ident: bb0130
  article-title: An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation
  publication-title: J. Mol. Liq.
  contributor:
    fullname: Hemmat Esfe
– volume: 362
  start-page: 578
  year: 2020
  end-page: 585
  ident: bb0215
  article-title: Effects of temperature and volume concentration on thermal conductivity of TiO2-MWCNTs (70-30)/EG-water hybrid nano-fluid
  publication-title: Powder Technol.
  contributor:
    fullname: Khayat
– volume: 123
  start-page: 97
  year: 2018
  end-page: 109
  ident: bb0205
  article-title: Measurement and modeling of thermal conductivity of graphene nanoplatelet water and ethylene glycol base nanofluids
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Mujumdar
– year: 2022
  ident: bb0040
  article-title: Enhancement of heat transfer rate in shell & tube heat exchanger using CuO/Al2O3-water based nanofluids, Materials Today: Proceedings
  contributor:
    fullname: Naresh
– volume: 32
  start-page: 903
  year: 2015
  end-page: 917
  ident: bb0090
  publication-title: Braz. J. Chem. Eng.
  contributor:
    fullname: Prediction of stability and thermal conductivity of SnO2 nanofluid via statistical method and an artificial neural network
– volume: 379
  start-page: 373
  year: 2021
  ident: 10.1016/j.powtec.2023.118388_bb0060
  article-title: Effect of surfactant on the rheological behavior and thermophysical properties of hybrid nanofluids
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.10.089
  contributor:
    fullname: Ma
– volume: 74
  start-page: 11
  year: 2016
  ident: 10.1016/j.powtec.2023.118388_bb0115
  article-title: Thermal conductivity modeling of graphene nanoplatelets/deionized water nanofluid by MLP neural network and theoretical modeling using experimental results
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2016.03.010
  contributor:
    fullname: Khosrojerdi
– volume: 137
  start-page: 583
  year: 2019
  ident: 10.1016/j.powtec.2023.118388_bb0200
  article-title: Al2O3/TiO2 hybrid nanofluids thermal conductivity: an experimental approach
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-018-7974-4
  contributor:
    fullname: Moldoveanu
– volume: 70
  start-page: 66
  year: 2016
  ident: 10.1016/j.powtec.2023.118388_bb0220
  article-title: Measurement of thermal conductivity of graphene–water nanofluid at below and above ambient temperatures
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2015.11.002
  contributor:
    fullname: Ahammed
– volume: 54
  start-page: 1017
  year: 2011
  ident: 10.1016/j.powtec.2023.118388_bb0120
  article-title: Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.11.039
  contributor:
    fullname: Hojjat
– volume: 50
  start-page: 2402
  year: 2011
  ident: 10.1016/j.powtec.2023.118388_bb0085
  article-title: Pool boiling heat transfer of functionalized nanofluid under sub-atmospheric pressures
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2011.07.009
  contributor:
    fullname: Yang
– volume: 123
  start-page: 97
  year: 2018
  ident: 10.1016/j.powtec.2023.118388_bb0205
  article-title: Measurement and modeling of thermal conductivity of graphene nanoplatelet water and ethylene glycol base nanofluids
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.02.089
  contributor:
    fullname: Gao
– volume: 319
  year: 2020
  ident: 10.1016/j.powtec.2023.118388_bb0210
  article-title: Preparation and thermo-physical properties of stable graphene/water nanofluids for thermal management
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.114165
  contributor:
    fullname: Liu
– volume: 231
  start-page: 364
  year: 2017
  ident: 10.1016/j.powtec.2023.118388_bb0130
  article-title: An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2017.02.015
  contributor:
    fullname: Rostamian
– volume: 6
  start-page: 1504
  issue: 29
  year: 2019
  ident: 10.1016/j.powtec.2023.118388_bb0135
  article-title: Prediction of thermal conductivity of various nanofluids with ethylene glycol using artificial neural network
  publication-title: J. Therm. Sci.
  contributor:
    fullname: Wang
– volume: 343
  start-page: 215
  year: 2019
  ident: 10.1016/j.powtec.2023.118388_bb0055
  article-title: Evaluation of surfactant on stability and thermal performance of Al2O3-ethylene glycol (EG) nanofluids
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2018.11.051
  contributor:
    fullname: Zhai
– volume: 138
  year: 2016
  ident: 10.1016/j.powtec.2023.118388_bb0065
  article-title: Influence of controlled aggregation on thermal conductivity of nanofluids
  publication-title: J. Heat Transf.
  doi: 10.1115/1.4031730
  contributor:
    fullname: Azizian
– volume: 66
  start-page: 246
  year: 2015
  ident: 10.1016/j.powtec.2023.118388_bb0140
  article-title: Applicability of artificial neural network and nonlinear regression to predict thermal conductivity modeling of Al2O3-water nanofluids using experimental data
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2015.06.002
  contributor:
    fullname: Hemmat Esfe
– volume: 364
  start-page: 795
  year: 2020
  ident: 10.1016/j.powtec.2023.118388_bb0080
  article-title: Stability, thermophysical and electrical properties of synthesized carbon nanofiber and reduced-graphene oxide-based nanofluids and their hybrid along with fuzzy modeling approach
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.02.026
  contributor:
    fullname: Said
– volume: 183
  year: 2022
  ident: 10.1016/j.powtec.2023.118388_bb0015
  article-title: Superior cooling performance of low footprint, hybrid magneto-fluidic heat transfer devices
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2021.122082
  contributor:
    fullname: Pattanaik
– volume: 198
  year: 2019
  ident: 10.1016/j.powtec.2023.118388_bb0010
  article-title: A review of unconventional bottoming cycles for waste heat recovery: Part I – Analysis, design, and optimization
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.10.047
  contributor:
    fullname: Saghafifar
– volume: 355
  start-page: 602
  year: 2019
  ident: 10.1016/j.powtec.2023.118388_bb0100
  article-title: Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO2/water-ethylene glycol hybrid nanofluid
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2019.07.086
  contributor:
    fullname: Akhgar
– year: 2022
  ident: 10.1016/j.powtec.2023.118388_bb0035
  article-title: Theoretical study on enhancement of heat transfer of nanofluids with functionalized graphene flakes in confined nanopipe system
  publication-title: J. Ind. Eng. Chem.
  contributor:
    fullname: Min Go
– volume: 177
  year: 2020
  ident: 10.1016/j.powtec.2023.118388_bb0005
  article-title: Investigation into optimal control of terminal unit of air conditioning system for reducing energy consumption
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115499
  contributor:
    fullname: Fang
– volume: 218
  year: 2023
  ident: 10.1016/j.powtec.2023.118388_bb0045
  article-title: Experimental investigation of heat transfer performance of Al2O3 nanofluids in a compact plate heat exchanger
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.119321
  contributor:
    fullname: Ajeeb
– volume: 301
  start-page: 288
  year: 2016
  ident: 10.1016/j.powtec.2023.118388_bb0145
  article-title: Predicting the effective thermal conductivity of nanofluids for intensification of heat transfer using artificial neural network
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2016.05.040
  contributor:
    fullname: Aminian
– volume: 362
  start-page: 257
  year: 2020
  ident: 10.1016/j.powtec.2023.118388_bb0150
  article-title: Statistical image analysis of uniformity of hybrid nanofluids and prediction models of thermophysical parameters based on artificial neural network (ANN)
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2019.11.098
  contributor:
    fullname: Ma
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.powtec.2023.118388_bb0020
  article-title: Thermal conductivity enhancement in gold decorated graphene nanosheets in ethylene glycol based nanofluid
  publication-title: Sci. Rep.
  contributor:
    fullname: Mbambo
– volume: 91
  start-page: 95
  year: 2018
  ident: 10.1016/j.powtec.2023.118388_bb0050
  article-title: Experimental investigation of dispersion characteristics and thermal conductivity of various surfactants on carbon based nanomaterial
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2017.12.011
  contributor:
    fullname: Kim
– volume: 363
  start-page: 360
  year: 2020
  ident: 10.1016/j.powtec.2023.118388_bb0155
  article-title: Stability, thermal performance and artificial neural network modeling of viscosity and thermal conductivity of Al2O3-ethylene glycol nanofluids
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.01.006
  contributor:
    fullname: Li
– volume: 1
  start-page: 1
  issue: 12
  year: 2022
  ident: 10.1016/j.powtec.2023.118388_bb0025
  article-title: A novel approach for engineering efficient nanofluids by radiolysis
  publication-title: Sci. Rep.
  contributor:
    fullname: Maaza
– start-page: 741
  year: 2019
  ident: 10.1016/j.powtec.2023.118388_bb0180
  contributor:
    fullname: Singh
– volume: 607
  start-page: 401
  year: 2022
  ident: 10.1016/j.powtec.2023.118388_bb0175
  article-title: Influence of mineralogy and surfactant concentration on zeta potential in intact sandstone at high pressure
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.08.015
  contributor:
    fullname: Awan
– volume: 1
  start-page: 1
  issue: 10
  year: 2020
  ident: 10.1016/j.powtec.2023.118388_bb0030
  article-title: Remarkable thermal conductivity enhancement in Ag—decorated graphene nanocomposites based nanofluid by laser liquid solid interaction in ethylene glycol
  publication-title: Sci. Rep.
  contributor:
    fullname: Mbambo
– volume: 329
  year: 2021
  ident: 10.1016/j.powtec.2023.118388_bb0170
  article-title: 3S (Sonication, surfactant, stability) impact on the viscosity of hybrid nanofluid with different base fluids: an experimental study
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2021.115455
  contributor:
    fullname: Tiwari
– volume: 55
  start-page: 1
  year: 2014
  ident: 10.1016/j.powtec.2023.118388_bb0160
  article-title: An experimental investigation and new correlation of viscosity of ZnO-EG nanofluid at various temperatures and different solid volume fractions
  publication-title: Exp. Thermal Fluid Sci.
  doi: 10.1016/j.expthermflusci.2014.02.011
  contributor:
    fullname: Hemmat Esfe
– volume: 145
  start-page: 609
  year: 2021
  ident: 10.1016/j.powtec.2023.118388_bb0125
  article-title: ANN modelling and experimental investigation on effective thermal conductivity of ethylene glycol:water nanofluids
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-020-09756-y
  contributor:
    fullname: Yashawantha
– year: 2020
  ident: 10.1016/j.powtec.2023.118388_bb0185
  article-title: Thermal performances and stabilities of nanofluids in an electrical oil heater
  publication-title: J. Therm. Anal. Calorim.
  contributor:
    fullname: Sahin
– volume: 239
  start-page: 72
  year: 2013
  ident: 10.1016/j.powtec.2023.118388_bb0070
  article-title: Stability of glycol nanofluids — the theory and experiment
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2013.01.039
  contributor:
    fullname: Witharana
– volume: 38
  year: 2017
  ident: 10.1016/j.powtec.2023.118388_bb0075
  article-title: Investigation on stability and optical properties of titanium dioxide and aluminum oxide water-based Nanofluids
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-017-2218-6
  contributor:
    fullname: Leong
– year: 2022
  ident: 10.1016/j.powtec.2023.118388_bb0040
  contributor:
    fullname: Khatoon
– volume: 415
  year: 2023
  ident: 10.1016/j.powtec.2023.118388_bb0110
  article-title: Determining the optimal structure for accurate estimation of the dynamic viscosity of oil-based hybrid nanofluid containing MgO and MWCNTs nanoparticles using multilayer perceptron neural networks with Levenberg-Marquardt Algorithm
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2022.118085
  contributor:
    fullname: Hemmat Esfe
– volume: 362
  start-page: 578
  year: 2020
  ident: 10.1016/j.powtec.2023.118388_bb0215
  article-title: Effects of temperature and volume concentration on thermal conductivity of TiO2-MWCNTs (70-30)/EG-water hybrid nano-fluid
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2019.10.008
  contributor:
    fullname: Moradi
– volume: 32
  start-page: 903
  year: 2015
  ident: 10.1016/j.powtec.2023.118388_bb0090
  publication-title: Braz. J. Chem. Eng.
  doi: 10.1590/0104-6632.20150324s00003518
  contributor:
    fullname: Kazemi-Beydokhti
– volume: 135
  start-page: 548
  year: 2019
  ident: 10.1016/j.powtec.2023.118388_bb0095
  article-title: A theoretical model for the magnetohydrodynamic natural convection of a CNT-water nanofluid incorporating a renovated Hamilton-Crosser model
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.01.148
  contributor:
    fullname: Benos
– volume: 394
  start-page: 1141
  year: 2021
  ident: 10.1016/j.powtec.2023.118388_bb0165
  article-title: Enhanced heat transfer characteristics of water based hybrid nanofluids with graphene nanoplatelets and multi walled carbon nanotubes
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2021.09.014
  contributor:
    fullname: Balaji
– volume: 131
  start-page: 2843
  year: 2018
  ident: 10.1016/j.powtec.2023.118388_bb0190
  article-title: Experimental investigation of optimum thermal performance and pressure drop of water-based Al2O3, TiO2and ZnO nanofluids flowing inside a circular microchannel
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-017-6790-6
  contributor:
    fullname: Topuz
– volume: 139
  start-page: 3777
  year: 2019
  ident: 10.1016/j.powtec.2023.118388_bb0195
  article-title: Hydrothermal performance of different alumina hybrid nanofluid types in plate heat exchanger: experimental study
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-019-08682-y
  contributor:
    fullname: Bhattad
– volume: 415
  year: 2023
  ident: 10.1016/j.powtec.2023.118388_bb0105
  article-title: Optimization and design of ANN with Levenberg-Marquardt algorithm to increase the accuracy in predicting the viscosity of SAE40 oil-based hybrid nano-lubricant
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2022.118097
  contributor:
    fullname: Esfe
SSID ssj0006310
Score 2.550171
Snippet It is important to predict the thermophysical properties of nanofluids, which have higher heat transfer performance compared to the base fluid, without the...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 118388
SubjectTerms Artificial neural network
Fe3O4
Nanofluid
Thermal conductivity
Zeta potential
Title An experimental and new study on thermal conductivity and zeta potential of Fe3O4/water nanofluid: Machine learning modeling and proposing a new correlation
URI https://dx.doi.org/10.1016/j.powtec.2023.118388
Volume 420
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEB10vehB_MT1Y8nBa922yTatt0VcVkW9KHgr2TSRFW3L2kXw4C_xxzqTtrKCePDWNE1bMuHlDZl5A3CcZLHiSex7IbfSE5mNPGWN9SyS9Si0RicRZSNf30Tje3H5MHhYgrM2F4bCKhvsrzHdoXVzp9_MZr-cTinHlyN3J-kB58gky7CC25EQHVgZXlyNb74BOeJBo86IfhcOaDPoXJhXWbxVhrQMQ47wEXNXguWXHWph1xltwHpDF9mw_qNNWDL5FqwtiAhuw-cwZ4s6_UzlGUOyzJxyLCtyRhzvBTvQ9SV1V1cuwj31birFyqKiiCHsLywbGX4r-m9IQGcsV3lhn-fT7JRdu5BLw5oaE4_MFdChC3pNSZUWXl3LfVhTxY86xm4H7kfnd2djr6m54Gl0HioS67TaaKtEJhQdbcfSKpnIgbYZeoKR8TUPdMyFkiRj4wsV6EQEvm8QqOJJxnehkxe52QNmbWRkHAmVheTXJHGALw25lFZS-qrqgtfOc1rW0hppG3P2lNZ2SckuaW2XLsjWGOmPJZIi-v85cv_fIw9glVp0fBQMDqFTzebmCFlINenB8slH0GvW2hesf98H
link.rule.ids 315,786,790,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YE1NIndOGGrKqoCLSxU6hYZP1AROFFJVYmBX8KPxeckokiIgS2J7STyWefv5O--Q-g8kTEnSex7IdHMo1JHHtdKe9qC9SjUSiQRZCOP7qLBmN5MOpMG6tW5MECrrHx_6dOdt66etKvZbOfTKeT4EovdQXrABTLJCloFNAC8rouPb55HRIJKm9FGXbZ7nT_nSF55tigUKBmGxDqPmLgCLL_sT0t7Tn8LbVZgEXfL_9lGDWV20MaShOAu-uwavKzSj7mR2EJl7HRjcWYwILxX22ADX9B2dcUiXK93VXCcZwXwhWx7pnFfkXvaXlj4OcOGm0y_zKfyEo8c4VLhqsLEE3blc-ACXpNDnYU3d-c-LKDeR8mw20Pj_tVDb-BVFRc8YUOHAqQ6tVBCcyoph4PtmGnOEtYRWto4MFK-IIGICeUMRGx8ygOR0MD3lXVT8aMk-6hpMqMOENY6UiyOKJchRDVJHNiXhoQxzSB5lbeQV89zmpfCGmnNOHtOS7ukYJe0tEsLsdoY6Y8Fklrf_-fIw3-PPENrg4fRMB1e390eoXVogYOkoHOMmsVsrk4sHikeT916-wKphd_c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+experimental+and+new+study+on+thermal+conductivity+and+zeta+potential+of+Fe3O4%2Fwater+nanofluid%3A+Machine+learning+modeling+and+proposing+a+new+correlation&rft.jtitle=Powder+technology&rft.au=Sahin%2C+Fevzi&rft.au=Genc%2C+Omer&rft.au=G%C3%B6kcek%2C+Murat&rft.au=%C3%87olak%2C+Anda%C3%A7+Batur&rft.date=2023-04-15&rft.issn=0032-5910&rft.volume=420&rft.spage=118388&rft_id=info:doi/10.1016%2Fj.powtec.2023.118388&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_powtec_2023_118388
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5910&client=summon