SAR-to-optical image translation based on improved CGAN

•We propose an improved CGAN method for SAR-to-optical image translation.•We propose a parallel feature fusion generator to improve the contour sharpness.•We utilize a multi-scale discriminator to improve the texture fine-grainedness.•We design a chromatic aberration loss to improve the color fideli...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 121; p. 108208
Main Authors Yang, Xi, Zhao, Jingyi, Wei, Ziyu, Wang, Nannan, Gao, Xinbo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2022
Subjects
Online AccessGet full text
ISSN0031-3203
1873-5142
DOI10.1016/j.patcog.2021.108208

Cover

Loading…
Abstract •We propose an improved CGAN method for SAR-to-optical image translation.•We propose a parallel feature fusion generator to improve the contour sharpness.•We utilize a multi-scale discriminator to improve the texture fine-grainedness.•We design a chromatic aberration loss to improve the color fidelity of the generated optical image. SAR images have the advantages of being less susceptible to clouds and light, while optical images conform to the human vision system. Both of them are widely applied in the field of scene classification, natural environment monitoring, disaster warning, etc. However, due to the speckle noise caused by the SAR imaging principle, it is difficult for people to distinguish the ground objects from complex background without professional knowledge. One commonly used solution is to exploit Generative Adversarial Networks (GAN) to translate SAR images to optical images which is able to clearly present ground objects with rich color information, i.e., SAR-to-optical image translation. Traditional GAN-based translation methods are apt to cause blurring of contour, disappearance of texture and inconsistency of color. To this end, we propose an improved conditional GAN (ICGAN) method. Compared with the basic CGAN model, the translation ability of our method is improved in the following three aspects. (1) Contour sharpness. We utilize the parallel branches to combine low-level and high-level features, and thus the image contour information is improved without the influence of noise. (2) Texture fine-grainedness. We discriminate the image using multi-scale receptive fields to enrich the local and global texture features of the image. (3) Color fidelity. We use the chromatic aberration loss which is based on Gaussian blur convolution to reduce the color gap between the generated image and the real optical image. Our method considers both the visual layer and the conceptual layer of the image to complete the SAR-to-optical image translation task. The model is able to preserve the contours and textures of the SAR image, while more closely approximates the colors of the ground truth. The experimental results show that the generated image not only has preferable results in visual effects and favorable evaluation metrics (subjective and objective), but also achieves outstanding classification accuracy, which proves the superiority of our method over the state-of-the-arts in the SAR-to-optical image translation task.
AbstractList •We propose an improved CGAN method for SAR-to-optical image translation.•We propose a parallel feature fusion generator to improve the contour sharpness.•We utilize a multi-scale discriminator to improve the texture fine-grainedness.•We design a chromatic aberration loss to improve the color fidelity of the generated optical image. SAR images have the advantages of being less susceptible to clouds and light, while optical images conform to the human vision system. Both of them are widely applied in the field of scene classification, natural environment monitoring, disaster warning, etc. However, due to the speckle noise caused by the SAR imaging principle, it is difficult for people to distinguish the ground objects from complex background without professional knowledge. One commonly used solution is to exploit Generative Adversarial Networks (GAN) to translate SAR images to optical images which is able to clearly present ground objects with rich color information, i.e., SAR-to-optical image translation. Traditional GAN-based translation methods are apt to cause blurring of contour, disappearance of texture and inconsistency of color. To this end, we propose an improved conditional GAN (ICGAN) method. Compared with the basic CGAN model, the translation ability of our method is improved in the following three aspects. (1) Contour sharpness. We utilize the parallel branches to combine low-level and high-level features, and thus the image contour information is improved without the influence of noise. (2) Texture fine-grainedness. We discriminate the image using multi-scale receptive fields to enrich the local and global texture features of the image. (3) Color fidelity. We use the chromatic aberration loss which is based on Gaussian blur convolution to reduce the color gap between the generated image and the real optical image. Our method considers both the visual layer and the conceptual layer of the image to complete the SAR-to-optical image translation task. The model is able to preserve the contours and textures of the SAR image, while more closely approximates the colors of the ground truth. The experimental results show that the generated image not only has preferable results in visual effects and favorable evaluation metrics (subjective and objective), but also achieves outstanding classification accuracy, which proves the superiority of our method over the state-of-the-arts in the SAR-to-optical image translation task.
ArticleNumber 108208
Author Zhao, Jingyi
Wang, Nannan
Wei, Ziyu
Gao, Xinbo
Yang, Xi
Author_xml – sequence: 1
  givenname: Xi
  surname: Yang
  fullname: Yang, Xi
  organization: State Key Laboratory of Integrated Services Networks, School of Telecommunications Engineering, Xidian University, Xi’an 710071, China
– sequence: 2
  givenname: Jingyi
  surname: Zhao
  fullname: Zhao, Jingyi
  organization: State Key Laboratory of Integrated Services Networks, School of Telecommunications Engineering, Xidian University, Xi’an 710071, China
– sequence: 3
  givenname: Ziyu
  surname: Wei
  fullname: Wei, Ziyu
  organization: State Key Laboratory of Integrated Services Networks, School of Telecommunications Engineering, Xidian University, Xi’an 710071, China
– sequence: 4
  givenname: Nannan
  surname: Wang
  fullname: Wang, Nannan
  organization: State Key Laboratory of Integrated Services Networks, School of Telecommunications Engineering, Xidian University, Xi’an 710071, China
– sequence: 5
  givenname: Xinbo
  surname: Gao
  fullname: Gao, Xinbo
  email: xbgao@mail.xidian.edu.cn, gaoxb@cqupt.edu.cn
  organization: State Key Laboratory of Integrated Services Networks, School of Electronic Engineering, Xidian University, Xi’an 710071, China
BookMark eNqFkN1KAzEQhYNUsK2-gRf7Alsnyf5kvRBK0SoUBX-uQ3Y2W7JsN0sSCr69qeuVF3o1hxm-4ZyzILPBDpqQaworCrS46VajCmj3KwaMxpVgIM7InIqSpznN2IzMAThNOQN-QRbedwC0jIc5Kd_Wr2mwqR2DQdUn5qD2OglODb5XwdghqZXXTRKFOYzOHqPebNfPl-S8Vb3XVz9zST4e7t83j-nuZfu0We9S5FCEVNSZBlVWWBUVBZZBi4oLFX2Wos7rkmVUIDJOW8S8LdqipjTLq0ZwpqEqkC_J7fQXnfXe6VaiCd_GokfTSwryVIHs5FSBPFUgpwoinP2CRxcDus__sLsJ0zHY0WgnPRo9oG6M0xhkY83fD74Am4J4Bw
CitedBy_id crossref_primary_10_1109_JSTARS_2024_3447219
crossref_primary_10_1016_j_patcog_2023_109781
crossref_primary_10_1109_JSTARS_2024_3468456
crossref_primary_10_1109_JSTARS_2024_3523274
crossref_primary_10_1109_JSTARS_2024_3504555
crossref_primary_10_3390_rs15235569
crossref_primary_10_1016_j_patcog_2022_109061
crossref_primary_10_1109_TGRS_2024_3491826
crossref_primary_10_1016_j_patcog_2023_110058
crossref_primary_10_3390_app13031766
crossref_primary_10_1109_TGRS_2024_3421581
crossref_primary_10_3390_rs15061540
crossref_primary_10_1109_ACCESS_2023_3343910
crossref_primary_10_3390_rs16111963
crossref_primary_10_3390_rs16214045
crossref_primary_10_1016_j_asr_2024_06_026
crossref_primary_10_1109_JSTARS_2024_3352237
crossref_primary_10_1109_TGRS_2022_3212208
crossref_primary_10_1016_j_patcog_2022_108558
crossref_primary_10_1109_ACCESS_2024_3454513
crossref_primary_10_1016_j_jappgeo_2024_105531
crossref_primary_10_1109_TAES_2024_3399195
crossref_primary_10_1109_TGRS_2022_3200996
crossref_primary_10_1016_j_patcog_2024_111117
crossref_primary_10_1038_s41598_024_75762_x
crossref_primary_10_1109_TGRS_2024_3352662
crossref_primary_10_34133_remotesensing_0172
crossref_primary_10_1109_TGRS_2023_3334874
crossref_primary_10_3390_app13053268
crossref_primary_10_1016_j_displa_2023_102584
crossref_primary_10_1109_LGRS_2023_3337143
crossref_primary_10_1007_s12273_023_1071_8
crossref_primary_10_3390_rs15184558
crossref_primary_10_3390_rs15123125
crossref_primary_10_1016_j_jag_2024_104321
crossref_primary_10_1109_TCE_2024_3367170
crossref_primary_10_1109_TGRS_2024_3523040
crossref_primary_10_1007_s11042_022_13115_4
crossref_primary_10_1109_TGRS_2024_3451558
crossref_primary_10_1016_j_eswa_2023_121405
crossref_primary_10_1109_TAES_2024_3449268
crossref_primary_10_3390_rs16071199
crossref_primary_10_1109_TAES_2023_3303856
crossref_primary_10_3390_rs16162957
crossref_primary_10_1016_j_eswa_2023_121962
crossref_primary_10_1016_j_powtec_2024_119488
crossref_primary_10_3390_rs16020242
crossref_primary_10_1109_LGRS_2025_3534795
Cites_doi 10.1016/j.patcog.2019.107110
10.1016/j.patcog.2019.05.017
10.1016/j.patcog.2020.107249
10.1109/TGRS.2020.3014130
10.1016/j.patcog.2020.107453
10.1016/j.patcog.2019.107097
10.1016/j.patcog.2019.106972
10.1016/j.patcog.2019.107085
10.1109/TGRS.2019.2912153
10.1016/j.patcog.2019.107051
10.1016/j.patcog.2019.107109
10.1016/j.patcog.2021.107992
10.1109/LGRS.2020.2969891
10.1109/TGRS.2020.3010441
10.1016/j.patcog.2019.107039
10.1109/TNNLS.2019.2920857
10.1016/j.patcog.2020.107350
10.1109/TGRS.2020.3002561
10.1109/LSP.2012.2227726
10.1016/j.patcog.2020.107384
10.1016/j.patcog.2016.05.028
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2021.108208
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2021_108208
S0031320321003897
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-8b4e0a79c96910240fca38a20278b5b72418cc231fcc5f6f6b11459d832e096c3
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Tue Jul 01 02:36:35 EDT 2025
Thu Apr 24 23:07:49 EDT 2025
Fri Feb 23 02:43:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords SAR-to-optical image translation
ICGAN
Chromatic aberration loss
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-8b4e0a79c96910240fca38a20278b5b72418cc231fcc5f6f6b11459d832e096c3
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2021_108208
crossref_primary_10_1016_j_patcog_2021_108208
elsevier_sciencedirect_doi_10_1016_j_patcog_2021_108208
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xie, Lei, Cui, Li, Du (bib0029) 2019; 31
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0003) 2014; 27
Yao, Gao, Xia, Zhao, Zhou, Hu (bib0015) 2020; 104
Zhao, Li, Wang (bib0014) 2020; 100
Toriya, Dewan, Kitahara (bib0010) 2019
M. Mirza, S. Osindero, Conditional Generative Adversarial Nets
Mittal, Soundararajan, Bovik (bib0033) 2012; 20
Niu, Yang, Yang, Pan, Dou (bib0011) 2018
Xu, Shawn, Wang (bib0008) 2019; 93
Dong, Liu, Kuang, Chanussot (bib0022) 2019; 96
Sun, Chen, Liu, Liu (bib0016) 2020; 98
Zhu, Park, Isola, Efros (bib0019) 2017
Chen, Huang, Huang, Sun, Fang (bib0020) 2020
Li, Ma, Jiao, Liu, Sun, Zhao (bib0025) 2020; 100
Isola, Zhu, Zhou, Efros (bib0018) 2017
Sun, Lei, Guan, Li, Kuang (bib0027) 2021; 59
Mahapatra, Ge (bib0017) 2020; 100
Penna, Mascarenhas (bib0026) 2019; 57
Ozcelik, Alganci, Sertel, Unal (bib0002) 2021; 59
Li, Du, He (bib0007) 2020; 100
Qian, Huang, Wang, Xiao, Zhang (bib0005) 2020; 107
Liu, Gao, Lei, Wang, Hu, Ma, Zhang (bib0028) 2021; 59
Xie, Zhang, Li, Lei, Li, Du (bib0024) 2021
(2014).
Schmitt, Hughes, Zhu (bib0030) 2018
Xie, Lei, Fang, Li, Jia, Li (bib0021) 2021; 118
Enomoto, Sakurada, Wang, Kawaguchi, Matsuoka, Nakamura (bib0012) 2018
Ji, Wang, Zhou, Xia, Zhong, Gong (bib0001) 2021; 18
Merkle, Fischer, Auer, Müller (bib0031) 2017
Fang, Deng, Du, Hu (bib0006) 2020; 102
Ignatov, Kobyshev, Timofte, Vanhoey, Van Gool (bib0032) 2017
Gammulle, Denman, Sridharan, Fookes (bib0004) 2020; 98
Zhao, Jiao, Zhao, Gu, Zhao (bib0023) 2017; 61
Gao, Chen, Zhao, Shao, Shen (bib0013) 2021; 110
Fang (10.1016/j.patcog.2021.108208_bib0006) 2020; 102
Zhao (10.1016/j.patcog.2021.108208_bib0023) 2017; 61
Liu (10.1016/j.patcog.2021.108208_bib0028) 2021; 59
Niu (10.1016/j.patcog.2021.108208_bib0011) 2018
Xu (10.1016/j.patcog.2021.108208_bib0008) 2019; 93
Chen (10.1016/j.patcog.2021.108208_bib0020) 2020
Isola (10.1016/j.patcog.2021.108208_bib0018) 2017
Ozcelik (10.1016/j.patcog.2021.108208_bib0002) 2021; 59
Zhu (10.1016/j.patcog.2021.108208_bib0019) 2017
Xie (10.1016/j.patcog.2021.108208_bib0029) 2019; 31
Yao (10.1016/j.patcog.2021.108208_bib0015) 2020; 104
Merkle (10.1016/j.patcog.2021.108208_bib0031) 2017
Xie (10.1016/j.patcog.2021.108208_bib0024) 2021
Qian (10.1016/j.patcog.2021.108208_bib0005) 2020; 107
10.1016/j.patcog.2021.108208_bib0009
Schmitt (10.1016/j.patcog.2021.108208_bib0030) 2018
Li (10.1016/j.patcog.2021.108208_bib0007) 2020; 100
Penna (10.1016/j.patcog.2021.108208_bib0026) 2019; 57
Gammulle (10.1016/j.patcog.2021.108208_bib0004) 2020; 98
Xie (10.1016/j.patcog.2021.108208_bib0021) 2021; 118
Enomoto (10.1016/j.patcog.2021.108208_bib0012) 2018
Mittal (10.1016/j.patcog.2021.108208_bib0033) 2012; 20
Li (10.1016/j.patcog.2021.108208_bib0025) 2020; 100
Mahapatra (10.1016/j.patcog.2021.108208_bib0017) 2020; 100
Ji (10.1016/j.patcog.2021.108208_bib0001) 2021; 18
Toriya (10.1016/j.patcog.2021.108208_bib0010) 2019
Goodfellow (10.1016/j.patcog.2021.108208_bib0003) 2014; 27
Dong (10.1016/j.patcog.2021.108208_bib0022) 2019; 96
Gao (10.1016/j.patcog.2021.108208_bib0013) 2021; 110
Sun (10.1016/j.patcog.2021.108208_bib0027) 2021; 59
Zhao (10.1016/j.patcog.2021.108208_bib0014) 2020; 100
Ignatov (10.1016/j.patcog.2021.108208_bib0032) 2017
Sun (10.1016/j.patcog.2021.108208_bib0016) 2020; 98
References_xml – volume: 98
  start-page: 107051
  year: 2020
  ident: bib0016
  article-title: Learning image compressed sensing with sub-pixel convolutional generative adversarial network
  publication-title: Pattern Recognit.
– volume: 110
  start-page: 107384
  year: 2021
  ident: bib0013
  article-title: Lightweight dynamic conditional GAN with pyramid attention for text-to-image synthesis
  publication-title: Pattern Recognit.
– volume: 59
  start-page: 3486
  year: 2021
  end-page: 3501
  ident: bib0002
  article-title: Rethinking CNN-based pansharpening: guided colorization of panchromatic images via GANs
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 100
  start-page: 107085
  year: 2020
  ident: bib0007
  article-title: Semi-supervised cross-modal image generation with generative adversarial networks
  publication-title: Pattern Recognit.
– reference: (2014).
– start-page: 141
  year: 2018
  end-page: 146
  ident: bib0030
  article-title: The SEN1-2 dataset for deep learning in SAR-Optical data fusion
  publication-title: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences
– start-page: 923
  year: 2019
  end-page: 926
  ident: bib0010
  article-title: SAR2OPT: image alignment between multi-modal images using generative adversarial networks
  publication-title: IEEE International Geoscience and Remote Sensing Symposium
– start-page: 2223
  year: 2017
  end-page: 2232
  ident: bib0019
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 61
  start-page: 686
  year: 2017
  end-page: 701
  ident: bib0023
  article-title: Discriminant deep belief network for high-resolution SAR image classification
  publication-title: Pattern Recognit.
– volume: 100
  start-page: 107110
  year: 2020
  ident: bib0025
  article-title: Complex contourlet-cnn for polarimetric SAR image classification
  publication-title: Pattern Recognit.
– start-page: 1
  year: 2021
  end-page: 12
  ident: bib0024
  article-title: Weakly supervised low-rank representation for hyperspectral anomaly detection
  publication-title: IEEE Trans. Cybern.
– volume: 27
  year: 2014
  ident: bib0003
  article-title: Generative adversarial networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 3277
  year: 2017
  end-page: 3285
  ident: bib0032
  article-title: DSLR-quality photos on mobile devices with deep convolutional networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 93
  start-page: 570
  year: 2019
  end-page: 580
  ident: bib0008
  article-title: Toward learning a unified many-to-many mapping for diverse image translation
  publication-title: Pattern Recognit.
– volume: 31
  start-page: 1529
  year: 2019
  end-page: 1543
  ident: bib0029
  article-title: Hyperspectral pansharpening with deep priors
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 1752
  year: 2018
  end-page: 1755
  ident: bib0012
  article-title: Image translation between SAR and optical imagery with generative adversarial nets
  publication-title: IEEE International Geoscience and Remote Sensing Symposium
– volume: 18
  start-page: 296
  year: 2021
  end-page: 300
  ident: bib0001
  article-title: SAR image colorization using multidomain cycle-consistency generative adversarial network
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 98
  start-page: 107039
  year: 2020
  ident: bib0004
  article-title: Fine-grained action segmentation using the semi-supervised action GAN
  publication-title: Pattern Recognit.
– volume: 100
  start-page: 107097
  year: 2020
  ident: bib0014
  article-title: Disentangled representation learning and residual GAN for age-invariant face verification
  publication-title: Pattern Recognit.
– volume: 118
  start-page: 107992
  year: 2021
  ident: bib0021
  article-title: Dual feature extraction network for hyperspectral image analysis
  publication-title: Pattern Recognit.
– reference: M. Mirza, S. Osindero, Conditional Generative Adversarial Nets,
– start-page: 1125
  year: 2017
  end-page: 1134
  ident: bib0018
  article-title: Image-to-image translation with conditional adversarial networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 59
  start-page: 3956
  year: 2021
  end-page: 3966
  ident: bib0028
  article-title: SAR speckle removal using hybrid frequency modulations
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 8168
  year: 2020
  end-page: 8177
  ident: bib0020
  article-title: Reusing discriminators for encoding: towards unsupervised image-to-image translation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 104
  start-page: 107350
  year: 2020
  ident: bib0015
  article-title: GAN-based person search via deep complementary classifier with center-constrained triplet loss
  publication-title: Pattern Recognit.
– start-page: 245
  year: 2018
  end-page: 255
  ident: bib0011
  article-title: Image translation between high-resolution remote sensing optical and SAR data using conditional GAN
  publication-title: Pacific Rim Conference on Multimedia
– volume: 96
  start-page: 106972
  year: 2019
  ident: bib0022
  article-title: Target recognition in SAR images via sparse representation in the frequency domain
  publication-title: Pattern Recognit.
– volume: 100
  start-page: 107109
  year: 2020
  ident: bib0017
  article-title: Training data independent image registration using generative adversarial networks and domain adaptation
  publication-title: Pattern Recognit.
– start-page: 2633
  year: 2017
  end-page: 2636
  ident: bib0031
  article-title: On the possibility of conditional adversarial networks for multi-sensor image matching
  publication-title: IEEE International Geoscience and Remote Sensing Symposium
– volume: 20
  start-page: 209
  year: 2012
  end-page: 212
  ident: bib0033
  article-title: Making a ǣcompletely blindǥ image quality analyzer
  publication-title: IEEE Signal Process. Lett.
– volume: 59
  start-page: 1231.
  year: 2021
  end-page: 1249
  ident: bib0027
  article-title: SAR image speckle reduction based on nonconvex hybrid total variation model
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 102
  start-page: 107249
  year: 2020
  ident: bib0006
  article-title: Identity-aware CycleGAN for face photo-sketch synthesis and recognition
  publication-title: Pattern Recognit.
– volume: 57
  start-page: 7194
  year: 2019
  end-page: 7208
  ident: bib0026
  article-title: SAR speckle nonlocal filtering with statistical modeling of HAAR wavelet coefficients and stochastic distances
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 107
  start-page: 107453
  year: 2020
  ident: bib0005
  article-title: Generative adversarial classifier for handwriting characters super-resolution
  publication-title: Pattern Recognit.
– volume: 100
  start-page: 107110
  year: 2020
  ident: 10.1016/j.patcog.2021.108208_bib0025
  article-title: Complex contourlet-cnn for polarimetric SAR image classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107110
– volume: 93
  start-page: 570
  year: 2019
  ident: 10.1016/j.patcog.2021.108208_bib0008
  article-title: Toward learning a unified many-to-many mapping for diverse image translation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.05.017
– start-page: 245
  year: 2018
  ident: 10.1016/j.patcog.2021.108208_bib0011
  article-title: Image translation between high-resolution remote sensing optical and SAR data using conditional GAN
– volume: 102
  start-page: 107249
  year: 2020
  ident: 10.1016/j.patcog.2021.108208_bib0006
  article-title: Identity-aware CycleGAN for face photo-sketch synthesis and recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107249
– ident: 10.1016/j.patcog.2021.108208_bib0009
– start-page: 141
  year: 2018
  ident: 10.1016/j.patcog.2021.108208_bib0030
  article-title: The SEN1-2 dataset for deep learning in SAR-Optical data fusion
– volume: 59
  start-page: 3956
  issue: 5
  year: 2021
  ident: 10.1016/j.patcog.2021.108208_bib0028
  article-title: SAR speckle removal using hybrid frequency modulations
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3014130
– volume: 107
  start-page: 107453
  year: 2020
  ident: 10.1016/j.patcog.2021.108208_bib0005
  article-title: Generative adversarial classifier for handwriting characters super-resolution
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107453
– start-page: 8168
  year: 2020
  ident: 10.1016/j.patcog.2021.108208_bib0020
  article-title: Reusing discriminators for encoding: towards unsupervised image-to-image translation
– volume: 100
  start-page: 107097
  year: 2020
  ident: 10.1016/j.patcog.2021.108208_bib0014
  article-title: Disentangled representation learning and residual GAN for age-invariant face verification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107097
– volume: 27
  year: 2014
  ident: 10.1016/j.patcog.2021.108208_bib0003
  article-title: Generative adversarial networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1752
  year: 2018
  ident: 10.1016/j.patcog.2021.108208_bib0012
  article-title: Image translation between SAR and optical imagery with generative adversarial nets
– volume: 96
  start-page: 106972
  year: 2019
  ident: 10.1016/j.patcog.2021.108208_bib0022
  article-title: Target recognition in SAR images via sparse representation in the frequency domain
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.106972
– start-page: 3277
  year: 2017
  ident: 10.1016/j.patcog.2021.108208_bib0032
  article-title: DSLR-quality photos on mobile devices with deep convolutional networks
– start-page: 1
  year: 2021
  ident: 10.1016/j.patcog.2021.108208_bib0024
  article-title: Weakly supervised low-rank representation for hyperspectral anomaly detection
  publication-title: IEEE Trans. Cybern.
– volume: 100
  start-page: 107085
  year: 2020
  ident: 10.1016/j.patcog.2021.108208_bib0007
  article-title: Semi-supervised cross-modal image generation with generative adversarial networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107085
– volume: 57
  start-page: 7194
  issue: 9
  year: 2019
  ident: 10.1016/j.patcog.2021.108208_bib0026
  article-title: SAR speckle nonlocal filtering with statistical modeling of HAAR wavelet coefficients and stochastic distances
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2912153
– volume: 98
  start-page: 107051
  year: 2020
  ident: 10.1016/j.patcog.2021.108208_bib0016
  article-title: Learning image compressed sensing with sub-pixel convolutional generative adversarial network
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107051
– volume: 100
  start-page: 107109
  year: 2020
  ident: 10.1016/j.patcog.2021.108208_bib0017
  article-title: Training data independent image registration using generative adversarial networks and domain adaptation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107109
– volume: 118
  start-page: 107992
  year: 2021
  ident: 10.1016/j.patcog.2021.108208_bib0021
  article-title: Dual feature extraction network for hyperspectral image analysis
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.107992
– volume: 18
  start-page: 296
  issue: 2
  year: 2021
  ident: 10.1016/j.patcog.2021.108208_bib0001
  article-title: SAR image colorization using multidomain cycle-consistency generative adversarial network
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.2969891
– volume: 59
  start-page: 3486
  issue: 4
  year: 2021
  ident: 10.1016/j.patcog.2021.108208_bib0002
  article-title: Rethinking CNN-based pansharpening: guided colorization of panchromatic images via GANs
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3010441
– volume: 98
  start-page: 107039
  year: 2020
  ident: 10.1016/j.patcog.2021.108208_bib0004
  article-title: Fine-grained action segmentation using the semi-supervised action GAN
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107039
– volume: 31
  start-page: 1529
  issue: 5
  year: 2019
  ident: 10.1016/j.patcog.2021.108208_bib0029
  article-title: Hyperspectral pansharpening with deep priors
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2920857
– start-page: 923
  year: 2019
  ident: 10.1016/j.patcog.2021.108208_bib0010
  article-title: SAR2OPT: image alignment between multi-modal images using generative adversarial networks
– start-page: 2223
  year: 2017
  ident: 10.1016/j.patcog.2021.108208_bib0019
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks
– volume: 104
  start-page: 107350
  year: 2020
  ident: 10.1016/j.patcog.2021.108208_bib0015
  article-title: GAN-based person search via deep complementary classifier with center-constrained triplet loss
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107350
– volume: 59
  start-page: 1231.
  issue: 2
  year: 2021
  ident: 10.1016/j.patcog.2021.108208_bib0027
  article-title: SAR image speckle reduction based on nonconvex hybrid total variation model
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3002561
– start-page: 1125
  year: 2017
  ident: 10.1016/j.patcog.2021.108208_bib0018
  article-title: Image-to-image translation with conditional adversarial networks
– start-page: 2633
  year: 2017
  ident: 10.1016/j.patcog.2021.108208_bib0031
  article-title: On the possibility of conditional adversarial networks for multi-sensor image matching
– volume: 20
  start-page: 209
  issue: 3
  year: 2012
  ident: 10.1016/j.patcog.2021.108208_bib0033
  article-title: Making a ǣcompletely blindǥ image quality analyzer
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2012.2227726
– volume: 110
  start-page: 107384
  year: 2021
  ident: 10.1016/j.patcog.2021.108208_bib0013
  article-title: Lightweight dynamic conditional GAN with pyramid attention for text-to-image synthesis
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107384
– volume: 61
  start-page: 686
  year: 2017
  ident: 10.1016/j.patcog.2021.108208_bib0023
  article-title: Discriminant deep belief network for high-resolution SAR image classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.05.028
SSID ssj0017142
Score 2.5745637
Snippet •We propose an improved CGAN method for SAR-to-optical image translation.•We propose a parallel feature fusion generator to improve the contour sharpness.•We...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108208
SubjectTerms Chromatic aberration loss
ICGAN
SAR-to-optical image translation
Title SAR-to-optical image translation based on improved CGAN
URI https://dx.doi.org/10.1016/j.patcog.2021.108208
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH6UevHiLtalzMHr2CyTpcdQrFWhB7XQW5glkYg2ocSrv933MklREAVvQ5iB4cvM9817vAXgUjlGqFwaLo30uMh0xKWQkiNhoti6EZoITYDsPJwtxN0yWPZg0uXCUFhly_2W0xu2br-MWjRHVVFQji-VHXQoCYWqxFFGOVWvwzN99bEJ86D-3rZiuO9ymt2lzzUxXhXSXfmMVqLnUrCdR00mf5KnL5Iz3YOd9q3IErudfehlqwPY7fowsPZaHkL0mDzwuuRl1TimWfGGJMFqUiEb6cZIqwzDQdH4EHA8uUnmR7CYXj9NZrxtiMA1vuxrHiuROTIa63GIKo9anGvpx5L8F7EKVIRqHGuNEOdaB3mYhwqtnWBs8NZmaKpo_xj6q3KVnQDzQ5FJ6VK7c1e4nomVF8gc76AxjpB5OAC_wyHVbbVwalrxmnZhYS-pRS8l9FKL3gD4ZlVlq2X8MT_qIE6__fUUCf3Xlaf_XnkG2x6lMDRulHPo1-v37AIfFrUaNidnCFvJ7f1s_gnLtcq_
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ7U9qAX38b65OB1Ux4LS4-ksba2ctA26W2z7ILBaCEG_7-zsDSaGE28bQiTkA_2-3aGeQDcJLaiSSYUEUq4hKaSEUGFIEiYKLYOQxehTpCNg8mS3q_8VQdGbS2MTqs03N9wes3W5srAoDko81zX-Oq2g7YuQtFd4tgW9HR3KtqFXjSdTeLNzwTm0KZpuOcQbdBW0NVpXiUyXvGMjqLr6Hw7V8-Z_EmhvqjOeB92zXHRiponOoBOuj6EvXYUg2V25hGwp-iRVAUpyjo2beVvyBNWpYWoSXaztFwpCxd5HUbA9eguio9hOb5djCbEzEQgEg_3FQkTmtqCDeUwQKFHOc6k8EKhQxhh4icMBTmUElHOpPSzIAsSdHj8ocKNm6K3Ir0T6K6LdXoKlhfQVAhHTzx3qOOqMHF9keE2VMqmIgv64LU4cGkahuu5Fa-8zQx74Q16XKPHG_T6QDZWZdMw44_7WQsx__biOXL6r5Zn_7a8hu3J4mHO59N4dg47rq5oqKMqF9Ct3j_SSzxnVMmV-Y4-AdhBzXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAR-to-optical+image+translation+based+on+improved+CGAN&rft.jtitle=Pattern+recognition&rft.au=Yang%2C+Xi&rft.au=Zhao%2C+Jingyi&rft.au=Wei%2C+Ziyu&rft.au=Wang%2C+Nannan&rft.date=2022-01-01&rft.issn=0031-3203&rft.volume=121&rft.spage=108208&rft_id=info:doi/10.1016%2Fj.patcog.2021.108208&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2021_108208
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon