Pedestrian attribute recognition: A survey
•The first survey paper for pedestrian attributes recognition (PAR).•Give a brief introduction to existing pedestrian attributes recognition algorithms.•Give various research directions for PAR. Pedestrian Attribute Recognition (PAR) is an important task in computer vision community and plays an imp...
Saved in:
Published in | Pattern recognition Vol. 121; p. 108220 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-3203 1873-5142 |
DOI | 10.1016/j.patcog.2021.108220 |
Cover
Loading…
Abstract | •The first survey paper for pedestrian attributes recognition (PAR).•Give a brief introduction to existing pedestrian attributes recognition algorithms.•Give various research directions for PAR.
Pedestrian Attribute Recognition (PAR) is an important task in computer vision community and plays an important role in practical video surveillance. The goal of this paper is to review existing works using traditional methods or based on deep learning networks. Firstly, we introduce the background of pedestrian attribute recognition, including the fundamental concepts and formulation of pedestrian attributes and corresponding challenges. Secondly, we analyze popular solutions for this task from eight perspectives. Thirdly, we discuss the specific attribute recognition, then, give a comparison between deep learning and traditional algorithm based PAR methods. After that, we show the connections between PAR and other computer vision tasks. Fourthly, we introduce the benchmark datasets, evaluation metrics in this community, and give a brief performance comparison. Finally, we summarize this paper and give several possible research directions for PAR. The project page of this paper can be found at: https://sites.google.com/view/ahu-pedestrianattributes/. |
---|---|
AbstractList | •The first survey paper for pedestrian attributes recognition (PAR).•Give a brief introduction to existing pedestrian attributes recognition algorithms.•Give various research directions for PAR.
Pedestrian Attribute Recognition (PAR) is an important task in computer vision community and plays an important role in practical video surveillance. The goal of this paper is to review existing works using traditional methods or based on deep learning networks. Firstly, we introduce the background of pedestrian attribute recognition, including the fundamental concepts and formulation of pedestrian attributes and corresponding challenges. Secondly, we analyze popular solutions for this task from eight perspectives. Thirdly, we discuss the specific attribute recognition, then, give a comparison between deep learning and traditional algorithm based PAR methods. After that, we show the connections between PAR and other computer vision tasks. Fourthly, we introduce the benchmark datasets, evaluation metrics in this community, and give a brief performance comparison. Finally, we summarize this paper and give several possible research directions for PAR. The project page of this paper can be found at: https://sites.google.com/view/ahu-pedestrianattributes/. |
ArticleNumber | 108220 |
Author | Zheng, Aihua Tang, Jin Zheng, Shaofei Yang, Rui Luo, Bin Chen, Zhe Wang, Xiao |
Author_xml | – sequence: 1 givenname: Xiao surname: Wang fullname: Wang, Xiao organization: School of Computer Science and Technology, Anhui University, Hefei, China – sequence: 2 givenname: Shaofei surname: Zheng fullname: Zheng, Shaofei organization: School of Computer Science and Technology, Anhui University, Hefei, China – sequence: 3 givenname: Rui surname: Yang fullname: Yang, Rui organization: School of Computer Science and Technology, Anhui University, Hefei, China – sequence: 4 givenname: Aihua surname: Zheng fullname: Zheng, Aihua organization: School of Artificial Intelligence, Anhui University, Hefei, China – sequence: 5 givenname: Zhe surname: Chen fullname: Chen, Zhe organization: School of Computer Science, Faculty of Engineering, The University of Sydney, Australia – sequence: 6 givenname: Jin surname: Tang fullname: Tang, Jin organization: School of Computer Science and Technology, Anhui University, Hefei, China – sequence: 7 givenname: Bin surname: Luo fullname: Luo, Bin email: luobin@ahu.edu.cn organization: School of Computer Science and Technology, Anhui University, Hefei, China |
BookMark | eNqFkE1LAzEQhoNUsK3-Aw97FrbOJJvs2oNQil9Q0IOeQzY7Kyl1tyRpof_eLOvJg55emOF5h2dmbNL1HTF2jbBAQHW7XexNtP3nggPHNKo4hzM2xaoUucSCT9gUQGAuOIgLNgthC4BlWkzZzRs1FKJ3pstMTFkfImWeUlvnouu7ZbbKwsEf6XTJzluzC3T1k3P28fjwvn7ON69PL-vVJrcCVMzvZCmqUpWy5QVJwsYWUpmyUbzGtmoNccQ6XVclh0IAttICyBqN5YrqRok5K8Ze6_sQPLV6792X8SeNoAdfvdWjrx589eibsOUvzLpoBoXojdv9B9-PMCWxoyOvg3XUWWpc-kXUTe_-LvgGlRF0Jw |
CitedBy_id | crossref_primary_10_3390_app122010445 crossref_primary_10_1016_j_ijrmms_2022_105225 crossref_primary_10_1007_s00371_024_03629_3 crossref_primary_10_1007_s11042_023_17815_3 crossref_primary_10_1016_j_aej_2022_07_053 crossref_primary_10_1145_3632624 crossref_primary_10_1109_TPAMI_2025_3526930 crossref_primary_10_3390_rs16071216 crossref_primary_10_1109_JRFID_2024_3371881 crossref_primary_10_1016_j_imavis_2024_105038 crossref_primary_10_1016_j_autcon_2024_105539 crossref_primary_10_1186_s13677_023_00552_1 crossref_primary_10_1109_TCSVT_2023_3285411 crossref_primary_10_3390_math12162495 crossref_primary_10_3390_app131910922 crossref_primary_10_1109_TETCI_2021_3127906 crossref_primary_10_1016_j_imavis_2022_104585 crossref_primary_10_1002_adma_202200908 crossref_primary_10_1109_TCSVT_2022_3178144 crossref_primary_10_3390_s25061736 crossref_primary_10_1007_s11633_022_1410_8 crossref_primary_10_1016_j_neucom_2022_04_081 crossref_primary_10_3390_s22176626 crossref_primary_10_1109_ACCESS_2022_3196650 crossref_primary_10_22630_MGV_2023_32_2_1 crossref_primary_10_1109_TNNLS_2024_3384446 crossref_primary_10_1016_j_patcog_2022_108865 crossref_primary_10_1145_3626240 crossref_primary_10_1016_j_laa_2024_04_015 crossref_primary_10_1016_j_inffus_2024_102879 crossref_primary_10_1109_ACCESS_2023_3283495 crossref_primary_10_1109_TCSVT_2024_3454366 crossref_primary_10_1016_j_patcog_2025_111486 crossref_primary_10_3390_math11051075 crossref_primary_10_4018_IJITSA_344019 crossref_primary_10_53759_181X_JCNS202404005 crossref_primary_10_1007_s11263_025_02405_7 crossref_primary_10_1007_s12369_024_01157_7 crossref_primary_10_1109_TMM_2023_3297391 crossref_primary_10_3390_math9202535 crossref_primary_10_1016_j_compenvurbsys_2023_102027 crossref_primary_10_1016_j_patcog_2023_110194 crossref_primary_10_3390_rs15020347 crossref_primary_10_11834_jig_240166 crossref_primary_10_1007_s10489_024_05489_9 crossref_primary_10_1109_TIP_2023_3270741 crossref_primary_10_1007_s00371_023_02914_x crossref_primary_10_1109_TMM_2023_3259686 crossref_primary_10_3390_e25060844 crossref_primary_10_3390_a15040120 crossref_primary_10_11834_jig_230163 crossref_primary_10_1186_s40537_024_00976_9 crossref_primary_10_1155_2024_1052344 crossref_primary_10_1016_j_patcog_2024_111291 |
Cites_doi | 10.1016/j.patcog.2017.01.009 10.1016/j.neucom.2019.01.027 10.1007/s11704-018-7195-8 10.1016/j.patrec.2017.05.012 10.1016/j.imavis.2018.09.001 10.1016/j.patcog.2018.12.009 10.1016/j.patcog.2017.01.005 10.1016/j.patrec.2020.07.018 10.1016/j.patcog.2016.10.026 10.1109/TPAMI.2008.106 10.1609/aaai.v34i07.6925 10.1016/j.imavis.2020.103981 10.1007/s11263-020-01412-0 10.1016/j.patcog.2015.03.006 10.1016/j.patcog.2017.01.007 10.1016/j.imavis.2016.07.004 10.1016/j.patcog.2009.02.011 10.1109/TPAMI.2011.205 10.1016/j.patrec.2019.01.010 10.1016/j.patcog.2018.02.028 10.1016/j.patcog.2019.06.006 10.1109/TPAMI.2017.2731842 10.1016/j.patcog.2019.107016 10.1016/S0031-3203(02)00052-3 10.1016/j.patcog.2017.06.028 10.1016/j.patcog.2017.01.006 10.1016/j.patcog.2017.06.031 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2021.108220 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
ExternalDocumentID | 10_1016_j_patcog_2021_108220 S0031320321004015 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-957387675f24e5e1dc456a7d62b1f8fae211b17167204301f5c005b1ac26ebd63 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Thu Apr 24 22:57:28 EDT 2025 Tue Jul 01 02:36:35 EDT 2025 Fri Feb 23 02:43:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pedestrian attribute recognition Deep learning Multi-label learning CNN-RNN Multi-task learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-957387675f24e5e1dc456a7d62b1f8fae211b17167204301f5c005b1ac26ebd63 |
ParticipantIDs | crossref_primary_10_1016_j_patcog_2021_108220 crossref_citationtrail_10_1016_j_patcog_2021_108220 elsevier_sciencedirect_doi_10_1016_j_patcog_2021_108220 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Tan, Yang, Wan, Wan, Guo, Li (bib0024) 2019 (2021). Ziaeefard, Bergevin (bib0086) 2015; 48 Luwei Yang, Tan (bib0015) 2016 Lu, Kumar, Zhai, Cheng, Javidi, Feris (bib0051) 2017; 1 H.S.C.L.C.X.C.X. Kai Han, Yunhe Wang, Attribute aware pooling for pedestrian attribute recognition, in: IJCAI, 2019. Ji, Hu, He, Han, Pang (bib0039) 2020 Antipov, Baccouche, Berrani, Dugelay (bib0062) 2017; 72 Ghadiri, Bergevin, Bilodeau (bib0069) 2016 Lin, Zheng, Zheng, Wu, Hu, Yan, Yang (bib0071) 2019 Liu, Kuipers, Savarese (bib0087) 2011 Li, Chen, Zhang, Huang (bib0017) 2018 Sarafianos, Xu, Kakadiaris (bib0022) 2018 Guo, Fan, Wang (bib0023) 2017; 94 Xiong, Zhu, Lin, Tang (bib0091) 2015 Abdulnabi, Wang, Lu, Jia (bib0005) 2015; 17 M. Wu, D. Huang, Y. Guo, Y. Wang, Distraction-aware feature learning for human attribute recognition via coarse-to-fine attention mechanism Chen, Ouyang, Liu, Tao (bib0001) 2021; 129 Li, Huang, Loy, Tang (bib0018) 2016 X. Zheng, Y. Guo, H. Huang, Y. Li, R. He, A survey to deep facial attribute analysis Khamis, Kuo, Singh, Shet, Davis (bib0074) 2014 J. Jia, H. Huang, X. Chen, K. Huang, Rethinking of pedestrian attribute recognition: A reliable evaluation under zero-shot pedestrian identity setting Wang, Gan, Wu, Yan (bib0044) 2019 Yang, Fan, Wang, Wang, Gan, Liu, Wu (bib0037) 2020 Tian, Luo, Wang, Tang (bib0070) 2015 Dalal, Triggs (bib0094) 2005; 1 Li, Liu, Wang, Liu, Yan (bib0075) 2015; 25 Su, Zhang, Yang, Zhang, Tian, Gao, Davis (bib0082) 2017; 66 X.Z.R.H.K. HUANG (bib0047) 2019 Liu, Liu, Yan, Shao (bib0019) 2018 (2020). Sudowe, Leibe (bib0050) 2016 Li, Xing, Hu, Maybank (bib0060) 2017; 66 Wang, Li, Luo, Tang (bib0099) 2018 Huang, Peng, Zhang, Li, Lin (bib0089) 2018; 12 Ling, Wang, Li, Shi, Chen, Zou (bib0081) 2019; 347 Wang, Zhu, Gong, Li (bib0030) 2017 J.H.L.L. Liuyu Xiang (bib0053) 2019 Wang, Zhang, Tretter, Lin (bib0084) 2013; 15 Chen, Gallagher, Girod (bib0045) 2012 Dong, Gong, Zhu (bib0040) 2017 Liu, Lu, Feng, Zhou (bib0063) 2017; 66 Layne, Hospedales, Gong, Mary (bib0078) 2012; 2 H. Liu, J. Wu, J. Jiang, M. Qi, R. Bo, Sequence-based person attribute recognition with joint ctc-attention model Zhang, Zhang, Yuan, Wang (bib0055) 2020 Bourdev, Maji, Malik (bib0007) 2011 Zhang, Paluri, Ranzato, Darrell, Bourdev (bib0010) 2014 Mnih, Heess, Graves (bib0100) 2014 Zhao, Sang, Ding, Guo, Jin (bib0031) 2018 Liu, Zhao, Tian, Sheng, Shao, Yi, Yan, Wang (bib0020) 2017 Bileschi (bib0093) 2006 (2016). Ji, He, Wang, Yang (bib0025) 2019; 120 Sudowe, Spitzer, Leibe (bib0003) 2015 Park, Nie, Zhu (bib0046) 2018; 40 Li, Liu, Zhang, Ni, Wang, Li (bib0096) 2021 Sarafianos, Giannakopoulos, Nikou, Kakadiaris (bib0043) 2018; 80 Wang, Xu, Shen, Zhu (bib0049) 2018 Mirza, Osindero (bib0054) 2014 Layne, Hospedales, Gong (bib0076) 2012 Zhu, Liao, Lei, Yi, Li (bib0097) 2013 Chen, Jia, Zhang, Kämäräinen (bib0064) 2017; 66 S. Li, H. Yu, W. Huang, J. Zhang, Attributes-aided part detection and refinement for person re-identification J. Jia, H. Huang, W. Yang, X. Chen, K. Huang, Rethinking of pedestrian attribute recognition: Realistic datasets with efficient method Bourdev, Malik (bib0095) 2009 Sarfraz, Schumann, Wang, Stiefelhagen (bib0021) 2017 E. Yaghoubi, D. Borza, J. Neves, A. Kumar, H. Proença, An attention-based deep learning model for multiple pedestrian attributes recognition Xing, Li, Hu, Yuan, Ling (bib0061) 2017; 66 Hadid, Pietikäinen (bib0065) 2009; 42 D. Li, Z. Zhang, X. Chen, H. Ling, K. Huang, A richly annotated dataset for pedestrian attribute recognition Fabbri, Calderara, Cucchiara (bib0052) 2017 Wang, Yang, Mao, Huang, Huang, Xu (bib0029) 2016 Geiger, Lenz, Urtasun (bib0092) 2012 Zhu, Liao, Lei, Li (bib0042) 2017; 58 Damen, Hogg (bib0068) 2011; 34 Schumann, Stiefelhagen (bib0079) 2017 Sarafianos, Giannakopoulos, Nikou, Kakadiaris (bib0041) 2017 Fasel, Luettin (bib0058) 2003; 36 He, Wang, Fu, Feng, Jiang, Xue (bib0035) 2017 Tan, Yang, Wan, Guo, Li (bib0048) 2020 (2019). Girshick, Iandola, Darrell, Malik (bib0012) 2015 Chen, Duffner, Stoian, Dufour, Baskurt (bib0083) 2018; 79 Su, Zhang, Xing, Gao, Tian (bib0073) 2016 Zhu, Liao, Yi, Lei, Li (bib0013) 2015 W. Xiao, Z. Shaofei, Y. Rui, L. Bin, T. Jin, Pedestrian attribute recognition: A survey Tang, Sheng, Zhang, Hu (bib0014) 2019 Branca, Leo, Attolico, Distante (bib0066) 2002; 3 Zhang, Song, Cao, Zhang, Zhou (bib0028) 2019; 30 Lazebnik, Schmid, Ponce (bib0009) 2006; 2 Layne, Hospedales, Gong (bib0077) 2014 Ghadiri, Bergevin, Bilodeau (bib0067) 2019; 89 Deng, Luo, Loy, Tang (bib0002) 2014 J.H.N.D. Xin Zhao, Yan (bib0033) 2019 Chen, Huang, Feris, Brown, Dong, Yan (bib0085) 2015 Han, Guo, Zhang, Zhu (bib0072) 2018 Zeng, Ai, Zhuang, Chen (bib0027) 2020 Rodríguez, Cucurull, Gonfaus, Roca, Gonzalez (bib0059) 2017; 72 Gkioxari, Girshick, Malik (bib0011) 2015 Murphy-Chutorian, Trivedi (bib0088) 2008; 31 Li, Chen, Huang (bib0004) 2015 Joo, Wang, Zhu (bib0008) 2013 (2018). Zhou, Yu, Leng, Zhang, Li, Huang, Feng, Yao (bib0034) 2017 Diba, Mohammad Pazandeh, Pirsiavash, Van Gool (bib0016) 2016 Sudowe (10.1016/j.patcog.2021.108220_bib0003) 2015 10.1016/j.patcog.2021.108220_bib0032 Rodríguez (10.1016/j.patcog.2021.108220_bib0059) 2017; 72 Liu (10.1016/j.patcog.2021.108220_bib0020) 2017 Layne (10.1016/j.patcog.2021.108220_bib0076) 2012 Chen (10.1016/j.patcog.2021.108220_bib0083) 2018; 79 Lazebnik (10.1016/j.patcog.2021.108220_bib0009) 2006; 2 Zhang (10.1016/j.patcog.2021.108220_bib0010) 2014 10.1016/j.patcog.2021.108220_bib0036 Chen (10.1016/j.patcog.2021.108220_bib0045) 2012 Sudowe (10.1016/j.patcog.2021.108220_bib0050) 2016 10.1016/j.patcog.2021.108220_bib0038 Ji (10.1016/j.patcog.2021.108220_bib0039) 2020 Chen (10.1016/j.patcog.2021.108220_bib0085) 2015 Abdulnabi (10.1016/j.patcog.2021.108220_bib0005) 2015; 17 Dong (10.1016/j.patcog.2021.108220_bib0040) 2017 Chen (10.1016/j.patcog.2021.108220_bib0064) 2017; 66 Li (10.1016/j.patcog.2021.108220_bib0018) 2016 Zhang (10.1016/j.patcog.2021.108220_bib0055) 2020 Fabbri (10.1016/j.patcog.2021.108220_bib0052) 2017 Fasel (10.1016/j.patcog.2021.108220_bib0058) 2003; 36 Bourdev (10.1016/j.patcog.2021.108220_bib0095) 2009 Wang (10.1016/j.patcog.2021.108220_bib0099) 2018 Huang (10.1016/j.patcog.2021.108220_bib0089) 2018; 12 10.1016/j.patcog.2021.108220_bib0026 Wang (10.1016/j.patcog.2021.108220_bib0044) 2019 Layne (10.1016/j.patcog.2021.108220_bib0078) 2012; 2 Deng (10.1016/j.patcog.2021.108220_bib0002) 2014 Ji (10.1016/j.patcog.2021.108220_bib0025) 2019; 120 Damen (10.1016/j.patcog.2021.108220_bib0068) 2011; 34 Liu (10.1016/j.patcog.2021.108220_bib0019) 2018 Han (10.1016/j.patcog.2021.108220_bib0072) 2018 X.Z.R.H.K. HUANG (10.1016/j.patcog.2021.108220_bib0047) 2019 10.1016/j.patcog.2021.108220_bib0056 Wang (10.1016/j.patcog.2021.108220_bib0084) 2013; 15 Li (10.1016/j.patcog.2021.108220_bib0096) 2021 Ziaeefard (10.1016/j.patcog.2021.108220_bib0086) 2015; 48 Antipov (10.1016/j.patcog.2021.108220_bib0062) 2017; 72 Bourdev (10.1016/j.patcog.2021.108220_bib0007) 2011 Hadid (10.1016/j.patcog.2021.108220_bib0065) 2009; 42 Park (10.1016/j.patcog.2021.108220_bib0046) 2018; 40 10.1016/j.patcog.2021.108220_bib0057 Luwei Yang (10.1016/j.patcog.2021.108220_bib0015) 2016 Wang (10.1016/j.patcog.2021.108220_bib0030) 2017 Khamis (10.1016/j.patcog.2021.108220_bib0074) 2014 Chen (10.1016/j.patcog.2021.108220_bib0001) 2021; 129 Geiger (10.1016/j.patcog.2021.108220_bib0092) 2012 Zhao (10.1016/j.patcog.2021.108220_bib0031) 2018 Lu (10.1016/j.patcog.2021.108220_bib0051) 2017; 1 Zhu (10.1016/j.patcog.2021.108220_bib0042) 2017; 58 Zhu (10.1016/j.patcog.2021.108220_bib0097) 2013 Tang (10.1016/j.patcog.2021.108220_bib0014) 2019 Wang (10.1016/j.patcog.2021.108220_bib0049) 2018 Layne (10.1016/j.patcog.2021.108220_bib0077) 2014 Diba (10.1016/j.patcog.2021.108220_bib0016) 2016 Yang (10.1016/j.patcog.2021.108220_bib0037) 2020 Li (10.1016/j.patcog.2021.108220_bib0017) 2018 Su (10.1016/j.patcog.2021.108220_bib0082) 2017; 66 J.H.L.L. Liuyu Xiang (10.1016/j.patcog.2021.108220_bib0053) 2019 Ghadiri (10.1016/j.patcog.2021.108220_bib0067) 2019; 89 Schumann (10.1016/j.patcog.2021.108220_bib0079) 2017 Li (10.1016/j.patcog.2021.108220_bib0004) 2015 Liu (10.1016/j.patcog.2021.108220_bib0087) 2011 Dalal (10.1016/j.patcog.2021.108220_bib0094) 2005; 1 Su (10.1016/j.patcog.2021.108220_bib0073) 2016 Bileschi (10.1016/j.patcog.2021.108220_bib0093) 2006 Ghadiri (10.1016/j.patcog.2021.108220_bib0069) 2016 Xiong (10.1016/j.patcog.2021.108220_bib0091) 2015 Guo (10.1016/j.patcog.2021.108220_bib0023) 2017; 94 Xing (10.1016/j.patcog.2021.108220_bib0061) 2017; 66 Sarafianos (10.1016/j.patcog.2021.108220_bib0022) 2018 Zeng (10.1016/j.patcog.2021.108220_bib0027) 2020 Mirza (10.1016/j.patcog.2021.108220_bib0054) 2014 Li (10.1016/j.patcog.2021.108220_bib0060) 2017; 66 J.H.N.D. Xin Zhao (10.1016/j.patcog.2021.108220_bib0033) 2019 Sarafianos (10.1016/j.patcog.2021.108220_bib0043) 2018; 80 Murphy-Chutorian (10.1016/j.patcog.2021.108220_bib0088) 2008; 31 10.1016/j.patcog.2021.108220_bib0098 Zhou (10.1016/j.patcog.2021.108220_bib0034) 2017 Sarfraz (10.1016/j.patcog.2021.108220_bib0021) 2017 Tan (10.1016/j.patcog.2021.108220_bib0048) 2020 10.1016/j.patcog.2021.108220_bib0090 Zhu (10.1016/j.patcog.2021.108220_bib0013) 2015 Gkioxari (10.1016/j.patcog.2021.108220_bib0011) 2015 Zhang (10.1016/j.patcog.2021.108220_bib0028) 2019; 30 Branca (10.1016/j.patcog.2021.108220_bib0066) 2002; 3 Tan (10.1016/j.patcog.2021.108220_bib0024) 2019 Girshick (10.1016/j.patcog.2021.108220_bib0012) 2015 Mnih (10.1016/j.patcog.2021.108220_bib0100) 2014 10.1016/j.patcog.2021.108220_bib0080 Ling (10.1016/j.patcog.2021.108220_bib0081) 2019; 347 Sarafianos (10.1016/j.patcog.2021.108220_bib0041) 2017 Liu (10.1016/j.patcog.2021.108220_bib0063) 2017; 66 He (10.1016/j.patcog.2021.108220_bib0035) 2017 Li (10.1016/j.patcog.2021.108220_bib0075) 2015; 25 Lin (10.1016/j.patcog.2021.108220_bib0071) 2019 10.1016/j.patcog.2021.108220_bib0006 Joo (10.1016/j.patcog.2021.108220_bib0008) 2013 Tian (10.1016/j.patcog.2021.108220_bib0070) 2015 Wang (10.1016/j.patcog.2021.108220_bib0029) 2016 |
References_xml | – year: 2015 ident: bib0011 article-title: Actions and attributes from wholes and parts publication-title: IEEE ICCV – year: 2017 ident: bib0034 article-title: Weakly-supervised learning of mid-level features for pedestrian attribute recognition and localization publication-title: BMVC – year: 2019 ident: bib0044 article-title: Dynamic curriculum learning for imbalanced data classification publication-title: ICCV – volume: 30 start-page: 1051 year: 2019 end-page: 1064 ident: bib0028 article-title: Task-aware attention model for clothing attribute prediction publication-title: TCSVT – start-page: 402 year: 2012 end-page: 412 ident: bib0076 article-title: Towards person identification and re-identification with attributes publication-title: ECCV – start-page: 1636 year: 2017 end-page: 1644 ident: bib0035 article-title: Adaptively weighted multi-task deep network for person attribute classification publication-title: ACM MM – start-page: 13538 year: 2020 end-page: 13547 ident: bib0055 article-title: Texture and shape biased two-stream networks for clothing classification and attribute recognition publication-title: IEEE CVPR – start-page: 1600 year: 2015 end-page: 1609 ident: bib0091 article-title: Recognize complex events from static images by fusing deep channels publication-title: CVPR – start-page: 2204 year: 2014 end-page: 2212 ident: bib0100 article-title: Recurrent models of visual attention publication-title: NIPS – volume: 66 start-page: 106 year: 2017 end-page: 116 ident: bib0061 article-title: Diagnosing deep learning models for high accuracy age estimation from a single image publication-title: Pattern Recognit – volume: 2 start-page: 2169 year: 2006 end-page: 2178 ident: bib0009 article-title: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories publication-title: IEEE CVPR – volume: 42 start-page: 2818 year: 2009 end-page: 2827 ident: bib0065 article-title: Combining appearance and motion for face and gender recognition from videos publication-title: Pattern Recognit – start-page: 20 year: 2017 end-page: 28 ident: bib0079 article-title: Person re-identification by deep learning attribute-complementary information publication-title: IEEE CVPR Workshops – start-page: 1543 year: 2011 end-page: 1550 ident: bib0007 article-title: Describing people: A poselet-based approach to attribute classification publication-title: IEEE ICCV – start-page: 5079 year: 2015 end-page: 5087 ident: bib0070 article-title: Pedestrian detection aided by deep learning semantic tasks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 331 year: 2013 end-page: 338 ident: bib0097 article-title: Pedestrian attribute classification in surveillance: Database and evaluation publication-title: IEEE ICCV Workshops – start-page: 1365 year: 2009 end-page: 1372 ident: bib0095 article-title: Poselets: Body part detectors trained using 3d human pose annotations publication-title: ICCV – reference: (2021). – reference: J. Jia, H. Huang, W. Yang, X. Chen, K. Huang, Rethinking of pedestrian attribute recognition: Realistic datasets with efficient method, – start-page: 4997 year: 2019 end-page: 5006 ident: bib0014 article-title: Improving pedestrian attribute recognition with weakly-supervised multi-scale attribute-specific localization publication-title: IEEE ICCV – reference: X. Zheng, Y. Guo, H. Huang, Y. Li, R. He, A survey to deep facial attribute analysis, – volume: 17 start-page: 1949 year: 2015 end-page: 1959 ident: bib0005 article-title: Multi-task cnn model for attribute prediction publication-title: IEEE TMM – start-page: 13055 year: 2020 end-page: 13064 ident: bib0037 article-title: Hierarchical feature embedding for attribute recognition publication-title: IEEE CVPR – start-page: 4271 year: 2018 end-page: 4280 ident: bib0049 article-title: Attentive fashion grammar network for fashion landmark detection and clothing category classification publication-title: IEEE CVPR – volume: 12 start-page: 840 year: 2018 end-page: 857 ident: bib0089 article-title: Learning deep representations for semantic image parsing: a comprehensive overview publication-title: Frontiers of Computer Science – start-page: 3177 year: 2018 end-page: 3183 ident: bib0031 article-title: Grouping attribute recognition for pedestrian with joint recurrent learning. publication-title: IJCAI – year: 2019 ident: bib0033 article-title: Recurrent attention model for pedestrian attribute recognition publication-title: AAAI – start-page: 134 year: 2014 end-page: 146 ident: bib0074 article-title: Joint learning for attribute-consistent person re-identification publication-title: ECCV – start-page: 1 year: 2017 end-page: 6 ident: bib0052 article-title: Generative adversarial models for people attribute recognition in surveillance publication-title: IEEE AVSS – reference: (2018). – start-page: 437 year: 2015 end-page: 446 ident: bib0012 article-title: Deformable part models are convolutional neural networks publication-title: IEEE CVPR – volume: 40 start-page: 1555 year: 2018 end-page: 1569 ident: bib0046 article-title: Attribute and-or grammar for joint parsing of human pose, parts and attributes publication-title: IEEE TPAMI – year: 2019 ident: bib0024 article-title: Attention based pedestrian attribute analysis publication-title: IEEE TIP – start-page: 1637 year: 2014 end-page: 1644 ident: bib0010 article-title: Panda: Pose aligned networks for deep attribute modeling publication-title: IEEE CVPR – volume: 72 start-page: 563 year: 2017 end-page: 571 ident: bib0059 article-title: Age and gender recognition in the wild with deep attention publication-title: Pattern Recognit – volume: 66 start-page: 4 year: 2017 end-page: 15 ident: bib0082 article-title: Attributes driven tracklet-to-tracklet person re-identification using latent prototypes space mapping publication-title: Pattern Recognit – volume: 347 start-page: 109 year: 2019 end-page: 118 ident: bib0081 article-title: Improving person re-identification by multi-task learning publication-title: Neurocomputing – reference: J. Jia, H. Huang, X. Chen, K. Huang, Rethinking of pedestrian attribute recognition: A reliable evaluation under zero-shot pedestrian identity setting, – year: 2020 ident: bib0039 article-title: Pedestrian attribute recognition based on multiple time steps attention publication-title: Pattern Recognit Lett – volume: 129 start-page: 1121 year: 2021 end-page: 1138 ident: bib0001 article-title: A shape transformation-based dataset augmentation framework for pedestrian detection publication-title: IJCV – volume: 80 start-page: 94 year: 2018 end-page: 108 ident: bib0043 article-title: Curriculum learning of visual attribute clusters for multi-task classification publication-title: Pattern Recognit – volume: 94 start-page: 38 year: 2017 end-page: 45 ident: bib0023 article-title: Human attribute recognition by refining attention heat map publication-title: Pattern Recognit Lett – start-page: 12055 year: 2020 end-page: 12062 ident: bib0048 article-title: Relation-aware pedestrian attribute recognition with graph convolutional networks. publication-title: AAAI – volume: 120 start-page: 89 year: 2019 end-page: 95 ident: bib0025 article-title: Image-attribute reciprocally guided attention network for pedestrian attribute recognition publication-title: Pattern Recognit Lett – volume: 58 start-page: 224 year: 2017 end-page: 229 ident: bib0042 article-title: Multi-label convolutional neural network based pedestrian attribute classification publication-title: IVC – volume: 1 start-page: 6 year: 2017 ident: bib0051 article-title: Fully-adaptive feature sharing in multi-task networks with applications in person attribute classification publication-title: CVPR – year: 2019 ident: bib0053 article-title: Incremental few-shot learning for pedestrian attribute recognition publication-title: IJCAI – year: 2006 ident: bib0093 article-title: StreetScenes: Towards scene understanding in still images publication-title: Technical Report – start-page: 535 year: 2015 end-page: 540 ident: bib0013 article-title: Multi-label cnn based pedestrian attribute learning for soft biometrics publication-title: IEEE ICB – year: 2018 ident: bib0019 article-title: Localization guided learning for pedestrian attribute recognition publication-title: BMVC – start-page: 350 year: 2017 end-page: 359 ident: bib0020 article-title: Hydraplus-net: Attentive deep features for pedestrian analysis publication-title: IEEE ICCV – year: 2014 ident: bib0054 article-title: Conditional generative adversarial networks publication-title: Manuscript – start-page: 1 year: 2020 end-page: 6 ident: bib0027 article-title: Multi-task learning via co-attentive sharing for pedestrian attribute recognition publication-title: ICME – reference: H. Liu, J. Wu, J. Jiang, M. Qi, R. Bo, Sequence-based person attribute recognition with joint ctc-attention model, – start-page: 789 year: 2014 end-page: 792 ident: bib0002 article-title: Pedestrian attribute recognition at far distance publication-title: Proceedings of the 22nd ACM MM – start-page: 81.1 year: 2016 end-page: 81.11 ident: bib0015 article-title: Attribute recognition from adaptive parts publication-title: BMVC – start-page: 852 year: 2016 end-page: 866 ident: bib0069 article-title: Carried object detection based on an ensemble of contour exemplars publication-title: ECCV – reference: (2019). – start-page: 684 year: 2016 end-page: 700 ident: bib0018 article-title: Human attribute recognition by deep hierarchical contexts publication-title: ECCV – start-page: 2040 year: 2018 end-page: 2048 ident: bib0072 article-title: Attribute-aware attention model for fine-grained representation learning publication-title: ACM MM – start-page: 5315 year: 2015 end-page: 5324 ident: bib0085 article-title: Deep domain adaptation for describing people based on fine-grained clothing attributes publication-title: IEEE CVPR – start-page: 520 year: 2017 end-page: 529 ident: bib0040 article-title: Multi-task curriculum transfer deep learning of clothing attributes publication-title: IEEE WACV – volume: 3 year: 2002 ident: bib0066 article-title: Detection of objects carried by people publication-title: IEEE ICIP – reference: (2020). – reference: H.S.C.L.C.X.C.X. Kai Han, Yunhe Wang, Attribute aware pooling for pedestrian attribute recognition, in: IJCAI, 2019. – volume: 66 start-page: 95 year: 2017 end-page: 105 ident: bib0060 article-title: D2c: Deep cumulatively and comparatively learning for human age estimation publication-title: Pattern Recognit – volume: 72 start-page: 15 year: 2017 end-page: 26 ident: bib0062 article-title: Effective training of convolutional neural networks for face-based gender and age prediction publication-title: Pattern Recognit – volume: 15 start-page: 2035 year: 2013 end-page: 2045 ident: bib0084 article-title: Personal clothing retrieval on photo collections by color and attributes publication-title: IEEE TMM – volume: 79 start-page: 25 year: 2018 end-page: 34 ident: bib0083 article-title: Deep and low-level feature based attribute learning for person re-identification publication-title: IVC – reference: (2016). – start-page: 2285 year: 2016 end-page: 2294 ident: bib0029 article-title: Cnn-rnn: A unified framework for multi-label image classification publication-title: IEEE CVPR – start-page: 721 year: 2013 end-page: 728 ident: bib0008 article-title: Human attribute recognition by rich appearance dictionary publication-title: IEEE ICCV – start-page: 708 year: 2018 end-page: 725 ident: bib0022 article-title: Deep imbalanced attribute classification using visual attention aggregation publication-title: ECCV – start-page: 87 year: 2015 end-page: 95 ident: bib0003 article-title: Person attribute recognition with a jointly-trained holistic cnn model publication-title: IEEE ICCV Workshops – reference: D. Li, Z. Zhang, X. Chen, H. Ling, K. Huang, A richly annotated dataset for pedestrian attribute recognition, – start-page: 1 year: 2018 end-page: 6 ident: bib0017 article-title: Pose guided deep model for pedestrian attribute recognition in surveillance scenarios publication-title: IEEE ICME – reference: W. Xiao, Z. Shaofei, Y. Rui, L. Bin, T. Jin, Pedestrian attribute recognition: A survey, – year: 2019 ident: bib0047 article-title: Visual-semantic graph reasoning for pedestrian attribute recognition publication-title: AAAI – volume: 25 start-page: 869 year: 2015 end-page: 878 ident: bib0075 article-title: Clothing attributes assisted person reidentification publication-title: IEEE TCSVT – start-page: 2608 year: 2017 end-page: 2615 ident: bib0041 article-title: Curriculum learning for multi-task classification of visual attributes publication-title: IEEE ICCV – volume: 1 start-page: 886 year: 2005 end-page: 893 ident: bib0094 article-title: Histograms of oriented gradients for human detection publication-title: CVPR – year: 2017 ident: bib0021 article-title: Deep view-sensitive pedestrian attribute inference in an end-to-end model publication-title: arXiv:1707.06089 – start-page: 531 year: 2017 end-page: 540 ident: bib0030 article-title: Attribute recognition by joint recurrent learning of context and correlation publication-title: IEEE ICCV – volume: 89 start-page: 134 year: 2019 end-page: 150 ident: bib0067 article-title: From superpixel to human shape modelling for carried object detection publication-title: Pattern Recognit – start-page: 475 year: 2016 end-page: 491 ident: bib0073 article-title: Deep attributes driven multi-camera person re-identification publication-title: ECCV – start-page: 4864 year: 2018 end-page: 4873 ident: bib0099 article-title: Sint++: Robust visual tracking via adversarial positive instance generation publication-title: IEEE CVPR – start-page: 3557 year: 2016 end-page: 3565 ident: bib0016 article-title: Deepcamp: Deep convolutional action & attribute mid-level patterns publication-title: IEEE CVPR – volume: 34 start-page: 1056 year: 2011 end-page: 1067 ident: bib0068 article-title: Detecting carried objects from sequences of walking pedestrians publication-title: IEEE TPAMI – year: 2016 ident: bib0050 article-title: Patchit: Self-supervised network weight initialization for fine-grained recognition. publication-title: BMVC – volume: 66 start-page: 82 year: 2017 end-page: 94 ident: bib0063 article-title: Group-aware deep feature learning for facial age estimation publication-title: Pattern Recognit – start-page: 111 year: 2015 end-page: 115 ident: bib0004 article-title: Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios publication-title: ACPR – volume: 31 start-page: 607 year: 2008 end-page: 626 ident: bib0088 article-title: Head pose estimation in computer vision: a survey publication-title: IEEE TPAMI – start-page: 93 year: 2014 end-page: 117 ident: bib0077 article-title: Attributes-based Re-identification publication-title: Person Re-Identification – start-page: 16266 year: 2021 end-page: 16275 ident: bib0096 article-title: Uav-human: A large benchmark for human behavior understanding with unmanned aerial vehicles publication-title: IEEE CVPR – volume: 66 start-page: 74 year: 2017 end-page: 81 ident: bib0064 article-title: Spectral attribute learning for visual regression publication-title: Pattern Recognit – reference: E. Yaghoubi, D. Borza, J. Neves, A. Kumar, H. Proença, An attention-based deep learning model for multiple pedestrian attributes recognition, – start-page: 609 year: 2012 end-page: 623 ident: bib0045 article-title: Describing clothing by semantic attributes publication-title: ECCV – reference: M. Wu, D. Huang, Y. Guo, Y. Wang, Distraction-aware feature learning for human attribute recognition via coarse-to-fine attention mechanism, – volume: 48 start-page: 2329 year: 2015 end-page: 2345 ident: bib0086 article-title: Semantic human activity recognition: a literature review publication-title: Pattern Recognit – start-page: 3354 year: 2012 end-page: 3361 ident: bib0092 article-title: Are we ready for autonomous driving? the kitti vision benchmark suite publication-title: CVPR – volume: 36 start-page: 259 year: 2003 end-page: 275 ident: bib0058 article-title: Automatic facial expression analysis: a survey publication-title: Pattern Recognit – volume: 2 start-page: 8 year: 2012 ident: bib0078 article-title: Person re-identification by attributes. publication-title: BMVC – start-page: 3337 year: 2011 end-page: 3344 ident: bib0087 article-title: Recognizing human actions by attributes publication-title: IEEE CVPR – reference: S. Li, H. Yu, W. Huang, J. Zhang, Attributes-aided part detection and refinement for person re-identification, – year: 2019 ident: bib0071 article-title: Improving person re-identification by attribute and identity learning publication-title: Pattern Recognit – start-page: 13538 year: 2020 ident: 10.1016/j.patcog.2021.108220_bib0055 article-title: Texture and shape biased two-stream networks for clothing classification and attribute recognition – volume: 66 start-page: 74 year: 2017 ident: 10.1016/j.patcog.2021.108220_bib0064 article-title: Spectral attribute learning for visual regression publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.01.009 – start-page: 3354 year: 2012 ident: 10.1016/j.patcog.2021.108220_bib0092 article-title: Are we ready for autonomous driving? the kitti vision benchmark suite – volume: 347 start-page: 109 year: 2019 ident: 10.1016/j.patcog.2021.108220_bib0081 article-title: Improving person re-identification by multi-task learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.027 – volume: 12 start-page: 840 issue: 5 year: 2018 ident: 10.1016/j.patcog.2021.108220_bib0089 article-title: Learning deep representations for semantic image parsing: a comprehensive overview publication-title: Frontiers of Computer Science doi: 10.1007/s11704-018-7195-8 – volume: 94 start-page: 38 year: 2017 ident: 10.1016/j.patcog.2021.108220_bib0023 article-title: Human attribute recognition by refining attention heat map publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2017.05.012 – start-page: 852 year: 2016 ident: 10.1016/j.patcog.2021.108220_bib0069 article-title: Carried object detection based on an ensemble of contour exemplars – volume: 25 start-page: 869 issue: 5 year: 2015 ident: 10.1016/j.patcog.2021.108220_bib0075 article-title: Clothing attributes assisted person reidentification publication-title: IEEE TCSVT – volume: 17 start-page: 1949 issue: 11 year: 2015 ident: 10.1016/j.patcog.2021.108220_bib0005 article-title: Multi-task cnn model for attribute prediction publication-title: IEEE TMM – volume: 79 start-page: 25 year: 2018 ident: 10.1016/j.patcog.2021.108220_bib0083 article-title: Deep and low-level feature based attribute learning for person re-identification publication-title: IVC doi: 10.1016/j.imavis.2018.09.001 – start-page: 5315 year: 2015 ident: 10.1016/j.patcog.2021.108220_bib0085 article-title: Deep domain adaptation for describing people based on fine-grained clothing attributes – ident: 10.1016/j.patcog.2021.108220_bib0038 – volume: 89 start-page: 134 year: 2019 ident: 10.1016/j.patcog.2021.108220_bib0067 article-title: From superpixel to human shape modelling for carried object detection publication-title: Pattern Recognit doi: 10.1016/j.patcog.2018.12.009 – start-page: 87 year: 2015 ident: 10.1016/j.patcog.2021.108220_bib0003 article-title: Person attribute recognition with a jointly-trained holistic cnn model – start-page: 111 year: 2015 ident: 10.1016/j.patcog.2021.108220_bib0004 article-title: Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios – start-page: 2608 year: 2017 ident: 10.1016/j.patcog.2021.108220_bib0041 article-title: Curriculum learning for multi-task classification of visual attributes – volume: 66 start-page: 106 year: 2017 ident: 10.1016/j.patcog.2021.108220_bib0061 article-title: Diagnosing deep learning models for high accuracy age estimation from a single image publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.01.005 – start-page: 2204 year: 2014 ident: 10.1016/j.patcog.2021.108220_bib0100 article-title: Recurrent models of visual attention – start-page: 4271 year: 2018 ident: 10.1016/j.patcog.2021.108220_bib0049 article-title: Attentive fashion grammar network for fashion landmark detection and clothing category classification – start-page: 1 year: 2017 ident: 10.1016/j.patcog.2021.108220_bib0052 article-title: Generative adversarial models for people attribute recognition in surveillance – start-page: 13055 year: 2020 ident: 10.1016/j.patcog.2021.108220_bib0037 article-title: Hierarchical feature embedding for attribute recognition – year: 2020 ident: 10.1016/j.patcog.2021.108220_bib0039 article-title: Pedestrian attribute recognition based on multiple time steps attention publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2020.07.018 – volume: 66 start-page: 82 year: 2017 ident: 10.1016/j.patcog.2021.108220_bib0063 article-title: Group-aware deep feature learning for facial age estimation publication-title: Pattern Recognit doi: 10.1016/j.patcog.2016.10.026 – volume: 31 start-page: 607 issue: 4 year: 2008 ident: 10.1016/j.patcog.2021.108220_bib0088 article-title: Head pose estimation in computer vision: a survey publication-title: IEEE TPAMI doi: 10.1109/TPAMI.2008.106 – start-page: 350 year: 2017 ident: 10.1016/j.patcog.2021.108220_bib0020 article-title: Hydraplus-net: Attentive deep features for pedestrian analysis – year: 2019 ident: 10.1016/j.patcog.2021.108220_bib0024 article-title: Attention based pedestrian attribute analysis publication-title: IEEE TIP – start-page: 134 year: 2014 ident: 10.1016/j.patcog.2021.108220_bib0074 article-title: Joint learning for attribute-consistent person re-identification – ident: 10.1016/j.patcog.2021.108220_bib0026 doi: 10.1609/aaai.v34i07.6925 – ident: 10.1016/j.patcog.2021.108220_bib0006 – start-page: 4997 year: 2019 ident: 10.1016/j.patcog.2021.108220_bib0014 article-title: Improving pedestrian attribute recognition with weakly-supervised multi-scale attribute-specific localization – ident: 10.1016/j.patcog.2021.108220_bib0036 doi: 10.1016/j.imavis.2020.103981 – start-page: 708 year: 2018 ident: 10.1016/j.patcog.2021.108220_bib0022 article-title: Deep imbalanced attribute classification using visual attention aggregation – start-page: 3337 year: 2011 ident: 10.1016/j.patcog.2021.108220_bib0087 article-title: Recognizing human actions by attributes – volume: 129 start-page: 1121 issue: 4 year: 2021 ident: 10.1016/j.patcog.2021.108220_bib0001 article-title: A shape transformation-based dataset augmentation framework for pedestrian detection publication-title: IJCV doi: 10.1007/s11263-020-01412-0 – ident: 10.1016/j.patcog.2021.108220_bib0098 – volume: 48 start-page: 2329 issue: 8 year: 2015 ident: 10.1016/j.patcog.2021.108220_bib0086 article-title: Semantic human activity recognition: a literature review publication-title: Pattern Recognit doi: 10.1016/j.patcog.2015.03.006 – volume: 66 start-page: 95 year: 2017 ident: 10.1016/j.patcog.2021.108220_bib0060 article-title: D2c: Deep cumulatively and comparatively learning for human age estimation publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.01.007 – start-page: 609 year: 2012 ident: 10.1016/j.patcog.2021.108220_bib0045 article-title: Describing clothing by semantic attributes – start-page: 16266 year: 2021 ident: 10.1016/j.patcog.2021.108220_bib0096 article-title: Uav-human: A large benchmark for human behavior understanding with unmanned aerial vehicles – start-page: 437 year: 2015 ident: 10.1016/j.patcog.2021.108220_bib0012 article-title: Deformable part models are convolutional neural networks – start-page: 2285 year: 2016 ident: 10.1016/j.patcog.2021.108220_bib0029 article-title: Cnn-rnn: A unified framework for multi-label image classification – volume: 1 start-page: 886 year: 2005 ident: 10.1016/j.patcog.2021.108220_bib0094 article-title: Histograms of oriented gradients for human detection – start-page: 1 year: 2020 ident: 10.1016/j.patcog.2021.108220_bib0027 article-title: Multi-task learning via co-attentive sharing for pedestrian attribute recognition – start-page: 531 year: 2017 ident: 10.1016/j.patcog.2021.108220_bib0030 article-title: Attribute recognition by joint recurrent learning of context and correlation – year: 2018 ident: 10.1016/j.patcog.2021.108220_bib0019 article-title: Localization guided learning for pedestrian attribute recognition – volume: 58 start-page: 224 year: 2017 ident: 10.1016/j.patcog.2021.108220_bib0042 article-title: Multi-label convolutional neural network based pedestrian attribute classification publication-title: IVC doi: 10.1016/j.imavis.2016.07.004 – start-page: 12055 year: 2020 ident: 10.1016/j.patcog.2021.108220_bib0048 article-title: Relation-aware pedestrian attribute recognition with graph convolutional networks. – year: 2019 ident: 10.1016/j.patcog.2021.108220_bib0053 article-title: Incremental few-shot learning for pedestrian attribute recognition – start-page: 789 year: 2014 ident: 10.1016/j.patcog.2021.108220_bib0002 article-title: Pedestrian attribute recognition at far distance – ident: 10.1016/j.patcog.2021.108220_bib0090 – volume: 42 start-page: 2818 issue: 11 year: 2009 ident: 10.1016/j.patcog.2021.108220_bib0065 article-title: Combining appearance and motion for face and gender recognition from videos publication-title: Pattern Recognit doi: 10.1016/j.patcog.2009.02.011 – ident: 10.1016/j.patcog.2021.108220_bib0056 – volume: 34 start-page: 1056 issue: 6 year: 2011 ident: 10.1016/j.patcog.2021.108220_bib0068 article-title: Detecting carried objects from sequences of walking pedestrians publication-title: IEEE TPAMI doi: 10.1109/TPAMI.2011.205 – start-page: 1 year: 2018 ident: 10.1016/j.patcog.2021.108220_bib0017 article-title: Pose guided deep model for pedestrian attribute recognition in surveillance scenarios – start-page: 684 year: 2016 ident: 10.1016/j.patcog.2021.108220_bib0018 article-title: Human attribute recognition by deep hierarchical contexts – start-page: 1636 year: 2017 ident: 10.1016/j.patcog.2021.108220_bib0035 article-title: Adaptively weighted multi-task deep network for person attribute classification – volume: 2 start-page: 8 year: 2012 ident: 10.1016/j.patcog.2021.108220_bib0078 article-title: Person re-identification by attributes. – volume: 30 start-page: 1051 issue: 4 year: 2019 ident: 10.1016/j.patcog.2021.108220_bib0028 article-title: Task-aware attention model for clothing attribute prediction publication-title: TCSVT – year: 2019 ident: 10.1016/j.patcog.2021.108220_bib0033 article-title: Recurrent attention model for pedestrian attribute recognition – volume: 3 year: 2002 ident: 10.1016/j.patcog.2021.108220_bib0066 article-title: Detection of objects carried by people – year: 2017 ident: 10.1016/j.patcog.2021.108220_bib0034 article-title: Weakly-supervised learning of mid-level features for pedestrian attribute recognition and localization – start-page: 331 year: 2013 ident: 10.1016/j.patcog.2021.108220_bib0097 article-title: Pedestrian attribute classification in surveillance: Database and evaluation – year: 2019 ident: 10.1016/j.patcog.2021.108220_bib0047 article-title: Visual-semantic graph reasoning for pedestrian attribute recognition – start-page: 3557 year: 2016 ident: 10.1016/j.patcog.2021.108220_bib0016 article-title: Deepcamp: Deep convolutional action & attribute mid-level patterns – volume: 120 start-page: 89 year: 2019 ident: 10.1016/j.patcog.2021.108220_bib0025 article-title: Image-attribute reciprocally guided attention network for pedestrian attribute recognition publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2019.01.010 – volume: 80 start-page: 94 year: 2018 ident: 10.1016/j.patcog.2021.108220_bib0043 article-title: Curriculum learning of visual attribute clusters for multi-task classification publication-title: Pattern Recognit doi: 10.1016/j.patcog.2018.02.028 – start-page: 4864 year: 2018 ident: 10.1016/j.patcog.2021.108220_bib0099 article-title: Sint++: Robust visual tracking via adversarial positive instance generation – start-page: 5079 year: 2015 ident: 10.1016/j.patcog.2021.108220_bib0070 article-title: Pedestrian detection aided by deep learning semantic tasks – ident: 10.1016/j.patcog.2021.108220_bib0057 – year: 2016 ident: 10.1016/j.patcog.2021.108220_bib0050 article-title: Patchit: Self-supervised network weight initialization for fine-grained recognition. – year: 2014 ident: 10.1016/j.patcog.2021.108220_bib0054 article-title: Conditional generative adversarial networks publication-title: Manuscript – year: 2019 ident: 10.1016/j.patcog.2021.108220_bib0071 article-title: Improving person re-identification by attribute and identity learning publication-title: Pattern Recognit doi: 10.1016/j.patcog.2019.06.006 – start-page: 20 year: 2017 ident: 10.1016/j.patcog.2021.108220_bib0079 article-title: Person re-identification by deep learning attribute-complementary information – start-page: 93 year: 2014 ident: 10.1016/j.patcog.2021.108220_bib0077 article-title: Attributes-based Re-identification – start-page: 1365 year: 2009 ident: 10.1016/j.patcog.2021.108220_bib0095 article-title: Poselets: Body part detectors trained using 3d human pose annotations – volume: 1 start-page: 6 year: 2017 ident: 10.1016/j.patcog.2021.108220_bib0051 article-title: Fully-adaptive feature sharing in multi-task networks with applications in person attribute classification – start-page: 1543 year: 2011 ident: 10.1016/j.patcog.2021.108220_bib0007 article-title: Describing people: A poselet-based approach to attribute classification – year: 2017 ident: 10.1016/j.patcog.2021.108220_bib0021 article-title: Deep view-sensitive pedestrian attribute inference in an end-to-end model publication-title: arXiv:1707.06089 – year: 2006 ident: 10.1016/j.patcog.2021.108220_bib0093 article-title: StreetScenes: Towards scene understanding in still images – start-page: 3177 year: 2018 ident: 10.1016/j.patcog.2021.108220_bib0031 article-title: Grouping attribute recognition for pedestrian with joint recurrent learning. – volume: 40 start-page: 1555 issue: 7 year: 2018 ident: 10.1016/j.patcog.2021.108220_bib0046 article-title: Attribute and-or grammar for joint parsing of human pose, parts and attributes publication-title: IEEE TPAMI doi: 10.1109/TPAMI.2017.2731842 – ident: 10.1016/j.patcog.2021.108220_bib0080 doi: 10.1016/j.patcog.2019.107016 – volume: 36 start-page: 259 issue: 1 year: 2003 ident: 10.1016/j.patcog.2021.108220_bib0058 article-title: Automatic facial expression analysis: a survey publication-title: Pattern Recognit doi: 10.1016/S0031-3203(02)00052-3 – start-page: 1637 year: 2014 ident: 10.1016/j.patcog.2021.108220_bib0010 article-title: Panda: Pose aligned networks for deep attribute modeling – volume: 72 start-page: 563 year: 2017 ident: 10.1016/j.patcog.2021.108220_bib0059 article-title: Age and gender recognition in the wild with deep attention publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.06.028 – start-page: 1600 year: 2015 ident: 10.1016/j.patcog.2021.108220_bib0091 article-title: Recognize complex events from static images by fusing deep channels – volume: 15 start-page: 2035 issue: 8 year: 2013 ident: 10.1016/j.patcog.2021.108220_bib0084 article-title: Personal clothing retrieval on photo collections by color and attributes publication-title: IEEE TMM – start-page: 721 year: 2013 ident: 10.1016/j.patcog.2021.108220_bib0008 article-title: Human attribute recognition by rich appearance dictionary – volume: 2 start-page: 2169 year: 2006 ident: 10.1016/j.patcog.2021.108220_bib0009 article-title: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories – year: 2019 ident: 10.1016/j.patcog.2021.108220_bib0044 article-title: Dynamic curriculum learning for imbalanced data classification publication-title: ICCV – start-page: 81.1 year: 2016 ident: 10.1016/j.patcog.2021.108220_bib0015 article-title: Attribute recognition from adaptive parts – start-page: 475 year: 2016 ident: 10.1016/j.patcog.2021.108220_bib0073 article-title: Deep attributes driven multi-camera person re-identification – year: 2015 ident: 10.1016/j.patcog.2021.108220_bib0011 article-title: Actions and attributes from wholes and parts – ident: 10.1016/j.patcog.2021.108220_bib0032 – start-page: 520 year: 2017 ident: 10.1016/j.patcog.2021.108220_bib0040 article-title: Multi-task curriculum transfer deep learning of clothing attributes – volume: 66 start-page: 4 year: 2017 ident: 10.1016/j.patcog.2021.108220_bib0082 article-title: Attributes driven tracklet-to-tracklet person re-identification using latent prototypes space mapping publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.01.006 – volume: 72 start-page: 15 year: 2017 ident: 10.1016/j.patcog.2021.108220_bib0062 article-title: Effective training of convolutional neural networks for face-based gender and age prediction publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.06.031 – start-page: 402 year: 2012 ident: 10.1016/j.patcog.2021.108220_bib0076 article-title: Towards person identification and re-identification with attributes – start-page: 535 year: 2015 ident: 10.1016/j.patcog.2021.108220_bib0013 article-title: Multi-label cnn based pedestrian attribute learning for soft biometrics – start-page: 2040 year: 2018 ident: 10.1016/j.patcog.2021.108220_bib0072 article-title: Attribute-aware attention model for fine-grained representation learning |
SSID | ssj0017142 |
Score | 2.6372852 |
Snippet | •The first survey paper for pedestrian attributes recognition (PAR).•Give a brief introduction to existing pedestrian attributes recognition algorithms.•Give... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108220 |
SubjectTerms | CNN-RNN Deep learning Multi-label learning Multi-task learning Pedestrian attribute recognition |
Title | Pedestrian attribute recognition: A survey |
URI | https://dx.doi.org/10.1016/j.patcog.2021.108220 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvXjxLdZH2YMnIdZsNknrrRRLVSgeLPQWdrO7UpG01FTw4m93JrspCqLgNezAZjLP8M18AOdCCd3lqhdIbbFBMZEKpCDKMNETGksMi_GB0BbjZDQRd9N42oBBPQtDsEof-11Mr6K1f9Lx2uwsZjOa8aW1g1c0hIKWWA2aC5GSlV9-rGEexO_tNoZHYUCn6_G5CuO1wHA3f8IukYcEtuPE-v1TevqScoY7sOVrRdZ319mFhin2YLvmYWDeLffh4sFoU_FvFEyWjsLKsDU0aF5csz57XS3fzPsBTIY3j4NR4DkQghyL-TLoxWnUpYUrlgsTm1DnWPHIVCdchbZrpcEGTtHKGyKbQWe1cY5-pUKZ88QonUSH0CzmhTkCpmXKoyTm6HFcaCWkFBbTl9LcWqw78hZE9atnuV8QTjwVL1mNBHvOnMIyUljmFNaCYC21cAsy_jif1lrNvn3oDGP4r5LH_5Y8gU1OUwvVn5NTaJbLlTnDWqJU7cpY2rDRv70fjT8BFo7Gug |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5Ke9CLb7E-c_AkhJrNJmm9lWJJbS0eWuht2c3uSkXSUlPBf-9MHkVBFLyGDGwmO49N5vs-gGuuuG4z1XGltnhAMb5yJSfJMN7hGlsMi_mBpi3GYTzlD7NgVoNehYWhscoy9xc5Pc_W5ZVW6c3Wcj4njC_RDt4SCAV3IgHNG8ROFdSh0R0M4_HmZ0Lk8YI03PdcMqgQdPmY1xIz3uIZD4rMo3k7RsLfP1WoL1Wnvwc7ZbvodIsV7UPNpAewW0kxOGVkHsLNk9Eml-BIHZkVKlbG2UwHLdI7p-u8rVfv5uMIpv37SS92SxkEN8F-PnM7QeS3iXPFMm4C4-kEmx4Z6ZApz7atNHiGU8R6Q3ozGK82SDC0lCcTFhqlQ_8Y6ukiNSfgaBkxPwwYBh3jWnEpucUKpjSzFluPpAl-9egiKTnCSariVVTDYC-icJggh4nCYU1wN1bLgiPjj_ujyqvi27sWmMZ_tTz9t-UVbMWTx5EYDcbDM9hmBGLIP6ScQz1brc0FthaZuiy3zicAXslr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pedestrian+attribute+recognition%3A+A+survey&rft.jtitle=Pattern+recognition&rft.au=Wang%2C+Xiao&rft.au=Zheng%2C+Shaofei&rft.au=Yang%2C+Rui&rft.au=Zheng%2C+Aihua&rft.date=2022-01-01&rft.issn=0031-3203&rft.volume=121&rft.spage=108220&rft_id=info:doi/10.1016%2Fj.patcog.2021.108220&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2021_108220 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |