Density peaks clustering algorithm based on fuzzy and weighted shared neighbor for uneven density datasets

•A new DPC algorithm for uneven density datasets is proposed.•A new local density calculation method based on fuzzy neighborhood is designed.•A new allocation strategy based on weighted shared nearest neighbor is proposed.•The new DPC algorithm has excellent clustering accuracy for different types o...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 139; p. 109406
Main Authors Zhao, Jia, Wang, Gang, Pan, Jeng-Shyang, Fan, Tanghuai, Lee, Ivan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2023
Subjects
Online AccessGet full text
ISSN0031-3203
1873-5142
DOI10.1016/j.patcog.2023.109406

Cover

Loading…
Abstract •A new DPC algorithm for uneven density datasets is proposed.•A new local density calculation method based on fuzzy neighborhood is designed.•A new allocation strategy based on weighted shared nearest neighbor is proposed.•The new DPC algorithm has excellent clustering accuracy for different types of datasets. Uneven density data refers to data with a certain difference in sample density between clusters. The local density of density peaks clustering algorithm (DPC) does not consider the effect of sample density difference between clusters of uneven density data, which may lead to wrong selection of cluster centers; the algorithm allocation strategy makes it easy to incorrectly allocate samples originally belonging to sparse clusters to dense clusters, which reduces clustering efficiency. In this study, we proposed the density peaks clustering algorithm based on fuzzy and weighted shared neighbor for uneven density datasets (DPC-FWSN). First, a nearest neighbor fuzzy kernel function is obtained by combining K-nearest neighbor and fuzzy neighborhood. Then, local density is redefined by the nearest neighbor fuzzy kernel function. The local density can better characterize the distribution characteristics of the sample by balancing the contribution of sample density in dense and sparse areas, in order to avoid the situation that the sparse cluster does not have a cluster center. Finally, the allocation strategy for weighted shared neighbor similarity is proposed to optimize the sample allocation at the boundary of the sparse cluster. Experiments are performed on IDPC-FA, FKNN-DPC, FNDPC, DPCSA and DPC for uneven density datasets, complex morphologies datasets and real datasets. The clustering results demonstrate that DPC-FWSN effectively handles datasets with uneven density distribution.
AbstractList •A new DPC algorithm for uneven density datasets is proposed.•A new local density calculation method based on fuzzy neighborhood is designed.•A new allocation strategy based on weighted shared nearest neighbor is proposed.•The new DPC algorithm has excellent clustering accuracy for different types of datasets. Uneven density data refers to data with a certain difference in sample density between clusters. The local density of density peaks clustering algorithm (DPC) does not consider the effect of sample density difference between clusters of uneven density data, which may lead to wrong selection of cluster centers; the algorithm allocation strategy makes it easy to incorrectly allocate samples originally belonging to sparse clusters to dense clusters, which reduces clustering efficiency. In this study, we proposed the density peaks clustering algorithm based on fuzzy and weighted shared neighbor for uneven density datasets (DPC-FWSN). First, a nearest neighbor fuzzy kernel function is obtained by combining K-nearest neighbor and fuzzy neighborhood. Then, local density is redefined by the nearest neighbor fuzzy kernel function. The local density can better characterize the distribution characteristics of the sample by balancing the contribution of sample density in dense and sparse areas, in order to avoid the situation that the sparse cluster does not have a cluster center. Finally, the allocation strategy for weighted shared neighbor similarity is proposed to optimize the sample allocation at the boundary of the sparse cluster. Experiments are performed on IDPC-FA, FKNN-DPC, FNDPC, DPCSA and DPC for uneven density datasets, complex morphologies datasets and real datasets. The clustering results demonstrate that DPC-FWSN effectively handles datasets with uneven density distribution.
ArticleNumber 109406
Author Zhao, Jia
Lee, Ivan
Wang, Gang
Fan, Tanghuai
Pan, Jeng-Shyang
Author_xml – sequence: 1
  givenname: Jia
  orcidid: 0000-0002-3652-1903
  surname: Zhao
  fullname: Zhao, Jia
  email: zhaojia925@163.com
  organization: School of Information Engineering, Nanchang Institute of Technology, Nanchang 330099, China
– sequence: 2
  givenname: Gang
  surname: Wang
  fullname: Wang, Gang
  organization: School of Information Engineering, Nanchang Institute of Technology, Nanchang 330099, China
– sequence: 3
  givenname: Jeng-Shyang
  surname: Pan
  fullname: Pan, Jeng-Shyang
  email: jspan@cc.kuas.edu.tw
  organization: College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
– sequence: 4
  givenname: Tanghuai
  surname: Fan
  fullname: Fan, Tanghuai
  organization: School of Information Engineering, Nanchang Institute of Technology, Nanchang 330099, China
– sequence: 5
  givenname: Ivan
  surname: Lee
  fullname: Lee, Ivan
  email: Ivan.Lee@unisa.edu.au
  organization: UniSA STEM, University of South Australia, Adelaide, SA 5000, Australia
BookMark eNqFkEtLAzEUhYNUsK3-Axf5A1PzmKcLQeoTCm50HTLJnWnGaVKStNL-eqeMKxe6uBzuuXwH7pmhiXUWELqmZEEJzW-6xVZG5doFI4wPVpWS_AxNaVnwJKMpm6ApIZwmnBF-gWYhdITQYjhMUfcANph4wFuQnwGrfhcieGNbLPvWeRPXG1zLABo7i5vd8XjA0mr8BaZdx8ENa-kHsae9dh43w-ws7MFi_ZOsZRwCYrhE543sA1z96Bx9PD2-L1-S1dvz6_J-lShO8phUVNVa86YguiAyTSuZZTkwqllRM6rKKi0qycqigjJTXKaUa641IzUrOWEF53N0O-Yq70Lw0AhloozG2eil6QUl4tSa6MTYmji1JsbWBjj9BW-92Uh_-A-7GzEYHtsb8CIoA1aBNh5UFNqZvwO-AfcOjJE
CitedBy_id crossref_primary_10_1016_j_ins_2024_120858
crossref_primary_10_1016_j_ins_2024_121209
crossref_primary_10_1016_j_knosys_2024_111748
crossref_primary_10_1002_cpe_8355
crossref_primary_10_1016_j_jtice_2024_105915
crossref_primary_10_1016_j_patcog_2024_110772
crossref_primary_10_1016_j_patcog_2024_110635
crossref_primary_10_3390_s23218787
crossref_primary_10_1016_j_asoc_2024_111685
crossref_primary_10_1007_s10044_024_01311_x
crossref_primary_10_1016_j_asoc_2024_112432
crossref_primary_10_1007_s12652_024_04808_9
crossref_primary_10_1016_j_ins_2024_120685
crossref_primary_10_1016_j_ins_2024_120147
crossref_primary_10_1016_j_eswa_2024_124782
crossref_primary_10_3390_s23229119
crossref_primary_10_1016_j_knosys_2024_112609
crossref_primary_10_1002_cpe_8387
crossref_primary_10_1002_cpe_7974
crossref_primary_10_1002_cpe_7973
crossref_primary_10_1016_j_ipm_2024_104031
crossref_primary_10_1016_j_engappai_2024_108635
crossref_primary_10_1016_j_asoc_2024_112347
crossref_primary_10_1002_cpe_7958
crossref_primary_10_1088_1742_6596_2858_1_012041
crossref_primary_10_1007_s11227_023_05688_0
crossref_primary_10_1016_j_asoc_2024_111419
crossref_primary_10_1016_j_dajour_2024_100407
crossref_primary_10_3390_e25030480
Cites_doi 10.1109/ACCESS.2020.3022954
10.1126/science.1242072
10.1016/j.patcog.2020.107589
10.1016/j.ins.2018.03.031
10.1016/j.patcog.2020.107624
10.1023/A:1009783824328
10.1631/FITEE.2000691
10.1109/COMST.2015.2494502
10.1016/j.patcog.2020.107452
10.1016/j.ins.2016.03.011
10.1109/ACCESS.2019.2904254
10.1016/j.is.2006.10.006
10.1007/s12559-021-09906-w
10.1016/j.neucom.2016.11.019
10.1016/j.patcog.2020.107449
10.1016/j.ins.2019.08.060
10.1109/TFUZZ.2016.2604009
10.1109/ACCESS.2019.2918952
10.1016/j.patcog.2017.06.023
10.1016/j.asoc.2017.08.032
10.1111/j.2517-6161.1977.tb01600.x
10.1007/s13042-017-0636-1
10.1038/s41576-018-0088-9
10.1016/j.patrec.2009.09.011
10.1049/iet-ipr.2018.5949
10.1007/s00500-018-3183-0
10.1109/MCOM.2017.1601160
10.1504/IJBIC.2020.105899
10.1109/ACCESS.2019.2918772
10.1002/cpe.5567
10.1016/j.artint.2011.09.003
10.1016/j.knosys.2016.02.001
10.1016/j.patcog.2021.107836
10.1109/ACCESS.2022.3205742
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2023.109406
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2023_109406
S0031320323001073
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-91cbdd3f70d70a449a556e21d27b21c89479a2879e85c3a413d3dd20b28302733
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Tue Jul 01 02:36:41 EDT 2025
Thu Apr 24 22:50:43 EDT 2025
Fri Feb 23 02:37:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fuzzy neighborhood
Uneven density data
Weighted shared neighbor
Density peaks clustering
K-nearest neighbor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-91cbdd3f70d70a449a556e21d27b21c89479a2879e85c3a413d3dd20b28302733
ORCID 0000-0002-3652-1903
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2023_109406
crossref_primary_10_1016_j_patcog_2023_109406
elsevier_sciencedirect_doi_10_1016_j_patcog_2023_109406
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Asheri, Hosseini, Araabi (bib0015) 2021; 114
Chen, Zhou, Bouguila, Wang, Chen, Du (bib0018) 2021; 109
Qin, Han, Chu, Zhang, Xu, Xie, Xie (bib0034) 2021; 13
Xu, Ding, Xu, Liao, Xue (bib0031) 2019; 23
Bai, Yang, Shi (bib0037) 2017; 226
Li, Zhou, Wang (bib0036) 2020; 8
Duan, Liu, Wang (bib0005) 2017; 55
Fang, Qiu, Yuan (bib0025) 2020; 107
Wang, Yang, Muntz (bib0014) 1997
Zhang, Ramakrishnan, Livny (bib0008) 1997; 1
Deng, Ye, Ma, Fujita, Xiong (bib0001) 2020; 508
Du, Ding, Xue (bib0023) 2018; 9
Guo, Wang, Zhao, Niu, Zhang, Liu (bib0035) 2022; 243
Bai, Cheng, Liang, Shen, Guo (bib0039) 2017; 71
Zhao, Chen, Xiao, Ye (bib0027) 2021; 22
Sun, Liu, Xu, Zhang (bib0024) 2019; 7
Xie, Gao, Xie, Liu, Grant (bib0029) 2016; 354
Abbas, El-Zoghabi, Shoukry (bib0033) 2021; 109
Liu, Wang, Yu (bib0040) 2018; 450
Mei, Wang, Chen, Miao (bib0003) 2017; 25
Zhao, Tang, Shi, Fan, Xu (bib0028) 2020; 15
Rodriguez, Laio (bib0019) 2014; 344
Buczak, Guven (bib0006) 2016; 18
Li, Zhou, Li, Yang (bib0026) 2022; 10
Zhuo, Li, Liao, Hao, Lib (bib0032) 2019; 7
Lian, Xiong, Lee, Feng (bib0011) 2007; 32
Chen, Zhang, Liu, Poon, Wang (bib0010) 2012; 176
Cheng, Zhu, Huang, Yang (bib0022) 2016
Jain (bib0007) 2010; 31
Yu, Liu, Guo, Liu, Yao (bib0030) 2019; 7
Lotfi, Moradi, Beigy (bib0020) 2020; 107
Ester, Kriegel, Sander, Xu (bib0017) 1996
Vinh, Epps, Bailey (bib0038) 2010; 11
Wen, Xuan, Li, Gao, Peng (bib0002) 2019; 14
Yu, Chu, Wang, Chan, Chang (bib0012) 2018; 68
Zhao, Tang, Fan, Li, Xu (bib0009) 2020; 32
Du, Ding, Jia (bib0021) 2016; 99
Karypis, Han, Kumar (bib0013) 1999; 32
Kiselev, Andrews, Hemberg (bib0004) 2019; 20
Dempster, Laird, Rubin (bib0016) 1977; 39
Kiselev (10.1016/j.patcog.2023.109406_bib0004) 2019; 20
Duan (10.1016/j.patcog.2023.109406_bib0005) 2017; 55
Zhuo (10.1016/j.patcog.2023.109406_bib0032) 2019; 7
Li (10.1016/j.patcog.2023.109406_bib0036) 2020; 8
Zhao (10.1016/j.patcog.2023.109406_bib0028) 2020; 15
Zhao (10.1016/j.patcog.2023.109406_bib0009) 2020; 32
Xie (10.1016/j.patcog.2023.109406_bib0029) 2016; 354
Qin (10.1016/j.patcog.2023.109406_bib0034) 2021; 13
Bai (10.1016/j.patcog.2023.109406_bib0037) 2017; 226
Lian (10.1016/j.patcog.2023.109406_bib0011) 2007; 32
Rodriguez (10.1016/j.patcog.2023.109406_bib0019) 2014; 344
Li (10.1016/j.patcog.2023.109406_bib0026) 2022; 10
Dempster (10.1016/j.patcog.2023.109406_bib0016) 1977; 39
Guo (10.1016/j.patcog.2023.109406_bib0035) 2022; 243
Karypis (10.1016/j.patcog.2023.109406_bib0013) 1999; 32
Ester (10.1016/j.patcog.2023.109406_bib0017) 1996
Bai (10.1016/j.patcog.2023.109406_bib0039) 2017; 71
Mei (10.1016/j.patcog.2023.109406_bib0003) 2017; 25
Fang (10.1016/j.patcog.2023.109406_bib0025) 2020; 107
Yu (10.1016/j.patcog.2023.109406_bib0030) 2019; 7
Asheri (10.1016/j.patcog.2023.109406_bib0015) 2021; 114
Buczak (10.1016/j.patcog.2023.109406_bib0006) 2016; 18
Wen (10.1016/j.patcog.2023.109406_bib0002) 2019; 14
Du (10.1016/j.patcog.2023.109406_bib0023) 2018; 9
Lotfi (10.1016/j.patcog.2023.109406_bib0020) 2020; 107
Xu (10.1016/j.patcog.2023.109406_bib0031) 2019; 23
Sun (10.1016/j.patcog.2023.109406_bib0024) 2019; 7
Yu (10.1016/j.patcog.2023.109406_bib0012) 2018; 68
Zhao (10.1016/j.patcog.2023.109406_bib0027) 2021; 22
Zhang (10.1016/j.patcog.2023.109406_bib0008) 1997; 1
Vinh (10.1016/j.patcog.2023.109406_bib0038) 2010; 11
Wang (10.1016/j.patcog.2023.109406_bib0014) 1997
Chen (10.1016/j.patcog.2023.109406_bib0018) 2021; 109
Jain (10.1016/j.patcog.2023.109406_bib0007) 2010; 31
Abbas (10.1016/j.patcog.2023.109406_bib0033) 2021; 109
Chen (10.1016/j.patcog.2023.109406_bib0010) 2012; 176
Cheng (10.1016/j.patcog.2023.109406_bib0022) 2016
Liu (10.1016/j.patcog.2023.109406_bib0040) 2018; 450
Deng (10.1016/j.patcog.2023.109406_bib0001) 2020; 508
Du (10.1016/j.patcog.2023.109406_bib0021) 2016; 99
References_xml – volume: 20
  start-page: 273
  year: 2019
  end-page: 282
  ident: bib0004
  article-title: Challenges in unsupervised clustering of single-cell RNA-seq data
  publication-title: Nat. Rev. Genet.
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: bib0007
  article-title: Data clustering: 50 Years beyond k-means
  publication-title: Pattern Recognit. Lett.
– start-page: 226
  year: 1996
  end-page: 231
  ident: bib0017
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
– volume: 344
  start-page: 1492
  year: 2014
  end-page: 1496
  ident: bib0019
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
– volume: 7
  start-page: 74612
  year: 2019
  end-page: 74624
  ident: bib0032
  article-title: HCFS: a density peak based clustering algorithm employing a hierarchical strategy
  publication-title: IEEE Access
– volume: 7
  start-page: 34301
  year: 2019
  end-page: 34317
  ident: bib0030
  article-title: Density peaks clustering based on weighted local density sequence and nearest neighbor assignment
  publication-title: IEEE Access
– volume: 7
  start-page: 72936
  year: 2019
  end-page: 72955
  ident: bib0024
  article-title: An adaptive density peaks clustering method with Fisher linear discriminant
  publication-title: IEEE Access
– volume: 243
  year: 2022
  ident: bib0035
  article-title: Density Peak Clustering with connectivity estimation
  publication-title: Knowled.-Based Syst.
– volume: 10
  start-page: 98034
  year: 2022
  end-page: 98047
  ident: bib0026
  article-title: A new density peak clustering algorithm based on cluster fusion strategy
  publication-title: IEEE Access
– volume: 11
  start-page: 2837
  year: 2010
  end-page: 2854
  ident: bib0038
  article-title: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance
  publication-title: J. Mach. Learn. Res.
– start-page: 186
  year: 1997
  end-page: 195
  ident: bib0014
  article-title: STING: a statistical information grid approach to spatial data mining
  publication-title: Proceedings of the 23rd International Conference on Very Large Data Bases
– volume: 23
  start-page: 5171
  year: 2019
  end-page: 5183
  ident: bib0031
  article-title: A feasible density peaks clustering algorithm with a merging strategy
  publication-title: Soft Comput.
– volume: 508
  start-page: 1
  year: 2020
  end-page: 21
  ident: bib0001
  article-title: Low-rank local tangent space embedding for subspace clustering
  publication-title: Inf. Sci.
– volume: 39
  start-page: 1
  year: 1977
  end-page: 22
  ident: bib0016
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. Roy. Statist. Soc. Ser. C
– volume: 8
  start-page: 165963
  year: 2020
  end-page: 165972
  ident: bib0036
  article-title: F-DPC: fuzzy neighborhood-based density peak algorithm
  publication-title: IEEE Access
– volume: 68
  start-page: 747
  year: 2018
  end-page: 755
  ident: bib0012
  article-title: Two improved k-means algorithms
  publication-title: Appl. Soft Comput.
– volume: 15
  start-page: 24
  year: 2020
  end-page: 42
  ident: bib0028
  article-title: Improved density peaks clustering based on firefly algorithm
  publication-title: Int. J. Bio-Inspired Comput.
– volume: 1
  start-page: 141
  year: 1997
  end-page: 182
  ident: bib0008
  article-title: BIRCH: a new data clustering algorithm and its applications
  publication-title: Data Min. Knowl. Discov.
– volume: 9
  start-page: 1131
  year: 2018
  end-page: 1140
  ident: bib0023
  article-title: A robust density peaks clustering algorithm using fuzzy neighborhood
  publication-title: Int. J. Machine Learn. Cybernet.
– volume: 114
  year: 2021
  ident: bib0015
  article-title: A new EM algorithm for flexibly tied GMMs with large number of components
  publication-title: Pattern Recognit.
– volume: 354
  start-page: 19
  year: 2016
  end-page: 40
  ident: bib0029
  article-title: Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors
  publication-title: Inf. Sci. (Ny)
– volume: 32
  start-page: 978
  year: 2007
  end-page: 986
  ident: bib0011
  article-title: A local-density based spatial clustering algorithm with noise
  publication-title: Inf Syst
– volume: 14
  start-page: 576
  year: 2019
  end-page: 584
  ident: bib0002
  article-title: Image segmentation algorithm based on neutrosophic fuzzy clustering with non-local information
  publication-title: IET Image Proc.
– start-page: 92
  year: 2016
  end-page: 98
  ident: bib0022
  article-title: Natural neighbor-based clustering algorithm with density peeks
  publication-title: 2016 International Joint Conference on Neural Networks
– volume: 99
  start-page: 135
  year: 2016
  end-page: 145
  ident: bib0021
  article-title: Study on density peaks clustering based on k-nearest neighbors and principal component analysis
  publication-title: Knowl.-Based Syst.
– volume: 109
  year: 2021
  ident: bib0018
  article-title: BLOCK-DBSCAN: fast clustering for large scale data
  publication-title: Pattern Recognit.
– volume: 226
  start-page: 7
  year: 2017
  end-page: 15
  ident: bib0037
  article-title: An overlapping community detection algorithm based on density peaks
  publication-title: Neurocomputing
– volume: 176
  start-page: 2246
  year: 2012
  end-page: 2269
  ident: bib0010
  article-title: Model-based multidimensional clustering of categorical data
  publication-title: Artif. Intell.
– volume: 107
  year: 2020
  ident: bib0020
  article-title: Density peaks clustering based on density backbone and fuzzy neighborhood
  publication-title: Pattern Recognit.
– volume: 32
  start-page: e5567
  year: 2020
  ident: bib0009
  article-title: Density peaks clustering based on circular partition and grid similarity
  publication-title: Concurr. Comput.
– volume: 71
  start-page: 375
  year: 2017
  end-page: 386
  ident: bib0039
  article-title: Fast density clustering strategies based on the k-means algorithm
  publication-title: Pattern Recognit.
– volume: 25
  start-page: 1239
  year: 2017
  end-page: 1251
  ident: bib0003
  article-title: Large scale document categorization with fuzzy clustering
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 450
  start-page: 200
  year: 2018
  end-page: 226
  ident: bib0040
  article-title: Shared nearest neighbor based clustering by fast search and find of density peaks
  publication-title: Inf. Sci. (Ny)
– volume: 13
  start-page: 1609
  year: 2021
  end-page: 1626
  ident: bib0034
  article-title: Density peaks clustering based on jaccard similarity and label propagation
  publication-title: Cognit. Comput.
– volume: 55
  start-page: 120
  year: 2017
  end-page: 127
  ident: bib0005
  article-title: SDN enabled 5G-VANET: adaptive vehicle clustering and beam formed transmission for aggregated traffic
  publication-title: IEEE Commun. Mag.
– volume: 22
  start-page: 1311
  year: 2021
  end-page: 1333
  ident: bib0027
  article-title: Firefly algorithm with division of roles for complex optimal scheduling
  publication-title: Front. Inf. Technol. Electron. Eng.
– volume: 107
  year: 2020
  ident: bib0025
  article-title: Adaptive core fusion-based density peak clustering for complex data with arbitrary shapes and densities
  publication-title: Pattern Recognit.
– volume: 18
  start-page: 1153
  year: 2016
  end-page: 1176
  ident: bib0006
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Commun. Surv. Tutorials
– volume: 32
  start-page: 68
  year: 1999
  end-page: 75
  ident: bib0013
  article-title: Chameleon: hierarchical clustering using dynamic modeling
  publication-title: Computer (Long Beach Calif)
– volume: 109
  start-page: 78
  year: 2021
  end-page: 86
  ident: bib0033
  article-title: Denmune: density peak based clustering using mutual nearest neighbors
  publication-title: Pattern Recognit.
– start-page: 186
  year: 1997
  ident: 10.1016/j.patcog.2023.109406_bib0014
  article-title: STING: a statistical information grid approach to spatial data mining
– volume: 8
  start-page: 165963
  year: 2020
  ident: 10.1016/j.patcog.2023.109406_bib0036
  article-title: F-DPC: fuzzy neighborhood-based density peak algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3022954
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  ident: 10.1016/j.patcog.2023.109406_bib0019
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 109
  start-page: 78
  year: 2021
  ident: 10.1016/j.patcog.2023.109406_bib0033
  article-title: Denmune: density peak based clustering using mutual nearest neighbors
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107589
– volume: 450
  start-page: 200
  year: 2018
  ident: 10.1016/j.patcog.2023.109406_bib0040
  article-title: Shared nearest neighbor based clustering by fast search and find of density peaks
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2018.03.031
– volume: 32
  start-page: 68
  issue: 8
  year: 1999
  ident: 10.1016/j.patcog.2023.109406_bib0013
  article-title: Chameleon: hierarchical clustering using dynamic modeling
  publication-title: Computer (Long Beach Calif)
– volume: 109
  year: 2021
  ident: 10.1016/j.patcog.2023.109406_bib0018
  article-title: BLOCK-DBSCAN: fast clustering for large scale data
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107624
– volume: 1
  start-page: 141
  issue: 2
  year: 1997
  ident: 10.1016/j.patcog.2023.109406_bib0008
  article-title: BIRCH: a new data clustering algorithm and its applications
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009783824328
– volume: 22
  start-page: 1311
  year: 2021
  ident: 10.1016/j.patcog.2023.109406_bib0027
  article-title: Firefly algorithm with division of roles for complex optimal scheduling
  publication-title: Front. Inf. Technol. Electron. Eng.
  doi: 10.1631/FITEE.2000691
– volume: 243
  year: 2022
  ident: 10.1016/j.patcog.2023.109406_bib0035
  article-title: Density Peak Clustering with connectivity estimation
  publication-title: Knowled.-Based Syst.
– volume: 18
  start-page: 1153
  issue: 2
  year: 2016
  ident: 10.1016/j.patcog.2023.109406_bib0006
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2015.2494502
– volume: 107
  year: 2020
  ident: 10.1016/j.patcog.2023.109406_bib0025
  article-title: Adaptive core fusion-based density peak clustering for complex data with arbitrary shapes and densities
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107452
– volume: 354
  start-page: 19
  year: 2016
  ident: 10.1016/j.patcog.2023.109406_bib0029
  article-title: Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2016.03.011
– volume: 7
  start-page: 34301
  year: 2019
  ident: 10.1016/j.patcog.2023.109406_bib0030
  article-title: Density peaks clustering based on weighted local density sequence and nearest neighbor assignment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2904254
– volume: 32
  start-page: 978
  year: 2007
  ident: 10.1016/j.patcog.2023.109406_bib0011
  article-title: A local-density based spatial clustering algorithm with noise
  publication-title: Inf Syst
  doi: 10.1016/j.is.2006.10.006
– volume: 13
  start-page: 1609
  year: 2021
  ident: 10.1016/j.patcog.2023.109406_bib0034
  article-title: Density peaks clustering based on jaccard similarity and label propagation
  publication-title: Cognit. Comput.
  doi: 10.1007/s12559-021-09906-w
– volume: 226
  start-page: 7
  year: 2017
  ident: 10.1016/j.patcog.2023.109406_bib0037
  article-title: An overlapping community detection algorithm based on density peaks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.11.019
– volume: 11
  start-page: 2837
  issue: 1
  year: 2010
  ident: 10.1016/j.patcog.2023.109406_bib0038
  article-title: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance
  publication-title: J. Mach. Learn. Res.
– volume: 107
  year: 2020
  ident: 10.1016/j.patcog.2023.109406_bib0020
  article-title: Density peaks clustering based on density backbone and fuzzy neighborhood
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107449
– volume: 508
  start-page: 1
  year: 2020
  ident: 10.1016/j.patcog.2023.109406_bib0001
  article-title: Low-rank local tangent space embedding for subspace clustering
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.08.060
– volume: 25
  start-page: 1239
  issue: 5
  year: 2017
  ident: 10.1016/j.patcog.2023.109406_bib0003
  article-title: Large scale document categorization with fuzzy clustering
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2016.2604009
– volume: 7
  start-page: 72936
  year: 2019
  ident: 10.1016/j.patcog.2023.109406_bib0024
  article-title: An adaptive density peaks clustering method with Fisher linear discriminant
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2918952
– volume: 71
  start-page: 375
  year: 2017
  ident: 10.1016/j.patcog.2023.109406_bib0039
  article-title: Fast density clustering strategies based on the k-means algorithm
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.06.023
– volume: 68
  start-page: 747
  year: 2018
  ident: 10.1016/j.patcog.2023.109406_bib0012
  article-title: Two improved k-means algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.08.032
– start-page: 226
  year: 1996
  ident: 10.1016/j.patcog.2023.109406_bib0017
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– volume: 39
  start-page: 1
  year: 1977
  ident: 10.1016/j.patcog.2023.109406_bib0016
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. Roy. Statist. Soc. Ser. C
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 9
  start-page: 1131
  issue: 7
  year: 2018
  ident: 10.1016/j.patcog.2023.109406_bib0023
  article-title: A robust density peaks clustering algorithm using fuzzy neighborhood
  publication-title: Int. J. Machine Learn. Cybernet.
  doi: 10.1007/s13042-017-0636-1
– start-page: 92
  year: 2016
  ident: 10.1016/j.patcog.2023.109406_bib0022
  article-title: Natural neighbor-based clustering algorithm with density peeks
– volume: 20
  start-page: 273
  issue: 5
  year: 2019
  ident: 10.1016/j.patcog.2023.109406_bib0004
  article-title: Challenges in unsupervised clustering of single-cell RNA-seq data
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-018-0088-9
– volume: 31
  start-page: 651
  year: 2010
  ident: 10.1016/j.patcog.2023.109406_bib0007
  article-title: Data clustering: 50 Years beyond k-means
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.09.011
– volume: 14
  start-page: 576
  issue: 3
  year: 2019
  ident: 10.1016/j.patcog.2023.109406_bib0002
  article-title: Image segmentation algorithm based on neutrosophic fuzzy clustering with non-local information
  publication-title: IET Image Proc.
  doi: 10.1049/iet-ipr.2018.5949
– volume: 23
  start-page: 5171
  issue: 13
  year: 2019
  ident: 10.1016/j.patcog.2023.109406_bib0031
  article-title: A feasible density peaks clustering algorithm with a merging strategy
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3183-0
– volume: 55
  start-page: 120
  issue: 7
  year: 2017
  ident: 10.1016/j.patcog.2023.109406_bib0005
  article-title: SDN enabled 5G-VANET: adaptive vehicle clustering and beam formed transmission for aggregated traffic
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2017.1601160
– volume: 15
  start-page: 24
  issue: 1
  year: 2020
  ident: 10.1016/j.patcog.2023.109406_bib0028
  article-title: Improved density peaks clustering based on firefly algorithm
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2020.105899
– volume: 7
  start-page: 74612
  year: 2019
  ident: 10.1016/j.patcog.2023.109406_bib0032
  article-title: HCFS: a density peak based clustering algorithm employing a hierarchical strategy
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2918772
– volume: 32
  start-page: e5567
  year: 2020
  ident: 10.1016/j.patcog.2023.109406_bib0009
  article-title: Density peaks clustering based on circular partition and grid similarity
  publication-title: Concurr. Comput.
  doi: 10.1002/cpe.5567
– volume: 176
  start-page: 2246
  issue: 1
  year: 2012
  ident: 10.1016/j.patcog.2023.109406_bib0010
  article-title: Model-based multidimensional clustering of categorical data
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2011.09.003
– volume: 99
  start-page: 135
  year: 2016
  ident: 10.1016/j.patcog.2023.109406_bib0021
  article-title: Study on density peaks clustering based on k-nearest neighbors and principal component analysis
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.02.001
– volume: 114
  year: 2021
  ident: 10.1016/j.patcog.2023.109406_bib0015
  article-title: A new EM algorithm for flexibly tied GMMs with large number of components
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.107836
– volume: 10
  start-page: 98034
  year: 2022
  ident: 10.1016/j.patcog.2023.109406_bib0026
  article-title: A new density peak clustering algorithm based on cluster fusion strategy
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3205742
SSID ssj0017142
Score 2.5732195
Snippet •A new DPC algorithm for uneven density datasets is proposed.•A new local density calculation method based on fuzzy neighborhood is designed.•A new allocation...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109406
SubjectTerms Density peaks clustering
Fuzzy neighborhood
K-nearest neighbor
Uneven density data
Weighted shared neighbor
Title Density peaks clustering algorithm based on fuzzy and weighted shared neighbor for uneven density datasets
URI https://dx.doi.org/10.1016/j.patcog.2023.109406
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRjwrD6xpk9iJk7EqVAVEJyp1ixLb6YOSVDQRagd-O3d5VCAhkBht2VF0vtx3F33-jpAbOzbtGJDTsJlkBuCtNiI_UgbzIu1JZblC4uXkp6E7GPGHsTNukF59FwZplVXsL2N6Ea2rmU5lzc5yNsM7vig7aDJIoqGoEKj4yblAL29_bGke2N-7VAxnloGr6-tzBcdrCeEunbSxhTjqKnHse_QTPH2BnP4B2atyRdotX-eQNHRyRPbrPgy0-iyPyfwWWejZmi51-LKicpGj-gFgEg0XkxSq_-krRbRSNE1onG82axomir4Xf0VhdjVFFjpNcAwuQSGPpXmC0k5UVU9GIulKZ6sTMurfPfcGRtVDwZBQDGQQy2SkFIuFqYQZcu6HjuNq21K2iGxLej4XfghVk689R7IQIE0xpWwzKoTBBGOnpJmkiT4j1AcoY66rHe1Z3ILqk_scqWpwph6q5J0TVpsukJXAOPa5WAQ1k2welAYP0OBBafBzYmx3LUuBjT_Wi_pUgm-OEgAG_Lrz4t87L8kujkqW7hVpZm-5voZcJItahbO1yE73_nEw_ATDON5P
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT4NAEJ3UetCL38b6uQevKLALC8emaqrWnjTxRmB3q9VKG0tj2l_vTFkaTYwmHlkYQmaXebPw5g3Aqd9z_R4ip-NzxR3EW-NkcaYdHmUmUtoLpaLi5Ltu2H4QN4_BYw1aVS0M0Spt7C9j-jxa25Fz683zUb9PNb4kO-hyTKJxUyH5EiyTOlVQh-Xm9W27u_iZID1RioZzzyGDqoJuTvMaYcQbPp1RF3GSVhLU-ugnhPqCOlcbsGbTRdYsn2gTaibfgvWqFQOzb-Y2vFwQEb2YspFJX8dMDSYkgICwxNLB0_C9Xzy_MQIszYY5601msylLc80-5h9GcXT8TER0ltMxrgqGqSyb5KTuxLS9M3FJx6YY78DD1eV9q-3YNgqOwv1AgeFMZVrznnS1dFMh4jQIQuN72peZ76koFjJOceMUmyhQPEVU01xr383m2mCS812o58Pc7AGLEc14GJrARJ7wcAMqYkFsNZzWiITyGsAr1yXKaoxTq4tBUpHJXpLS4Qk5PCkd3gBnYTUqNTb-uF5Ws5J8WysJwsCvlvv_tjyBlfb9XSfpXHdvD2CVzpSk3UOoF-8Tc4SpSZEd26X3CWuW4QA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Density+peaks+clustering+algorithm+based+on+fuzzy+and+weighted+shared+neighbor+for+uneven+density+datasets&rft.jtitle=Pattern+recognition&rft.au=Zhao%2C+Jia&rft.au=Wang%2C+Gang&rft.au=Pan%2C+Jeng-Shyang&rft.au=Fan%2C+Tanghuai&rft.date=2023-07-01&rft.issn=0031-3203&rft.volume=139&rft.spage=109406&rft_id=info:doi/10.1016%2Fj.patcog.2023.109406&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2023_109406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon