Highly efficient near-infrared hybrid perovskite solar cells by integrating with a novel organic bulk-heterojunction

Extending photoelectric response to near-infrared region (NIR) has become an urgent subject for the research of perovskite solar cells (PSCs). However, it is still a challenge due to the shortage of matching NIR photovoltaic materials and device structure. The rapid development of NIR organic photov...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 77; p. 105181
Main Authors Wu, Yanjie, Gao, Yanbo, Zhuang, Xinmeng, Shi, Zhichong, Bi, Wenbo, Liu, Shuainan, Song, Zonglong, Chen, Cong, Bai, Xue, Xu, Lin, Dai, Qilin, Song, Hongwei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2020
Subjects
Online AccessGet full text
ISSN2211-2855
DOI10.1016/j.nanoen.2020.105181

Cover

Loading…
Abstract Extending photoelectric response to near-infrared region (NIR) has become an urgent subject for the research of perovskite solar cells (PSCs). However, it is still a challenge due to the shortage of matching NIR photovoltaic materials and device structure. The rapid development of NIR organic photovoltaic materials and devices (OPVs) in recent years offers new opportunity for developing such PSCs. Herein, to broaden the photoresponse of PSCs, a novel PBDB-TF: BTP-4Cl bulk-heterojunction (BHJ) organic layer was successfully integrated on the PSCs, which extended the photoresponse of the device to 950 nm. And more, to boost the utilization of NIR light, the Au nanorods (Au NRs) were introduced into the organic BHJ layer through localized surface plasmon effect (LSPR). To further improve the device stability and satisfy solution competition, the MoO3 was fabricated as hole transport layer substituting traditional Spiro-OMeTAD. After adopting such a device, the power conversion efficiency (PCE) was increased significantly from 16.67% to 21.55%, which was the optimum among the reported organic/perovskite hybrid solar cells and the devices employing MoO3 as the hole transport layer. The illumination and humidity stability of the perovskite/organic/noble metal integrated solar cells were also significantly improved. The devices under standard sunlight irradiation for 1000 h maintained more than 70% of initial PCE. This work demonstrates that the perovskite/organic/noble metal integrated structure is a novel and powerful approach to obtain efficient and stable NIR-harvesting PSCs. In this work, a novel PBDB-TF: BTP-4Cl organic layer was successfully integrated on the PSCs, which extended the photoresponse of device to 950 nm. To improve the power conversion efficiency (PCE) and stability, the perovskite/organic/noble metal integrated solar cells was fabricated. Finally, PCE was increased significantly from 16.67% to 21.55%, which was the optimum among the reported organic/perovskite hybrid solar cells. The illumination and humidity stability of the perovskite/organic/noble metal integrated solar cells were also significantly improved. [Display omitted] •A novel PBDB-TF: BTP-4Cl bulk-heterojunction organic layer was firstly successfully integrated on the PSCs.•We further introduced the Au NR layer to boost the harvesting of NIR as well as visible light.•We obtained the novel, spectral extended, and environment-stable perovskite/organic/Au NRs hybrid PSCs.•The PCE was 21.55%, which was the optimum among the reported organic/perovskite hybrid solar cells.•The devices under standard sunlight irradiation for 1000 h maintained more than 70% of initial PCE.
AbstractList Extending photoelectric response to near-infrared region (NIR) has become an urgent subject for the research of perovskite solar cells (PSCs). However, it is still a challenge due to the shortage of matching NIR photovoltaic materials and device structure. The rapid development of NIR organic photovoltaic materials and devices (OPVs) in recent years offers new opportunity for developing such PSCs. Herein, to broaden the photoresponse of PSCs, a novel PBDB-TF: BTP-4Cl bulk-heterojunction (BHJ) organic layer was successfully integrated on the PSCs, which extended the photoresponse of the device to 950 nm. And more, to boost the utilization of NIR light, the Au nanorods (Au NRs) were introduced into the organic BHJ layer through localized surface plasmon effect (LSPR). To further improve the device stability and satisfy solution competition, the MoO3 was fabricated as hole transport layer substituting traditional Spiro-OMeTAD. After adopting such a device, the power conversion efficiency (PCE) was increased significantly from 16.67% to 21.55%, which was the optimum among the reported organic/perovskite hybrid solar cells and the devices employing MoO3 as the hole transport layer. The illumination and humidity stability of the perovskite/organic/noble metal integrated solar cells were also significantly improved. The devices under standard sunlight irradiation for 1000 h maintained more than 70% of initial PCE. This work demonstrates that the perovskite/organic/noble metal integrated structure is a novel and powerful approach to obtain efficient and stable NIR-harvesting PSCs. In this work, a novel PBDB-TF: BTP-4Cl organic layer was successfully integrated on the PSCs, which extended the photoresponse of device to 950 nm. To improve the power conversion efficiency (PCE) and stability, the perovskite/organic/noble metal integrated solar cells was fabricated. Finally, PCE was increased significantly from 16.67% to 21.55%, which was the optimum among the reported organic/perovskite hybrid solar cells. The illumination and humidity stability of the perovskite/organic/noble metal integrated solar cells were also significantly improved. [Display omitted] •A novel PBDB-TF: BTP-4Cl bulk-heterojunction organic layer was firstly successfully integrated on the PSCs.•We further introduced the Au NR layer to boost the harvesting of NIR as well as visible light.•We obtained the novel, spectral extended, and environment-stable perovskite/organic/Au NRs hybrid PSCs.•The PCE was 21.55%, which was the optimum among the reported organic/perovskite hybrid solar cells.•The devices under standard sunlight irradiation for 1000 h maintained more than 70% of initial PCE.
ArticleNumber 105181
Author Liu, Shuainan
Wu, Yanjie
Shi, Zhichong
Bi, Wenbo
Chen, Cong
Dai, Qilin
Xu, Lin
Song, Hongwei
Bai, Xue
Gao, Yanbo
Zhuang, Xinmeng
Song, Zonglong
Author_xml – sequence: 1
  givenname: Yanjie
  surname: Wu
  fullname: Wu, Yanjie
  organization: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
– sequence: 2
  givenname: Yanbo
  surname: Gao
  fullname: Gao, Yanbo
  organization: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
– sequence: 3
  givenname: Xinmeng
  surname: Zhuang
  fullname: Zhuang, Xinmeng
  organization: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
– sequence: 4
  givenname: Zhichong
  surname: Shi
  fullname: Shi, Zhichong
  organization: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
– sequence: 5
  givenname: Wenbo
  surname: Bi
  fullname: Bi, Wenbo
  organization: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
– sequence: 6
  givenname: Shuainan
  surname: Liu
  fullname: Liu, Shuainan
  organization: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
– sequence: 7
  givenname: Zonglong
  surname: Song
  fullname: Song, Zonglong
  organization: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
– sequence: 8
  givenname: Cong
  surname: Chen
  fullname: Chen, Cong
  organization: School of Material Science and Engineering, Hebei University of Technology, Dingzigu Road 1, Tianjin, 300130, People’s Republic of China
– sequence: 9
  givenname: Xue
  surname: Bai
  fullname: Bai, Xue
  organization: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
– sequence: 10
  givenname: Lin
  surname: Xu
  fullname: Xu, Lin
  organization: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
– sequence: 11
  givenname: Qilin
  orcidid: 0000-0001-8680-4306
  surname: Dai
  fullname: Dai, Qilin
  organization: Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA
– sequence: 12
  givenname: Hongwei
  surname: Song
  fullname: Song, Hongwei
  email: songhw@jlu.edu.cn
  organization: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
BookMark eNqFkLFOwzAQhj0UiQJ9Awa_QIqdNE7CgIQqoEiVWGC2Ls4luTbYle0W9e1pVCYGuOWXTvp-3X1XbGKdRcZupZhLIdXdZm7BOrTzVKTjKpelnLBpmkqZpGWeX7JZCBtxGpXLQqZTFlfU9cORY9uSIbSRWwSfkG09eGx4f6w9NXyH3h3CliLy4Abw3OAwBF4fOdmInYdItuNfFHsO3LoDDtz5DiwZXu-HbdJjPDVs9tZEcvaGXbQwBJz95DX7eH56X66S9dvL6_JxnZhMqJhUol7UmQIBRaWMKjKl6qI2jSmNzLKyBGNy0ajSQNrKChqARSaLpoK8FiVWeXbN7s-9xrsQPLbaUITxguiBBi2FHrXpjT5r06M2fdZ2ghe_4J2nT_DH_7CHM4anxw6EXofRq8GGPJqoG0d_F3wDCiyQVw
CitedBy_id crossref_primary_10_1142_S021797922350114X
crossref_primary_10_1002_adfm_202213963
crossref_primary_10_3390_en16010266
crossref_primary_10_1002_adma_202406872
crossref_primary_10_1016_j_cej_2021_130841
crossref_primary_10_1016_j_cej_2021_131310
crossref_primary_10_1002_adma_202206047
crossref_primary_10_1039_D0CS01488E
crossref_primary_10_1002_adfm_202403020
crossref_primary_10_1002_adfm_202203873
crossref_primary_10_1002_adom_202302053
crossref_primary_10_1016_j_nanoen_2022_107368
crossref_primary_10_1021_acsami_3c14454
crossref_primary_10_1364_AO_533580
crossref_primary_10_1016_j_jcis_2023_05_132
crossref_primary_10_1007_s40843_020_1499_8
crossref_primary_10_1016_j_cej_2023_142025
crossref_primary_10_1002_adma_202411015
crossref_primary_10_1016_j_comptc_2022_113835
crossref_primary_10_1002_aenm_202200005
crossref_primary_10_1016_j_talanta_2024_127248
crossref_primary_10_1088_1361_6463_ac84e8
crossref_primary_10_1021_acsami_3c04032
crossref_primary_10_1021_acsami_4c09281
crossref_primary_10_1016_j_cej_2023_142449
crossref_primary_10_1002_agt2_46
crossref_primary_10_1002_smll_202106083
crossref_primary_10_1002_adfm_202401007
crossref_primary_10_1002_poc_4424
crossref_primary_10_1002_adfm_202107129
crossref_primary_10_1016_j_jallcom_2023_172841
crossref_primary_10_1021_acsaem_1c02666
crossref_primary_10_1039_D4CP00849A
crossref_primary_10_1016_j_cej_2021_131872
crossref_primary_10_1002_adfm_202106121
crossref_primary_10_1002_adfm_202208539
crossref_primary_10_1002_adom_202202827
crossref_primary_10_1021_acsaem_2c03425
crossref_primary_10_1007_s10825_025_02281_x
crossref_primary_10_1002_solr_202100375
Cites_doi 10.1021/acsmacrolett.9b00704
10.1126/science.aaf9717
10.1039/C4TA04272G
10.1039/C7NR00784A
10.1002/adfm.200601110
10.1002/adma.201902250
10.1038/s41467-018-07882-8
10.1016/j.tsf.2005.11.020
10.1021/jz5002117
10.1002/aenm.201801582
10.1002/aenm.201602121
10.1039/C5EE03229F
10.1021/acsami.7b15310
10.1002/adma.201604545
10.1002/aenm.201602400
10.1039/C3MH00098B
10.1002/adma.201504555
10.1002/adma.201907757
10.1021/jacs.8b09300
10.1126/science.aah5557
10.1002/smll.201801016
10.1021/acsami.8b10312
10.1016/j.nanoen.2019.02.070
10.1021/acs.chemmater.8b05316
10.1002/marc.202000144
10.1007/s10854-018-9135-8
10.1039/C8EE00124C
10.1021/ja5033259
10.1021/acsami.5b12740
10.1016/j.cclet.2019.12.003
10.1039/C4MH00237G
10.1039/C4TA04482G
10.1038/nnano.2015.230
10.1039/C7TA04943A
10.1039/C7TA04529H
10.3390/app9040719
10.1038/nenergy.2016.89
10.1021/acs.nanolett.7b02532
10.1039/C8EE02542H
10.1021/acs.macromol.9b01233
10.1021/acsami.0c04258
10.1002/adma.201701619
10.1021/ja809598r
10.1021/jacs.6b04519
10.1021/acsami.9b01587
10.1021/acsami.0c00607
10.3389/fchem.2018.00147
10.1002/adfm.201704507
10.1002/adma.201800855
10.1002/aenm.201703399
10.1038/nphoton.2013.80
10.1038/s41560-018-0181-5
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2020.105181
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2020_105181
S221128552030759X
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-90b4b36a0a796c67366b7bcdc8c13388acc50d68ca2f19adaa4317d9a5b08e953
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Thu Apr 24 23:05:58 EDT 2025
Tue Jul 01 00:56:40 EDT 2025
Fri Feb 23 02:45:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Au nanorods
Photoresponse
Stability
Plasmon
Perovskite solar cells
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-90b4b36a0a796c67366b7bcdc8c13388acc50d68ca2f19adaa4317d9a5b08e953
ORCID 0000-0001-8680-4306
ParticipantIDs crossref_citationtrail_10_1016_j_nanoen_2020_105181
crossref_primary_10_1016_j_nanoen_2020_105181
elsevier_sciencedirect_doi_10_1016_j_nanoen_2020_105181
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tang, Chen, Xiao, Yang, Li, Wang, Zhou (bib24) 2018; 6
You, Meng, Song, Guo, Yang, Chang, Hong, Chen, Zhou, Chen, Liu, De Marco, Yang (bib28) 2016; 11
Jin, Chen, Zhang, Xu, Dong, Song, Dai (bib54) 2017; 9
Liu, Chen, Qian, Gautam, Yang, Zhao, Bergqvist, Zhang, Ma, Ade (bib44) 2016; 1
Xiao, Tang, Zhang, Li, Wang, Zhou (bib23) 2018; 10
Shi, Chen, Wang, Koh, Uddin, Liu, Liao, Feng, Woo, Xiao, Guo (bib40) 2020; 41
Ogomi, Morita, Tsukamoto, Saitho, Fujikawa, Shen, Toyoda, Yoshino, Pandey, Ma, Hayase (bib10) 2014; 5
Kojima, Teshima, Shirai, Miyasaka (bib33) 2009; 131
Chen, Zhang, Xu, Xue, Li, Zhou, Hou, Li (bib11) 2018; 30
Gaulding, Hao, Kang, Miller, Habisreutinger, Zhao, Hazarika, Sercel, Luther, Blackburn (bib31) 2019; 31
Han, Luo, Yin, Zhou, Nan, Li, Li, Oron, Shen, Lin (bib50) 2018; 14
Lin, Shen, Dai, Deng, Wu, Bai, Zheng, Wang, Fang, Wei, Ma, Zeng, Zhan, Huang (bib56) 2017; 29
Eperon, Leijtens, Bush, Prasanna, Green, Wang, McMeekin, Volonakis, Milot, May (bib12) 2016; 354
Meng, Feng, Yang, Lv, Cao, Tang (bib32) 2019; 11
Cacovich, Cinà, Matteocci, Divitini, Midgley, Di Carlo, Ducati (bib55) 2017; 9
Zuo, Ding (bib26) 2015; 3
Chen, Bae, Chang, Hong, Li, Chen, Zhou, Yang (bib16) 2015; 2
Niu, Lu, Tang, Barrit, Smilgies, Yang, Li, Fan, L, MuCulloch, Amassian, Liu, Zhao (bib30) 2018; 11
Chen, Zheng, Yang, Padture, Huang (bib13) 2017; 7
Chang, Tseng, Wu, Feng, Jeng, Chen, Lee, Poko, Jacak, Gwozdz (bib51) 2019; 9
Cui, Yao, Zhang, Zhang, Wang, Hong, Xian, Xu, Zhang, Peng, Wei, Gao, Hou (bib25) 2019; 10
Qin, Cao, Zhang, Mai, Lau, Zhou, Zhou, Wang, Hsu, Zhao, Xu, Zhan, Lu (bib53) 2018; 8
Research-cell efficiency chart (bib5)
Gao, Zhu, Xu, Jo, Kan, Peng, Jen (bib47) 2017; 29
Eperon, Leijtens, Bush, Prasanna, Green, Wang, McMeekin, Volonakis, Milot, May, Palmstrom, Slotcavage, Belisle, Patel, Parrott, Sutton, Ma, Moghadam, Conings, Babayigit, Boyen, Bent, Giustino, Herz, Johnston, McGehee, Snaith (bib8) 2016; 354
Tang, Xiao, Chen, Zhang, Wei, Zhou (bib18) 2018; 8
Gao, Wu, Lu, Chen, Liu, Bai, Yu, Dai, Zhang (bib43) 2019; 59
Mandoc, Veurman, Koster, de Boer, Blom (bib52) 2007; 17
Tang, Zhan, Yao, Zhou (bib21) 2017; 29
Liu, Renna, Bag, Page, Kim, Choi, Emrick, Venkataraman, Russell (bib15) 2016; 8
Yu, Li, He, Wang, Qin, Zhou, Liu, Andersen, Zhu, Chen, Li (bib42) 2020; 31
Kim, Kim, Back, Kong, Hwang, Kim, Kwon, Lee, Lee, Yu, Lee, Kang, Lee (bib49) 2016; 28
Tang, Zhang, Du, Li, Geng, Zhang, Wei, Sun, Zhou (bib20) 2019; 52
Tathavadekar, Krishnamurthy, Banerjee, Nagane, Gawli, Suryawanshi, Bhat, Puthusseri, Mohite, Ogale (bib2) 2017; 5
Tang, Song, Xiao, Guo, Min, Ge, Zhang, Wei, Zhou (bib19) 2019; 31
Li, Tang, Zhang, Zhou (bib22) 2019; 8
de Castro, I, Datta, Ou, Castellanos-Gomez, Sriram, Daeneke, Kalantar-Zadeh (bib29) 2017; 29
Cha, Da, Wang, Wang, Chen, Xiu, Zheng, Wang (bib37) 2016; 138
Yu, Zheng, Cheng, Lai, Zhou, Yu (bib35) 2018; 29
Heo, Im, Noh, Mandal, Lim, Chang, Lee, Kim, Sarkar, Grätzel, Nazeeruddin, Seok (bib36) 2013; 7
Dong, Liu, Hong, Yao, Sun, Meng, Lin, Huang, Li, Yang (bib45) 2017; 17
Li, Chang, Wang, Lin, Wang, Lin, Chen, Sheu, Chia, Wu, Jeng, Liang, Sankar, Chou, Chen (bib39) 2016; 9
Grätzel, Schmidt-Mende (bib38) 2006; 500
Bredas (bib41) 2014; 1
Zhang, Tan, Guo, Facchetti, Yan (bib27) 2018; 3
Meggiolaro, Motti, Mosconi, Barker, Ball, Andrea Riccardo Perini, Deschler, Petrozza, De Angelis (bib4) 2018; 11
Wu, Bi, Shi, Zhuang, Song, Liu, Chen, Xu, Dai, Song (bib7) 2020; 12
Zhang, Dai, Chandrabose, Chen, Liu, Qin, Lu, Hodgkiss, Zhou, Zhan (bib34) 2018; 140
Zhou, Liu, Jin, Chen, Xu, Yin, Pan, Li, Song (bib46) 2017; 5
Saliba, Matsui, Domanski, Seo, Ummadisingu, Zakeeruddin, Correa-Baena, Tress, Abate, Hagfeldt, Grätzel (bib3) 2016; 354
Forgács, Gil-Escrig, Pérez-Del-Rey, Momblona, Werner, Niesen, Ballif, Sessolo, Bolink (bib14) 2017; 7
Bi, Wu, Chen, Zhou, Song, Li, Chen, Dai, Zhu, Song (bib6) 2020; 12
Zhu, Liu, Eickemeyer, Pan, Ren, Ruiz-Preciado, Carlsen, Yang, Dong, Wang, Liu, Wang, Zakeeruddin, Hagfeldt, Dar, Li, Grätzel (bib1) 2020; 32
Hu, Wang, Liu, Peng, Cao, Shao, Xia, Ma, Tang (bib48) 2015; 3
Tang, Xiao, Wang, Gao, Tajima, Bin, Zhang, Li, Wei, Zhou (bib17) 2017; 28
Hao, Stoumpos, Chang, Kanatzidis (bib9) 2014; 136
You (10.1016/j.nanoen.2020.105181_bib28) 2016; 11
Saliba (10.1016/j.nanoen.2020.105181_bib3) 2016; 354
Zhou (10.1016/j.nanoen.2020.105181_bib46) 2017; 5
Meggiolaro (10.1016/j.nanoen.2020.105181_bib4) 2018; 11
Heo (10.1016/j.nanoen.2020.105181_bib36) 2013; 7
Li (10.1016/j.nanoen.2020.105181_bib22) 2019; 8
Chen (10.1016/j.nanoen.2020.105181_bib11) 2018; 30
Gaulding (10.1016/j.nanoen.2020.105181_bib31) 2019; 31
Tang (10.1016/j.nanoen.2020.105181_bib21) 2017; 29
Shi (10.1016/j.nanoen.2020.105181_bib40) 2020; 41
Yu (10.1016/j.nanoen.2020.105181_bib35) 2018; 29
Hu (10.1016/j.nanoen.2020.105181_bib48) 2015; 3
Niu (10.1016/j.nanoen.2020.105181_bib30) 2018; 11
Cha (10.1016/j.nanoen.2020.105181_bib37) 2016; 138
Wu (10.1016/j.nanoen.2020.105181_bib7) 2020; 12
Tang (10.1016/j.nanoen.2020.105181_bib24) 2018; 6
de Castro (10.1016/j.nanoen.2020.105181_bib29) 2017; 29
Lin (10.1016/j.nanoen.2020.105181_bib56) 2017; 29
Tang (10.1016/j.nanoen.2020.105181_bib18) 2018; 8
Kim (10.1016/j.nanoen.2020.105181_bib49) 2016; 28
Zhu (10.1016/j.nanoen.2020.105181_bib1) 2020; 32
Chen (10.1016/j.nanoen.2020.105181_bib13) 2017; 7
Chen (10.1016/j.nanoen.2020.105181_bib16) 2015; 2
Han (10.1016/j.nanoen.2020.105181_bib50) 2018; 14
Cui (10.1016/j.nanoen.2020.105181_bib25) 2019; 10
Li (10.1016/j.nanoen.2020.105181_bib39) 2016; 9
Bi (10.1016/j.nanoen.2020.105181_bib6) 2020; 12
Hao (10.1016/j.nanoen.2020.105181_bib9) 2014; 136
Tang (10.1016/j.nanoen.2020.105181_bib20) 2019; 52
Gao (10.1016/j.nanoen.2020.105181_bib43) 2019; 59
Kojima (10.1016/j.nanoen.2020.105181_bib33) 2009; 131
Dong (10.1016/j.nanoen.2020.105181_bib45) 2017; 17
Zhang (10.1016/j.nanoen.2020.105181_bib27) 2018; 3
Eperon (10.1016/j.nanoen.2020.105181_bib8) 2016; 354
Tathavadekar (10.1016/j.nanoen.2020.105181_bib2) 2017; 5
Chang (10.1016/j.nanoen.2020.105181_bib51) 2019; 9
Qin (10.1016/j.nanoen.2020.105181_bib53) 2018; 8
Forgács (10.1016/j.nanoen.2020.105181_bib14) 2017; 7
Research-cell efficiency chart (10.1016/j.nanoen.2020.105181_bib5)
Zhang (10.1016/j.nanoen.2020.105181_bib34) 2018; 140
Mandoc (10.1016/j.nanoen.2020.105181_bib52) 2007; 17
Zuo (10.1016/j.nanoen.2020.105181_bib26) 2015; 3
Ogomi (10.1016/j.nanoen.2020.105181_bib10) 2014; 5
Xiao (10.1016/j.nanoen.2020.105181_bib23) 2018; 10
Cacovich (10.1016/j.nanoen.2020.105181_bib55) 2017; 9
Eperon (10.1016/j.nanoen.2020.105181_bib12) 2016; 354
Yu (10.1016/j.nanoen.2020.105181_bib42) 2020; 31
Jin (10.1016/j.nanoen.2020.105181_bib54) 2017; 9
Liu (10.1016/j.nanoen.2020.105181_bib15) 2016; 8
Liu (10.1016/j.nanoen.2020.105181_bib44) 2016; 1
Meng (10.1016/j.nanoen.2020.105181_bib32) 2019; 11
Gao (10.1016/j.nanoen.2020.105181_bib47) 2017; 29
Tang (10.1016/j.nanoen.2020.105181_bib19) 2019; 31
Grätzel (10.1016/j.nanoen.2020.105181_bib38) 2006; 500
Tang (10.1016/j.nanoen.2020.105181_bib17) 2017; 28
Bredas (10.1016/j.nanoen.2020.105181_bib41) 2014; 1
References_xml – volume: 3
  start-page: 9063
  year: 2015
  end-page: 9066
  ident: bib26
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 1604545
  year: 2017
  ident: bib56
  publication-title: Adv. Mater.
– volume: 131
  start-page: 6050
  year: 2009
  end-page: 6051
  ident: bib33
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 14938
  year: 2018
  end-page: 14944
  ident: bib34
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1282
  year: 2016
  end-page: 1289
  ident: bib39
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 1602400
  year: 2017
  ident: bib13
  publication-title: Adv. Energy Mater.
– volume: 30
  start-page: 1800855
  year: 2018
  ident: bib11
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1701619
  year: 2017
  ident: bib29
  publication-title: Adv. Mater.
– ident: bib5
– volume: 11
  start-page: 75
  year: 2016
  ident: bib28
  publication-title: Nat. Nanotechnol.
– volume: 1
  start-page: 16089
  year: 2016
  ident: bib44
  publication-title: Nat. Energy
– volume: 7
  start-page: 1602121
  year: 2017
  ident: bib14
  publication-title: Adv. Energy Mater.
– volume: 41
  start-page: 2000144
  year: 2020
  ident: bib40
  publication-title: Macromol. Rapid Commun.
– volume: 354
  start-page: 861
  year: 2016
  ident: bib8
  publication-title: Science
– volume: 10
  start-page: 34427
  year: 2018
  end-page: 34434
  ident: bib23
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 10669
  year: 2018
  end-page: 10676
  ident: bib35
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 8
  start-page: 7070
  year: 2016
  end-page: 7076
  ident: bib15
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52
  start-page: 6227
  year: 2019
  end-page: 6233
  ident: bib20
  publication-title: Macromolecules
– volume: 3
  start-page: 515
  year: 2015
  end-page: 518
  ident: bib48
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 1703399
  year: 2018
  ident: bib53
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 1599
  year: 2019
  end-page: 1604
  ident: bib22
  publication-title: ACS Macro Lett.
– volume: 31
  start-page: 3941
  year: 2019
  end-page: 3947
  ident: bib19
  publication-title: Chem. Mater.
– volume: 11
  start-page: 3358
  year: 2018
  end-page: 3366
  ident: bib30
  publication-title: Energy Environ. Sci.
– volume: 29
  year: 2017
  ident: bib47
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1801582
  year: 2018
  ident: bib18
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 18634
  year: 2017
  end-page: 18642
  ident: bib2
  publication-title: J. Mater. Chem. A
– volume: 32
  start-page: 1907757
  year: 2020
  ident: bib1
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 8
  ident: bib25
  publication-title: Nat. Commun.
– volume: 5
  start-page: 1004
  year: 2014
  end-page: 1011
  ident: bib10
  publication-title: J. Phys. Chem. Lett.
– volume: 28
  start-page: 1704507
  year: 2017
  ident: bib17
  publication-title: Adv. Funct. Mater.
– volume: 138
  start-page: 8581
  year: 2016
  end-page: 8587
  ident: bib37
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 4700
  year: 2017
  end-page: 4706
  ident: bib55
  publication-title: Nanoscale
– volume: 31
  start-page: 1902250
  year: 2019
  ident: bib31
  publication-title: Adv. Mater.
– volume: 28
  start-page: 3159
  year: 2016
  end-page: 3165
  ident: bib49
  publication-title: Adv. Mater.
– volume: 29
  year: 2017
  ident: bib21
  publication-title: Adv. Mater.
– volume: 5
  start-page: 16559
  year: 2017
  end-page: 16567
  ident: bib46
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 203
  year: 2015
  end-page: 211
  ident: bib16
  publication-title: Mater. Horiz.
– volume: 7
  start-page: 486
  year: 2013
  end-page: 491
  ident: bib36
  publication-title: Nat. Photon.
– volume: 14
  start-page: 1801016
  year: 2018
  ident: bib50
  publication-title: Small
– volume: 12
  start-page: 24737
  year: 2020
  end-page: 24746
  ident: bib6
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  start-page: 2167
  year: 2007
  end-page: 2173
  ident: bib52
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 702
  year: 2018
  end-page: 713
  ident: bib4
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 720
  year: 2018
  end-page: 731
  ident: bib27
  publication-title: Nat. Energy
– volume: 12
  start-page: 17509
  year: 2020
  end-page: 17518
  ident: bib7
  publication-title: ACS Appl. Mater. Interfaces
– volume: 354
  start-page: 206
  year: 2016
  end-page: 209
  ident: bib3
  publication-title: Science
– volume: 6
  start-page: 147
  year: 2018
  ident: bib24
  publication-title: Front. Chem.
– volume: 31
  start-page: 1991
  year: 2020
  end-page: 1996
  ident: bib42
  publication-title: Chin. Chem. Lett.
– volume: 9
  start-page: 42875
  year: 2017
  end-page: 44288
  ident: bib54
  publication-title: ACS Appl. Mater. Interfaces
– volume: 500
  start-page: 296
  year: 2006
  end-page: 301
  ident: bib38
  publication-title: Thin Solid Films
– volume: 59
  start-page: 517
  year: 2019
  end-page: 526
  ident: bib43
  publication-title: Nano Energy
– volume: 9
  start-page: 719
  year: 2019
  ident: bib51
  publication-title: Appl. Sci.
– volume: 354
  start-page: 861
  year: 2016
  ident: bib12
  publication-title: Science
– volume: 17
  start-page: 5140
  year: 2017
  end-page: 5147
  ident: bib45
  publication-title: Nano Lett.
– volume: 11
  start-page: 13273
  year: 2019
  end-page: 13278
  ident: bib32
  publication-title: ACS Appl. Mater. Interfaces
– volume: 136
  start-page: 8094
  year: 2014
  end-page: 8099
  ident: bib9
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 17
  year: 2014
  ident: bib41
  publication-title: Mater. Horiz.
– volume: 8
  start-page: 1599
  year: 2019
  ident: 10.1016/j.nanoen.2020.105181_bib22
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.9b00704
– volume: 354
  start-page: 861
  year: 2016
  ident: 10.1016/j.nanoen.2020.105181_bib12
  publication-title: Science
  doi: 10.1126/science.aaf9717
– volume: 3
  start-page: 515
  year: 2015
  ident: 10.1016/j.nanoen.2020.105181_bib48
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04272G
– volume: 9
  start-page: 4700
  year: 2017
  ident: 10.1016/j.nanoen.2020.105181_bib55
  publication-title: Nanoscale
  doi: 10.1039/C7NR00784A
– volume: 17
  start-page: 2167
  year: 2007
  ident: 10.1016/j.nanoen.2020.105181_bib52
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200601110
– volume: 31
  start-page: 1902250
  year: 2019
  ident: 10.1016/j.nanoen.2020.105181_bib31
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902250
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.nanoen.2020.105181_bib25
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07882-8
– volume: 500
  start-page: 296
  year: 2006
  ident: 10.1016/j.nanoen.2020.105181_bib38
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2005.11.020
– volume: 5
  start-page: 1004
  year: 2014
  ident: 10.1016/j.nanoen.2020.105181_bib10
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz5002117
– volume: 8
  start-page: 1801582
  year: 2018
  ident: 10.1016/j.nanoen.2020.105181_bib18
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801582
– volume: 7
  start-page: 1602121
  year: 2017
  ident: 10.1016/j.nanoen.2020.105181_bib14
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602121
– volume: 9
  start-page: 1282
  year: 2016
  ident: 10.1016/j.nanoen.2020.105181_bib39
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03229F
– volume: 9
  start-page: 42875
  year: 2017
  ident: 10.1016/j.nanoen.2020.105181_bib54
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b15310
– volume: 29
  start-page: 1604545
  year: 2017
  ident: 10.1016/j.nanoen.2020.105181_bib56
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604545
– volume: 7
  start-page: 1602400
  year: 2017
  ident: 10.1016/j.nanoen.2020.105181_bib13
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602400
– volume: 1
  start-page: 17
  year: 2014
  ident: 10.1016/j.nanoen.2020.105181_bib41
  publication-title: Mater. Horiz.
  doi: 10.1039/C3MH00098B
– volume: 28
  start-page: 3159
  year: 2016
  ident: 10.1016/j.nanoen.2020.105181_bib49
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504555
– volume: 32
  start-page: 1907757
  year: 2020
  ident: 10.1016/j.nanoen.2020.105181_bib1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907757
– volume: 140
  start-page: 14938
  year: 2018
  ident: 10.1016/j.nanoen.2020.105181_bib34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b09300
– volume: 354
  start-page: 206
  year: 2016
  ident: 10.1016/j.nanoen.2020.105181_bib3
  publication-title: Science
  doi: 10.1126/science.aah5557
– volume: 14
  start-page: 1801016
  year: 2018
  ident: 10.1016/j.nanoen.2020.105181_bib50
  publication-title: Small
  doi: 10.1002/smll.201801016
– volume: 10
  start-page: 34427
  year: 2018
  ident: 10.1016/j.nanoen.2020.105181_bib23
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b10312
– volume: 59
  start-page: 517
  year: 2019
  ident: 10.1016/j.nanoen.2020.105181_bib43
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.070
– volume: 31
  start-page: 3941
  year: 2019
  ident: 10.1016/j.nanoen.2020.105181_bib19
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b05316
– volume: 41
  start-page: 2000144
  year: 2020
  ident: 10.1016/j.nanoen.2020.105181_bib40
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.202000144
– volume: 29
  start-page: 10669
  year: 2018
  ident: 10.1016/j.nanoen.2020.105181_bib35
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-018-9135-8
– volume: 11
  start-page: 702
  year: 2018
  ident: 10.1016/j.nanoen.2020.105181_bib4
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00124C
– volume: 136
  start-page: 8094
  year: 2014
  ident: 10.1016/j.nanoen.2020.105181_bib9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5033259
– volume: 8
  start-page: 7070
  year: 2016
  ident: 10.1016/j.nanoen.2020.105181_bib15
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12740
– volume: 31
  start-page: 1991
  year: 2020
  ident: 10.1016/j.nanoen.2020.105181_bib42
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2019.12.003
– volume: 2
  start-page: 203
  year: 2015
  ident: 10.1016/j.nanoen.2020.105181_bib16
  publication-title: Mater. Horiz.
  doi: 10.1039/C4MH00237G
– volume: 3
  start-page: 9063
  year: 2015
  ident: 10.1016/j.nanoen.2020.105181_bib26
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04482G
– volume: 11
  start-page: 75
  year: 2016
  ident: 10.1016/j.nanoen.2020.105181_bib28
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.230
– volume: 29
  year: 2017
  ident: 10.1016/j.nanoen.2020.105181_bib47
  publication-title: Adv. Mater.
– ident: 10.1016/j.nanoen.2020.105181_bib5
– volume: 5
  start-page: 16559
  year: 2017
  ident: 10.1016/j.nanoen.2020.105181_bib46
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA04943A
– volume: 5
  start-page: 18634
  year: 2017
  ident: 10.1016/j.nanoen.2020.105181_bib2
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA04529H
– volume: 9
  start-page: 719
  year: 2019
  ident: 10.1016/j.nanoen.2020.105181_bib51
  publication-title: Appl. Sci.
  doi: 10.3390/app9040719
– volume: 354
  start-page: 861
  year: 2016
  ident: 10.1016/j.nanoen.2020.105181_bib8
  publication-title: Science
  doi: 10.1126/science.aaf9717
– volume: 1
  start-page: 16089
  year: 2016
  ident: 10.1016/j.nanoen.2020.105181_bib44
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.89
– volume: 17
  start-page: 5140
  year: 2017
  ident: 10.1016/j.nanoen.2020.105181_bib45
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02532
– volume: 11
  start-page: 3358
  year: 2018
  ident: 10.1016/j.nanoen.2020.105181_bib30
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02542H
– volume: 52
  start-page: 6227
  year: 2019
  ident: 10.1016/j.nanoen.2020.105181_bib20
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b01233
– volume: 12
  start-page: 24737
  year: 2020
  ident: 10.1016/j.nanoen.2020.105181_bib6
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c04258
– volume: 29
  start-page: 1701619
  year: 2017
  ident: 10.1016/j.nanoen.2020.105181_bib29
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701619
– volume: 131
  start-page: 6050
  year: 2009
  ident: 10.1016/j.nanoen.2020.105181_bib33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 138
  start-page: 8581
  year: 2016
  ident: 10.1016/j.nanoen.2020.105181_bib37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04519
– volume: 11
  start-page: 13273
  year: 2019
  ident: 10.1016/j.nanoen.2020.105181_bib32
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b01587
– volume: 12
  start-page: 17509
  year: 2020
  ident: 10.1016/j.nanoen.2020.105181_bib7
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c00607
– volume: 29
  year: 2017
  ident: 10.1016/j.nanoen.2020.105181_bib21
  publication-title: Adv. Mater.
– volume: 6
  start-page: 147
  year: 2018
  ident: 10.1016/j.nanoen.2020.105181_bib24
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2018.00147
– volume: 28
  start-page: 1704507
  year: 2017
  ident: 10.1016/j.nanoen.2020.105181_bib17
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704507
– volume: 30
  start-page: 1800855
  year: 2018
  ident: 10.1016/j.nanoen.2020.105181_bib11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800855
– volume: 8
  start-page: 1703399
  year: 2018
  ident: 10.1016/j.nanoen.2020.105181_bib53
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703399
– volume: 7
  start-page: 486
  year: 2013
  ident: 10.1016/j.nanoen.2020.105181_bib36
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2013.80
– volume: 3
  start-page: 720
  year: 2018
  ident: 10.1016/j.nanoen.2020.105181_bib27
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0181-5
SSID ssj0000651712
Score 2.4688528
Snippet Extending photoelectric response to near-infrared region (NIR) has become an urgent subject for the research of perovskite solar cells (PSCs). However, it is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105181
SubjectTerms Au nanorods
Perovskite solar cells
Photoresponse
Plasmon
Stability
Title Highly efficient near-infrared hybrid perovskite solar cells by integrating with a novel organic bulk-heterojunction
URI https://dx.doi.org/10.1016/j.nanoen.2020.105181
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEF7EXtpD6ZPah-yh1615bZI9ilRsS720grew2d2gNkTRKHjpb-9MHmKhtNBbEnZCmB12vpl8M0PIvSd9nBTiMh57MfMSRzMAsZyFGi4NIGSXY-3w69AfjLznMR83SK-uhUFaZXX2l2d6cVpXTzqVNjuL6bTz5kDs4oScO2inXIyxgt0LkNb38Gnv8izgYu2g-OmJ6xkK1BV0Bc0rk9ncYCNUp5h5a4f2zx5qz-v0T8hxBRdpt_yiU9Iw2Rk52msieE5ypGqkW2qKZhDgQ2gG1svAcpZILqeTLRZlUWwIvllhrpauMJylmLJf0XhL644R8DaKaVkqaTbfmJSWE58UjdfpB5sgb2Y-AzeIW3lBRv3H996AVbMUmIKgIGfCgr1wfWnJQPgKyVx-HMRKq1BhlBpKpbil_VBJJ7GF1FIistBC8tgKjeDuJWlm88xcEQqYxBaJVFwr4SXg21QoAbUYV_ge19puEbfWX6SqRuM47yKNakbZLCq1HqHWo1LrLcJ2Uouy0cYf64N6a6JvBhOBL_hV8vrfkjfkEO_KUsRb0syXa3MHmCSP24XRtclB9-llMPwClTniow
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1AP4hPrcw9elzaPTbPHUizVPi620FvY7G5ptaRiH9B_70weRUEUvIUkE8LssN_M7Mw3AA--CmhSiMdF7Mfcn7iGoxMreGjw0qKH7AnqHe4Pgs7Ifx6LcQlaRS8MlVXme3-2p6e7dX6nlmuz9j6b1V5cjF3cUAiX7FTI8R5UiJ3KL0Ol-dTtDHapFkRZp5Gee5IIJ5miiS6t9EpUsrDEheqmY2-d0PkZpL4AT_sYjnKPkTWznzqBkk1O4fALj-AZrKhaY75lNuWDQBhhCRowR-P5oPpyNt1SXxYjTvDNktK1bEkRLaOs_ZLFW1aQRuDXGGVmmWLJYmPnLBv6pFm8nr_xKZXOLF4RCWk1z2HUfhy2Ojwfp8A1xgUrLuu4HF6g6qohA031XEHciLXRoaZANVRai7oJQq3ciSOVUYqcCyOViOuhlcK7gHKySOwlMHRLHDlRWhgt_QnCmw4VOi7Wk4EvjHGq4BX6i3TONU4jL-ZRUVT2GmVaj0jrUab1KvCd1HvGtfHH-41iaaJvNhMhHPwqefVvyXvY7wz7vaj3NOhewwE9yToTb6C8-ljbW3RRVvFdboKfXUnlVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+near-infrared+hybrid+perovskite+solar+cells+by+integrating+with+a+novel+organic+bulk-heterojunction&rft.jtitle=Nano+energy&rft.au=Wu%2C+Yanjie&rft.au=Gao%2C+Yanbo&rft.au=Zhuang%2C+Xinmeng&rft.au=Shi%2C+Zhichong&rft.date=2020-11-01&rft.issn=2211-2855&rft.volume=77&rft.spage=105181&rft_id=info:doi/10.1016%2Fj.nanoen.2020.105181&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2020_105181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon