Highly efficient near-infrared hybrid perovskite solar cells by integrating with a novel organic bulk-heterojunction
Extending photoelectric response to near-infrared region (NIR) has become an urgent subject for the research of perovskite solar cells (PSCs). However, it is still a challenge due to the shortage of matching NIR photovoltaic materials and device structure. The rapid development of NIR organic photov...
Saved in:
Published in | Nano energy Vol. 77; p. 105181 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2211-2855 |
DOI | 10.1016/j.nanoen.2020.105181 |
Cover
Loading…
Abstract | Extending photoelectric response to near-infrared region (NIR) has become an urgent subject for the research of perovskite solar cells (PSCs). However, it is still a challenge due to the shortage of matching NIR photovoltaic materials and device structure. The rapid development of NIR organic photovoltaic materials and devices (OPVs) in recent years offers new opportunity for developing such PSCs. Herein, to broaden the photoresponse of PSCs, a novel PBDB-TF: BTP-4Cl bulk-heterojunction (BHJ) organic layer was successfully integrated on the PSCs, which extended the photoresponse of the device to 950 nm. And more, to boost the utilization of NIR light, the Au nanorods (Au NRs) were introduced into the organic BHJ layer through localized surface plasmon effect (LSPR). To further improve the device stability and satisfy solution competition, the MoO3 was fabricated as hole transport layer substituting traditional Spiro-OMeTAD. After adopting such a device, the power conversion efficiency (PCE) was increased significantly from 16.67% to 21.55%, which was the optimum among the reported organic/perovskite hybrid solar cells and the devices employing MoO3 as the hole transport layer. The illumination and humidity stability of the perovskite/organic/noble metal integrated solar cells were also significantly improved. The devices under standard sunlight irradiation for 1000 h maintained more than 70% of initial PCE. This work demonstrates that the perovskite/organic/noble metal integrated structure is a novel and powerful approach to obtain efficient and stable NIR-harvesting PSCs.
In this work, a novel PBDB-TF: BTP-4Cl organic layer was successfully integrated on the PSCs, which extended the photoresponse of device to 950 nm. To improve the power conversion efficiency (PCE) and stability, the perovskite/organic/noble metal integrated solar cells was fabricated. Finally, PCE was increased significantly from 16.67% to 21.55%, which was the optimum among the reported organic/perovskite hybrid solar cells. The illumination and humidity stability of the perovskite/organic/noble metal integrated solar cells were also significantly improved. [Display omitted]
•A novel PBDB-TF: BTP-4Cl bulk-heterojunction organic layer was firstly successfully integrated on the PSCs.•We further introduced the Au NR layer to boost the harvesting of NIR as well as visible light.•We obtained the novel, spectral extended, and environment-stable perovskite/organic/Au NRs hybrid PSCs.•The PCE was 21.55%, which was the optimum among the reported organic/perovskite hybrid solar cells.•The devices under standard sunlight irradiation for 1000 h maintained more than 70% of initial PCE. |
---|---|
AbstractList | Extending photoelectric response to near-infrared region (NIR) has become an urgent subject for the research of perovskite solar cells (PSCs). However, it is still a challenge due to the shortage of matching NIR photovoltaic materials and device structure. The rapid development of NIR organic photovoltaic materials and devices (OPVs) in recent years offers new opportunity for developing such PSCs. Herein, to broaden the photoresponse of PSCs, a novel PBDB-TF: BTP-4Cl bulk-heterojunction (BHJ) organic layer was successfully integrated on the PSCs, which extended the photoresponse of the device to 950 nm. And more, to boost the utilization of NIR light, the Au nanorods (Au NRs) were introduced into the organic BHJ layer through localized surface plasmon effect (LSPR). To further improve the device stability and satisfy solution competition, the MoO3 was fabricated as hole transport layer substituting traditional Spiro-OMeTAD. After adopting such a device, the power conversion efficiency (PCE) was increased significantly from 16.67% to 21.55%, which was the optimum among the reported organic/perovskite hybrid solar cells and the devices employing MoO3 as the hole transport layer. The illumination and humidity stability of the perovskite/organic/noble metal integrated solar cells were also significantly improved. The devices under standard sunlight irradiation for 1000 h maintained more than 70% of initial PCE. This work demonstrates that the perovskite/organic/noble metal integrated structure is a novel and powerful approach to obtain efficient and stable NIR-harvesting PSCs.
In this work, a novel PBDB-TF: BTP-4Cl organic layer was successfully integrated on the PSCs, which extended the photoresponse of device to 950 nm. To improve the power conversion efficiency (PCE) and stability, the perovskite/organic/noble metal integrated solar cells was fabricated. Finally, PCE was increased significantly from 16.67% to 21.55%, which was the optimum among the reported organic/perovskite hybrid solar cells. The illumination and humidity stability of the perovskite/organic/noble metal integrated solar cells were also significantly improved. [Display omitted]
•A novel PBDB-TF: BTP-4Cl bulk-heterojunction organic layer was firstly successfully integrated on the PSCs.•We further introduced the Au NR layer to boost the harvesting of NIR as well as visible light.•We obtained the novel, spectral extended, and environment-stable perovskite/organic/Au NRs hybrid PSCs.•The PCE was 21.55%, which was the optimum among the reported organic/perovskite hybrid solar cells.•The devices under standard sunlight irradiation for 1000 h maintained more than 70% of initial PCE. |
ArticleNumber | 105181 |
Author | Liu, Shuainan Wu, Yanjie Shi, Zhichong Bi, Wenbo Chen, Cong Dai, Qilin Xu, Lin Song, Hongwei Bai, Xue Gao, Yanbo Zhuang, Xinmeng Song, Zonglong |
Author_xml | – sequence: 1 givenname: Yanjie surname: Wu fullname: Wu, Yanjie organization: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China – sequence: 2 givenname: Yanbo surname: Gao fullname: Gao, Yanbo organization: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China – sequence: 3 givenname: Xinmeng surname: Zhuang fullname: Zhuang, Xinmeng organization: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China – sequence: 4 givenname: Zhichong surname: Shi fullname: Shi, Zhichong organization: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China – sequence: 5 givenname: Wenbo surname: Bi fullname: Bi, Wenbo organization: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China – sequence: 6 givenname: Shuainan surname: Liu fullname: Liu, Shuainan organization: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China – sequence: 7 givenname: Zonglong surname: Song fullname: Song, Zonglong organization: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China – sequence: 8 givenname: Cong surname: Chen fullname: Chen, Cong organization: School of Material Science and Engineering, Hebei University of Technology, Dingzigu Road 1, Tianjin, 300130, People’s Republic of China – sequence: 9 givenname: Xue surname: Bai fullname: Bai, Xue organization: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China – sequence: 10 givenname: Lin surname: Xu fullname: Xu, Lin organization: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China – sequence: 11 givenname: Qilin orcidid: 0000-0001-8680-4306 surname: Dai fullname: Dai, Qilin organization: Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA – sequence: 12 givenname: Hongwei surname: Song fullname: Song, Hongwei email: songhw@jlu.edu.cn organization: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China |
BookMark | eNqFkLFOwzAQhj0UiQJ9Awa_QIqdNE7CgIQqoEiVWGC2Ls4luTbYle0W9e1pVCYGuOWXTvp-3X1XbGKdRcZupZhLIdXdZm7BOrTzVKTjKpelnLBpmkqZpGWeX7JZCBtxGpXLQqZTFlfU9cORY9uSIbSRWwSfkG09eGx4f6w9NXyH3h3CliLy4Abw3OAwBF4fOdmInYdItuNfFHsO3LoDDtz5DiwZXu-HbdJjPDVs9tZEcvaGXbQwBJz95DX7eH56X66S9dvL6_JxnZhMqJhUol7UmQIBRaWMKjKl6qI2jSmNzLKyBGNy0ajSQNrKChqARSaLpoK8FiVWeXbN7s-9xrsQPLbaUITxguiBBi2FHrXpjT5r06M2fdZ2ghe_4J2nT_DH_7CHM4anxw6EXofRq8GGPJqoG0d_F3wDCiyQVw |
CitedBy_id | crossref_primary_10_1142_S021797922350114X crossref_primary_10_1002_adfm_202213963 crossref_primary_10_3390_en16010266 crossref_primary_10_1002_adma_202406872 crossref_primary_10_1016_j_cej_2021_130841 crossref_primary_10_1016_j_cej_2021_131310 crossref_primary_10_1002_adma_202206047 crossref_primary_10_1039_D0CS01488E crossref_primary_10_1002_adfm_202403020 crossref_primary_10_1002_adfm_202203873 crossref_primary_10_1002_adom_202302053 crossref_primary_10_1016_j_nanoen_2022_107368 crossref_primary_10_1021_acsami_3c14454 crossref_primary_10_1364_AO_533580 crossref_primary_10_1016_j_jcis_2023_05_132 crossref_primary_10_1007_s40843_020_1499_8 crossref_primary_10_1016_j_cej_2023_142025 crossref_primary_10_1002_adma_202411015 crossref_primary_10_1016_j_comptc_2022_113835 crossref_primary_10_1002_aenm_202200005 crossref_primary_10_1016_j_talanta_2024_127248 crossref_primary_10_1088_1361_6463_ac84e8 crossref_primary_10_1021_acsami_3c04032 crossref_primary_10_1021_acsami_4c09281 crossref_primary_10_1016_j_cej_2023_142449 crossref_primary_10_1002_agt2_46 crossref_primary_10_1002_smll_202106083 crossref_primary_10_1002_adfm_202401007 crossref_primary_10_1002_poc_4424 crossref_primary_10_1002_adfm_202107129 crossref_primary_10_1016_j_jallcom_2023_172841 crossref_primary_10_1021_acsaem_1c02666 crossref_primary_10_1039_D4CP00849A crossref_primary_10_1016_j_cej_2021_131872 crossref_primary_10_1002_adfm_202106121 crossref_primary_10_1002_adfm_202208539 crossref_primary_10_1002_adom_202202827 crossref_primary_10_1021_acsaem_2c03425 crossref_primary_10_1007_s10825_025_02281_x crossref_primary_10_1002_solr_202100375 |
Cites_doi | 10.1021/acsmacrolett.9b00704 10.1126/science.aaf9717 10.1039/C4TA04272G 10.1039/C7NR00784A 10.1002/adfm.200601110 10.1002/adma.201902250 10.1038/s41467-018-07882-8 10.1016/j.tsf.2005.11.020 10.1021/jz5002117 10.1002/aenm.201801582 10.1002/aenm.201602121 10.1039/C5EE03229F 10.1021/acsami.7b15310 10.1002/adma.201604545 10.1002/aenm.201602400 10.1039/C3MH00098B 10.1002/adma.201504555 10.1002/adma.201907757 10.1021/jacs.8b09300 10.1126/science.aah5557 10.1002/smll.201801016 10.1021/acsami.8b10312 10.1016/j.nanoen.2019.02.070 10.1021/acs.chemmater.8b05316 10.1002/marc.202000144 10.1007/s10854-018-9135-8 10.1039/C8EE00124C 10.1021/ja5033259 10.1021/acsami.5b12740 10.1016/j.cclet.2019.12.003 10.1039/C4MH00237G 10.1039/C4TA04482G 10.1038/nnano.2015.230 10.1039/C7TA04943A 10.1039/C7TA04529H 10.3390/app9040719 10.1038/nenergy.2016.89 10.1021/acs.nanolett.7b02532 10.1039/C8EE02542H 10.1021/acs.macromol.9b01233 10.1021/acsami.0c04258 10.1002/adma.201701619 10.1021/ja809598r 10.1021/jacs.6b04519 10.1021/acsami.9b01587 10.1021/acsami.0c00607 10.3389/fchem.2018.00147 10.1002/adfm.201704507 10.1002/adma.201800855 10.1002/aenm.201703399 10.1038/nphoton.2013.80 10.1038/s41560-018-0181-5 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2020.105181 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2020_105181 S221128552030759X |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-90b4b36a0a796c67366b7bcdc8c13388acc50d68ca2f19adaa4317d9a5b08e953 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Thu Apr 24 23:05:58 EDT 2025 Tue Jul 01 00:56:40 EDT 2025 Fri Feb 23 02:45:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Au nanorods Photoresponse Stability Plasmon Perovskite solar cells |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-90b4b36a0a796c67366b7bcdc8c13388acc50d68ca2f19adaa4317d9a5b08e953 |
ORCID | 0000-0001-8680-4306 |
ParticipantIDs | crossref_citationtrail_10_1016_j_nanoen_2020_105181 crossref_primary_10_1016_j_nanoen_2020_105181 elsevier_sciencedirect_doi_10_1016_j_nanoen_2020_105181 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2020 2020-11-00 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Tang, Chen, Xiao, Yang, Li, Wang, Zhou (bib24) 2018; 6 You, Meng, Song, Guo, Yang, Chang, Hong, Chen, Zhou, Chen, Liu, De Marco, Yang (bib28) 2016; 11 Jin, Chen, Zhang, Xu, Dong, Song, Dai (bib54) 2017; 9 Liu, Chen, Qian, Gautam, Yang, Zhao, Bergqvist, Zhang, Ma, Ade (bib44) 2016; 1 Xiao, Tang, Zhang, Li, Wang, Zhou (bib23) 2018; 10 Shi, Chen, Wang, Koh, Uddin, Liu, Liao, Feng, Woo, Xiao, Guo (bib40) 2020; 41 Ogomi, Morita, Tsukamoto, Saitho, Fujikawa, Shen, Toyoda, Yoshino, Pandey, Ma, Hayase (bib10) 2014; 5 Kojima, Teshima, Shirai, Miyasaka (bib33) 2009; 131 Chen, Zhang, Xu, Xue, Li, Zhou, Hou, Li (bib11) 2018; 30 Gaulding, Hao, Kang, Miller, Habisreutinger, Zhao, Hazarika, Sercel, Luther, Blackburn (bib31) 2019; 31 Han, Luo, Yin, Zhou, Nan, Li, Li, Oron, Shen, Lin (bib50) 2018; 14 Lin, Shen, Dai, Deng, Wu, Bai, Zheng, Wang, Fang, Wei, Ma, Zeng, Zhan, Huang (bib56) 2017; 29 Eperon, Leijtens, Bush, Prasanna, Green, Wang, McMeekin, Volonakis, Milot, May (bib12) 2016; 354 Meng, Feng, Yang, Lv, Cao, Tang (bib32) 2019; 11 Cacovich, Cinà, Matteocci, Divitini, Midgley, Di Carlo, Ducati (bib55) 2017; 9 Zuo, Ding (bib26) 2015; 3 Chen, Bae, Chang, Hong, Li, Chen, Zhou, Yang (bib16) 2015; 2 Niu, Lu, Tang, Barrit, Smilgies, Yang, Li, Fan, L, MuCulloch, Amassian, Liu, Zhao (bib30) 2018; 11 Chen, Zheng, Yang, Padture, Huang (bib13) 2017; 7 Chang, Tseng, Wu, Feng, Jeng, Chen, Lee, Poko, Jacak, Gwozdz (bib51) 2019; 9 Cui, Yao, Zhang, Zhang, Wang, Hong, Xian, Xu, Zhang, Peng, Wei, Gao, Hou (bib25) 2019; 10 Qin, Cao, Zhang, Mai, Lau, Zhou, Zhou, Wang, Hsu, Zhao, Xu, Zhan, Lu (bib53) 2018; 8 Research-cell efficiency chart (bib5) Gao, Zhu, Xu, Jo, Kan, Peng, Jen (bib47) 2017; 29 Eperon, Leijtens, Bush, Prasanna, Green, Wang, McMeekin, Volonakis, Milot, May, Palmstrom, Slotcavage, Belisle, Patel, Parrott, Sutton, Ma, Moghadam, Conings, Babayigit, Boyen, Bent, Giustino, Herz, Johnston, McGehee, Snaith (bib8) 2016; 354 Tang, Xiao, Chen, Zhang, Wei, Zhou (bib18) 2018; 8 Gao, Wu, Lu, Chen, Liu, Bai, Yu, Dai, Zhang (bib43) 2019; 59 Mandoc, Veurman, Koster, de Boer, Blom (bib52) 2007; 17 Tang, Zhan, Yao, Zhou (bib21) 2017; 29 Liu, Renna, Bag, Page, Kim, Choi, Emrick, Venkataraman, Russell (bib15) 2016; 8 Yu, Li, He, Wang, Qin, Zhou, Liu, Andersen, Zhu, Chen, Li (bib42) 2020; 31 Kim, Kim, Back, Kong, Hwang, Kim, Kwon, Lee, Lee, Yu, Lee, Kang, Lee (bib49) 2016; 28 Tang, Zhang, Du, Li, Geng, Zhang, Wei, Sun, Zhou (bib20) 2019; 52 Tathavadekar, Krishnamurthy, Banerjee, Nagane, Gawli, Suryawanshi, Bhat, Puthusseri, Mohite, Ogale (bib2) 2017; 5 Tang, Song, Xiao, Guo, Min, Ge, Zhang, Wei, Zhou (bib19) 2019; 31 Li, Tang, Zhang, Zhou (bib22) 2019; 8 de Castro, I, Datta, Ou, Castellanos-Gomez, Sriram, Daeneke, Kalantar-Zadeh (bib29) 2017; 29 Cha, Da, Wang, Wang, Chen, Xiu, Zheng, Wang (bib37) 2016; 138 Yu, Zheng, Cheng, Lai, Zhou, Yu (bib35) 2018; 29 Heo, Im, Noh, Mandal, Lim, Chang, Lee, Kim, Sarkar, Grätzel, Nazeeruddin, Seok (bib36) 2013; 7 Dong, Liu, Hong, Yao, Sun, Meng, Lin, Huang, Li, Yang (bib45) 2017; 17 Li, Chang, Wang, Lin, Wang, Lin, Chen, Sheu, Chia, Wu, Jeng, Liang, Sankar, Chou, Chen (bib39) 2016; 9 Grätzel, Schmidt-Mende (bib38) 2006; 500 Bredas (bib41) 2014; 1 Zhang, Tan, Guo, Facchetti, Yan (bib27) 2018; 3 Meggiolaro, Motti, Mosconi, Barker, Ball, Andrea Riccardo Perini, Deschler, Petrozza, De Angelis (bib4) 2018; 11 Wu, Bi, Shi, Zhuang, Song, Liu, Chen, Xu, Dai, Song (bib7) 2020; 12 Zhang, Dai, Chandrabose, Chen, Liu, Qin, Lu, Hodgkiss, Zhou, Zhan (bib34) 2018; 140 Zhou, Liu, Jin, Chen, Xu, Yin, Pan, Li, Song (bib46) 2017; 5 Saliba, Matsui, Domanski, Seo, Ummadisingu, Zakeeruddin, Correa-Baena, Tress, Abate, Hagfeldt, Grätzel (bib3) 2016; 354 Forgács, Gil-Escrig, Pérez-Del-Rey, Momblona, Werner, Niesen, Ballif, Sessolo, Bolink (bib14) 2017; 7 Bi, Wu, Chen, Zhou, Song, Li, Chen, Dai, Zhu, Song (bib6) 2020; 12 Zhu, Liu, Eickemeyer, Pan, Ren, Ruiz-Preciado, Carlsen, Yang, Dong, Wang, Liu, Wang, Zakeeruddin, Hagfeldt, Dar, Li, Grätzel (bib1) 2020; 32 Hu, Wang, Liu, Peng, Cao, Shao, Xia, Ma, Tang (bib48) 2015; 3 Tang, Xiao, Wang, Gao, Tajima, Bin, Zhang, Li, Wei, Zhou (bib17) 2017; 28 Hao, Stoumpos, Chang, Kanatzidis (bib9) 2014; 136 You (10.1016/j.nanoen.2020.105181_bib28) 2016; 11 Saliba (10.1016/j.nanoen.2020.105181_bib3) 2016; 354 Zhou (10.1016/j.nanoen.2020.105181_bib46) 2017; 5 Meggiolaro (10.1016/j.nanoen.2020.105181_bib4) 2018; 11 Heo (10.1016/j.nanoen.2020.105181_bib36) 2013; 7 Li (10.1016/j.nanoen.2020.105181_bib22) 2019; 8 Chen (10.1016/j.nanoen.2020.105181_bib11) 2018; 30 Gaulding (10.1016/j.nanoen.2020.105181_bib31) 2019; 31 Tang (10.1016/j.nanoen.2020.105181_bib21) 2017; 29 Shi (10.1016/j.nanoen.2020.105181_bib40) 2020; 41 Yu (10.1016/j.nanoen.2020.105181_bib35) 2018; 29 Hu (10.1016/j.nanoen.2020.105181_bib48) 2015; 3 Niu (10.1016/j.nanoen.2020.105181_bib30) 2018; 11 Cha (10.1016/j.nanoen.2020.105181_bib37) 2016; 138 Wu (10.1016/j.nanoen.2020.105181_bib7) 2020; 12 Tang (10.1016/j.nanoen.2020.105181_bib24) 2018; 6 de Castro (10.1016/j.nanoen.2020.105181_bib29) 2017; 29 Lin (10.1016/j.nanoen.2020.105181_bib56) 2017; 29 Tang (10.1016/j.nanoen.2020.105181_bib18) 2018; 8 Kim (10.1016/j.nanoen.2020.105181_bib49) 2016; 28 Zhu (10.1016/j.nanoen.2020.105181_bib1) 2020; 32 Chen (10.1016/j.nanoen.2020.105181_bib13) 2017; 7 Chen (10.1016/j.nanoen.2020.105181_bib16) 2015; 2 Han (10.1016/j.nanoen.2020.105181_bib50) 2018; 14 Cui (10.1016/j.nanoen.2020.105181_bib25) 2019; 10 Li (10.1016/j.nanoen.2020.105181_bib39) 2016; 9 Bi (10.1016/j.nanoen.2020.105181_bib6) 2020; 12 Hao (10.1016/j.nanoen.2020.105181_bib9) 2014; 136 Tang (10.1016/j.nanoen.2020.105181_bib20) 2019; 52 Gao (10.1016/j.nanoen.2020.105181_bib43) 2019; 59 Kojima (10.1016/j.nanoen.2020.105181_bib33) 2009; 131 Dong (10.1016/j.nanoen.2020.105181_bib45) 2017; 17 Zhang (10.1016/j.nanoen.2020.105181_bib27) 2018; 3 Eperon (10.1016/j.nanoen.2020.105181_bib8) 2016; 354 Tathavadekar (10.1016/j.nanoen.2020.105181_bib2) 2017; 5 Chang (10.1016/j.nanoen.2020.105181_bib51) 2019; 9 Qin (10.1016/j.nanoen.2020.105181_bib53) 2018; 8 Forgács (10.1016/j.nanoen.2020.105181_bib14) 2017; 7 Research-cell efficiency chart (10.1016/j.nanoen.2020.105181_bib5) Zhang (10.1016/j.nanoen.2020.105181_bib34) 2018; 140 Mandoc (10.1016/j.nanoen.2020.105181_bib52) 2007; 17 Zuo (10.1016/j.nanoen.2020.105181_bib26) 2015; 3 Ogomi (10.1016/j.nanoen.2020.105181_bib10) 2014; 5 Xiao (10.1016/j.nanoen.2020.105181_bib23) 2018; 10 Cacovich (10.1016/j.nanoen.2020.105181_bib55) 2017; 9 Eperon (10.1016/j.nanoen.2020.105181_bib12) 2016; 354 Yu (10.1016/j.nanoen.2020.105181_bib42) 2020; 31 Jin (10.1016/j.nanoen.2020.105181_bib54) 2017; 9 Liu (10.1016/j.nanoen.2020.105181_bib15) 2016; 8 Liu (10.1016/j.nanoen.2020.105181_bib44) 2016; 1 Meng (10.1016/j.nanoen.2020.105181_bib32) 2019; 11 Gao (10.1016/j.nanoen.2020.105181_bib47) 2017; 29 Tang (10.1016/j.nanoen.2020.105181_bib19) 2019; 31 Grätzel (10.1016/j.nanoen.2020.105181_bib38) 2006; 500 Tang (10.1016/j.nanoen.2020.105181_bib17) 2017; 28 Bredas (10.1016/j.nanoen.2020.105181_bib41) 2014; 1 |
References_xml | – volume: 3 start-page: 9063 year: 2015 end-page: 9066 ident: bib26 publication-title: J. Mater. Chem. A – volume: 29 start-page: 1604545 year: 2017 ident: bib56 publication-title: Adv. Mater. – volume: 131 start-page: 6050 year: 2009 end-page: 6051 ident: bib33 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 14938 year: 2018 end-page: 14944 ident: bib34 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1282 year: 2016 end-page: 1289 ident: bib39 publication-title: Energy Environ. Sci. – volume: 7 start-page: 1602400 year: 2017 ident: bib13 publication-title: Adv. Energy Mater. – volume: 30 start-page: 1800855 year: 2018 ident: bib11 publication-title: Adv. Mater. – volume: 29 start-page: 1701619 year: 2017 ident: bib29 publication-title: Adv. Mater. – ident: bib5 – volume: 11 start-page: 75 year: 2016 ident: bib28 publication-title: Nat. Nanotechnol. – volume: 1 start-page: 16089 year: 2016 ident: bib44 publication-title: Nat. Energy – volume: 7 start-page: 1602121 year: 2017 ident: bib14 publication-title: Adv. Energy Mater. – volume: 41 start-page: 2000144 year: 2020 ident: bib40 publication-title: Macromol. Rapid Commun. – volume: 354 start-page: 861 year: 2016 ident: bib8 publication-title: Science – volume: 10 start-page: 34427 year: 2018 end-page: 34434 ident: bib23 publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 10669 year: 2018 end-page: 10676 ident: bib35 publication-title: J. Mater. Sci. Mater. Electron. – volume: 8 start-page: 7070 year: 2016 end-page: 7076 ident: bib15 publication-title: ACS Appl. Mater. Interfaces – volume: 52 start-page: 6227 year: 2019 end-page: 6233 ident: bib20 publication-title: Macromolecules – volume: 3 start-page: 515 year: 2015 end-page: 518 ident: bib48 publication-title: J. Mater. Chem. A – volume: 8 start-page: 1703399 year: 2018 ident: bib53 publication-title: Adv. Energy Mater. – volume: 8 start-page: 1599 year: 2019 end-page: 1604 ident: bib22 publication-title: ACS Macro Lett. – volume: 31 start-page: 3941 year: 2019 end-page: 3947 ident: bib19 publication-title: Chem. Mater. – volume: 11 start-page: 3358 year: 2018 end-page: 3366 ident: bib30 publication-title: Energy Environ. Sci. – volume: 29 year: 2017 ident: bib47 publication-title: Adv. Mater. – volume: 8 start-page: 1801582 year: 2018 ident: bib18 publication-title: Adv. Energy Mater. – volume: 5 start-page: 18634 year: 2017 end-page: 18642 ident: bib2 publication-title: J. Mater. Chem. A – volume: 32 start-page: 1907757 year: 2020 ident: bib1 publication-title: Adv. Mater. – volume: 10 start-page: 1 year: 2019 end-page: 8 ident: bib25 publication-title: Nat. Commun. – volume: 5 start-page: 1004 year: 2014 end-page: 1011 ident: bib10 publication-title: J. Phys. Chem. Lett. – volume: 28 start-page: 1704507 year: 2017 ident: bib17 publication-title: Adv. Funct. Mater. – volume: 138 start-page: 8581 year: 2016 end-page: 8587 ident: bib37 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 4700 year: 2017 end-page: 4706 ident: bib55 publication-title: Nanoscale – volume: 31 start-page: 1902250 year: 2019 ident: bib31 publication-title: Adv. Mater. – volume: 28 start-page: 3159 year: 2016 end-page: 3165 ident: bib49 publication-title: Adv. Mater. – volume: 29 year: 2017 ident: bib21 publication-title: Adv. Mater. – volume: 5 start-page: 16559 year: 2017 end-page: 16567 ident: bib46 publication-title: J. Mater. Chem. A – volume: 2 start-page: 203 year: 2015 end-page: 211 ident: bib16 publication-title: Mater. Horiz. – volume: 7 start-page: 486 year: 2013 end-page: 491 ident: bib36 publication-title: Nat. Photon. – volume: 14 start-page: 1801016 year: 2018 ident: bib50 publication-title: Small – volume: 12 start-page: 24737 year: 2020 end-page: 24746 ident: bib6 publication-title: ACS Appl. Mater. Interfaces – volume: 17 start-page: 2167 year: 2007 end-page: 2173 ident: bib52 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 702 year: 2018 end-page: 713 ident: bib4 publication-title: Energy Environ. Sci. – volume: 3 start-page: 720 year: 2018 end-page: 731 ident: bib27 publication-title: Nat. Energy – volume: 12 start-page: 17509 year: 2020 end-page: 17518 ident: bib7 publication-title: ACS Appl. Mater. Interfaces – volume: 354 start-page: 206 year: 2016 end-page: 209 ident: bib3 publication-title: Science – volume: 6 start-page: 147 year: 2018 ident: bib24 publication-title: Front. Chem. – volume: 31 start-page: 1991 year: 2020 end-page: 1996 ident: bib42 publication-title: Chin. Chem. Lett. – volume: 9 start-page: 42875 year: 2017 end-page: 44288 ident: bib54 publication-title: ACS Appl. Mater. Interfaces – volume: 500 start-page: 296 year: 2006 end-page: 301 ident: bib38 publication-title: Thin Solid Films – volume: 59 start-page: 517 year: 2019 end-page: 526 ident: bib43 publication-title: Nano Energy – volume: 9 start-page: 719 year: 2019 ident: bib51 publication-title: Appl. Sci. – volume: 354 start-page: 861 year: 2016 ident: bib12 publication-title: Science – volume: 17 start-page: 5140 year: 2017 end-page: 5147 ident: bib45 publication-title: Nano Lett. – volume: 11 start-page: 13273 year: 2019 end-page: 13278 ident: bib32 publication-title: ACS Appl. Mater. Interfaces – volume: 136 start-page: 8094 year: 2014 end-page: 8099 ident: bib9 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 17 year: 2014 ident: bib41 publication-title: Mater. Horiz. – volume: 8 start-page: 1599 year: 2019 ident: 10.1016/j.nanoen.2020.105181_bib22 publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.9b00704 – volume: 354 start-page: 861 year: 2016 ident: 10.1016/j.nanoen.2020.105181_bib12 publication-title: Science doi: 10.1126/science.aaf9717 – volume: 3 start-page: 515 year: 2015 ident: 10.1016/j.nanoen.2020.105181_bib48 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04272G – volume: 9 start-page: 4700 year: 2017 ident: 10.1016/j.nanoen.2020.105181_bib55 publication-title: Nanoscale doi: 10.1039/C7NR00784A – volume: 17 start-page: 2167 year: 2007 ident: 10.1016/j.nanoen.2020.105181_bib52 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200601110 – volume: 31 start-page: 1902250 year: 2019 ident: 10.1016/j.nanoen.2020.105181_bib31 publication-title: Adv. Mater. doi: 10.1002/adma.201902250 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.nanoen.2020.105181_bib25 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07882-8 – volume: 500 start-page: 296 year: 2006 ident: 10.1016/j.nanoen.2020.105181_bib38 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2005.11.020 – volume: 5 start-page: 1004 year: 2014 ident: 10.1016/j.nanoen.2020.105181_bib10 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz5002117 – volume: 8 start-page: 1801582 year: 2018 ident: 10.1016/j.nanoen.2020.105181_bib18 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801582 – volume: 7 start-page: 1602121 year: 2017 ident: 10.1016/j.nanoen.2020.105181_bib14 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602121 – volume: 9 start-page: 1282 year: 2016 ident: 10.1016/j.nanoen.2020.105181_bib39 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03229F – volume: 9 start-page: 42875 year: 2017 ident: 10.1016/j.nanoen.2020.105181_bib54 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b15310 – volume: 29 start-page: 1604545 year: 2017 ident: 10.1016/j.nanoen.2020.105181_bib56 publication-title: Adv. Mater. doi: 10.1002/adma.201604545 – volume: 7 start-page: 1602400 year: 2017 ident: 10.1016/j.nanoen.2020.105181_bib13 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602400 – volume: 1 start-page: 17 year: 2014 ident: 10.1016/j.nanoen.2020.105181_bib41 publication-title: Mater. Horiz. doi: 10.1039/C3MH00098B – volume: 28 start-page: 3159 year: 2016 ident: 10.1016/j.nanoen.2020.105181_bib49 publication-title: Adv. Mater. doi: 10.1002/adma.201504555 – volume: 32 start-page: 1907757 year: 2020 ident: 10.1016/j.nanoen.2020.105181_bib1 publication-title: Adv. Mater. doi: 10.1002/adma.201907757 – volume: 140 start-page: 14938 year: 2018 ident: 10.1016/j.nanoen.2020.105181_bib34 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b09300 – volume: 354 start-page: 206 year: 2016 ident: 10.1016/j.nanoen.2020.105181_bib3 publication-title: Science doi: 10.1126/science.aah5557 – volume: 14 start-page: 1801016 year: 2018 ident: 10.1016/j.nanoen.2020.105181_bib50 publication-title: Small doi: 10.1002/smll.201801016 – volume: 10 start-page: 34427 year: 2018 ident: 10.1016/j.nanoen.2020.105181_bib23 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b10312 – volume: 59 start-page: 517 year: 2019 ident: 10.1016/j.nanoen.2020.105181_bib43 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.070 – volume: 31 start-page: 3941 year: 2019 ident: 10.1016/j.nanoen.2020.105181_bib19 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b05316 – volume: 41 start-page: 2000144 year: 2020 ident: 10.1016/j.nanoen.2020.105181_bib40 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.202000144 – volume: 29 start-page: 10669 year: 2018 ident: 10.1016/j.nanoen.2020.105181_bib35 publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-018-9135-8 – volume: 11 start-page: 702 year: 2018 ident: 10.1016/j.nanoen.2020.105181_bib4 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00124C – volume: 136 start-page: 8094 year: 2014 ident: 10.1016/j.nanoen.2020.105181_bib9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5033259 – volume: 8 start-page: 7070 year: 2016 ident: 10.1016/j.nanoen.2020.105181_bib15 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12740 – volume: 31 start-page: 1991 year: 2020 ident: 10.1016/j.nanoen.2020.105181_bib42 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2019.12.003 – volume: 2 start-page: 203 year: 2015 ident: 10.1016/j.nanoen.2020.105181_bib16 publication-title: Mater. Horiz. doi: 10.1039/C4MH00237G – volume: 3 start-page: 9063 year: 2015 ident: 10.1016/j.nanoen.2020.105181_bib26 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04482G – volume: 11 start-page: 75 year: 2016 ident: 10.1016/j.nanoen.2020.105181_bib28 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.230 – volume: 29 year: 2017 ident: 10.1016/j.nanoen.2020.105181_bib47 publication-title: Adv. Mater. – ident: 10.1016/j.nanoen.2020.105181_bib5 – volume: 5 start-page: 16559 year: 2017 ident: 10.1016/j.nanoen.2020.105181_bib46 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04943A – volume: 5 start-page: 18634 year: 2017 ident: 10.1016/j.nanoen.2020.105181_bib2 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04529H – volume: 9 start-page: 719 year: 2019 ident: 10.1016/j.nanoen.2020.105181_bib51 publication-title: Appl. Sci. doi: 10.3390/app9040719 – volume: 354 start-page: 861 year: 2016 ident: 10.1016/j.nanoen.2020.105181_bib8 publication-title: Science doi: 10.1126/science.aaf9717 – volume: 1 start-page: 16089 year: 2016 ident: 10.1016/j.nanoen.2020.105181_bib44 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.89 – volume: 17 start-page: 5140 year: 2017 ident: 10.1016/j.nanoen.2020.105181_bib45 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02532 – volume: 11 start-page: 3358 year: 2018 ident: 10.1016/j.nanoen.2020.105181_bib30 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02542H – volume: 52 start-page: 6227 year: 2019 ident: 10.1016/j.nanoen.2020.105181_bib20 publication-title: Macromolecules doi: 10.1021/acs.macromol.9b01233 – volume: 12 start-page: 24737 year: 2020 ident: 10.1016/j.nanoen.2020.105181_bib6 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c04258 – volume: 29 start-page: 1701619 year: 2017 ident: 10.1016/j.nanoen.2020.105181_bib29 publication-title: Adv. Mater. doi: 10.1002/adma.201701619 – volume: 131 start-page: 6050 year: 2009 ident: 10.1016/j.nanoen.2020.105181_bib33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 138 start-page: 8581 year: 2016 ident: 10.1016/j.nanoen.2020.105181_bib37 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04519 – volume: 11 start-page: 13273 year: 2019 ident: 10.1016/j.nanoen.2020.105181_bib32 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b01587 – volume: 12 start-page: 17509 year: 2020 ident: 10.1016/j.nanoen.2020.105181_bib7 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c00607 – volume: 29 year: 2017 ident: 10.1016/j.nanoen.2020.105181_bib21 publication-title: Adv. Mater. – volume: 6 start-page: 147 year: 2018 ident: 10.1016/j.nanoen.2020.105181_bib24 publication-title: Front. Chem. doi: 10.3389/fchem.2018.00147 – volume: 28 start-page: 1704507 year: 2017 ident: 10.1016/j.nanoen.2020.105181_bib17 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704507 – volume: 30 start-page: 1800855 year: 2018 ident: 10.1016/j.nanoen.2020.105181_bib11 publication-title: Adv. Mater. doi: 10.1002/adma.201800855 – volume: 8 start-page: 1703399 year: 2018 ident: 10.1016/j.nanoen.2020.105181_bib53 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703399 – volume: 7 start-page: 486 year: 2013 ident: 10.1016/j.nanoen.2020.105181_bib36 publication-title: Nat. Photon. doi: 10.1038/nphoton.2013.80 – volume: 3 start-page: 720 year: 2018 ident: 10.1016/j.nanoen.2020.105181_bib27 publication-title: Nat. Energy doi: 10.1038/s41560-018-0181-5 |
SSID | ssj0000651712 |
Score | 2.4688528 |
Snippet | Extending photoelectric response to near-infrared region (NIR) has become an urgent subject for the research of perovskite solar cells (PSCs). However, it is... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105181 |
SubjectTerms | Au nanorods Perovskite solar cells Photoresponse Plasmon Stability |
Title | Highly efficient near-infrared hybrid perovskite solar cells by integrating with a novel organic bulk-heterojunction |
URI | https://dx.doi.org/10.1016/j.nanoen.2020.105181 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEF7EXtpD6ZPah-yh1615bZI9ilRsS720grew2d2gNkTRKHjpb-9MHmKhtNBbEnZCmB12vpl8M0PIvSd9nBTiMh57MfMSRzMAsZyFGi4NIGSXY-3w69AfjLznMR83SK-uhUFaZXX2l2d6cVpXTzqVNjuL6bTz5kDs4oScO2inXIyxgt0LkNb38Gnv8izgYu2g-OmJ6xkK1BV0Bc0rk9ncYCNUp5h5a4f2zx5qz-v0T8hxBRdpt_yiU9Iw2Rk52msieE5ypGqkW2qKZhDgQ2gG1svAcpZILqeTLRZlUWwIvllhrpauMJylmLJf0XhL644R8DaKaVkqaTbfmJSWE58UjdfpB5sgb2Y-AzeIW3lBRv3H996AVbMUmIKgIGfCgr1wfWnJQPgKyVx-HMRKq1BhlBpKpbil_VBJJ7GF1FIistBC8tgKjeDuJWlm88xcEQqYxBaJVFwr4SXg21QoAbUYV_ge19puEbfWX6SqRuM47yKNakbZLCq1HqHWo1LrLcJ2Uouy0cYf64N6a6JvBhOBL_hV8vrfkjfkEO_KUsRb0syXa3MHmCSP24XRtclB9-llMPwClTniow |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1AP4hPrcw9elzaPTbPHUizVPi620FvY7G5ptaRiH9B_70weRUEUvIUkE8LssN_M7Mw3AA--CmhSiMdF7Mfcn7iGoxMreGjw0qKH7AnqHe4Pgs7Ifx6LcQlaRS8MlVXme3-2p6e7dX6nlmuz9j6b1V5cjF3cUAiX7FTI8R5UiJ3KL0Ol-dTtDHapFkRZp5Gee5IIJ5miiS6t9EpUsrDEheqmY2-d0PkZpL4AT_sYjnKPkTWznzqBkk1O4fALj-AZrKhaY75lNuWDQBhhCRowR-P5oPpyNt1SXxYjTvDNktK1bEkRLaOs_ZLFW1aQRuDXGGVmmWLJYmPnLBv6pFm8nr_xKZXOLF4RCWk1z2HUfhy2Ojwfp8A1xgUrLuu4HF6g6qohA031XEHciLXRoaZANVRai7oJQq3ciSOVUYqcCyOViOuhlcK7gHKySOwlMHRLHDlRWhgt_QnCmw4VOi7Wk4EvjHGq4BX6i3TONU4jL-ZRUVT2GmVaj0jrUab1KvCd1HvGtfHH-41iaaJvNhMhHPwqefVvyXvY7wz7vaj3NOhewwE9yToTb6C8-ljbW3RRVvFdboKfXUnlVA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+near-infrared+hybrid+perovskite+solar+cells+by+integrating+with+a+novel+organic+bulk-heterojunction&rft.jtitle=Nano+energy&rft.au=Wu%2C+Yanjie&rft.au=Gao%2C+Yanbo&rft.au=Zhuang%2C+Xinmeng&rft.au=Shi%2C+Zhichong&rft.date=2020-11-01&rft.issn=2211-2855&rft.volume=77&rft.spage=105181&rft_id=info:doi/10.1016%2Fj.nanoen.2020.105181&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2020_105181 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |