Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer
High conversion efficiency and stability are above all important topics in the current study of perovskite solar cells (PSCs), which determine the future of their commercialization. According to the intrinsic characters of PSCs, interface engineering plays a key role in enhancing both conversion eff...
Saved in:
Published in | Materials today energy Vol. 1-2; pp. 1 - 10 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High conversion efficiency and stability are above all important topics in the current study of perovskite solar cells (PSCs), which determine the future of their commercialization. According to the intrinsic characters of PSCs, interface engineering plays a key role in enhancing both conversion efficiency and stability of PSCs. In this work, we developed a robust interface engineering for “inverted” planar heterojunction PSCs of low temperature and faCELe solution processed PEOz nanodots film. The PEOz nanodots film acts as electron extraction layer and NiOx nanostructured film acts as a hole transport layer in a configuration of ITO/NiOx/Perovskite/PCBM/PEOz/Ag. Such design results in an open circuit voltage (Voc) of 1.07 V, a short-circuit current (Jsc) of 21.93 mA/cm2, and a fill factor (FF) of 77.9%, corresponding to a maximum PCE of 18.28%, in contrast to a conversion efficiency of 11.98% for the same structure devices without PEOz cathode electron-extraction layer. Moreover, the combination of the two layers leads to highly stable planar PSCs and hence high durability. A series of experiments and characterizations were performed and collected to support the discovery. Our results provide a scientific basis for the scale-up production of future PSCs.
A low cost, low temperature and facile solution processed PEOz nanodots film as an electron extraction interlayer and NiOx nanostructured film as a hole transport layer were adopted in a planar inverted perovskite solar cells with a configuration of ITO/NiOx/Perovskite/PCBM/PEOz/Ag, resulting in a maximum PCE of 18.28% while the same structure devices without PEOz interfacial layer got a conversion efficiency of only 11.98%. It could be attributed to good band alignment and efficient electrons extraction between PCBM and silver electrode. Both the PEOz and NiOx also contribute to high stability of those perovskite solar cells. [Display omitted]
•PEOz was employed as effective CILs for inverted perovskite solar cells.•NiOx NCs was selected to be HTM layer to minimize the Voc losses.•Ohmic contact can be formed at the PCBM/Ag interface by integration of PEOz cathode electron-extraction layers.•Maximum PEC of 18.28% was achieved in our inverted planar perovskite solar cells.•The XPS data directly explored the N elements of PEOz interacting with Ag and I ions diffused in contribute to high stability of those devices. |
---|---|
AbstractList | High conversion efficiency and stability are above all important topics in the current study of perovskite solar cells (PSCs), which determine the future of their commercialization. According to the intrinsic characters of PSCs, interface engineering plays a key role in enhancing both conversion efficiency and stability of PSCs. In this work, we developed a robust interface engineering for “inverted” planar heterojunction PSCs of low temperature and faCELe solution processed PEOz nanodots film. The PEOz nanodots film acts as electron extraction layer and NiOx nanostructured film acts as a hole transport layer in a configuration of ITO/NiOx/Perovskite/PCBM/PEOz/Ag. Such design results in an open circuit voltage (Voc) of 1.07 V, a short-circuit current (Jsc) of 21.93 mA/cm2, and a fill factor (FF) of 77.9%, corresponding to a maximum PCE of 18.28%, in contrast to a conversion efficiency of 11.98% for the same structure devices without PEOz cathode electron-extraction layer. Moreover, the combination of the two layers leads to highly stable planar PSCs and hence high durability. A series of experiments and characterizations were performed and collected to support the discovery. Our results provide a scientific basis for the scale-up production of future PSCs.
A low cost, low temperature and facile solution processed PEOz nanodots film as an electron extraction interlayer and NiOx nanostructured film as a hole transport layer were adopted in a planar inverted perovskite solar cells with a configuration of ITO/NiOx/Perovskite/PCBM/PEOz/Ag, resulting in a maximum PCE of 18.28% while the same structure devices without PEOz interfacial layer got a conversion efficiency of only 11.98%. It could be attributed to good band alignment and efficient electrons extraction between PCBM and silver electrode. Both the PEOz and NiOx also contribute to high stability of those perovskite solar cells. [Display omitted]
•PEOz was employed as effective CILs for inverted perovskite solar cells.•NiOx NCs was selected to be HTM layer to minimize the Voc losses.•Ohmic contact can be formed at the PCBM/Ag interface by integration of PEOz cathode electron-extraction layers.•Maximum PEC of 18.28% was achieved in our inverted planar perovskite solar cells.•The XPS data directly explored the N elements of PEOz interacting with Ag and I ions diffused in contribute to high stability of those devices. |
Author | Chen, Wei Zhang, Gui-ning Xu, Zheng-he He, Zhu-bing Gu, Rui Wang, Hai-jiang Xu, Lei-ming |
Author_xml | – sequence: 1 givenname: Wei surname: Chen fullname: Chen, Wei organization: Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen, Guangdong, PR China – sequence: 2 givenname: Gui-ning surname: Zhang fullname: Zhang, Gui-ning organization: Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen, Guangdong, PR China – sequence: 3 givenname: Lei-ming surname: Xu fullname: Xu, Lei-ming organization: Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen, Guangdong, PR China – sequence: 4 givenname: Rui surname: Gu fullname: Gu, Rui organization: Materials Characterization and Preparation Center (MCPC), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen, Guangdong, PR China – sequence: 5 givenname: Zheng-he surname: Xu fullname: Xu, Zheng-he organization: Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen, Guangdong, PR China – sequence: 6 givenname: Hai-jiang surname: Wang fullname: Wang, Hai-jiang organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen, Guangdong, PR China – sequence: 7 givenname: Zhu-bing surname: He fullname: He, Zhu-bing email: hezb@sustc.edu.cn organization: Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen, Guangdong, PR China |
BookMark | eNqFkc9uGyEQxlGVSk3SvEEPHBspbGEX72ZzqBRF_SdZzaU9o1kYalwMKyCO3dfqCxbLOUQ9tAc0wwy_0fB9Z-QkxICEvBG8EVz079bNpmDA1LT11gjRcC5ekNNW9tes5_148ix_RS5yXnPOWyHrWZyS38v4SAtuZkxQHhLSOUWNOaO5oiv3Y8Vqw8a0gaCRQjA0F5g80q_ufkcnqO-oC1tMpSazhwCJViJu809XkOboa0Gj95luHVCgc_T7ty3Dstp71rK4g1_Ru4CXNECIJpZMNZRVNEjRoy4pBoa7kkAXFwP1sMf0mry04DNePMVz8v3jh293n9ny_tOXu9sl0x3vC7vGqRvMIKW1bSdwkr2VUthJDK01I8Co9WD7zoJAPS1G21dFRmuGbsHN1MqpOyc3x7k6xZwTWqVdgcMedR_nleDq4IBaq6MD6uCAEkJVByos_4Ln5DaQ9v_D3h8xrB_butrN2mEV37hU5VAmun8P-ANnwKoq |
CitedBy_id | crossref_primary_10_1002_cssc_201802231 crossref_primary_10_1039_D1CP02704B crossref_primary_10_1002_ange_201807796 crossref_primary_10_1039_C9TA13528F crossref_primary_10_1002_solr_202100514 crossref_primary_10_1002_smtd_201800082 crossref_primary_10_1039_C8RA03993C crossref_primary_10_1002_smll_202405953 crossref_primary_10_1021_acsami_9b08329 crossref_primary_10_1038_s41598_017_00542_9 crossref_primary_10_1002_aenm_201700722 crossref_primary_10_1364_PRJ_398529 crossref_primary_10_1016_j_jiec_2022_09_023 crossref_primary_10_3390_polym14132748 crossref_primary_10_1002_solr_201900189 crossref_primary_10_1021_acsami_7b14592 crossref_primary_10_1002_anie_201807796 crossref_primary_10_1038_srep45688 crossref_primary_10_1039_C8TA08287A crossref_primary_10_1364_OE_25_00A253 crossref_primary_10_1021_acsanm_8b01371 crossref_primary_10_1021_acsaem_8b00687 crossref_primary_10_1016_j_eurpolymj_2022_111521 crossref_primary_10_1002_adfm_201808855 crossref_primary_10_1149_2_0201906jss crossref_primary_10_1039_D0TC06049F crossref_primary_10_1007_s11069_025_07136_z crossref_primary_10_1002_adom_201801409 crossref_primary_10_1063_1_5118337 crossref_primary_10_1002_adma_201805944 crossref_primary_10_1021_acsami_8b02256 |
Cites_doi | 10.1021/cm5037919 10.1002/adma.201404189 10.1038/nature12509 10.1038/nmat4014 10.1126/science.1218829 10.1126/science.1243982 10.1002/admi.201500195 10.3390/met2040529 10.1126/science.aaa9272 10.1002/adma.200703050 10.1002/adma.201503298 10.1103/PhysRevB.86.035436 10.1126/science.aaa5760 10.1002/aenm.201502206 10.1039/C5EE00120J 10.1039/C6EE00612D 10.1002/aenm.201401229 10.1126/science.aad1015 10.1039/C4EE00942H 10.1039/C4EE03824J 10.1021/acsnano.5b03687 10.1126/science.1246249 10.1021/jz500370k 10.1039/c4ee00022f 10.1002/adma.201301327 10.1002/adma.200501394 10.1021/ja809598r 10.1021/acsnano.5b08135 10.1039/C4EE01138D 10.1039/C4EE01216J 10.1002/aenm.201402321 10.1126/science.1243167 10.1038/ncomms6784 10.1039/C5EE02194D 10.1002/adma.201306217 10.1021/nl401044q 10.1002/adma.201500523 10.1038/nphoton.2012.22 10.1039/C5EE01265A 10.1021/nn505723h 10.1126/science.1228604 10.1038/nature12340 10.1039/C4TA03674C 10.1038/ncomms9929 10.1002/adma.201504168 10.1038/nenergy.2015.1 10.1039/c4ee00168k 10.1021/acsnano.5b07043 10.1039/C4TA05352D 10.1002/adma.201500663 10.1021/jacs.5b10614 10.1016/j.nanoen.2016.02.033 10.1038/nnano.2015.230 10.1039/C4EE00233D 10.1039/C4EE02282C 10.1039/c3nr00390f 10.1021/cm502864s 10.1002/adma.201405391 10.1021/jz500113x 10.1002/1521-4095(20020705)14:13/14<961::AID-ADMA961>3.0.CO;2-X |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mtener.2016.11.001 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics |
EISSN | 2468-6069 |
EndPage | 10 |
ExternalDocumentID | 10_1016_j_mtener_2016_11_001 S246860691630034X |
GroupedDBID | --M 0R~ AABXZ AACTN AAEDT AAEDW AAIAV AAKOC AALRI AAOAW AAXUO ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV AEBSH AEZYN AFKWA AFRZQ AFTJW AGUBO AIEXJ AIKHN AITUG AJBFU ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK EBS EFJIC EFLBG EJD FDB FIRID FYGXN KOM M41 O9- RIG ROL SPC SPCBC SSM SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-8eb37d744ff231eb46f441fb172fd9aa9cc7f63fa1ecb59f60219fd7350db24b3 |
IEDL.DBID | AIKHN |
ISSN | 2468-6069 |
IngestDate | Tue Jul 01 03:24:28 EDT 2025 Thu Apr 24 22:59:18 EDT 2025 Fri Feb 23 02:32:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Interface engineering Planar inverted Perovskite solar cells Poly(2-ethyl-2-oxazoline) Cathode electron-extraction layer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-8eb37d744ff231eb46f441fb172fd9aa9cc7f63fa1ecb59f60219fd7350db24b3 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_j_mtener_2016_11_001 crossref_primary_10_1016_j_mtener_2016_11_001 elsevier_sciencedirect_doi_10_1016_j_mtener_2016_11_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October-December 2016 2016-10-00 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: October-December 2016 |
PublicationDecade | 2010 |
PublicationTitle | Materials today energy |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liang, Chueh, Williams, Jen (bib12) 2015; 5 Liu, Dong, Wong, Djurišić, Ng, Ren, Shen, Surya, Chan, Wang, Ng, Liao, Li, Shih, Wei, Su, Dai (bib58) 2016; 6 Yang, Noh, Jeon, Kim, Ryu, Seo, Seok (bib2) 2015; 348 Palermo, Palma, Samorì (bib43) 2006; 18 Heo, Han, Kim, Ahn, Im (bib10) 2015; 8 Schulz, Edri, Kirmayer, Hodes, Cahen, Kahn (bib19) 2014; 7 Zhang, Cheng, Lin, He, Mao, Wong, Jen, Choy (bib31) 2016; 10 Seo, Park, Chan Kim, Jeon, Noh, Yoon, Seok (bib20) 2014; 7 Wojciechowski, Stranks, Abate, Sadoughi, Sadhanala, Kopidakis, Rumbles, Li, Friend, Jen, Snaith (bib45) 2014; 8 Xing, Mathews, Sun, Lim, Lam, Gratzel, Mhaisalkar, Sum (bib4) 2013; 342 Wang, Shao, Dong, Xiao, Yuan, Huang (bib26) 2014; 7 Jiang, Choy, Li, Zhang, Cheng (bib32) 2015; 27 Lee, Teuscher, Miyasaka, Murakami, Snaith (bib6) 2012; 338 Yip, Hau, Baek, Ma, Jen (bib36) 2008; 20 Liu, Johnston, Snaith (bib8) 2013; 501 Chiang, Tseng, Wu (bib28) 2014; 2 Guerrero, You, Aranda, Kang, Garcia-Belmonte, Zhou, Bisquert, Yang (bib53) 2016; 10 Kim, Liang, Williams, Cho, Chueh, Glaz, Ginger, Jen (bib24) 2015; 27 Reinholdt, Ilie, Roualdes, Frugier, Schieda, Coutanceau, Martemianov, Flaud, Beche, Durand (bib61) 2012; 2 Xiao, Bi, Shao, Dong, Wang, Yuan, Wang, Gao, Huang (bib27) 2014; 7 Dürr, Schreiber, Kelsch, Carstanjen, Dosch (bib52) 2002; 14 Yin, Chen, Que, Xing, Que, Niu, Shao (bib33) 2016; 10 Back, Kim, Kim, Kong, Kim, Kang, Kim, Lee, Lee, Lee (bib60) 2016; 9 Li, Zhao, Chen, Yang, Liu, Hong, Liu, Hsieh, Meng, Li, Yang (bib46) 2015; 137 Shao, Yuan, Huang (bib14) 2016; 1 Kondo, Casolo, Suzuki, Shikano, Sakurai, Harada, Saito, Oshima, Trioni, Tantardini, Nakamura (bib62) 2012; 86 Jeng, Chiang, Lee, Peng, Guo, Chen, Wen (bib22) 2013; 25 Azpiroz, Mosconi, Bisquert, De Angelis (bib55) 2015; 8 Kim, Lim, Lee (bib16) 2016; 9 Dong, Fang, Shao, Mulligan, Qiu, Cao, Huang (bib44) 2015; 347 Chen, Zhu, Yu, Xu, Zhang, He (bib40) 2016 Stranks, Eperon, Grancini, Menelaou, Alcocer, Leijtens, Herz, Petrozza, Snaith (bib3) 2013; 342 Min, Zhang, Hou, Ramirez Quiroz, Przybilla, Bronnbauer, Guo, Forberich, Azimi, Ameri, Spiecker, Li, Brabec (bib17) 2015; 27 Gao, Grätzel, Nazeeruddin (bib7) 2014; 7 Akhtar, Kwon, Stadler, Yang (bib59) 2013; 5 Nam, Seo, Woo, Kim, Kim, Bradley, Kim (bib37) 2015; 6 Lee, Lee, Park, Jung, Yu, Nam, Heo, Kim, Kim, Song (bib35) 2015; 27 Park, Seo, Park, Shin, Kim, Jeon, Shin, Ahn, Noh, Yoon, Hwang, Seok (bib25) 2015; 27 Jung, Chueh, Jen (bib23) 2015; 27 Hou, Chen, Baran, Stubhan, Luechinger, Hartmeier, Richter, Min, Chen, Quiroz, Li, Zhang, Heumueller, Matt, Osvet, Forberich, Zhang, Li, Winter, Schweizer, Spiecker, Brabec (bib38) 2016; 28 Burschka, Pellet, Moon, Humphry-Baker, Gao, Nazeeruddin, Gratzel (bib9) 2013; 499 Jeng, Chen, Chiang, Lin, Tsai, Chang, Guo, Chen, Wen, Hsu (bib21) 2014; 26 Xue, Hu, Liu, Lin, Sun, Chen, Duan, Wang, Liao, Lau, Huang, Yip, Cao (bib29) 2014; 2 Gelinas, Rao, Kumar, Smith, Chin, Clark, van der Poll, Bazan, Friend (bib5) 2014; 343 Zhang, Cui, Zhu, Zu, Liao, Lee, Sun (bib42) 2015; 8 Kim, Williams, Cho, Chueh, Jen (bib11) 2015; 5 Snaith, Abate, Ball, Eperon, Leijtens, Noel, Stranks, Wang, Wojciechowski, Zhang (bib48) 2014; 5 Kojima, Teshima, Shirai, Miyasaka (bib1) 2009; 131 Kim, Lee, Lee, Hong (bib56) 2014; 5 Abrusci, Stranks, Docampo, Yip, Jen, Snaith (bib47) 2013; 13 Jeon, Noh, Kim, Yang, Ryu, Seok (bib34) 2014; 13 Zhou, Fuentes-Hernandez, Shim, Meyer, Giordano, Li, Winget, Papadopoulos, Cheun, Kim, Fenoll, Dindar, Haske, Najafabadi, Khan, Sojoudi, Barlow, Graham, Brédas, Marder, Kahn, Kippelen (bib39) 2012; 336 Hardin, Snaith, McGehee (bib57) 2012; 6 Chen, Wu, Yue, Liu, Zhang, Yang, Chen, Bi, Ashraful, Gratzel, Han (bib13) 2015; 350 Zhang, Qi, Jin, Chi, Qi, Li, Wang (bib41) 2014; 7 Shao, Xiao, Bi, Yuan, Huang (bib49) 2014; 5 Zhang, Azimi, Hou, Ameri, Przybilla, Spiecker, Kraft, Scherf, Brabec (bib18) 2014; 26 Yang, Chueh, Liang, Crump, Lin, Zhu, Jen (bib50) 2016; 22 Chueh, Li, Jen (bib15) 2015; 8 You, Meng, Song, Guo, Yang, Chang, Hong, Chen, Zhou, Chen, Liu, De Marco, Yang (bib51) 2016; 11 Kato, Ono, Lee, Wang, Raga, Qi (bib54) 2015; 2 Kim (10.1016/j.mtener.2016.11.001_bib24) 2015; 27 Gao (10.1016/j.mtener.2016.11.001_bib7) 2014; 7 Liang (10.1016/j.mtener.2016.11.001_bib12) 2015; 5 Snaith (10.1016/j.mtener.2016.11.001_bib48) 2014; 5 Kondo (10.1016/j.mtener.2016.11.001_bib62) 2012; 86 Lee (10.1016/j.mtener.2016.11.001_bib35) 2015; 27 Zhang (10.1016/j.mtener.2016.11.001_bib42) 2015; 8 Liu (10.1016/j.mtener.2016.11.001_bib8) 2013; 501 Park (10.1016/j.mtener.2016.11.001_bib25) 2015; 27 Schulz (10.1016/j.mtener.2016.11.001_bib19) 2014; 7 Zhang (10.1016/j.mtener.2016.11.001_bib31) 2016; 10 Gelinas (10.1016/j.mtener.2016.11.001_bib5) 2014; 343 Back (10.1016/j.mtener.2016.11.001_bib60) 2016; 9 Chen (10.1016/j.mtener.2016.11.001_bib13) 2015; 350 Hardin (10.1016/j.mtener.2016.11.001_bib57) 2012; 6 Li (10.1016/j.mtener.2016.11.001_bib46) 2015; 137 Xue (10.1016/j.mtener.2016.11.001_bib29) 2014; 2 Liu (10.1016/j.mtener.2016.11.001_bib58) 2016; 6 Kim (10.1016/j.mtener.2016.11.001_bib11) 2015; 5 Shao (10.1016/j.mtener.2016.11.001_bib14) 2016; 1 Hou (10.1016/j.mtener.2016.11.001_bib38) 2016; 28 Wang (10.1016/j.mtener.2016.11.001_bib26) 2014; 7 Chen (10.1016/j.mtener.2016.11.001_bib40) 2016 Zhang (10.1016/j.mtener.2016.11.001_bib41) 2014; 7 Jiang (10.1016/j.mtener.2016.11.001_bib32) 2015; 27 Wojciechowski (10.1016/j.mtener.2016.11.001_bib45) 2014; 8 Dong (10.1016/j.mtener.2016.11.001_bib44) 2015; 347 Azpiroz (10.1016/j.mtener.2016.11.001_bib55) 2015; 8 Chiang (10.1016/j.mtener.2016.11.001_bib28) 2014; 2 Palermo (10.1016/j.mtener.2016.11.001_bib43) 2006; 18 Xiao (10.1016/j.mtener.2016.11.001_bib27) 2014; 7 Kojima (10.1016/j.mtener.2016.11.001_bib1) 2009; 131 Jeng (10.1016/j.mtener.2016.11.001_bib21) 2014; 26 Guerrero (10.1016/j.mtener.2016.11.001_bib53) 2016; 10 Dürr (10.1016/j.mtener.2016.11.001_bib52) 2002; 14 Stranks (10.1016/j.mtener.2016.11.001_bib3) 2013; 342 Zhou (10.1016/j.mtener.2016.11.001_bib39) 2012; 336 Yang (10.1016/j.mtener.2016.11.001_bib50) 2016; 22 Xing (10.1016/j.mtener.2016.11.001_bib4) 2013; 342 Burschka (10.1016/j.mtener.2016.11.001_bib9) 2013; 499 Chueh (10.1016/j.mtener.2016.11.001_bib15) 2015; 8 Kim (10.1016/j.mtener.2016.11.001_bib16) 2016; 9 Kato (10.1016/j.mtener.2016.11.001_bib54) 2015; 2 Yip (10.1016/j.mtener.2016.11.001_bib36) 2008; 20 Min (10.1016/j.mtener.2016.11.001_bib17) 2015; 27 Kim (10.1016/j.mtener.2016.11.001_bib56) 2014; 5 Shao (10.1016/j.mtener.2016.11.001_bib49) 2014; 5 Lee (10.1016/j.mtener.2016.11.001_bib6) 2012; 338 Seo (10.1016/j.mtener.2016.11.001_bib20) 2014; 7 Abrusci (10.1016/j.mtener.2016.11.001_bib47) 2013; 13 Nam (10.1016/j.mtener.2016.11.001_bib37) 2015; 6 Yang (10.1016/j.mtener.2016.11.001_bib2) 2015; 348 Yin (10.1016/j.mtener.2016.11.001_bib33) 2016; 10 Jeon (10.1016/j.mtener.2016.11.001_bib34) 2014; 13 Jung (10.1016/j.mtener.2016.11.001_bib23) 2015; 27 Heo (10.1016/j.mtener.2016.11.001_bib10) 2015; 8 Akhtar (10.1016/j.mtener.2016.11.001_bib59) 2013; 5 You (10.1016/j.mtener.2016.11.001_bib51) 2016; 11 Zhang (10.1016/j.mtener.2016.11.001_bib18) 2014; 26 Reinholdt (10.1016/j.mtener.2016.11.001_bib61) 2012; 2 Jeng (10.1016/j.mtener.2016.11.001_bib22) 2013; 25 |
References_xml | – volume: 6 start-page: 1502206 year: 2016 ident: bib58 publication-title: Adv. Energy Mater. – volume: 5 start-page: 1401229 year: 2015 ident: bib11 publication-title: Adv. Energy Mater. – volume: 9 start-page: 12 year: 2016 end-page: 30 ident: bib16 publication-title: Energy Environ. Sci. – volume: 9 start-page: 1258 year: 2016 end-page: 1263 ident: bib60 publication-title: Energy Environ. Sci. – volume: 2 start-page: 529 year: 2012 end-page: 552 ident: bib61 publication-title: Membr. (Basel) – volume: 26 start-page: 5190 year: 2014 end-page: 5193 ident: bib18 publication-title: Chem. Mater. – volume: 336 start-page: 327 year: 2012 end-page: 332 ident: bib39 publication-title: Science – volume: 7 start-page: 1966 year: 2014 ident: bib41 publication-title: Energy Environ. Sci. – year: 2016 ident: bib40 publication-title: Chem. Mater. – volume: 13 start-page: 3124 year: 2013 end-page: 3128 ident: bib47 publication-title: Nano Lett. – volume: 7 start-page: 1377 year: 2014 ident: bib19 publication-title: Energy Environ. Sci. – volume: 27 start-page: 7874 year: 2015 end-page: 7880 ident: bib23 publication-title: Adv. Mater. – volume: 499 start-page: 316 year: 2013 end-page: 319 ident: bib9 publication-title: Nature – volume: 25 start-page: 3727 year: 2013 end-page: 3732 ident: bib22 publication-title: Adv. Mater. – volume: 6 start-page: 162 year: 2012 end-page: 169 ident: bib57 publication-title: Nat. Photonics – volume: 27 start-page: 2930 year: 2015 end-page: 2937 ident: bib32 publication-title: Adv. Mater. – volume: 7 start-page: 2642 year: 2014 ident: bib20 publication-title: Energy Environ. Sci. – volume: 8 start-page: 297 year: 2015 end-page: 302 ident: bib42 publication-title: Energy Environ. Sci. – volume: 27 start-page: 695 year: 2015 end-page: 701 ident: bib24 publication-title: Adv. Mater. – volume: 343 start-page: 512 year: 2014 end-page: 516 ident: bib5 publication-title: Science – volume: 2 start-page: 15897 year: 2014 end-page: 15903 ident: bib28 publication-title: J. Mater. Chem. A – volume: 18 start-page: 145 year: 2006 end-page: 164 ident: bib43 publication-title: Adv. Mater. – volume: 86 start-page: 035436 year: 2012 ident: bib62 publication-title: Phys. Rev. B – volume: 7 start-page: 2359 year: 2014 ident: bib26 publication-title: Energy Environ. Sci. – volume: 27 start-page: 3553 year: 2015 end-page: 3559 ident: bib35 publication-title: Adv. Mater. – volume: 350 start-page: 944 year: 2015 end-page: 948 ident: bib13 publication-title: Science – volume: 501 start-page: 395 year: 2013 end-page: 398 ident: bib8 publication-title: Nature – volume: 8 start-page: 1602 year: 2015 end-page: 1608 ident: bib10 publication-title: Energy Environ. Sci. – volume: 338 start-page: 643 year: 2012 end-page: 647 ident: bib6 publication-title: Science – volume: 28 start-page: 5112 year: 2016 end-page: 5120 ident: bib38 publication-title: Adv. Mater. – volume: 347 start-page: 967 year: 2015 end-page: 970 ident: bib44 publication-title: Science – volume: 27 start-page: 4013 year: 2015 end-page: 4019 ident: bib25 publication-title: Adv. Mater. – volume: 348 start-page: 1234 year: 2015 end-page: 1237 ident: bib2 publication-title: Science – volume: 27 start-page: 227 year: 2015 end-page: 234 ident: bib17 publication-title: Chem. Mater. – volume: 342 start-page: 341 year: 2013 end-page: 344 ident: bib3 publication-title: Science – volume: 5 start-page: 1312 year: 2014 end-page: 1317 ident: bib56 publication-title: J. Phys. Chem. Lett. – volume: 8 start-page: 1160 year: 2015 end-page: 1189 ident: bib15 publication-title: Energy Environ. Sci. – volume: 2 start-page: 1500195 year: 2015 ident: bib54 publication-title: Adv. Mater. Interfaces – volume: 8 start-page: 2118 year: 2015 end-page: 2127 ident: bib55 publication-title: Energy Environ. Sci. – volume: 1 start-page: 15001 year: 2016 ident: bib14 publication-title: Nat. Energy – volume: 137 start-page: 15540 year: 2015 end-page: 15547 ident: bib46 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 8929 year: 2015 ident: bib37 publication-title: Nat. Commun. – volume: 10 start-page: 218 year: 2016 end-page: 224 ident: bib53 publication-title: ACS Nano – volume: 7 start-page: 2619 year: 2014 ident: bib27 publication-title: Energy Environ. Sci. – volume: 7 start-page: 2448 year: 2014 ident: bib7 publication-title: Energy Environ. Sci. – volume: 342 start-page: 344 year: 2013 end-page: 347 ident: bib4 publication-title: Science – volume: 2 start-page: 19598 year: 2014 end-page: 19603 ident: bib29 publication-title: J. Mater. Chem. A – volume: 131 start-page: 6050 year: 2009 end-page: 6051 ident: bib1 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1503 year: 2016 end-page: 1511 ident: bib31 publication-title: ACS Nano – volume: 5 start-page: 5784 year: 2014 ident: bib49 publication-title: Nat. Commun. – volume: 5 start-page: 5403 year: 2013 end-page: 5411 ident: bib59 publication-title: Nanoscale – volume: 5 start-page: 1511 year: 2014 end-page: 1515 ident: bib48 publication-title: J. Phys. Chem. Lett. – volume: 13 start-page: 897 year: 2014 end-page: 903 ident: bib34 publication-title: Nat. Mater. – volume: 8 start-page: 12701 year: 2014 end-page: 12709 ident: bib45 publication-title: ACS Nano – volume: 11 start-page: 75 year: 2016 end-page: 81 ident: bib51 publication-title: Nat. Nanotechnol. – volume: 10 start-page: 3630 year: 2016 end-page: 3636 ident: bib33 publication-title: ACS Nano – volume: 5 start-page: 1402321 year: 2015 ident: bib12 publication-title: Adv. Energy Mater. – volume: 20 start-page: 2376 year: 2008 end-page: 2382 ident: bib36 publication-title: Adv. Mater. – volume: 26 start-page: 4107 year: 2014 end-page: 4113 ident: bib21 publication-title: Adv. Mater. – volume: 14 start-page: 961 year: 2002 end-page: 963 ident: bib52 publication-title: Adv. Mater. – volume: 22 start-page: 328 year: 2016 end-page: 337 ident: bib50 publication-title: Nano Energy – volume: 27 start-page: 227 year: 2015 ident: 10.1016/j.mtener.2016.11.001_bib17 publication-title: Chem. Mater. doi: 10.1021/cm5037919 – volume: 27 start-page: 695 year: 2015 ident: 10.1016/j.mtener.2016.11.001_bib24 publication-title: Adv. Mater. doi: 10.1002/adma.201404189 – volume: 501 start-page: 395 year: 2013 ident: 10.1016/j.mtener.2016.11.001_bib8 publication-title: Nature doi: 10.1038/nature12509 – volume: 13 start-page: 897 year: 2014 ident: 10.1016/j.mtener.2016.11.001_bib34 publication-title: Nat. Mater. doi: 10.1038/nmat4014 – volume: 336 start-page: 327 year: 2012 ident: 10.1016/j.mtener.2016.11.001_bib39 publication-title: Science doi: 10.1126/science.1218829 – volume: 342 start-page: 341 year: 2013 ident: 10.1016/j.mtener.2016.11.001_bib3 publication-title: Science doi: 10.1126/science.1243982 – volume: 2 start-page: 1500195 year: 2015 ident: 10.1016/j.mtener.2016.11.001_bib54 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201500195 – volume: 2 start-page: 529 year: 2012 ident: 10.1016/j.mtener.2016.11.001_bib61 publication-title: Membr. (Basel) doi: 10.3390/met2040529 – volume: 348 start-page: 1234 year: 2015 ident: 10.1016/j.mtener.2016.11.001_bib2 publication-title: Science doi: 10.1126/science.aaa9272 – volume: 20 start-page: 2376 year: 2008 ident: 10.1016/j.mtener.2016.11.001_bib36 publication-title: Adv. Mater. doi: 10.1002/adma.200703050 – volume: 27 start-page: 7874 year: 2015 ident: 10.1016/j.mtener.2016.11.001_bib23 publication-title: Adv. Mater. doi: 10.1002/adma.201503298 – volume: 86 start-page: 035436 year: 2012 ident: 10.1016/j.mtener.2016.11.001_bib62 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.035436 – volume: 347 start-page: 967 year: 2015 ident: 10.1016/j.mtener.2016.11.001_bib44 publication-title: Science doi: 10.1126/science.aaa5760 – volume: 6 start-page: 1502206 year: 2016 ident: 10.1016/j.mtener.2016.11.001_bib58 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502206 – volume: 8 start-page: 1602 year: 2015 ident: 10.1016/j.mtener.2016.11.001_bib10 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE00120J – volume: 9 start-page: 1258 year: 2016 ident: 10.1016/j.mtener.2016.11.001_bib60 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00612D – volume: 5 start-page: 1401229 year: 2015 ident: 10.1016/j.mtener.2016.11.001_bib11 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201401229 – volume: 350 start-page: 944 year: 2015 ident: 10.1016/j.mtener.2016.11.001_bib13 publication-title: Science doi: 10.1126/science.aad1015 – volume: 7 start-page: 2448 year: 2014 ident: 10.1016/j.mtener.2016.11.001_bib7 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00942H – volume: 8 start-page: 1160 year: 2015 ident: 10.1016/j.mtener.2016.11.001_bib15 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03824J – volume: 10 start-page: 218 year: 2016 ident: 10.1016/j.mtener.2016.11.001_bib53 publication-title: ACS Nano doi: 10.1021/acsnano.5b03687 – volume: 343 start-page: 512 year: 2014 ident: 10.1016/j.mtener.2016.11.001_bib5 publication-title: Science doi: 10.1126/science.1246249 – volume: 5 start-page: 1312 year: 2014 ident: 10.1016/j.mtener.2016.11.001_bib56 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500370k – year: 2016 ident: 10.1016/j.mtener.2016.11.001_bib40 publication-title: Chem. Mater. – volume: 7 start-page: 1966 year: 2014 ident: 10.1016/j.mtener.2016.11.001_bib41 publication-title: Energy Environ. Sci. doi: 10.1039/c4ee00022f – volume: 25 start-page: 3727 year: 2013 ident: 10.1016/j.mtener.2016.11.001_bib22 publication-title: Adv. Mater. doi: 10.1002/adma.201301327 – volume: 18 start-page: 145 year: 2006 ident: 10.1016/j.mtener.2016.11.001_bib43 publication-title: Adv. Mater. doi: 10.1002/adma.200501394 – volume: 131 start-page: 6050 year: 2009 ident: 10.1016/j.mtener.2016.11.001_bib1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 10 start-page: 3630 year: 2016 ident: 10.1016/j.mtener.2016.11.001_bib33 publication-title: ACS Nano doi: 10.1021/acsnano.5b08135 – volume: 7 start-page: 2619 year: 2014 ident: 10.1016/j.mtener.2016.11.001_bib27 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01138D – volume: 7 start-page: 2642 year: 2014 ident: 10.1016/j.mtener.2016.11.001_bib20 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01216J – volume: 5 start-page: 1402321 year: 2015 ident: 10.1016/j.mtener.2016.11.001_bib12 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201402321 – volume: 342 start-page: 344 year: 2013 ident: 10.1016/j.mtener.2016.11.001_bib4 publication-title: Science doi: 10.1126/science.1243167 – volume: 5 start-page: 5784 year: 2014 ident: 10.1016/j.mtener.2016.11.001_bib49 publication-title: Nat. Commun. doi: 10.1038/ncomms6784 – volume: 9 start-page: 12 year: 2016 ident: 10.1016/j.mtener.2016.11.001_bib16 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02194D – volume: 26 start-page: 4107 year: 2014 ident: 10.1016/j.mtener.2016.11.001_bib21 publication-title: Adv. Mater. doi: 10.1002/adma.201306217 – volume: 13 start-page: 3124 year: 2013 ident: 10.1016/j.mtener.2016.11.001_bib47 publication-title: Nano Lett. doi: 10.1021/nl401044q – volume: 27 start-page: 4013 year: 2015 ident: 10.1016/j.mtener.2016.11.001_bib25 publication-title: Adv. Mater. doi: 10.1002/adma.201500523 – volume: 6 start-page: 162 year: 2012 ident: 10.1016/j.mtener.2016.11.001_bib57 publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.22 – volume: 8 start-page: 2118 year: 2015 ident: 10.1016/j.mtener.2016.11.001_bib55 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01265A – volume: 8 start-page: 12701 year: 2014 ident: 10.1016/j.mtener.2016.11.001_bib45 publication-title: ACS Nano doi: 10.1021/nn505723h – volume: 338 start-page: 643 year: 2012 ident: 10.1016/j.mtener.2016.11.001_bib6 publication-title: Science doi: 10.1126/science.1228604 – volume: 499 start-page: 316 year: 2013 ident: 10.1016/j.mtener.2016.11.001_bib9 publication-title: Nature doi: 10.1038/nature12340 – volume: 2 start-page: 15897 year: 2014 ident: 10.1016/j.mtener.2016.11.001_bib28 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03674C – volume: 6 start-page: 8929 year: 2015 ident: 10.1016/j.mtener.2016.11.001_bib37 publication-title: Nat. Commun. doi: 10.1038/ncomms9929 – volume: 28 start-page: 5112 year: 2016 ident: 10.1016/j.mtener.2016.11.001_bib38 publication-title: Adv. Mater. doi: 10.1002/adma.201504168 – volume: 1 start-page: 15001 year: 2016 ident: 10.1016/j.mtener.2016.11.001_bib14 publication-title: Nat. Energy doi: 10.1038/nenergy.2015.1 – volume: 7 start-page: 1377 year: 2014 ident: 10.1016/j.mtener.2016.11.001_bib19 publication-title: Energy Environ. Sci. doi: 10.1039/c4ee00168k – volume: 10 start-page: 1503 year: 2016 ident: 10.1016/j.mtener.2016.11.001_bib31 publication-title: ACS Nano doi: 10.1021/acsnano.5b07043 – volume: 2 start-page: 19598 year: 2014 ident: 10.1016/j.mtener.2016.11.001_bib29 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05352D – volume: 27 start-page: 3553 year: 2015 ident: 10.1016/j.mtener.2016.11.001_bib35 publication-title: Adv. Mater. doi: 10.1002/adma.201500663 – volume: 137 start-page: 15540 year: 2015 ident: 10.1016/j.mtener.2016.11.001_bib46 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10614 – volume: 22 start-page: 328 year: 2016 ident: 10.1016/j.mtener.2016.11.001_bib50 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.02.033 – volume: 11 start-page: 75 year: 2016 ident: 10.1016/j.mtener.2016.11.001_bib51 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.230 – volume: 7 start-page: 2359 year: 2014 ident: 10.1016/j.mtener.2016.11.001_bib26 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00233D – volume: 8 start-page: 297 year: 2015 ident: 10.1016/j.mtener.2016.11.001_bib42 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02282C – volume: 5 start-page: 5403 year: 2013 ident: 10.1016/j.mtener.2016.11.001_bib59 publication-title: Nanoscale doi: 10.1039/c3nr00390f – volume: 26 start-page: 5190 year: 2014 ident: 10.1016/j.mtener.2016.11.001_bib18 publication-title: Chem. Mater. doi: 10.1021/cm502864s – volume: 27 start-page: 2930 year: 2015 ident: 10.1016/j.mtener.2016.11.001_bib32 publication-title: Adv. Mater. doi: 10.1002/adma.201405391 – volume: 5 start-page: 1511 year: 2014 ident: 10.1016/j.mtener.2016.11.001_bib48 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500113x – volume: 14 start-page: 961 year: 2002 ident: 10.1016/j.mtener.2016.11.001_bib52 publication-title: Adv. Mater. doi: 10.1002/1521-4095(20020705)14:13/14<961::AID-ADMA961>3.0.CO;2-X |
SSID | ssj0002140215 |
Score | 2.2906506 |
Snippet | High conversion efficiency and stability are above all important topics in the current study of perovskite solar cells (PSCs), which determine the future of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Cathode electron-extraction layer Interface engineering Perovskite solar cells Planar inverted Poly(2-ethyl-2-oxazoline) |
Title | Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer |
URI | https://dx.doi.org/10.1016/j.mtener.2016.11.001 |
Volume | 1-2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKe4ALKi9RXpoDB5Awu-s4zvpYVVTLazlApb1FfkqpQhJtltL2b_EHO7NxCggJJG5J5JEij-X5ZvTNN4w9Fxi28qAM92qecym3krcucmczjKYhOhOo3vFxqRYn8t0qX-2wo7EXhmiV6e4f7vTtbZ2-TNJuTrqqmnwWUs0RfiO-yUhlZXWD7YlMKzzae4dv3y-W16UWgUmE2M4yIBNONmMT3Zbp9XVDCs9E81KvSdEzDYj5I0j9EniO99nthBjhcPipO2wnNHfZzbGhuL_HfnxovwNJTCV9ZOgG8n_wr4DUiHn3szkATOMBAaGtAyyrT-dAUcxD1dBYZnzoatOYNZB6-FlPhV3oKfcFqu_3cFYZMNC19cULwQO6uOaCt-fmkib_hJfQmIay3B5IDLb1AcYhOxxDwHpooYDaIMq_z06O33w5WvA0i4E7TCo2fI5Jd-ELKWNERBisVBGBVLSIf6LXxmjniqiyaGbB2VxHhTuuoy-yfOqtkDZ7wHabtgkPGegwszE3-cxheham2sZ5oY2c2sIIXzh9wLJx80uXhMppXkZdjoy003JwWUkuwxyGiHkHjF9bdYNQxz_WF6Nfy98OXImx5K-Wj_7b8jG7RW8DF_AJ292sv4WniGk29lk6s1fFffqA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6V9FAuiKco5TEHDiCxJLHXdnysKqqUpuFAK-Vm7VMyMrYVp6Xwt_iDzMTrAkICiZtl70jWzmrnm9E33wC8jChsJS5VwqazREi5lbw1XhgdUzR13ijH9Y6zZTq_kO9XyWoHjoZeGKZVhru_v9O3t3V4Mw67OW7LcvwxkumM4Dfhm5hVVla3YJfVqZIR7B6enM6XN6WWiJKIaDvLgE0E2wxNdFum1-cNKzwzzSt9y4qeYUDMH0Hql8BzfBfuBMSIh_1P3YMdV9-HvaGhuHsA3xfNF2SJqaCPjG1P_nf2DbIasWh_Ngegqi0SINSVw2X54Ro5ilksax7LTA9tpWq1RlYPv-q4sIsd577I9f0Or0qFCtum-voqEo5cXIlINNfqG0_-ca-xVjVnuR2yGGxjHQ5DdgSFgHXfQoGVIpT_EC6O350fzUWYxSAMJRUbMaOkO7OZlN4TInRapp6AlNeEf7zNlcqNyXwaezV1Rie5T2nHc2-zOJlYHUkdP4JR3dTuMWDuptonKpkaSs_cJNd-luVKTnSmIpuZfB_iYfMLE4TKeV5GVQyMtE9F77KCXUY5DBPz9kHcWLW9UMc_1meDX4vfDlxBseSvlk_-2_IF7M3PzxbF4mR5egC3-UvPC3wKo8360j0jfLPRz8P5_QGZKP1m |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+temperature+processed%2C+high-performance+and+stable+NiOx+based+inverted+planar+perovskite+solar+cells+via+a+poly%282-ethyl-2-oxazoline%29+nanodots+cathode+electron-extraction+layer&rft.jtitle=Materials+today+energy&rft.au=Chen%2C+Wei&rft.au=Zhang%2C+Gui-ning&rft.au=Xu%2C+Lei-ming&rft.au=Gu%2C+Rui&rft.date=2016-10-01&rft.pub=Elsevier+Ltd&rft.issn=2468-6069&rft.eissn=2468-6069&rft.volume=1-2&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1016%2Fj.mtener.2016.11.001&rft.externalDocID=S246860691630034X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-6069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-6069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-6069&client=summon |