Density peaks clustering algorithm based on fuzzy and weighted shared neighbor for uneven density datasets
•A new DPC algorithm for uneven density datasets is proposed.•A new local density calculation method based on fuzzy neighborhood is designed.•A new allocation strategy based on weighted shared nearest neighbor is proposed.•The new DPC algorithm has excellent clustering accuracy for different types o...
Saved in:
Published in | Pattern recognition Vol. 139; p. 109406 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-3203 1873-5142 |
DOI | 10.1016/j.patcog.2023.109406 |
Cover
Loading…
Abstract | •A new DPC algorithm for uneven density datasets is proposed.•A new local density calculation method based on fuzzy neighborhood is designed.•A new allocation strategy based on weighted shared nearest neighbor is proposed.•The new DPC algorithm has excellent clustering accuracy for different types of datasets.
Uneven density data refers to data with a certain difference in sample density between clusters. The local density of density peaks clustering algorithm (DPC) does not consider the effect of sample density difference between clusters of uneven density data, which may lead to wrong selection of cluster centers; the algorithm allocation strategy makes it easy to incorrectly allocate samples originally belonging to sparse clusters to dense clusters, which reduces clustering efficiency. In this study, we proposed the density peaks clustering algorithm based on fuzzy and weighted shared neighbor for uneven density datasets (DPC-FWSN). First, a nearest neighbor fuzzy kernel function is obtained by combining K-nearest neighbor and fuzzy neighborhood. Then, local density is redefined by the nearest neighbor fuzzy kernel function. The local density can better characterize the distribution characteristics of the sample by balancing the contribution of sample density in dense and sparse areas, in order to avoid the situation that the sparse cluster does not have a cluster center. Finally, the allocation strategy for weighted shared neighbor similarity is proposed to optimize the sample allocation at the boundary of the sparse cluster. Experiments are performed on IDPC-FA, FKNN-DPC, FNDPC, DPCSA and DPC for uneven density datasets, complex morphologies datasets and real datasets. The clustering results demonstrate that DPC-FWSN effectively handles datasets with uneven density distribution. |
---|---|
AbstractList | •A new DPC algorithm for uneven density datasets is proposed.•A new local density calculation method based on fuzzy neighborhood is designed.•A new allocation strategy based on weighted shared nearest neighbor is proposed.•The new DPC algorithm has excellent clustering accuracy for different types of datasets.
Uneven density data refers to data with a certain difference in sample density between clusters. The local density of density peaks clustering algorithm (DPC) does not consider the effect of sample density difference between clusters of uneven density data, which may lead to wrong selection of cluster centers; the algorithm allocation strategy makes it easy to incorrectly allocate samples originally belonging to sparse clusters to dense clusters, which reduces clustering efficiency. In this study, we proposed the density peaks clustering algorithm based on fuzzy and weighted shared neighbor for uneven density datasets (DPC-FWSN). First, a nearest neighbor fuzzy kernel function is obtained by combining K-nearest neighbor and fuzzy neighborhood. Then, local density is redefined by the nearest neighbor fuzzy kernel function. The local density can better characterize the distribution characteristics of the sample by balancing the contribution of sample density in dense and sparse areas, in order to avoid the situation that the sparse cluster does not have a cluster center. Finally, the allocation strategy for weighted shared neighbor similarity is proposed to optimize the sample allocation at the boundary of the sparse cluster. Experiments are performed on IDPC-FA, FKNN-DPC, FNDPC, DPCSA and DPC for uneven density datasets, complex morphologies datasets and real datasets. The clustering results demonstrate that DPC-FWSN effectively handles datasets with uneven density distribution. |
ArticleNumber | 109406 |
Author | Zhao, Jia Lee, Ivan Wang, Gang Fan, Tanghuai Pan, Jeng-Shyang |
Author_xml | – sequence: 1 givenname: Jia orcidid: 0000-0002-3652-1903 surname: Zhao fullname: Zhao, Jia email: zhaojia925@163.com organization: School of Information Engineering, Nanchang Institute of Technology, Nanchang 330099, China – sequence: 2 givenname: Gang surname: Wang fullname: Wang, Gang organization: School of Information Engineering, Nanchang Institute of Technology, Nanchang 330099, China – sequence: 3 givenname: Jeng-Shyang surname: Pan fullname: Pan, Jeng-Shyang email: jspan@cc.kuas.edu.tw organization: College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China – sequence: 4 givenname: Tanghuai surname: Fan fullname: Fan, Tanghuai organization: School of Information Engineering, Nanchang Institute of Technology, Nanchang 330099, China – sequence: 5 givenname: Ivan surname: Lee fullname: Lee, Ivan email: Ivan.Lee@unisa.edu.au organization: UniSA STEM, University of South Australia, Adelaide, SA 5000, Australia |
BookMark | eNqFkEtLAzEUhYNUsK3-Axf5A1PzmKcLQeoTCm50HTLJnWnGaVKStNL-eqeMKxe6uBzuuXwH7pmhiXUWELqmZEEJzW-6xVZG5doFI4wPVpWS_AxNaVnwJKMpm6ApIZwmnBF-gWYhdITQYjhMUfcANph4wFuQnwGrfhcieGNbLPvWeRPXG1zLABo7i5vd8XjA0mr8BaZdx8ENa-kHsae9dh43w-ws7MFi_ZOsZRwCYrhE543sA1z96Bx9PD2-L1-S1dvz6_J-lShO8phUVNVa86YguiAyTSuZZTkwqllRM6rKKi0qycqigjJTXKaUa641IzUrOWEF53N0O-Yq70Lw0AhloozG2eil6QUl4tSa6MTYmji1JsbWBjj9BW-92Uh_-A-7GzEYHtsb8CIoA1aBNh5UFNqZvwO-AfcOjJE |
CitedBy_id | crossref_primary_10_1016_j_ins_2024_120858 crossref_primary_10_1016_j_ins_2024_121209 crossref_primary_10_1016_j_knosys_2024_111748 crossref_primary_10_1002_cpe_8355 crossref_primary_10_1016_j_jtice_2024_105915 crossref_primary_10_1016_j_patcog_2024_110772 crossref_primary_10_1016_j_patcog_2024_110635 crossref_primary_10_3390_s23218787 crossref_primary_10_1016_j_asoc_2024_111685 crossref_primary_10_1007_s10044_024_01311_x crossref_primary_10_1016_j_asoc_2024_112432 crossref_primary_10_1007_s12652_024_04808_9 crossref_primary_10_1016_j_ins_2024_120685 crossref_primary_10_1016_j_ins_2024_120147 crossref_primary_10_1016_j_eswa_2024_124782 crossref_primary_10_3390_s23229119 crossref_primary_10_1016_j_knosys_2024_112609 crossref_primary_10_1002_cpe_8387 crossref_primary_10_1002_cpe_7974 crossref_primary_10_1002_cpe_7973 crossref_primary_10_1016_j_ipm_2024_104031 crossref_primary_10_1016_j_engappai_2024_108635 crossref_primary_10_1016_j_asoc_2024_112347 crossref_primary_10_1002_cpe_7958 crossref_primary_10_1088_1742_6596_2858_1_012041 crossref_primary_10_1007_s11227_023_05688_0 crossref_primary_10_1016_j_asoc_2024_111419 crossref_primary_10_1016_j_dajour_2024_100407 crossref_primary_10_3390_e25030480 |
Cites_doi | 10.1109/ACCESS.2020.3022954 10.1126/science.1242072 10.1016/j.patcog.2020.107589 10.1016/j.ins.2018.03.031 10.1016/j.patcog.2020.107624 10.1023/A:1009783824328 10.1631/FITEE.2000691 10.1109/COMST.2015.2494502 10.1016/j.patcog.2020.107452 10.1016/j.ins.2016.03.011 10.1109/ACCESS.2019.2904254 10.1016/j.is.2006.10.006 10.1007/s12559-021-09906-w 10.1016/j.neucom.2016.11.019 10.1016/j.patcog.2020.107449 10.1016/j.ins.2019.08.060 10.1109/TFUZZ.2016.2604009 10.1109/ACCESS.2019.2918952 10.1016/j.patcog.2017.06.023 10.1016/j.asoc.2017.08.032 10.1111/j.2517-6161.1977.tb01600.x 10.1007/s13042-017-0636-1 10.1038/s41576-018-0088-9 10.1016/j.patrec.2009.09.011 10.1049/iet-ipr.2018.5949 10.1007/s00500-018-3183-0 10.1109/MCOM.2017.1601160 10.1504/IJBIC.2020.105899 10.1109/ACCESS.2019.2918772 10.1002/cpe.5567 10.1016/j.artint.2011.09.003 10.1016/j.knosys.2016.02.001 10.1016/j.patcog.2021.107836 10.1109/ACCESS.2022.3205742 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2023.109406 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
ExternalDocumentID | 10_1016_j_patcog_2023_109406 S0031320323001073 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-91cbdd3f70d70a449a556e21d27b21c89479a2879e85c3a413d3dd20b28302733 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Tue Jul 01 02:36:41 EDT 2025 Thu Apr 24 22:50:43 EDT 2025 Fri Feb 23 02:37:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fuzzy neighborhood Uneven density data Weighted shared neighbor Density peaks clustering K-nearest neighbor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-91cbdd3f70d70a449a556e21d27b21c89479a2879e85c3a413d3dd20b28302733 |
ORCID | 0000-0002-3652-1903 |
ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2023_109406 crossref_primary_10_1016_j_patcog_2023_109406 elsevier_sciencedirect_doi_10_1016_j_patcog_2023_109406 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Asheri, Hosseini, Araabi (bib0015) 2021; 114 Chen, Zhou, Bouguila, Wang, Chen, Du (bib0018) 2021; 109 Qin, Han, Chu, Zhang, Xu, Xie, Xie (bib0034) 2021; 13 Xu, Ding, Xu, Liao, Xue (bib0031) 2019; 23 Bai, Yang, Shi (bib0037) 2017; 226 Li, Zhou, Wang (bib0036) 2020; 8 Duan, Liu, Wang (bib0005) 2017; 55 Fang, Qiu, Yuan (bib0025) 2020; 107 Wang, Yang, Muntz (bib0014) 1997 Zhang, Ramakrishnan, Livny (bib0008) 1997; 1 Deng, Ye, Ma, Fujita, Xiong (bib0001) 2020; 508 Du, Ding, Xue (bib0023) 2018; 9 Guo, Wang, Zhao, Niu, Zhang, Liu (bib0035) 2022; 243 Bai, Cheng, Liang, Shen, Guo (bib0039) 2017; 71 Zhao, Chen, Xiao, Ye (bib0027) 2021; 22 Sun, Liu, Xu, Zhang (bib0024) 2019; 7 Xie, Gao, Xie, Liu, Grant (bib0029) 2016; 354 Abbas, El-Zoghabi, Shoukry (bib0033) 2021; 109 Liu, Wang, Yu (bib0040) 2018; 450 Mei, Wang, Chen, Miao (bib0003) 2017; 25 Zhao, Tang, Shi, Fan, Xu (bib0028) 2020; 15 Rodriguez, Laio (bib0019) 2014; 344 Buczak, Guven (bib0006) 2016; 18 Li, Zhou, Li, Yang (bib0026) 2022; 10 Zhuo, Li, Liao, Hao, Lib (bib0032) 2019; 7 Lian, Xiong, Lee, Feng (bib0011) 2007; 32 Chen, Zhang, Liu, Poon, Wang (bib0010) 2012; 176 Cheng, Zhu, Huang, Yang (bib0022) 2016 Jain (bib0007) 2010; 31 Yu, Liu, Guo, Liu, Yao (bib0030) 2019; 7 Lotfi, Moradi, Beigy (bib0020) 2020; 107 Ester, Kriegel, Sander, Xu (bib0017) 1996 Vinh, Epps, Bailey (bib0038) 2010; 11 Wen, Xuan, Li, Gao, Peng (bib0002) 2019; 14 Yu, Chu, Wang, Chan, Chang (bib0012) 2018; 68 Zhao, Tang, Fan, Li, Xu (bib0009) 2020; 32 Du, Ding, Jia (bib0021) 2016; 99 Karypis, Han, Kumar (bib0013) 1999; 32 Kiselev, Andrews, Hemberg (bib0004) 2019; 20 Dempster, Laird, Rubin (bib0016) 1977; 39 Kiselev (10.1016/j.patcog.2023.109406_bib0004) 2019; 20 Duan (10.1016/j.patcog.2023.109406_bib0005) 2017; 55 Zhuo (10.1016/j.patcog.2023.109406_bib0032) 2019; 7 Li (10.1016/j.patcog.2023.109406_bib0036) 2020; 8 Zhao (10.1016/j.patcog.2023.109406_bib0028) 2020; 15 Zhao (10.1016/j.patcog.2023.109406_bib0009) 2020; 32 Xie (10.1016/j.patcog.2023.109406_bib0029) 2016; 354 Qin (10.1016/j.patcog.2023.109406_bib0034) 2021; 13 Bai (10.1016/j.patcog.2023.109406_bib0037) 2017; 226 Lian (10.1016/j.patcog.2023.109406_bib0011) 2007; 32 Rodriguez (10.1016/j.patcog.2023.109406_bib0019) 2014; 344 Li (10.1016/j.patcog.2023.109406_bib0026) 2022; 10 Dempster (10.1016/j.patcog.2023.109406_bib0016) 1977; 39 Guo (10.1016/j.patcog.2023.109406_bib0035) 2022; 243 Karypis (10.1016/j.patcog.2023.109406_bib0013) 1999; 32 Ester (10.1016/j.patcog.2023.109406_bib0017) 1996 Bai (10.1016/j.patcog.2023.109406_bib0039) 2017; 71 Mei (10.1016/j.patcog.2023.109406_bib0003) 2017; 25 Fang (10.1016/j.patcog.2023.109406_bib0025) 2020; 107 Yu (10.1016/j.patcog.2023.109406_bib0030) 2019; 7 Asheri (10.1016/j.patcog.2023.109406_bib0015) 2021; 114 Buczak (10.1016/j.patcog.2023.109406_bib0006) 2016; 18 Wen (10.1016/j.patcog.2023.109406_bib0002) 2019; 14 Du (10.1016/j.patcog.2023.109406_bib0023) 2018; 9 Lotfi (10.1016/j.patcog.2023.109406_bib0020) 2020; 107 Xu (10.1016/j.patcog.2023.109406_bib0031) 2019; 23 Sun (10.1016/j.patcog.2023.109406_bib0024) 2019; 7 Yu (10.1016/j.patcog.2023.109406_bib0012) 2018; 68 Zhao (10.1016/j.patcog.2023.109406_bib0027) 2021; 22 Zhang (10.1016/j.patcog.2023.109406_bib0008) 1997; 1 Vinh (10.1016/j.patcog.2023.109406_bib0038) 2010; 11 Wang (10.1016/j.patcog.2023.109406_bib0014) 1997 Chen (10.1016/j.patcog.2023.109406_bib0018) 2021; 109 Jain (10.1016/j.patcog.2023.109406_bib0007) 2010; 31 Abbas (10.1016/j.patcog.2023.109406_bib0033) 2021; 109 Chen (10.1016/j.patcog.2023.109406_bib0010) 2012; 176 Cheng (10.1016/j.patcog.2023.109406_bib0022) 2016 Liu (10.1016/j.patcog.2023.109406_bib0040) 2018; 450 Deng (10.1016/j.patcog.2023.109406_bib0001) 2020; 508 Du (10.1016/j.patcog.2023.109406_bib0021) 2016; 99 |
References_xml | – volume: 20 start-page: 273 year: 2019 end-page: 282 ident: bib0004 article-title: Challenges in unsupervised clustering of single-cell RNA-seq data publication-title: Nat. Rev. Genet. – volume: 31 start-page: 651 year: 2010 end-page: 666 ident: bib0007 article-title: Data clustering: 50 Years beyond k-means publication-title: Pattern Recognit. Lett. – start-page: 226 year: 1996 end-page: 231 ident: bib0017 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining – volume: 344 start-page: 1492 year: 2014 end-page: 1496 ident: bib0019 article-title: Clustering by fast search and find of density peaks publication-title: Science – volume: 7 start-page: 74612 year: 2019 end-page: 74624 ident: bib0032 article-title: HCFS: a density peak based clustering algorithm employing a hierarchical strategy publication-title: IEEE Access – volume: 7 start-page: 34301 year: 2019 end-page: 34317 ident: bib0030 article-title: Density peaks clustering based on weighted local density sequence and nearest neighbor assignment publication-title: IEEE Access – volume: 7 start-page: 72936 year: 2019 end-page: 72955 ident: bib0024 article-title: An adaptive density peaks clustering method with Fisher linear discriminant publication-title: IEEE Access – volume: 243 year: 2022 ident: bib0035 article-title: Density Peak Clustering with connectivity estimation publication-title: Knowled.-Based Syst. – volume: 10 start-page: 98034 year: 2022 end-page: 98047 ident: bib0026 article-title: A new density peak clustering algorithm based on cluster fusion strategy publication-title: IEEE Access – volume: 11 start-page: 2837 year: 2010 end-page: 2854 ident: bib0038 article-title: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance publication-title: J. Mach. Learn. Res. – start-page: 186 year: 1997 end-page: 195 ident: bib0014 article-title: STING: a statistical information grid approach to spatial data mining publication-title: Proceedings of the 23rd International Conference on Very Large Data Bases – volume: 23 start-page: 5171 year: 2019 end-page: 5183 ident: bib0031 article-title: A feasible density peaks clustering algorithm with a merging strategy publication-title: Soft Comput. – volume: 508 start-page: 1 year: 2020 end-page: 21 ident: bib0001 article-title: Low-rank local tangent space embedding for subspace clustering publication-title: Inf. Sci. – volume: 39 start-page: 1 year: 1977 end-page: 22 ident: bib0016 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. Roy. Statist. Soc. Ser. C – volume: 8 start-page: 165963 year: 2020 end-page: 165972 ident: bib0036 article-title: F-DPC: fuzzy neighborhood-based density peak algorithm publication-title: IEEE Access – volume: 68 start-page: 747 year: 2018 end-page: 755 ident: bib0012 article-title: Two improved k-means algorithms publication-title: Appl. Soft Comput. – volume: 15 start-page: 24 year: 2020 end-page: 42 ident: bib0028 article-title: Improved density peaks clustering based on firefly algorithm publication-title: Int. J. Bio-Inspired Comput. – volume: 1 start-page: 141 year: 1997 end-page: 182 ident: bib0008 article-title: BIRCH: a new data clustering algorithm and its applications publication-title: Data Min. Knowl. Discov. – volume: 9 start-page: 1131 year: 2018 end-page: 1140 ident: bib0023 article-title: A robust density peaks clustering algorithm using fuzzy neighborhood publication-title: Int. J. Machine Learn. Cybernet. – volume: 114 year: 2021 ident: bib0015 article-title: A new EM algorithm for flexibly tied GMMs with large number of components publication-title: Pattern Recognit. – volume: 354 start-page: 19 year: 2016 end-page: 40 ident: bib0029 article-title: Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors publication-title: Inf. Sci. (Ny) – volume: 32 start-page: 978 year: 2007 end-page: 986 ident: bib0011 article-title: A local-density based spatial clustering algorithm with noise publication-title: Inf Syst – volume: 14 start-page: 576 year: 2019 end-page: 584 ident: bib0002 article-title: Image segmentation algorithm based on neutrosophic fuzzy clustering with non-local information publication-title: IET Image Proc. – start-page: 92 year: 2016 end-page: 98 ident: bib0022 article-title: Natural neighbor-based clustering algorithm with density peeks publication-title: 2016 International Joint Conference on Neural Networks – volume: 99 start-page: 135 year: 2016 end-page: 145 ident: bib0021 article-title: Study on density peaks clustering based on k-nearest neighbors and principal component analysis publication-title: Knowl.-Based Syst. – volume: 109 year: 2021 ident: bib0018 article-title: BLOCK-DBSCAN: fast clustering for large scale data publication-title: Pattern Recognit. – volume: 226 start-page: 7 year: 2017 end-page: 15 ident: bib0037 article-title: An overlapping community detection algorithm based on density peaks publication-title: Neurocomputing – volume: 176 start-page: 2246 year: 2012 end-page: 2269 ident: bib0010 article-title: Model-based multidimensional clustering of categorical data publication-title: Artif. Intell. – volume: 107 year: 2020 ident: bib0020 article-title: Density peaks clustering based on density backbone and fuzzy neighborhood publication-title: Pattern Recognit. – volume: 32 start-page: e5567 year: 2020 ident: bib0009 article-title: Density peaks clustering based on circular partition and grid similarity publication-title: Concurr. Comput. – volume: 71 start-page: 375 year: 2017 end-page: 386 ident: bib0039 article-title: Fast density clustering strategies based on the k-means algorithm publication-title: Pattern Recognit. – volume: 25 start-page: 1239 year: 2017 end-page: 1251 ident: bib0003 article-title: Large scale document categorization with fuzzy clustering publication-title: IEEE Trans. Fuzzy Syst. – volume: 450 start-page: 200 year: 2018 end-page: 226 ident: bib0040 article-title: Shared nearest neighbor based clustering by fast search and find of density peaks publication-title: Inf. Sci. (Ny) – volume: 13 start-page: 1609 year: 2021 end-page: 1626 ident: bib0034 article-title: Density peaks clustering based on jaccard similarity and label propagation publication-title: Cognit. Comput. – volume: 55 start-page: 120 year: 2017 end-page: 127 ident: bib0005 article-title: SDN enabled 5G-VANET: adaptive vehicle clustering and beam formed transmission for aggregated traffic publication-title: IEEE Commun. Mag. – volume: 22 start-page: 1311 year: 2021 end-page: 1333 ident: bib0027 article-title: Firefly algorithm with division of roles for complex optimal scheduling publication-title: Front. Inf. Technol. Electron. Eng. – volume: 107 year: 2020 ident: bib0025 article-title: Adaptive core fusion-based density peak clustering for complex data with arbitrary shapes and densities publication-title: Pattern Recognit. – volume: 18 start-page: 1153 year: 2016 end-page: 1176 ident: bib0006 article-title: A survey of data mining and machine learning methods for cyber security intrusion detection publication-title: IEEE Commun. Surv. Tutorials – volume: 32 start-page: 68 year: 1999 end-page: 75 ident: bib0013 article-title: Chameleon: hierarchical clustering using dynamic modeling publication-title: Computer (Long Beach Calif) – volume: 109 start-page: 78 year: 2021 end-page: 86 ident: bib0033 article-title: Denmune: density peak based clustering using mutual nearest neighbors publication-title: Pattern Recognit. – start-page: 186 year: 1997 ident: 10.1016/j.patcog.2023.109406_bib0014 article-title: STING: a statistical information grid approach to spatial data mining – volume: 8 start-page: 165963 year: 2020 ident: 10.1016/j.patcog.2023.109406_bib0036 article-title: F-DPC: fuzzy neighborhood-based density peak algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3022954 – volume: 344 start-page: 1492 issue: 6191 year: 2014 ident: 10.1016/j.patcog.2023.109406_bib0019 article-title: Clustering by fast search and find of density peaks publication-title: Science doi: 10.1126/science.1242072 – volume: 109 start-page: 78 year: 2021 ident: 10.1016/j.patcog.2023.109406_bib0033 article-title: Denmune: density peak based clustering using mutual nearest neighbors publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107589 – volume: 450 start-page: 200 year: 2018 ident: 10.1016/j.patcog.2023.109406_bib0040 article-title: Shared nearest neighbor based clustering by fast search and find of density peaks publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2018.03.031 – volume: 32 start-page: 68 issue: 8 year: 1999 ident: 10.1016/j.patcog.2023.109406_bib0013 article-title: Chameleon: hierarchical clustering using dynamic modeling publication-title: Computer (Long Beach Calif) – volume: 109 year: 2021 ident: 10.1016/j.patcog.2023.109406_bib0018 article-title: BLOCK-DBSCAN: fast clustering for large scale data publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107624 – volume: 1 start-page: 141 issue: 2 year: 1997 ident: 10.1016/j.patcog.2023.109406_bib0008 article-title: BIRCH: a new data clustering algorithm and its applications publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009783824328 – volume: 22 start-page: 1311 year: 2021 ident: 10.1016/j.patcog.2023.109406_bib0027 article-title: Firefly algorithm with division of roles for complex optimal scheduling publication-title: Front. Inf. Technol. Electron. Eng. doi: 10.1631/FITEE.2000691 – volume: 243 year: 2022 ident: 10.1016/j.patcog.2023.109406_bib0035 article-title: Density Peak Clustering with connectivity estimation publication-title: Knowled.-Based Syst. – volume: 18 start-page: 1153 issue: 2 year: 2016 ident: 10.1016/j.patcog.2023.109406_bib0006 article-title: A survey of data mining and machine learning methods for cyber security intrusion detection publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/COMST.2015.2494502 – volume: 107 year: 2020 ident: 10.1016/j.patcog.2023.109406_bib0025 article-title: Adaptive core fusion-based density peak clustering for complex data with arbitrary shapes and densities publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107452 – volume: 354 start-page: 19 year: 2016 ident: 10.1016/j.patcog.2023.109406_bib0029 article-title: Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2016.03.011 – volume: 7 start-page: 34301 year: 2019 ident: 10.1016/j.patcog.2023.109406_bib0030 article-title: Density peaks clustering based on weighted local density sequence and nearest neighbor assignment publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2904254 – volume: 32 start-page: 978 year: 2007 ident: 10.1016/j.patcog.2023.109406_bib0011 article-title: A local-density based spatial clustering algorithm with noise publication-title: Inf Syst doi: 10.1016/j.is.2006.10.006 – volume: 13 start-page: 1609 year: 2021 ident: 10.1016/j.patcog.2023.109406_bib0034 article-title: Density peaks clustering based on jaccard similarity and label propagation publication-title: Cognit. Comput. doi: 10.1007/s12559-021-09906-w – volume: 226 start-page: 7 year: 2017 ident: 10.1016/j.patcog.2023.109406_bib0037 article-title: An overlapping community detection algorithm based on density peaks publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.11.019 – volume: 11 start-page: 2837 issue: 1 year: 2010 ident: 10.1016/j.patcog.2023.109406_bib0038 article-title: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance publication-title: J. Mach. Learn. Res. – volume: 107 year: 2020 ident: 10.1016/j.patcog.2023.109406_bib0020 article-title: Density peaks clustering based on density backbone and fuzzy neighborhood publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107449 – volume: 508 start-page: 1 year: 2020 ident: 10.1016/j.patcog.2023.109406_bib0001 article-title: Low-rank local tangent space embedding for subspace clustering publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.08.060 – volume: 25 start-page: 1239 issue: 5 year: 2017 ident: 10.1016/j.patcog.2023.109406_bib0003 article-title: Large scale document categorization with fuzzy clustering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2016.2604009 – volume: 7 start-page: 72936 year: 2019 ident: 10.1016/j.patcog.2023.109406_bib0024 article-title: An adaptive density peaks clustering method with Fisher linear discriminant publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2918952 – volume: 71 start-page: 375 year: 2017 ident: 10.1016/j.patcog.2023.109406_bib0039 article-title: Fast density clustering strategies based on the k-means algorithm publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.06.023 – volume: 68 start-page: 747 year: 2018 ident: 10.1016/j.patcog.2023.109406_bib0012 article-title: Two improved k-means algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.08.032 – start-page: 226 year: 1996 ident: 10.1016/j.patcog.2023.109406_bib0017 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise – volume: 39 start-page: 1 year: 1977 ident: 10.1016/j.patcog.2023.109406_bib0016 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. Roy. Statist. Soc. Ser. C doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 9 start-page: 1131 issue: 7 year: 2018 ident: 10.1016/j.patcog.2023.109406_bib0023 article-title: A robust density peaks clustering algorithm using fuzzy neighborhood publication-title: Int. J. Machine Learn. Cybernet. doi: 10.1007/s13042-017-0636-1 – start-page: 92 year: 2016 ident: 10.1016/j.patcog.2023.109406_bib0022 article-title: Natural neighbor-based clustering algorithm with density peeks – volume: 20 start-page: 273 issue: 5 year: 2019 ident: 10.1016/j.patcog.2023.109406_bib0004 article-title: Challenges in unsupervised clustering of single-cell RNA-seq data publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-018-0088-9 – volume: 31 start-page: 651 year: 2010 ident: 10.1016/j.patcog.2023.109406_bib0007 article-title: Data clustering: 50 Years beyond k-means publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2009.09.011 – volume: 14 start-page: 576 issue: 3 year: 2019 ident: 10.1016/j.patcog.2023.109406_bib0002 article-title: Image segmentation algorithm based on neutrosophic fuzzy clustering with non-local information publication-title: IET Image Proc. doi: 10.1049/iet-ipr.2018.5949 – volume: 23 start-page: 5171 issue: 13 year: 2019 ident: 10.1016/j.patcog.2023.109406_bib0031 article-title: A feasible density peaks clustering algorithm with a merging strategy publication-title: Soft Comput. doi: 10.1007/s00500-018-3183-0 – volume: 55 start-page: 120 issue: 7 year: 2017 ident: 10.1016/j.patcog.2023.109406_bib0005 article-title: SDN enabled 5G-VANET: adaptive vehicle clustering and beam formed transmission for aggregated traffic publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2017.1601160 – volume: 15 start-page: 24 issue: 1 year: 2020 ident: 10.1016/j.patcog.2023.109406_bib0028 article-title: Improved density peaks clustering based on firefly algorithm publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2020.105899 – volume: 7 start-page: 74612 year: 2019 ident: 10.1016/j.patcog.2023.109406_bib0032 article-title: HCFS: a density peak based clustering algorithm employing a hierarchical strategy publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2918772 – volume: 32 start-page: e5567 year: 2020 ident: 10.1016/j.patcog.2023.109406_bib0009 article-title: Density peaks clustering based on circular partition and grid similarity publication-title: Concurr. Comput. doi: 10.1002/cpe.5567 – volume: 176 start-page: 2246 issue: 1 year: 2012 ident: 10.1016/j.patcog.2023.109406_bib0010 article-title: Model-based multidimensional clustering of categorical data publication-title: Artif. Intell. doi: 10.1016/j.artint.2011.09.003 – volume: 99 start-page: 135 year: 2016 ident: 10.1016/j.patcog.2023.109406_bib0021 article-title: Study on density peaks clustering based on k-nearest neighbors and principal component analysis publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.02.001 – volume: 114 year: 2021 ident: 10.1016/j.patcog.2023.109406_bib0015 article-title: A new EM algorithm for flexibly tied GMMs with large number of components publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.107836 – volume: 10 start-page: 98034 year: 2022 ident: 10.1016/j.patcog.2023.109406_bib0026 article-title: A new density peak clustering algorithm based on cluster fusion strategy publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3205742 |
SSID | ssj0017142 |
Score | 2.5732195 |
Snippet | •A new DPC algorithm for uneven density datasets is proposed.•A new local density calculation method based on fuzzy neighborhood is designed.•A new allocation... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109406 |
SubjectTerms | Density peaks clustering Fuzzy neighborhood K-nearest neighbor Uneven density data Weighted shared neighbor |
Title | Density peaks clustering algorithm based on fuzzy and weighted shared neighbor for uneven density datasets |
URI | https://dx.doi.org/10.1016/j.patcog.2023.109406 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRjwrD6xpk9iJk7EqVAVEJyp1ixLb6YOSVDQRagd-O3d5VCAhkBht2VF0vtx3F33-jpAbOzbtGJDTsJlkBuCtNiI_UgbzIu1JZblC4uXkp6E7GPGHsTNukF59FwZplVXsL2N6Ea2rmU5lzc5yNsM7vig7aDJIoqGoEKj4yblAL29_bGke2N-7VAxnloGr6-tzBcdrCeEunbSxhTjqKnHse_QTPH2BnP4B2atyRdotX-eQNHRyRPbrPgy0-iyPyfwWWejZmi51-LKicpGj-gFgEg0XkxSq_-krRbRSNE1onG82axomir4Xf0VhdjVFFjpNcAwuQSGPpXmC0k5UVU9GIulKZ6sTMurfPfcGRtVDwZBQDGQQy2SkFIuFqYQZcu6HjuNq21K2iGxLej4XfghVk689R7IQIE0xpWwzKoTBBGOnpJmkiT4j1AcoY66rHe1Z3ILqk_scqWpwph6q5J0TVpsukJXAOPa5WAQ1k2welAYP0OBBafBzYmx3LUuBjT_Wi_pUgm-OEgAG_Lrz4t87L8kujkqW7hVpZm-5voZcJItahbO1yE73_nEw_ATDON5P |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT4NAEJ3UetCL38b6uQevKLALC8emaqrWnjTxRmB3q9VKG0tj2l_vTFkaTYwmHlkYQmaXebPw5g3Aqd9z_R4ip-NzxR3EW-NkcaYdHmUmUtoLpaLi5Ltu2H4QN4_BYw1aVS0M0Spt7C9j-jxa25Fz683zUb9PNb4kO-hyTKJxUyH5EiyTOlVQh-Xm9W27u_iZID1RioZzzyGDqoJuTvMaYcQbPp1RF3GSVhLU-ugnhPqCOlcbsGbTRdYsn2gTaibfgvWqFQOzb-Y2vFwQEb2YspFJX8dMDSYkgICwxNLB0_C9Xzy_MQIszYY5601msylLc80-5h9GcXT8TER0ltMxrgqGqSyb5KTuxLS9M3FJx6YY78DD1eV9q-3YNgqOwv1AgeFMZVrznnS1dFMh4jQIQuN72peZ76koFjJOceMUmyhQPEVU01xr383m2mCS812o58Pc7AGLEc14GJrARJ7wcAMqYkFsNZzWiITyGsAr1yXKaoxTq4tBUpHJXpLS4Qk5PCkd3gBnYTUqNTb-uF5Ws5J8WysJwsCvlvv_tjyBlfb9XSfpXHdvD2CVzpSk3UOoF-8Tc4SpSZEd26X3CWuW4QA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Density+peaks+clustering+algorithm+based+on+fuzzy+and+weighted+shared+neighbor+for+uneven+density+datasets&rft.jtitle=Pattern+recognition&rft.au=Zhao%2C+Jia&rft.au=Wang%2C+Gang&rft.au=Pan%2C+Jeng-Shyang&rft.au=Fan%2C+Tanghuai&rft.date=2023-07-01&rft.issn=0031-3203&rft.volume=139&rft.spage=109406&rft_id=info:doi/10.1016%2Fj.patcog.2023.109406&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2023_109406 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |