OAENet: Oriented attention ensemble for accurate facial expression recognition

•We propose a Oriented Attention Enable Network (OAENet) architecture for FER, which aggreates ROI aware and attention mechanism, ensuring the sufficient utilization of both global and local features.•We propose a weighed mask that combines the facial landmarks and correlation coefficients coefficie...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 112; p. 107694
Main Authors Wang, Zhengning, Zeng, Fanwei, Liu, Shuaicheng, Zeng, Bing
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We propose a Oriented Attention Enable Network (OAENet) architecture for FER, which aggreates ROI aware and attention mechanism, ensuring the sufficient utilization of both global and local features.•We propose a weighed mask that combines the facial landmarks and correlation coefficients coefficients, which prove to be effective to improve the attention on local regions.•Our method has achieved state-of-the-art performances on several leading datasets such as Ck+, RAF-DB and AffectNet. Facial Expression Recognition (FER) is a challenging yet important research topic owing to its significance with respect to its academic and commercial potentials. In this work, we propose an oriented attention pseudo-siamese network that takes advantage of global and local facial information for high accurate FER. Our network consists of two branches, a maintenance branch that consisted of several convolutional blocks to take advantage of high-level semantic features, and an attention branch that possesses a UNet-like architecture to obtain local highlight information. Specifically, we first input the face image into the maintenance branch. For the attention branch, we calculate the correlation coefficient between a face and its sub-regions. Next, we construct a weighted mask by correlating the facial landmarks and the correlation coefficients. Then, the weighted mask is sent to the attention branch. Finally, the two branches are fused to output the classification results. As such, a direction-dependent attention mechanism is established to remedy the limitation of insufficient utilization of local information. With the help of our attention mechanism, our network not only grabs a global picture but can also concentrate on important local areas. Experiments are carried out on 4 leading facial expression datasets. Our method has achieved a very appealing performance compared to other state-of-the-art methods.
AbstractList •We propose a Oriented Attention Enable Network (OAENet) architecture for FER, which aggreates ROI aware and attention mechanism, ensuring the sufficient utilization of both global and local features.•We propose a weighed mask that combines the facial landmarks and correlation coefficients coefficients, which prove to be effective to improve the attention on local regions.•Our method has achieved state-of-the-art performances on several leading datasets such as Ck+, RAF-DB and AffectNet. Facial Expression Recognition (FER) is a challenging yet important research topic owing to its significance with respect to its academic and commercial potentials. In this work, we propose an oriented attention pseudo-siamese network that takes advantage of global and local facial information for high accurate FER. Our network consists of two branches, a maintenance branch that consisted of several convolutional blocks to take advantage of high-level semantic features, and an attention branch that possesses a UNet-like architecture to obtain local highlight information. Specifically, we first input the face image into the maintenance branch. For the attention branch, we calculate the correlation coefficient between a face and its sub-regions. Next, we construct a weighted mask by correlating the facial landmarks and the correlation coefficients. Then, the weighted mask is sent to the attention branch. Finally, the two branches are fused to output the classification results. As such, a direction-dependent attention mechanism is established to remedy the limitation of insufficient utilization of local information. With the help of our attention mechanism, our network not only grabs a global picture but can also concentrate on important local areas. Experiments are carried out on 4 leading facial expression datasets. Our method has achieved a very appealing performance compared to other state-of-the-art methods.
ArticleNumber 107694
Author Liu, Shuaicheng
Zeng, Bing
Wang, Zhengning
Zeng, Fanwei
Author_xml – sequence: 1
  givenname: Zhengning
  orcidid: 0000-0003-4218-164X
  surname: Wang
  fullname: Wang, Zhengning
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, China
– sequence: 2
  givenname: Fanwei
  surname: Zeng
  fullname: Zeng, Fanwei
  organization: Ant Financial Services Group, China
– sequence: 3
  givenname: Shuaicheng
  orcidid: 0000-0002-8815-5335
  surname: Liu
  fullname: Liu, Shuaicheng
  email: liushuaicheng@uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, China
– sequence: 4
  givenname: Bing
  surname: Zeng
  fullname: Zeng, Bing
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, China
BookMark eNqFkEtOwzAQQC1UJNrCDVjkAil24thxF0hVVT5S1W5gbbnjCXKVJpVtENweR2HFAlYe2_Pm82Zk0vUdEnLL6IJRJu6Oi7OJ0L8tCloMT1IofkGmrJZlXjFeTMiU0pLlZUHLKzIL4Ugpk-ljSnb71WaHcZntvcMuos1MjClwfZdhF_B0aDFrep8ZgHdvYroYcKbN8PPsMYQhz2Pq3bmBuSaXjWkD3vycc_L6sHlZP-Xb_ePzerXNoaQi5qrgRtHamkMFslRpNpSNZRZULTmvGFYCayOlQCEs0AMIhQhK1jbtxhWUc7Ic64LvQ_DYaHDRDBNEb1yrGdWDGX3Uoxk9mNGjmQTzX_DZu5PxX_9h9yOGabEPh14HSM4ArUsGora9-7vAN4RTgl0
CitedBy_id crossref_primary_10_1109_TAI_2022_3207450
crossref_primary_10_1109_TETCI_2021_3120513
crossref_primary_10_1007_s11042_024_19392_5
crossref_primary_10_1049_ipr2_13142
crossref_primary_10_1109_TAFFC_2023_3263886
crossref_primary_10_1109_TMM_2021_3121547
crossref_primary_10_1155_2024_7321175
crossref_primary_10_1007_s11042_022_14122_1
crossref_primary_10_1109_TCSVT_2021_3103782
crossref_primary_10_1016_j_neunet_2024_106937
crossref_primary_10_3390_electronics11081240
crossref_primary_10_3390_info14100548
crossref_primary_10_4018_IJSWIS_352418
crossref_primary_10_1016_j_patcog_2023_110173
crossref_primary_10_1007_s11042_022_13799_8
crossref_primary_10_1038_s41598_023_35446_4
crossref_primary_10_3390_info15030135
crossref_primary_10_3390_e24070882
crossref_primary_10_1007_s42979_024_03469_x
crossref_primary_10_1177_18761364241296439
crossref_primary_10_20965_jaciii_2024_p0793
crossref_primary_10_1007_s00521_022_08040_4
crossref_primary_10_1007_s00371_022_02642_8
crossref_primary_10_34133_2021_9759601
crossref_primary_10_1109_TCSVT_2022_3165321
crossref_primary_10_1016_j_jvcir_2025_104427
crossref_primary_10_1016_j_patcog_2022_109157
crossref_primary_10_1016_j_knosys_2021_108024
crossref_primary_10_3389_fnins_2023_1219753
crossref_primary_10_1016_j_neucom_2024_129323
crossref_primary_10_1007_s00521_021_06613_3
crossref_primary_10_1109_TCSVT_2023_3234312
crossref_primary_10_1016_j_knosys_2023_110451
crossref_primary_10_1007_s11801_024_3090_9
crossref_primary_10_3390_s21030833
crossref_primary_10_1016_j_dsp_2023_103978
crossref_primary_10_1007_s41870_024_01872_4
crossref_primary_10_1016_j_infrared_2021_103823
crossref_primary_10_3390_educsci13090914
crossref_primary_10_1109_TMM_2023_3283856
crossref_primary_10_1109_ACCESS_2023_3325407
crossref_primary_10_1016_j_neunet_2023_11_033
crossref_primary_10_1016_j_asoc_2021_107930
crossref_primary_10_1109_TCSVT_2021_3083326
crossref_primary_10_1007_s00371_024_03345_y
crossref_primary_10_1109_TIP_2024_3378459
crossref_primary_10_1177_18761364251315239
crossref_primary_10_3390_electronics12183837
crossref_primary_10_3390_electronics13163149
crossref_primary_10_1007_s00371_022_02483_5
crossref_primary_10_1016_j_imavis_2024_104952
crossref_primary_10_1109_ACCESS_2021_3107548
crossref_primary_10_1016_j_imavis_2022_104556
crossref_primary_10_1016_j_ins_2022_06_087
crossref_primary_10_1016_j_inffus_2022_03_009
Cites_doi 10.1016/j.patcog.2017.06.028
10.1016/j.patcog.2018.07.016
10.1016/j.patrec.2020.08.021
10.1016/j.patcog.2018.12.011
10.1016/j.neucom.2018.03.034
10.1016/j.patrec.2019.04.002
10.1109/TIP.2018.2886767
10.1145/161468.161469
10.1109/TAFFC.2017.2695999
10.1016/j.patcog.2019.107111
10.1016/j.patcog.2018.11.001
10.1016/j.patrec.2020.01.016
10.1016/j.patcog.2019.03.019
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2020.107694
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2020_107694
S0031320320304970
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-924a908dab5c739031e7fd1dc9874451e56e8a776e66dc0bc69eec978d07649c3
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Tue Jul 01 02:36:33 EDT 2025
Thu Apr 24 22:57:28 EDT 2025
Fri Feb 23 02:48:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Facial expression recognition
Weighted mask
Attention
Oriented gradient
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-924a908dab5c739031e7fd1dc9874451e56e8a776e66dc0bc69eec978d07649c3
ORCID 0000-0002-8815-5335
0000-0003-4218-164X
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2020_107694
crossref_primary_10_1016_j_patcog_2020_107694
elsevier_sciencedirect_doi_10_1016_j_patcog_2020_107694
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhong, Liu, Yang, Liu, Huang, Metaxas (bib0039) 2012
Shi, Zhang, Yao, Sun, Rao, Shu (bib0028) 2020; 138
Wen, Zhang, Li, Qiao (bib0033) 2016
Hasani, Mahoor (bib0009) 2017
Liu, Yuan, Gong, Xie, Fang, Luo (bib0019) 2018; 84
Wang, Jiang, Qian, Yang, Li, Zhang, Wang, Tang (bib0032) 2017
Liu, Geng, Ling, ming Cheung (bib0017) 2019; 88
Kim, Baddar, Jang, Ro (bib0012) 2017; 10
Ronneberger, Fischer, Brox (bib0025) 2015
Mollahosseini, Hasani, Mahoor (bib0021) 2017
Cai, Meng, Khan, Li, OReilly, Tong (bib0003) 2018
Ng, Nguyen, Vonikakis, Winkler (bib0022) 2015
Sandler, Howard, Zhu, Zhmoginov, Chen (bib0026) 2018
Shah, Sharif, Yasmin, Fernandes (bib0027) 2017
Valstar, Pantic (bib0031) 2010
Zeng, Shan, Chen (bib0037) 2018
Li, Zeng, Shan, Chen (bib0015) 2018; 28
Lucey, Cohn, Kanade, Saragih, Ambadar, Matthews (bib0020) 2010
Hadsell, Chopra, LeCun (bib0008) 2006
Gan, Chen, Xu (bib0007) 2019; 125
Ouellet (bib0023) 2014
Ding, Zhou, Chellappa (bib0004) 2017
Xu, Ba, Kiros, Cho, Courville, Salakhudinov, Zemel, Bengio (bib0035) 2015
Jung, Lee, Yim, Park, Kim (bib0011) 2015
Liu, Han, Meng, Tong (bib0016) 2014
Liu, Vijaya Kumar, Jia, You (bib0018) 2019; 88
Herlihy (bib0010) 1993; 15
Rodríguez, Cucurull, Gonfaus, Roca, Gonzlez (bib0024) 2017; 72
Levi, Hassner (bib0013) 2015
Fan, Lam, Li (bib0005) 2018
Li, Deng, Du (bib0014) 2017
Xie, Hu, Wu (bib0034) 2019; 92
Zheng, Fu, Mei, Luo (bib0038) 2017
Zhu, Zhao, Huang, Tu, Ma (bib0040) 2017
Bozorgtabar, Mahapatra, Thiran (bib0002) 2020; 100
Sun, Zhao, Jin (bib0030) 2018; 296
Yu, Zheng, Peng, Dong, Du (bib0036) 2020; 131
Berman, Rannen Triki, Blaschko (bib0001) 2018
Fu, Zheng, Mei (bib0006) 2017
Sun, Chen, Yang, Wang (bib0029) 2018
Gan (10.1016/j.patcog.2020.107694_bib0007) 2019; 125
Zeng (10.1016/j.patcog.2020.107694_bib0037) 2018
Li (10.1016/j.patcog.2020.107694_bib0015) 2018; 28
Yu (10.1016/j.patcog.2020.107694_bib0036) 2020; 131
Liu (10.1016/j.patcog.2020.107694_bib0017) 2019; 88
Levi (10.1016/j.patcog.2020.107694_bib0013) 2015
Zhong (10.1016/j.patcog.2020.107694_bib0039) 2012
Kim (10.1016/j.patcog.2020.107694_bib0012) 2017; 10
Valstar (10.1016/j.patcog.2020.107694_bib0031) 2010
Sun (10.1016/j.patcog.2020.107694_bib0030) 2018; 296
Zheng (10.1016/j.patcog.2020.107694_bib0038) 2017
Bozorgtabar (10.1016/j.patcog.2020.107694_bib0002) 2020; 100
Ding (10.1016/j.patcog.2020.107694_bib0004) 2017
Mollahosseini (10.1016/j.patcog.2020.107694_bib0021) 2017
Fan (10.1016/j.patcog.2020.107694_bib0005) 2018
Ng (10.1016/j.patcog.2020.107694_bib0022) 2015
Xu (10.1016/j.patcog.2020.107694_bib0035) 2015
Xie (10.1016/j.patcog.2020.107694_bib0034) 2019; 92
Wen (10.1016/j.patcog.2020.107694_bib0033) 2016
Jung (10.1016/j.patcog.2020.107694_bib0011) 2015
Hasani (10.1016/j.patcog.2020.107694_bib0009) 2017
Liu (10.1016/j.patcog.2020.107694_bib0019) 2018; 84
Hadsell (10.1016/j.patcog.2020.107694_bib0008) 2006
Sandler (10.1016/j.patcog.2020.107694_bib0026) 2018
Wang (10.1016/j.patcog.2020.107694_bib0032) 2017
Zhu (10.1016/j.patcog.2020.107694_bib0040) 2017
Fu (10.1016/j.patcog.2020.107694_bib0006) 2017
Ronneberger (10.1016/j.patcog.2020.107694_bib0025) 2015
Shi (10.1016/j.patcog.2020.107694_bib0028) 2020; 138
Li (10.1016/j.patcog.2020.107694_bib0014) 2017
Liu (10.1016/j.patcog.2020.107694_bib0018) 2019; 88
Liu (10.1016/j.patcog.2020.107694_bib0016) 2014
Ouellet (10.1016/j.patcog.2020.107694_bib0023) 2014
Herlihy (10.1016/j.patcog.2020.107694_bib0010) 1993; 15
Rodríguez (10.1016/j.patcog.2020.107694_bib0024) 2017; 72
Lucey (10.1016/j.patcog.2020.107694_bib0020) 2010
Sun (10.1016/j.patcog.2020.107694_bib0029) 2018
Cai (10.1016/j.patcog.2020.107694_bib0003) 2018
Shah (10.1016/j.patcog.2020.107694_bib0027) 2017
Berman (10.1016/j.patcog.2020.107694_bib0001) 2018
References_xml – volume: 92
  start-page: 177
  year: 2019
  end-page: 191
  ident: bib0034
  article-title: Deep multi-path convolutional neural network joint with salient region attention for facial expression recognition
  publication-title: Pattern Recognit
– year: 2017
  ident: bib0038
  article-title: Learning multi-attention convolutional neural network for fine-grained image recognition
  publication-title: Proceedings of the IEEE International Conference on Computer Vison
– year: 2017
  ident: bib0040
  article-title: Structured attentions for visual question answering
  publication-title: Proceedings of the IEEE International Conference on Computer Vison
– volume: 100
  start-page: 107111
  year: 2020
  ident: bib0002
  article-title: Exprada: adversarial domain adaptation for facial expression analysis
  publication-title: Pattern Recognit
– volume: 138
  start-page: 520
  year: 2020
  end-page: 526
  ident: bib0028
  article-title: Can-gan: conditioned-attention normalized gan for face age synthesis
  publication-title: Pattern Recognit Lett
– year: 2017
  ident: bib0027
  article-title: Facial expressions classification and false label reduction using lda and threefold svm
  publication-title: Pattern Recognit Lett
– volume: 84
  start-page: 251
  year: 2018
  end-page: 261
  ident: bib0019
  article-title: Conditional convolution neural network enhanced random forest for facial expression recognition
  publication-title: Pattern Recognit
– year: 2012
  ident: bib0039
  article-title: Learning active facial patches for expression analysis
  publication-title: Proceedings of the IEEE Conference on Computer Vison and Pattern Recognition
– year: 2017
  ident: bib0021
  article-title: Affectnet: a database for facial expression, valence, and arousal computing in the wild
  publication-title: Proceedings of the IEEE Conference on Computer Vison and Pattern Recognition
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0025
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 10
  start-page: 223
  year: 2017
  end-page: 236
  ident: bib0012
  article-title: Multi-objective based spatio-temporal feature representation learning robust to expression intensity variations for facial expression recognition
  publication-title: IEEE Trans Affect Comput
– volume: 131
  start-page: 166
  year: 2020
  end-page: 171
  ident: bib0036
  article-title: Facial expression recognition based on a multi-task global-local network
  publication-title: Pattern Recognit Lett
– volume: 88
  start-page: 557
  year: 2019
  end-page: 568
  ident: bib0017
  article-title: Attention guided deep audio-face fusion for efficient speaker naming
  publication-title: Pattern Recognit
– year: 2018
  ident: bib0026
  article-title: Mobilenetv2: Inverted residuals and linear bottlenecks
  publication-title: Proceedings of the IEEE Conference on Computer Vison and Pattern Recognition
– start-page: 65
  year: 2010
  ident: bib0031
  article-title: Induced disgust, happiness and surprise: an addition to the mmi facial expression database
  publication-title: Proc. 3rd Intern. Workshop on EMOTION (satellite of LREC): Corpora for Research on Emotion and Affect
– volume: 28
  start-page: 2439
  year: 2018
  end-page: 2450
  ident: bib0015
  article-title: Occlusion aware facial expression recognition using cnn with attention mechanism
  publication-title: IEEE Trans. Image Process.
– start-page: 84
  year: 2018
  end-page: 94
  ident: bib0005
  article-title: Multi-region ensemble convolutional neural network for facial expression recognition
  publication-title: International Conference on Artificial Neural Networks
– year: 2015
  ident: bib0022
  article-title: Deep learning for emotion recognition on small datasets using transfer learning
  publication-title: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction
– year: 2018
  ident: bib0001
  article-title: The lovász-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks
  publication-title: Proceedings of the IEEE Conference on Computer Vison and Pattern Recognition
– year: 2018
  ident: bib0029
  article-title: Stacked u-nets with multi-output for road extraction
  publication-title: Proceedings of the IEEE Conference on Computer Vison and Pattern Recognition (CVPR) Workshops
– year: 2014
  ident: bib0023
  article-title: Real-time emotion recognition for gaming using deep convolutional network features
  publication-title: arXiv preprint arXiv:1408.3750
– year: 2018
  ident: bib0037
  article-title: Facial expression recognition with inconsistently annotated datasets
  publication-title: Proceedings of the European conference on Computer Vison
– year: 2017
  ident: bib0032
  article-title: Residual attention network for image classification
  publication-title: Proceedings of the IEEE Conference on Computer Vison and Pattern Recognition
– year: 2006
  ident: bib0008
  article-title: Dimensionality reduction by learning an invariant mapping
  publication-title: Proceedings of the IEEE Conference on Computer Vison and Pattern Recognition
– start-page: 2048
  year: 2015
  end-page: 2057
  ident: bib0035
  article-title: Show, attend and tell: Neural image caption generation with visual attention
  publication-title: International Conference on Machine Learning
– volume: 125
  start-page: 105
  year: 2019
  end-page: 112
  ident: bib0007
  article-title: Facial expression recognition boosted by soft label with a diverse ensemble
  publication-title: Pattern Recognit Lett
– volume: 88
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib0018
  article-title: Hard negative generation for identity-disentangled facial expression recognition
  publication-title: Pattern Recognit
– year: 2014
  ident: bib0016
  article-title: Facial expression recognition via a boosted deep belief network
  publication-title: Proceedings of the IEEE Conference on Computer Vison and Pattern Recognition
– start-page: 302
  year: 2018
  end-page: 309
  ident: bib0003
  article-title: Island loss for learning discriminative features in facial expression recognition
  publication-title: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018)
– start-page: 118
  year: 2017
  end-page: 126
  ident: bib0004
  article-title: Facenet2expnet: Regularizing a deep face recognition net for expression recognition
  publication-title: 2017 12th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2017)
– year: 2017
  ident: bib0006
  article-title: Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2010
  ident: bib0020
  article-title: The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression
  publication-title: Proceedings of the IEEE Conference on Computer Vison and Pattern Recognition (CVPR) Workshops
– volume: 72
  start-page: 563
  year: 2017
  end-page: 571
  ident: bib0024
  article-title: Age and gender recognition in the wild with deep attention
  publication-title: Pattern Recognit
– start-page: 499
  year: 2016
  end-page: 515
  ident: bib0033
  article-title: A discriminative feature learning approach for deep face recognition
  publication-title: European Conference on Computer Vison
– year: 2015
  ident: bib0011
  article-title: Joint fine-tuning in deep neural networks for facial expression recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vison and Pattern Recognition
– volume: 15
  start-page: 745
  year: 1993
  end-page: 770
  ident: bib0010
  article-title: A methodology for implementing highly concurrent data objects
  publication-title: ACM Trans. Program. Lang. Syst.
– year: 2015
  ident: bib0013
  article-title: Emotion recognition in the wild via convolutional neural networks and mapped binary patterns
  publication-title: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction
– year: 2017
  ident: bib0014
  article-title: Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild
  publication-title: Proceedings of the IEEE Conference on Computer Vison and Pattern Recognition
– volume: 296
  start-page: 12
  year: 2018
  end-page: 22
  ident: bib0030
  article-title: A visual attention based roi detection method for facial expression recognition
  publication-title: Neurocomputing
– year: 2017
  ident: bib0009
  article-title: Facial expression recognition using enhanced deep 3D convolutional neural networks
  publication-title: Proceedings of the IEEE Conference on Computer Vison and Pattern Recognition (CVPR) Workshops
– year: 2017
  ident: 10.1016/j.patcog.2020.107694_bib0040
  article-title: Structured attentions for visual question answering
– year: 2018
  ident: 10.1016/j.patcog.2020.107694_bib0001
  article-title: The lovász-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks
– volume: 72
  start-page: 563
  year: 2017
  ident: 10.1016/j.patcog.2020.107694_bib0024
  article-title: Age and gender recognition in the wild with deep attention
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.06.028
– year: 2018
  ident: 10.1016/j.patcog.2020.107694_bib0029
  article-title: Stacked u-nets with multi-output for road extraction
– volume: 84
  start-page: 251
  year: 2018
  ident: 10.1016/j.patcog.2020.107694_bib0019
  article-title: Conditional convolution neural network enhanced random forest for facial expression recognition
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2018.07.016
– year: 2014
  ident: 10.1016/j.patcog.2020.107694_bib0023
  article-title: Real-time emotion recognition for gaming using deep convolutional network features
  publication-title: arXiv preprint arXiv:1408.3750
– start-page: 234
  year: 2015
  ident: 10.1016/j.patcog.2020.107694_bib0025
  article-title: U-net: Convolutional networks for biomedical image segmentation
– start-page: 2048
  year: 2015
  ident: 10.1016/j.patcog.2020.107694_bib0035
  article-title: Show, attend and tell: Neural image caption generation with visual attention
– volume: 138
  start-page: 520
  year: 2020
  ident: 10.1016/j.patcog.2020.107694_bib0028
  article-title: Can-gan: conditioned-attention normalized gan for face age synthesis
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2020.08.021
– volume: 88
  start-page: 557
  year: 2019
  ident: 10.1016/j.patcog.2020.107694_bib0017
  article-title: Attention guided deep audio-face fusion for efficient speaker naming
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2018.12.011
– volume: 296
  start-page: 12
  year: 2018
  ident: 10.1016/j.patcog.2020.107694_bib0030
  article-title: A visual attention based roi detection method for facial expression recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.034
– start-page: 118
  year: 2017
  ident: 10.1016/j.patcog.2020.107694_bib0004
  article-title: Facenet2expnet: Regularizing a deep face recognition net for expression recognition
– year: 2017
  ident: 10.1016/j.patcog.2020.107694_bib0027
  article-title: Facial expressions classification and false label reduction using lda and threefold svm
  publication-title: Pattern Recognit Lett
– year: 2015
  ident: 10.1016/j.patcog.2020.107694_bib0011
  article-title: Joint fine-tuning in deep neural networks for facial expression recognition
– year: 2015
  ident: 10.1016/j.patcog.2020.107694_bib0013
  article-title: Emotion recognition in the wild via convolutional neural networks and mapped binary patterns
– volume: 125
  start-page: 105
  year: 2019
  ident: 10.1016/j.patcog.2020.107694_bib0007
  article-title: Facial expression recognition boosted by soft label with a diverse ensemble
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2019.04.002
– year: 2014
  ident: 10.1016/j.patcog.2020.107694_bib0016
  article-title: Facial expression recognition via a boosted deep belief network
– year: 2017
  ident: 10.1016/j.patcog.2020.107694_bib0032
  article-title: Residual attention network for image classification
– year: 2017
  ident: 10.1016/j.patcog.2020.107694_bib0021
  article-title: Affectnet: a database for facial expression, valence, and arousal computing in the wild
  publication-title: Proceedings of the IEEE Conference on Computer Vison and Pattern Recognition
– year: 2015
  ident: 10.1016/j.patcog.2020.107694_bib0022
  article-title: Deep learning for emotion recognition on small datasets using transfer learning
– year: 2018
  ident: 10.1016/j.patcog.2020.107694_bib0026
  article-title: Mobilenetv2: Inverted residuals and linear bottlenecks
– year: 2018
  ident: 10.1016/j.patcog.2020.107694_bib0037
  article-title: Facial expression recognition with inconsistently annotated datasets
– volume: 28
  start-page: 2439
  issue: 5
  year: 2018
  ident: 10.1016/j.patcog.2020.107694_bib0015
  article-title: Occlusion aware facial expression recognition using cnn with attention mechanism
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2886767
– year: 2017
  ident: 10.1016/j.patcog.2020.107694_bib0009
  article-title: Facial expression recognition using enhanced deep 3D convolutional neural networks
– year: 2010
  ident: 10.1016/j.patcog.2020.107694_bib0020
  article-title: The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression
– volume: 15
  start-page: 745
  issue: 5
  year: 1993
  ident: 10.1016/j.patcog.2020.107694_bib0010
  article-title: A methodology for implementing highly concurrent data objects
  publication-title: ACM Trans. Program. Lang. Syst.
  doi: 10.1145/161468.161469
– volume: 10
  start-page: 223
  issue: 2
  year: 2017
  ident: 10.1016/j.patcog.2020.107694_bib0012
  article-title: Multi-objective based spatio-temporal feature representation learning robust to expression intensity variations for facial expression recognition
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2017.2695999
– year: 2017
  ident: 10.1016/j.patcog.2020.107694_bib0014
  article-title: Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild
– start-page: 84
  year: 2018
  ident: 10.1016/j.patcog.2020.107694_bib0005
  article-title: Multi-region ensemble convolutional neural network for facial expression recognition
– start-page: 302
  year: 2018
  ident: 10.1016/j.patcog.2020.107694_bib0003
  article-title: Island loss for learning discriminative features in facial expression recognition
– start-page: 65
  year: 2010
  ident: 10.1016/j.patcog.2020.107694_bib0031
  article-title: Induced disgust, happiness and surprise: an addition to the mmi facial expression database
– year: 2012
  ident: 10.1016/j.patcog.2020.107694_bib0039
  article-title: Learning active facial patches for expression analysis
– volume: 100
  start-page: 107111
  year: 2020
  ident: 10.1016/j.patcog.2020.107694_bib0002
  article-title: Exprada: adversarial domain adaptation for facial expression analysis
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2019.107111
– year: 2017
  ident: 10.1016/j.patcog.2020.107694_bib0006
  article-title: Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition
– year: 2006
  ident: 10.1016/j.patcog.2020.107694_bib0008
  article-title: Dimensionality reduction by learning an invariant mapping
– volume: 88
  start-page: 1
  year: 2019
  ident: 10.1016/j.patcog.2020.107694_bib0018
  article-title: Hard negative generation for identity-disentangled facial expression recognition
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2018.11.001
– volume: 131
  start-page: 166
  year: 2020
  ident: 10.1016/j.patcog.2020.107694_bib0036
  article-title: Facial expression recognition based on a multi-task global-local network
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2020.01.016
– start-page: 499
  year: 2016
  ident: 10.1016/j.patcog.2020.107694_bib0033
  article-title: A discriminative feature learning approach for deep face recognition
– volume: 92
  start-page: 177
  year: 2019
  ident: 10.1016/j.patcog.2020.107694_bib0034
  article-title: Deep multi-path convolutional neural network joint with salient region attention for facial expression recognition
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2019.03.019
– year: 2017
  ident: 10.1016/j.patcog.2020.107694_bib0038
  article-title: Learning multi-attention convolutional neural network for fine-grained image recognition
SSID ssj0017142
Score 2.6129324
Snippet •We propose a Oriented Attention Enable Network (OAENet) architecture for FER, which aggreates ROI aware and attention mechanism, ensuring the sufficient...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107694
SubjectTerms Attention
Facial expression recognition
Oriented gradient
Weighted mask
Title OAENet: Oriented attention ensemble for accurate facial expression recognition
URI https://dx.doi.org/10.1016/j.patcog.2020.107694
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYPXuLVNm8bbGBtTobs42K2kSSqT2Y3RgSf_dt9r06EgCl5DHiSPvK_2936PkNsgl1pmImRcaMO4jAMWhwimshB-uKkYvhFtkUSTGX-ch_MWGTa9MAirdL6_9umVt3YrPafN3nqxwB5fpB3EAeD4q0hg3c65wFd-97GDeeB875oxPPAYbm3a5yqM1xrc3eoFqkQfl0Qk-c_h6UvIGR-RA5cr0kF9nGPSssUJOWzmMFBnlqckmQ5GiS3v6RRJiyGFpEiaWcEYKVSp9i1bWgrJKVVab5EaguYKv5RT--5gsAXdAYlWxRmZjUfPwwlzcxKYhoS_ZFBCKdmPjcpCLQIJN7UiN57RErntQ8-GkY2VEJGNIqP7mY6ktRrKRwNX5lIH56RdrAp7QahSBiwerFhmMRSKQSZjmfvW65tQ-SDRIUGjnlQ7EnGcZbFMG7TYa1orNUWlprVSO4TtpNY1icYf-0Wj-fTbY0jBz_8qeflvySuy7yNcpQLlXJN2udnaG8g3yqxbPagu2Rs8PE2ST0pT054
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na8IwFA-ih-2y7zH3mcOuRfuRptlNRNHp6kXBW2iTdDi2KqPC_vy916aywdhg15AHzSPvq_m93yPk3s-EEilnTsCVdgIR-U7EEExlIPwEumT4RrRFHI4WweOSLRukX_fCIKzS-v7Kp5fe2q50rDY7m9UKe3yRdhAHgONTEYe6vYXsVKxJWr3xZBTvHhO4G1Sk4b7r4O66g66EeW3A462foVD0cImHIvg5Qn2JOsMjcmDTRdqrvuiYNEx-Qg7rUQzUWuYpiWe9QWyKBzpD3mLIIinyZpZIRgqFqnlLXw2F_JQmSm2RHYJmCf4sp-bDImFzusMSrfMzshgO5v2RY0clOApy_sKBKioR3UgnKVPcF3BSwzPtaiWQ3p65hoUmSjgPTRhq1U1VKIxRUEFqOHIglH9Omvk6NxeEJokGowdDFmkEtaKfikhknnG7miUeSLSJX6tHKssjjuMsXmUNGHuRlVIlKlVWSm0TZye1qXg0_tjPa83Lb_dBgqv_VfLy35J3ZG80f5rK6TieXJF9D9ErJUbnmjSL9625gfSjSG_t9foEmmjWTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OAENet%3A+Oriented+attention+ensemble+for+accurate+facial+expression+recognition&rft.jtitle=Pattern+recognition&rft.au=Wang%2C+Zhengning&rft.au=Zeng%2C+Fanwei&rft.au=Liu%2C+Shuaicheng&rft.au=Zeng%2C+Bing&rft.date=2021-04-01&rft.issn=0031-3203&rft.volume=112&rft.spage=107694&rft_id=info:doi/10.1016%2Fj.patcog.2020.107694&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2020_107694
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon