CubeNet: X-shape connection for camouflaged object detection

•We propose a novel CubeNet architecture for camouflaged object detection, which accompanies with feature Fusion Blocks and X-connection to sufficiently integrate multiple layer features.•The proposed model can be trained quickly. Meanwhile, it achieves real-time inference efficiency.•Extensive resu...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 127; p. 108644
Main Authors Zhuge, Mingchen, Lu, Xiankai, Guo, Yiyou, Cai, Zhihua, Chen, Shuhan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We propose a novel CubeNet architecture for camouflaged object detection, which accompanies with feature Fusion Blocks and X-connection to sufficiently integrate multiple layer features.•The proposed model can be trained quickly. Meanwhile, it achieves real-time inference efficiency.•Extensive results on three challenging datasets verify the effectiveness of the proposed method. Camouflaged object detection (COD) aims to detect out-of-attention regions in an image. Current binary segmentation solutions fail to tackle COD easily, since COD is more challenging due to object often accompany with weak boundaries, low contrast, or similar patterns to the background. That is, we need a more efficient scheme to address this problem. In this work, we propose a new COD framework called CubeNet by introducing X connection to the standard encoder-decoder architecture. Specifically, CubeNet consists of two square fusion decoder (SFD) and a sub edge decoder (SED). The special designed SFD takes full advantage of low-level and high-level features extracted from encoder-decoder blocks, providing more powerful representations at each stage. To explicitly modeling the weak boundaries of the objects, we introduced a SED between the two SFD. With such kind of holistic designs, these three decoder modules resolve the challenging ambiguity of camouflaged object detection. CubeNet significantly advance the cutting-edge model on three challenging COD datasets (i.e., COD10K, CAMO, and CHAMELEON), and achieves the real-time (50fps) inference.
AbstractList •We propose a novel CubeNet architecture for camouflaged object detection, which accompanies with feature Fusion Blocks and X-connection to sufficiently integrate multiple layer features.•The proposed model can be trained quickly. Meanwhile, it achieves real-time inference efficiency.•Extensive results on three challenging datasets verify the effectiveness of the proposed method. Camouflaged object detection (COD) aims to detect out-of-attention regions in an image. Current binary segmentation solutions fail to tackle COD easily, since COD is more challenging due to object often accompany with weak boundaries, low contrast, or similar patterns to the background. That is, we need a more efficient scheme to address this problem. In this work, we propose a new COD framework called CubeNet by introducing X connection to the standard encoder-decoder architecture. Specifically, CubeNet consists of two square fusion decoder (SFD) and a sub edge decoder (SED). The special designed SFD takes full advantage of low-level and high-level features extracted from encoder-decoder blocks, providing more powerful representations at each stage. To explicitly modeling the weak boundaries of the objects, we introduced a SED between the two SFD. With such kind of holistic designs, these three decoder modules resolve the challenging ambiguity of camouflaged object detection. CubeNet significantly advance the cutting-edge model on three challenging COD datasets (i.e., COD10K, CAMO, and CHAMELEON), and achieves the real-time (50fps) inference.
ArticleNumber 108644
Author Lu, Xiankai
Cai, Zhihua
Chen, Shuhan
Zhuge, Mingchen
Guo, Yiyou
Author_xml – sequence: 1
  givenname: Mingchen
  surname: Zhuge
  fullname: Zhuge, Mingchen
  email: mczhuge@cug.edu.cn
  organization: School of Software, Shandong University, China
– sequence: 2
  givenname: Xiankai
  surname: Lu
  fullname: Lu, Xiankai
  email: luxiankai@sdu.edu.cn
  organization: School of Software, Shandong University, China
– sequence: 3
  givenname: Yiyou
  surname: Guo
  fullname: Guo, Yiyou
  email: yiyouguo526@tongji.edu.cn
  organization: College of Surveying and Geo-Informatics, Tongji University, China
– sequence: 4
  givenname: Zhihua
  surname: Cai
  fullname: Cai, Zhihua
  email: zhcai@cug.edu.cn
  organization: School of Computer Science, Chinese University of Geoscience, China
– sequence: 5
  givenname: Shuhan
  surname: Chen
  fullname: Chen, Shuhan
  email: shchen@yzu.edu.cn
  organization: School of Information Engineering, Yangzhou University, China
BookMark eNqFkFtLw0AQhRepYFv9Bz7kD6TOXnJpEUGKNyj6ouDbspnM1g1ttmy2gv_ehPjkgz4NzJnvMOfM2KT1LTF2yWHBgedXzeJgIvrtQoAQ_arMlTphU14WMs24EhM2BZA8lQLkGZt1XQPAi16Ysuv1saJniqvkPe0-zIES9G1LGJ1vE-tDgmbvj3ZntlQnvmp6Jakpjgfn7NSaXUcXP3PO3u7vXteP6ebl4Wl9u0lRQh7TEtESEghrEHll0RZGZKqUgqusqKg2XKkqV1QCCANAGS6XRtgSpKRcCjlnq9EXg--6QFaji2b4IAbjdpqDHnrQjR570EMPeuyhh9Uv-BDc3oSv_7CbEaM-2KejoDt01CLVLvTpde3d3wbfLpd7qA
CitedBy_id crossref_primary_10_1016_j_patcog_2024_110895
crossref_primary_10_1109_TCSVT_2022_3178173
crossref_primary_10_1109_TNNLS_2023_3317091
crossref_primary_10_1016_j_inffus_2024_102871
crossref_primary_10_32604_cmc_2024_055327
crossref_primary_10_1016_j_dsp_2024_104403
crossref_primary_10_1007_s00371_024_03688_6
crossref_primary_10_1109_TMM_2023_3291823
crossref_primary_10_1007_s40747_024_01455_7
crossref_primary_10_1016_j_ecoinf_2024_102893
crossref_primary_10_1109_JSEN_2024_3401722
crossref_primary_10_1016_j_cviu_2024_104061
crossref_primary_10_1016_j_neucom_2024_128784
crossref_primary_10_1016_j_neucom_2023_127050
crossref_primary_10_1360_SSI_2022_0138
crossref_primary_10_1109_TPAMI_2024_3438565
crossref_primary_10_1109_JBHI_2023_3305644
crossref_primary_10_1016_j_knosys_2025_113056
crossref_primary_10_1007_s10489_024_05694_6
crossref_primary_10_1016_j_patrec_2023_09_007
crossref_primary_10_1007_s10489_023_04645_x
crossref_primary_10_1007_s00521_023_08502_3
crossref_primary_10_1007_s00530_024_01475_w
crossref_primary_10_1016_j_jvcir_2024_104208
crossref_primary_10_1007_s11042_024_20371_z
crossref_primary_10_1007_s44267_023_00019_6
crossref_primary_10_1109_TCSVT_2022_3197643
crossref_primary_10_1016_j_imavis_2025_105487
crossref_primary_10_1007_s00371_024_03786_5
crossref_primary_10_1016_j_cviu_2025_104321
crossref_primary_10_1016_j_imavis_2024_104973
crossref_primary_10_1007_s11227_024_06376_3
crossref_primary_10_1109_ACCESS_2024_3380893
crossref_primary_10_1016_j_cviu_2023_103719
crossref_primary_10_1109_TCSVT_2023_3245883
crossref_primary_10_1109_TMM_2024_3360710
crossref_primary_10_1007_s11633_022_1365_9
crossref_primary_10_1007_s00530_023_01250_3
crossref_primary_10_3390_math10224219
crossref_primary_10_1016_j_eswa_2024_123558
crossref_primary_10_1007_s00371_022_02611_1
crossref_primary_10_1109_TCSVT_2024_3462465
crossref_primary_10_1007_s13369_024_09888_5
crossref_primary_10_1016_j_engappai_2023_106749
crossref_primary_10_1016_j_engappai_2024_108328
crossref_primary_10_1109_TIP_2024_3449574
crossref_primary_10_1007_s10489_023_04982_x
crossref_primary_10_1007_s00530_024_01478_7
crossref_primary_10_32604_cmc_2025_060653
crossref_primary_10_1016_j_imavis_2024_105218
crossref_primary_10_1007_s00371_024_03658_y
crossref_primary_10_1007_s00371_025_03805_z
crossref_primary_10_1109_TCSVT_2024_3389988
crossref_primary_10_1109_TETCI_2023_3299305
crossref_primary_10_1111_exsy_13444
crossref_primary_10_26599_AIR_2024_9150044
crossref_primary_10_1007_s00138_024_01588_2
crossref_primary_10_1016_j_neucom_2023_126530
crossref_primary_10_1007_s00371_022_02692_y
crossref_primary_10_1016_j_imavis_2024_104953
crossref_primary_10_26599_AIR_2023_9150021
crossref_primary_10_1016_j_patcog_2023_109514
crossref_primary_10_1007_s11760_024_03051_1
crossref_primary_10_1109_TCSVT_2023_3308964
Cites_doi 10.1016/j.patcog.2020.107740
10.1109/TPAMI.2020.3040258
10.1109/TPAMI.2014.2345401
10.1109/TPAMI.2020.3041332
10.1109/TPAMI.2021.3073564
10.1109/TPAMI.2021.3085766
10.1109/JBHI.2021.3138024
10.1016/j.patcog.2021.108023
10.1109/TPAMI.2018.2815688
10.1109/TPAMI.2022.3179526
10.1098/rstb.2008.0217
10.1016/j.cviu.2019.04.006
10.1098/rspb.2013.0064
10.1016/j.patcog.2020.107630
10.1109/TPAMI.2020.3007032
10.1016/j.patcog.2020.107484
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2022.108644
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2022_108644
S003132032200125X
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-8ccfece02facc1bfcf7a2548321457beda144b64e8002a00e5c99a2f8033e6323
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Tue Jul 01 02:36:37 EDT 2025
Thu Apr 24 23:06:59 EDT 2025
Fri Feb 23 02:40:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Novel feature aggregation
Neural network
Edge guidance
Camouflaged object detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-8ccfece02facc1bfcf7a2548321457beda144b64e8002a00e5c99a2f8033e6323
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2022_108644
crossref_primary_10_1016_j_patcog_2022_108644
elsevier_sciencedirect_doi_10_1016_j_patcog_2022_108644
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Pang, Wang, Xiong, Li, Sun, Feng, Liu, Shi, Ouyang (bib0049) 2019
Huang, Wang, Wei, Huang, Shi, Liu, Huang (bib0034) 2020
Zhang, Shi, Zhang (bib0041) 2020; 107
Yang, Zhang, Lu, Ruan, Yang (bib0015) 2013
Chen, Zhu, Papandreou, Schroff, Adam (bib0035) 2018
Chen, Fu, Liu, Chen, Du, Qiu, Shao (bib0055) 2021; 112
(2021).
Le, Nguyen, Nie, Tran, Sugimoto (bib0027) 2019; 184
Wang, Lu, Ruan, Yang (bib0019) 2015
Hou, Cheng, Hu, Borji, Tu, Torr (bib0009) 2019
Margolin, Zelnik-Manor, Tal (bib0051) 2014
Zhai, Li, Yang, Chen, Cheng, Fan (bib0031) 2021
Zhu, Liang, Wei, Sun (bib0016) 2014
Qin, Zhang, Huang, Gao, Dehghan, Jagersand (bib0040) 2019
Zhang, Dai, Lu, He, Wang (bib0022) 2018
Fan, Ji, Cheng, Shao (bib0001) 2021
Hall, Cuthill, Baddeley, Shohet, Scott-Samuel (bib0026) 2013; 280
Wu, Su, Huang (bib0048) 2019
Wu, Su, Huang (bib0013) 2019
Lu, Ma, Shen, Yang, Reid, Yang (bib0007) 2020
Zhou, Rahman Siddiquee, Tajbakhsh, Liang (bib0011) 2018
.
A. Srivastava, D. Jha, S. Chanda, U. Pal, H.D. Johansen, D. Johansen, M.A. Riegler, S. Ali, P. Halvorsen, MSRF-Net: a multi-scale residual fusion network for biomedical image segmentation, arXiv preprint
Zhang, Fan, Dai, Anwar, Saleh, Aliakbarian, Barnes (bib0053) 2021
Zhang, Wang, Lu, Wang, Yin (bib0021) 2017
Fan, Cheng, Liu, Li, Borji (bib0052) 2017
M. Zhuge, D.-P. Fan, N. Liu, D. Zhang, D. Xu, L. Shao, Salient object detection via integrity learning, arXiv preprint
Stevens, Merilaita (bib0002) 2009; 364
Sengottuvelan, Wahi, Shanmugam (bib0029) 2008
Ji, Zhu, Zhuge, Fu (bib0030) 2021
Cheng, Mitra, Huang, Torr, Hu (bib0014) 2014; 37
P. Skurowski, H. Abdulameer, J. Baszczyk, T. Depta, A. Kornacki, P. Kozie, Animal camouflage analysis: chameleon database, 2018. Unpublished Manuscript.
Zheng, Zhang, Wang, Cao, Sun, Wang (bib0028) 2018; 26
Jiang, Wang, Yuan, Wu, Zheng, Li (bib0018) 2013
Wang, Lai, Fu, Shen, Ling, Yang (bib0024) 2021
Liang, Duan, Ma, Qiao, Miao, Ye (bib0054) 2021; 111
Wang, Song, Duan, Li (bib0038) 2021
Zhao, Shi, Qi, Wang, Jia (bib0044) 2017
Zhao, Wu (bib0047) 2019
Liu, Han, Yang (bib0045) 2018
Fan, Ji, Qin, Cheng (bib0050) 2021
Wei, Wang, Huang (bib0039) 2020; vol. 34
Zhao, Liu, Fan, Cao, Yang, Cheng (bib0012) 2019
Chen, Tan, Wang, Hu (bib0023) 2018
Lu, Wang, Shen, Crandall, Van Gool (bib0056) 2021
Lyu, Zhang, Dai, Aixuan, Liu, Barnes, Fan (bib0032) 2021
Li, Yu (bib0008) 2015
Liu, Hou, Cheng, Feng, Jiang (bib0010) 2019
Wang, Wang, Lu, Zhang, Ruan (bib0020) 2016
Lu, Wang, Shen, Crandall, Luo (bib0005) 2020
Klein, Frintrop (bib0017) 2011
D.-P. Fan, J. Zhang, G. Xu, M.-M. Cheng, L. Shao, Salient objects in clutter
Huang, Huang, Gong, Huang, Wang (bib0046) 2019
Lin, Dollar, Girshick, He, Hariharan, Belongie (bib0004) 2017
Woo, Park, Lee, So Kweon (bib0033) 2018
He, Gkioxari, Dollár, Girshick (bib0043) 2017
Krähenbühl, Koltun (bib0036) 2011
Wang, Sun, Cheng, Jiang, Deng, Zhao, Liu, Mu, Tan, Wang (bib0037) 2020
10.1016/j.patcog.2022.108644_bib0042
Klein (10.1016/j.patcog.2022.108644_bib0017) 2011
Huang (10.1016/j.patcog.2022.108644_bib0046) 2019
Zhao (10.1016/j.patcog.2022.108644_bib0044) 2017
Lin (10.1016/j.patcog.2022.108644_bib0004) 2017
Zhu (10.1016/j.patcog.2022.108644_bib0016) 2014
10.1016/j.patcog.2022.108644_bib0003
10.1016/j.patcog.2022.108644_bib0006
Wang (10.1016/j.patcog.2022.108644_bib0037) 2020
Zhang (10.1016/j.patcog.2022.108644_bib0022) 2018
Li (10.1016/j.patcog.2022.108644_bib0008) 2015
Lu (10.1016/j.patcog.2022.108644_bib0005) 2020
Ji (10.1016/j.patcog.2022.108644_bib0030) 2021
Zhao (10.1016/j.patcog.2022.108644_bib0047) 2019
Woo (10.1016/j.patcog.2022.108644_bib0033) 2018
Qin (10.1016/j.patcog.2022.108644_bib0040) 2019
Le (10.1016/j.patcog.2022.108644_bib0027) 2019; 184
Cheng (10.1016/j.patcog.2022.108644_bib0014) 2014; 37
Wang (10.1016/j.patcog.2022.108644_bib0019) 2015
Lu (10.1016/j.patcog.2022.108644_bib0056) 2021
Zhou (10.1016/j.patcog.2022.108644_bib0011) 2018
Wei (10.1016/j.patcog.2022.108644_bib0039) 2020; vol. 34
Wang (10.1016/j.patcog.2022.108644_bib0038) 2021
Fan (10.1016/j.patcog.2022.108644_bib0052) 2017
Stevens (10.1016/j.patcog.2022.108644_bib0002) 2009; 364
Zhang (10.1016/j.patcog.2022.108644_bib0041) 2020; 107
Lyu (10.1016/j.patcog.2022.108644_bib0032) 2021
Margolin (10.1016/j.patcog.2022.108644_bib0051) 2014
Chen (10.1016/j.patcog.2022.108644_bib0023) 2018
Jiang (10.1016/j.patcog.2022.108644_bib0018) 2013
Chen (10.1016/j.patcog.2022.108644_bib0035) 2018
Wu (10.1016/j.patcog.2022.108644_bib0013) 2019
Wang (10.1016/j.patcog.2022.108644_bib0020) 2016
Wu (10.1016/j.patcog.2022.108644_bib0048) 2019
Hall (10.1016/j.patcog.2022.108644_bib0026) 2013; 280
Krähenbühl (10.1016/j.patcog.2022.108644_bib0036) 2011
Chen (10.1016/j.patcog.2022.108644_bib0055) 2021; 112
Sengottuvelan (10.1016/j.patcog.2022.108644_bib0029) 2008
Lu (10.1016/j.patcog.2022.108644_bib0007) 2020
10.1016/j.patcog.2022.108644_bib0025
Chen (10.1016/j.patcog.2022.108644_bib0049) 2019
Liu (10.1016/j.patcog.2022.108644_bib0010) 2019
Zhao (10.1016/j.patcog.2022.108644_bib0012) 2019
Hou (10.1016/j.patcog.2022.108644_bib0009) 2019
Fan (10.1016/j.patcog.2022.108644_bib0001) 2021
Huang (10.1016/j.patcog.2022.108644_bib0034) 2020
Zhang (10.1016/j.patcog.2022.108644_bib0021) 2017
Yang (10.1016/j.patcog.2022.108644_bib0015) 2013
He (10.1016/j.patcog.2022.108644_bib0043) 2017
Zhang (10.1016/j.patcog.2022.108644_bib0053) 2021
Wang (10.1016/j.patcog.2022.108644_bib0024) 2021
Liu (10.1016/j.patcog.2022.108644_bib0045) 2018
Liang (10.1016/j.patcog.2022.108644_bib0054) 2021; 111
Zhai (10.1016/j.patcog.2022.108644_bib0031) 2021
Zheng (10.1016/j.patcog.2022.108644_bib0028) 2018; 26
Fan (10.1016/j.patcog.2022.108644_bib0050) 2021
References_xml – year: 2020
  ident: bib0034
  article-title: CCNet: criss-cross attention for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– volume: 280
  start-page: 20130064
  year: 2013
  ident: bib0026
  article-title: Camouflage, detection and identification of moving targets
  publication-title: Proc. R. Soc. B
– volume: 364
  start-page: 423
  year: 2009
  end-page: 427
  ident: bib0002
  article-title: Animal camouflage: current issues and new perspectives
  publication-title: Philos. Trans. R. Soc. B
– start-page: 108023
  year: 2021
  ident: bib0038
  article-title: EFNet: enhancement-fusion network for semantic segmentation
  publication-title: Pattern Recognit.
– volume: 184
  start-page: 45
  year: 2019
  end-page: 56
  ident: bib0027
  article-title: Anabranch network for camouflaged object segmentation
  publication-title: Comput. Vis. Image Understanding
– start-page: 1741
  year: 2018
  end-page: 1750
  ident: bib0022
  article-title: A bi-directional message passing model for salient object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 4974
  year: 2019
  end-page: 4983
  ident: bib0049
  article-title: Hybrid task cascade for instance segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2019
  ident: bib0012
  article-title: EGNet:Edge guidance network for salient object detection
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– year: 2021
  ident: bib0024
  article-title: Salient object detection in the deep learning era: an in-depth survey
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– year: 2021
  ident: bib0056
  article-title: Segmenting objects from relational visual data
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– start-page: 6409
  year: 2019
  end-page: 6418
  ident: bib0046
  article-title: Mask scoring R-CNN
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: bib0007
  article-title: Deep object tracking with shrinkage loss
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– reference: D.-P. Fan, J. Zhang, G. Xu, M.-M. Cheng, L. Shao, Salient objects in clutter,
– volume: 37
  start-page: 569
  year: 2014
  end-page: 582
  ident: bib0014
  article-title: Global contrast based salient region detection
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– start-page: 2214
  year: 2011
  end-page: 2219
  ident: bib0017
  article-title: Center-surround divergence of feature statistics for salient object detection
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 3183
  year: 2015
  end-page: 3192
  ident: bib0019
  article-title: Deep networks for saliency detection via local estimation and global search
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 248
  year: 2014
  end-page: 255
  ident: bib0051
  article-title: How to evaluate foreground maps?
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2083
  year: 2013
  end-page: 2090
  ident: bib0018
  article-title: Salient object detection: a discriminative regional feature integration approach
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2021
  ident: bib0032
  article-title: Simultaneously localize, segment and rank the camouflaged objects
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 7264
  year: 2019
  end-page: 7273
  ident: bib0013
  article-title: Stacked cross refinement network for edge-aware salient object detection
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 6
  year: 2008
  end-page: 10
  ident: bib0029
  article-title: Performance of decamouflaging through exploratory image analysis
  publication-title: International Conference on Emerging Trends in Engineering and Technology
– reference: (2021).
– start-page: 825
  year: 2016
  end-page: 841
  ident: bib0020
  article-title: Saliency detection with recurrent fully convolutional networks
  publication-title: European Conference on Computer Vision
– year: 2021
  ident: bib0031
  article-title: Mutual graph learning for camouflaged object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 7479
  year: 2019
  end-page: 7489
  ident: bib0040
  article-title: BASNet: boundary-aware salient object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 234
  year: 2018
  end-page: 250
  ident: bib0023
  article-title: Reverse attention for salient object detection
  publication-title: European Conference on Computer Vision
– start-page: 108414
  year: 2021
  ident: bib0030
  article-title: Fast camouflaged object detection via edge-based reversible re-calibration network
  publication-title: Pattern Recognit.
– start-page: 212
  year: 2017
  end-page: 221
  ident: bib0021
  article-title: Learning uncertain convolutional features for accurate saliency detection
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– year: 2021
  ident: bib0001
  article-title: Concealed object detection
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– reference: (2021).
– year: 2018
  ident: bib0035
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
  publication-title: European Conference on Computer Vision
– start-page: 3089
  year: 2018
  end-page: 3098
  ident: bib0045
  article-title: PiCANet: learning pixel-wise contextual attention for saliency detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 109
  year: 2011
  end-page: 117
  ident: bib0036
  article-title: Efficient inference in fully connected CRFs with Gaussian edge potentials
  publication-title: NeurIPS
– reference: A. Srivastava, D. Jha, S. Chanda, U. Pal, H.D. Johansen, D. Johansen, M.A. Riegler, S. Ali, P. Halvorsen, MSRF-Net: a multi-scale residual fusion network for biomedical image segmentation, arXiv preprint
– volume: 111
  start-page: 107630
  year: 2021
  ident: bib0054
  article-title: Context-aware network for RGB-D salient object detection
  publication-title: Pattern Recognit.
– year: 2018
  ident: bib0033
  article-title: CBAM: convolutional block attention module
  publication-title: European Conference on Computer Vision
– volume: vol. 34
  start-page: 12321
  year: 2020
  end-page: 12328
  ident: bib0039
  article-title: F
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– year: 2020
  ident: bib0005
  article-title: Zero-shot video object segmentation with co-attention siamese networks
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– start-page: 5455
  year: 2015
  end-page: 5463
  ident: bib0008
  article-title: Visual saliency based on multiscale deep features
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2021
  ident: bib0053
  article-title: Uncertainty inspired RGB-D saliency detection
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– start-page: 3166
  year: 2013
  end-page: 3173
  ident: bib0015
  article-title: Saliency detection via graph-based manifold ranking
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2814
  year: 2014
  end-page: 2821
  ident: bib0016
  article-title: Saliency optimization from robust background detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: P. Skurowski, H. Abdulameer, J. Baszczyk, T. Depta, A. Kornacki, P. Kozie, Animal camouflage analysis: chameleon database, 2018. Unpublished Manuscript.
– start-page: 3907
  year: 2019
  end-page: 3916
  ident: bib0048
  article-title: Cascaded partial decoder for fast and accurate salient object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 936
  year: 2017
  end-page: 944
  ident: bib0004
  article-title: Feature pyramid networks for object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 6230
  year: 2017
  end-page: 6239
  ident: bib0044
  article-title: Pyramid scene parsing network
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2019
  ident: bib0009
  article-title: Deeply supervised salient object detection with short connections
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– volume: 107
  start-page: 107484
  year: 2020
  ident: bib0041
  article-title: Attention and boundary guided salient object detection
  publication-title: Pattern Recognit.
– start-page: 4548
  year: 2017
  end-page: 4557
  ident: bib0052
  article-title: Structure-measure: a new way to evaluate foreground maps
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– reference: .
– volume: 112
  start-page: 107740
  year: 2021
  ident: bib0055
  article-title: EF-Net: a novel enhancement and fusion network for RGB-D saliency detection
  publication-title: Pattern Recognit.
– start-page: 3
  year: 2018
  end-page: 11
  ident: bib0011
  article-title: UNet++: a nested U-Net architecture for medical image segmentation
  publication-title: DLMIA
– year: 2019
  ident: bib0010
  article-title: A simple pooling-based design for real-time salient object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 26
  start-page: 29
  year: 2018
  end-page: 33
  ident: bib0028
  article-title: Detection of people with camouflage pattern via dense deconvolution network
  publication-title: IEEE SPL
– reference: M. Zhuge, D.-P. Fan, N. Liu, D. Zhang, D. Xu, L. Shao, Salient object detection via integrity learning, arXiv preprint
– year: 2020
  ident: bib0037
  article-title: Deep high-resolution representation learning for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– year: 2021
  ident: bib0050
  article-title: Cognitive vision inspired object segmentation metric and loss function (in Chinese)
  publication-title: SSI
– start-page: 3085
  year: 2019
  end-page: 3094
  ident: bib0047
  article-title: Pyramid feature attention network for saliency detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2961
  year: 2017
  end-page: 2969
  ident: bib0043
  article-title: Mask R-CNN
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 3183
  year: 2015
  ident: 10.1016/j.patcog.2022.108644_bib0019
  article-title: Deep networks for saliency detection via local estimation and global search
– start-page: 6409
  year: 2019
  ident: 10.1016/j.patcog.2022.108644_bib0046
  article-title: Mask scoring R-CNN
– start-page: 3
  year: 2018
  ident: 10.1016/j.patcog.2022.108644_bib0011
  article-title: UNet++: a nested U-Net architecture for medical image segmentation
– start-page: 108414
  year: 2021
  ident: 10.1016/j.patcog.2022.108644_bib0030
  article-title: Fast camouflaged object detection via edge-based reversible re-calibration network
  publication-title: Pattern Recognit.
– year: 2018
  ident: 10.1016/j.patcog.2022.108644_bib0035
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
– start-page: 212
  year: 2017
  ident: 10.1016/j.patcog.2022.108644_bib0021
  article-title: Learning uncertain convolutional features for accurate saliency detection
– start-page: 825
  year: 2016
  ident: 10.1016/j.patcog.2022.108644_bib0020
  article-title: Saliency detection with recurrent fully convolutional networks
– year: 2019
  ident: 10.1016/j.patcog.2022.108644_bib0012
  article-title: EGNet:Edge guidance network for salient object detection
– year: 2019
  ident: 10.1016/j.patcog.2022.108644_bib0010
  article-title: A simple pooling-based design for real-time salient object detection
– year: 2018
  ident: 10.1016/j.patcog.2022.108644_bib0033
  article-title: CBAM: convolutional block attention module
– ident: 10.1016/j.patcog.2022.108644_bib0042
– start-page: 936
  year: 2017
  ident: 10.1016/j.patcog.2022.108644_bib0004
  article-title: Feature pyramid networks for object detection
– start-page: 2083
  year: 2013
  ident: 10.1016/j.patcog.2022.108644_bib0018
  article-title: Salient object detection: a discriminative regional feature integration approach
– start-page: 4548
  year: 2017
  ident: 10.1016/j.patcog.2022.108644_bib0052
  article-title: Structure-measure: a new way to evaluate foreground maps
– volume: 112
  start-page: 107740
  year: 2021
  ident: 10.1016/j.patcog.2022.108644_bib0055
  article-title: EF-Net: a novel enhancement and fusion network for RGB-D saliency detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107740
– start-page: 3085
  year: 2019
  ident: 10.1016/j.patcog.2022.108644_bib0047
  article-title: Pyramid feature attention network for saliency detection
– year: 2021
  ident: 10.1016/j.patcog.2022.108644_bib0056
  article-title: Segmenting objects from relational visual data
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– year: 2020
  ident: 10.1016/j.patcog.2022.108644_bib0037
  article-title: Deep high-resolution representation learning for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– start-page: 2814
  year: 2014
  ident: 10.1016/j.patcog.2022.108644_bib0016
  article-title: Saliency optimization from robust background detection
– start-page: 3089
  year: 2018
  ident: 10.1016/j.patcog.2022.108644_bib0045
  article-title: PiCANet: learning pixel-wise contextual attention for saliency detection
– year: 2020
  ident: 10.1016/j.patcog.2022.108644_bib0005
  article-title: Zero-shot video object segmentation with co-attention siamese networks
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
  doi: 10.1109/TPAMI.2020.3040258
– start-page: 7479
  year: 2019
  ident: 10.1016/j.patcog.2022.108644_bib0040
  article-title: BASNet: boundary-aware salient object detection
– year: 2021
  ident: 10.1016/j.patcog.2022.108644_bib0031
  article-title: Mutual graph learning for camouflaged object detection
– start-page: 6230
  year: 2017
  ident: 10.1016/j.patcog.2022.108644_bib0044
  article-title: Pyramid scene parsing network
– start-page: 1741
  year: 2018
  ident: 10.1016/j.patcog.2022.108644_bib0022
  article-title: A bi-directional message passing model for salient object detection
– start-page: 3166
  year: 2013
  ident: 10.1016/j.patcog.2022.108644_bib0015
  article-title: Saliency detection via graph-based manifold ranking
– volume: 26
  start-page: 29
  issue: 1
  year: 2018
  ident: 10.1016/j.patcog.2022.108644_bib0028
  article-title: Detection of people with camouflage pattern via dense deconvolution network
  publication-title: IEEE SPL
– year: 2021
  ident: 10.1016/j.patcog.2022.108644_bib0032
  article-title: Simultaneously localize, segment and rank the camouflaged objects
– volume: 37
  start-page: 569
  issue: 3
  year: 2014
  ident: 10.1016/j.patcog.2022.108644_bib0014
  article-title: Global contrast based salient region detection
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
  doi: 10.1109/TPAMI.2014.2345401
– start-page: 6
  year: 2008
  ident: 10.1016/j.patcog.2022.108644_bib0029
  article-title: Performance of decamouflaging through exploratory image analysis
– year: 2020
  ident: 10.1016/j.patcog.2022.108644_bib0007
  article-title: Deep object tracking with shrinkage loss
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
  doi: 10.1109/TPAMI.2020.3041332
– year: 2021
  ident: 10.1016/j.patcog.2022.108644_bib0053
  article-title: Uncertainty inspired RGB-D saliency detection
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
  doi: 10.1109/TPAMI.2021.3073564
– year: 2021
  ident: 10.1016/j.patcog.2022.108644_bib0001
  article-title: Concealed object detection
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
  doi: 10.1109/TPAMI.2021.3085766
– start-page: 109
  year: 2011
  ident: 10.1016/j.patcog.2022.108644_bib0036
  article-title: Efficient inference in fully connected CRFs with Gaussian edge potentials
– start-page: 7264
  year: 2019
  ident: 10.1016/j.patcog.2022.108644_bib0013
  article-title: Stacked cross refinement network for edge-aware salient object detection
– ident: 10.1016/j.patcog.2022.108644_bib0003
  doi: 10.1109/JBHI.2021.3138024
– start-page: 108023
  year: 2021
  ident: 10.1016/j.patcog.2022.108644_bib0038
  article-title: EFNet: enhancement-fusion network for semantic segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108023
– start-page: 234
  year: 2018
  ident: 10.1016/j.patcog.2022.108644_bib0023
  article-title: Reverse attention for salient object detection
– year: 2019
  ident: 10.1016/j.patcog.2022.108644_bib0009
  article-title: Deeply supervised salient object detection with short connections
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
  doi: 10.1109/TPAMI.2018.2815688
– year: 2021
  ident: 10.1016/j.patcog.2022.108644_bib0050
  article-title: Cognitive vision inspired object segmentation metric and loss function (in Chinese)
  publication-title: SSI
– ident: 10.1016/j.patcog.2022.108644_bib0006
  doi: 10.1109/TPAMI.2022.3179526
– ident: 10.1016/j.patcog.2022.108644_bib0025
– volume: 364
  start-page: 423
  issue: 1516
  year: 2009
  ident: 10.1016/j.patcog.2022.108644_bib0002
  article-title: Animal camouflage: current issues and new perspectives
  publication-title: Philos. Trans. R. Soc. B
  doi: 10.1098/rstb.2008.0217
– volume: 184
  start-page: 45
  year: 2019
  ident: 10.1016/j.patcog.2022.108644_bib0027
  article-title: Anabranch network for camouflaged object segmentation
  publication-title: Comput. Vis. Image Understanding
  doi: 10.1016/j.cviu.2019.04.006
– volume: 280
  start-page: 20130064
  issue: 1758
  year: 2013
  ident: 10.1016/j.patcog.2022.108644_bib0026
  article-title: Camouflage, detection and identification of moving targets
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.2013.0064
– start-page: 2214
  year: 2011
  ident: 10.1016/j.patcog.2022.108644_bib0017
  article-title: Center-surround divergence of feature statistics for salient object detection
– start-page: 4974
  year: 2019
  ident: 10.1016/j.patcog.2022.108644_bib0049
  article-title: Hybrid task cascade for instance segmentation
– volume: 111
  start-page: 107630
  year: 2021
  ident: 10.1016/j.patcog.2022.108644_bib0054
  article-title: Context-aware network for RGB-D salient object detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107630
– start-page: 3907
  year: 2019
  ident: 10.1016/j.patcog.2022.108644_bib0048
  article-title: Cascaded partial decoder for fast and accurate salient object detection
– start-page: 248
  year: 2014
  ident: 10.1016/j.patcog.2022.108644_bib0051
  article-title: How to evaluate foreground maps?
– year: 2020
  ident: 10.1016/j.patcog.2022.108644_bib0034
  article-title: CCNet: criss-cross attention for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
  doi: 10.1109/TPAMI.2020.3007032
– volume: vol. 34
  start-page: 12321
  year: 2020
  ident: 10.1016/j.patcog.2022.108644_bib0039
  article-title: F3Net: fusion, feedback and focus for salient object detection
– volume: 107
  start-page: 107484
  year: 2020
  ident: 10.1016/j.patcog.2022.108644_bib0041
  article-title: Attention and boundary guided salient object detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107484
– year: 2021
  ident: 10.1016/j.patcog.2022.108644_bib0024
  article-title: Salient object detection in the deep learning era: an in-depth survey
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– start-page: 2961
  year: 2017
  ident: 10.1016/j.patcog.2022.108644_bib0043
  article-title: Mask R-CNN
– start-page: 5455
  year: 2015
  ident: 10.1016/j.patcog.2022.108644_bib0008
  article-title: Visual saliency based on multiscale deep features
SSID ssj0017142
Score 2.6102736
Snippet •We propose a novel CubeNet architecture for camouflaged object detection, which accompanies with feature Fusion Blocks and X-connection to sufficiently...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108644
SubjectTerms Camouflaged object detection
Edge guidance
Neural network
Novel feature aggregation
Title CubeNet: X-shape connection for camouflaged object detection
URI https://dx.doi.org/10.1016/j.patcog.2022.108644
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdYXe_C6Nt1HHuKlFEtV6MlCbmF3M9FKaYOmV3-7O9mkKIiCx4QdCF8m8wjffEPIVR5LAKUVC7UyTBppmImTkHEb5lwIl7F0zbaYhpOZfEhV2iGjdhYGaZVN7PcxvY7WzZ1-g2a_nM9xxhdlBwPnkZizVYoT7DJCL7_-2NA8cL-3VwwXA4an2_G5muNVunC3enZdIuf1yiEpf05PX1LOeI_sNLUiHfrH2ScdWB6Q3XYPA20-y0NyO1obmEJ1Q1P2_qJLoBbpK_XEAnVFKbXaNfjFwoWOnK4M_nmhOVT-wBGZje-eRhPWbEVg1pX3FYutLcBCwAtt7cAUtoi06_LqjUMqMpBr1yOZUAKWgjoIQNkk0byIAyEgFFwck-5ytYQTQrUVOoKgQFU4yW1kEsMdCAJVyKIABj0iWjAy20iG4-aKRdZyw14zD2GGEGYewh5hG6vSS2b8cT5qcc6-vfrMRfVfLU__bXlGtvHK827PSbd6W8OFqy4qc1m7zyXZGt4_Tqaf8SXNzw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qPejFt1ifOXiN3SbZl3iRYqlae2qht5BkZ7VS2kW3V3-7yT6Kgih43c1A-DaZx_LNfACXSSQQfeXTQPmaCi001VEcUGaChHFuI5Yq2BbDoD8WDxN_0oBu3QvjaJWV7y99euGtqyftCs12Np26Hl83dtCzJ9LFbH-yBuvCXl8nY3D1seJ5OIHvcmQ471C3vO6fK0hemfV3i2dbJjJWaA4J8XN8-hJzejuwVSWL5Lbczy40cL4H27UQA6nu5T7cdJcah5hfkwl9f1EZEuP4K0XLArFZKTHKVvjpzPqOhCy0-_VCEszLBQcw7t2Nun1aySJQY_P7nEbGpGjQY6kypqNTk4bKlnmF5JAfakyULZJ0INDlgsrz0DdxrFgaeZxjwBk_hOZ8MccjIMpwFaKXurFwgplQx5pZELgbQxZ62GkBr8GQppoZ7qQrZrImh73KEkLpIJQlhC2gK6usnJnxx_qwxll--_bSuvVfLY__bXkBG_3R00AO7oePJ7Dp3pQk3FNo5m9LPLOpRq7Pi6P0CdYTz10
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CubeNet%3A+X-shape+connection+for+camouflaged+object+detection&rft.jtitle=Pattern+recognition&rft.au=Zhuge%2C+Mingchen&rft.au=Lu%2C+Xiankai&rft.au=Guo%2C+Yiyou&rft.au=Cai%2C+Zhihua&rft.date=2022-07-01&rft.issn=0031-3203&rft.volume=127&rft.spage=108644&rft_id=info:doi/10.1016%2Fj.patcog.2022.108644&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2022_108644
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon