SAR-to-optical image translation based on improved CGAN
•We propose an improved CGAN method for SAR-to-optical image translation.•We propose a parallel feature fusion generator to improve the contour sharpness.•We utilize a multi-scale discriminator to improve the texture fine-grainedness.•We design a chromatic aberration loss to improve the color fideli...
Saved in:
Published in | Pattern recognition Vol. 121; p. 108208 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-3203 1873-5142 |
DOI | 10.1016/j.patcog.2021.108208 |
Cover
Loading…
Abstract | •We propose an improved CGAN method for SAR-to-optical image translation.•We propose a parallel feature fusion generator to improve the contour sharpness.•We utilize a multi-scale discriminator to improve the texture fine-grainedness.•We design a chromatic aberration loss to improve the color fidelity of the generated optical image.
SAR images have the advantages of being less susceptible to clouds and light, while optical images conform to the human vision system. Both of them are widely applied in the field of scene classification, natural environment monitoring, disaster warning, etc. However, due to the speckle noise caused by the SAR imaging principle, it is difficult for people to distinguish the ground objects from complex background without professional knowledge. One commonly used solution is to exploit Generative Adversarial Networks (GAN) to translate SAR images to optical images which is able to clearly present ground objects with rich color information, i.e., SAR-to-optical image translation. Traditional GAN-based translation methods are apt to cause blurring of contour, disappearance of texture and inconsistency of color. To this end, we propose an improved conditional GAN (ICGAN) method. Compared with the basic CGAN model, the translation ability of our method is improved in the following three aspects. (1) Contour sharpness. We utilize the parallel branches to combine low-level and high-level features, and thus the image contour information is improved without the influence of noise. (2) Texture fine-grainedness. We discriminate the image using multi-scale receptive fields to enrich the local and global texture features of the image. (3) Color fidelity. We use the chromatic aberration loss which is based on Gaussian blur convolution to reduce the color gap between the generated image and the real optical image. Our method considers both the visual layer and the conceptual layer of the image to complete the SAR-to-optical image translation task. The model is able to preserve the contours and textures of the SAR image, while more closely approximates the colors of the ground truth. The experimental results show that the generated image not only has preferable results in visual effects and favorable evaluation metrics (subjective and objective), but also achieves outstanding classification accuracy, which proves the superiority of our method over the state-of-the-arts in the SAR-to-optical image translation task. |
---|---|
AbstractList | •We propose an improved CGAN method for SAR-to-optical image translation.•We propose a parallel feature fusion generator to improve the contour sharpness.•We utilize a multi-scale discriminator to improve the texture fine-grainedness.•We design a chromatic aberration loss to improve the color fidelity of the generated optical image.
SAR images have the advantages of being less susceptible to clouds and light, while optical images conform to the human vision system. Both of them are widely applied in the field of scene classification, natural environment monitoring, disaster warning, etc. However, due to the speckle noise caused by the SAR imaging principle, it is difficult for people to distinguish the ground objects from complex background without professional knowledge. One commonly used solution is to exploit Generative Adversarial Networks (GAN) to translate SAR images to optical images which is able to clearly present ground objects with rich color information, i.e., SAR-to-optical image translation. Traditional GAN-based translation methods are apt to cause blurring of contour, disappearance of texture and inconsistency of color. To this end, we propose an improved conditional GAN (ICGAN) method. Compared with the basic CGAN model, the translation ability of our method is improved in the following three aspects. (1) Contour sharpness. We utilize the parallel branches to combine low-level and high-level features, and thus the image contour information is improved without the influence of noise. (2) Texture fine-grainedness. We discriminate the image using multi-scale receptive fields to enrich the local and global texture features of the image. (3) Color fidelity. We use the chromatic aberration loss which is based on Gaussian blur convolution to reduce the color gap between the generated image and the real optical image. Our method considers both the visual layer and the conceptual layer of the image to complete the SAR-to-optical image translation task. The model is able to preserve the contours and textures of the SAR image, while more closely approximates the colors of the ground truth. The experimental results show that the generated image not only has preferable results in visual effects and favorable evaluation metrics (subjective and objective), but also achieves outstanding classification accuracy, which proves the superiority of our method over the state-of-the-arts in the SAR-to-optical image translation task. |
ArticleNumber | 108208 |
Author | Zhao, Jingyi Wang, Nannan Wei, Ziyu Gao, Xinbo Yang, Xi |
Author_xml | – sequence: 1 givenname: Xi surname: Yang fullname: Yang, Xi organization: State Key Laboratory of Integrated Services Networks, School of Telecommunications Engineering, Xidian University, Xi’an 710071, China – sequence: 2 givenname: Jingyi surname: Zhao fullname: Zhao, Jingyi organization: State Key Laboratory of Integrated Services Networks, School of Telecommunications Engineering, Xidian University, Xi’an 710071, China – sequence: 3 givenname: Ziyu surname: Wei fullname: Wei, Ziyu organization: State Key Laboratory of Integrated Services Networks, School of Telecommunications Engineering, Xidian University, Xi’an 710071, China – sequence: 4 givenname: Nannan surname: Wang fullname: Wang, Nannan organization: State Key Laboratory of Integrated Services Networks, School of Telecommunications Engineering, Xidian University, Xi’an 710071, China – sequence: 5 givenname: Xinbo surname: Gao fullname: Gao, Xinbo email: xbgao@mail.xidian.edu.cn, gaoxb@cqupt.edu.cn organization: State Key Laboratory of Integrated Services Networks, School of Electronic Engineering, Xidian University, Xi’an 710071, China |
BookMark | eNqFkN1KAzEQhYNUsK2-gRf7Alsnyf5kvRBK0SoUBX-uQ3Y2W7JsN0sSCr69qeuVF3o1hxm-4ZyzILPBDpqQaworCrS46VajCmj3KwaMxpVgIM7InIqSpznN2IzMAThNOQN-QRbedwC0jIc5Kd_Wr2mwqR2DQdUn5qD2OglODb5XwdghqZXXTRKFOYzOHqPebNfPl-S8Vb3XVz9zST4e7t83j-nuZfu0We9S5FCEVNSZBlVWWBUVBZZBi4oLFX2Wos7rkmVUIDJOW8S8LdqipjTLq0ZwpqEqkC_J7fQXnfXe6VaiCd_GokfTSwryVIHs5FSBPFUgpwoinP2CRxcDus__sLsJ0zHY0WgnPRo9oG6M0xhkY83fD74Am4J4Bw |
CitedBy_id | crossref_primary_10_1109_JSTARS_2024_3447219 crossref_primary_10_1016_j_patcog_2023_109781 crossref_primary_10_1109_JSTARS_2024_3468456 crossref_primary_10_1109_JSTARS_2024_3523274 crossref_primary_10_1109_JSTARS_2024_3504555 crossref_primary_10_3390_rs15235569 crossref_primary_10_1016_j_patcog_2022_109061 crossref_primary_10_1109_TGRS_2024_3491826 crossref_primary_10_1016_j_patcog_2023_110058 crossref_primary_10_3390_app13031766 crossref_primary_10_1109_TGRS_2024_3421581 crossref_primary_10_3390_rs15061540 crossref_primary_10_1109_ACCESS_2023_3343910 crossref_primary_10_3390_rs16111963 crossref_primary_10_3390_rs16214045 crossref_primary_10_1016_j_asr_2024_06_026 crossref_primary_10_1109_JSTARS_2024_3352237 crossref_primary_10_1109_TGRS_2022_3212208 crossref_primary_10_1016_j_patcog_2022_108558 crossref_primary_10_1109_ACCESS_2024_3454513 crossref_primary_10_1016_j_jappgeo_2024_105531 crossref_primary_10_1109_TAES_2024_3399195 crossref_primary_10_1109_TGRS_2022_3200996 crossref_primary_10_1016_j_patcog_2024_111117 crossref_primary_10_1038_s41598_024_75762_x crossref_primary_10_1109_TGRS_2024_3352662 crossref_primary_10_34133_remotesensing_0172 crossref_primary_10_1109_TGRS_2023_3334874 crossref_primary_10_3390_app13053268 crossref_primary_10_1016_j_displa_2023_102584 crossref_primary_10_1109_LGRS_2023_3337143 crossref_primary_10_1007_s12273_023_1071_8 crossref_primary_10_3390_rs15184558 crossref_primary_10_3390_rs15123125 crossref_primary_10_1016_j_jag_2024_104321 crossref_primary_10_1109_TCE_2024_3367170 crossref_primary_10_1109_TGRS_2024_3523040 crossref_primary_10_1007_s11042_022_13115_4 crossref_primary_10_1109_TGRS_2024_3451558 crossref_primary_10_1016_j_eswa_2023_121405 crossref_primary_10_1109_TAES_2024_3449268 crossref_primary_10_3390_rs16071199 crossref_primary_10_1109_TAES_2023_3303856 crossref_primary_10_3390_rs16162957 crossref_primary_10_1016_j_eswa_2023_121962 crossref_primary_10_1016_j_powtec_2024_119488 crossref_primary_10_3390_rs16020242 crossref_primary_10_1109_LGRS_2025_3534795 |
Cites_doi | 10.1016/j.patcog.2019.107110 10.1016/j.patcog.2019.05.017 10.1016/j.patcog.2020.107249 10.1109/TGRS.2020.3014130 10.1016/j.patcog.2020.107453 10.1016/j.patcog.2019.107097 10.1016/j.patcog.2019.106972 10.1016/j.patcog.2019.107085 10.1109/TGRS.2019.2912153 10.1016/j.patcog.2019.107051 10.1016/j.patcog.2019.107109 10.1016/j.patcog.2021.107992 10.1109/LGRS.2020.2969891 10.1109/TGRS.2020.3010441 10.1016/j.patcog.2019.107039 10.1109/TNNLS.2019.2920857 10.1016/j.patcog.2020.107350 10.1109/TGRS.2020.3002561 10.1109/LSP.2012.2227726 10.1016/j.patcog.2020.107384 10.1016/j.patcog.2016.05.028 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2021.108208 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
ExternalDocumentID | 10_1016_j_patcog_2021_108208 S0031320321003897 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-8b4e0a79c96910240fca38a20278b5b72418cc231fcc5f6f6b11459d832e096c3 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Tue Jul 01 02:36:35 EDT 2025 Thu Apr 24 23:07:49 EDT 2025 Fri Feb 23 02:43:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | SAR-to-optical image translation ICGAN Chromatic aberration loss |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-8b4e0a79c96910240fca38a20278b5b72418cc231fcc5f6f6b11459d832e096c3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2021_108208 crossref_primary_10_1016_j_patcog_2021_108208 elsevier_sciencedirect_doi_10_1016_j_patcog_2021_108208 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Xie, Lei, Cui, Li, Du (bib0029) 2019; 31 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0003) 2014; 27 Yao, Gao, Xia, Zhao, Zhou, Hu (bib0015) 2020; 104 Zhao, Li, Wang (bib0014) 2020; 100 Toriya, Dewan, Kitahara (bib0010) 2019 M. Mirza, S. Osindero, Conditional Generative Adversarial Nets Mittal, Soundararajan, Bovik (bib0033) 2012; 20 Niu, Yang, Yang, Pan, Dou (bib0011) 2018 Xu, Shawn, Wang (bib0008) 2019; 93 Dong, Liu, Kuang, Chanussot (bib0022) 2019; 96 Sun, Chen, Liu, Liu (bib0016) 2020; 98 Zhu, Park, Isola, Efros (bib0019) 2017 Chen, Huang, Huang, Sun, Fang (bib0020) 2020 Li, Ma, Jiao, Liu, Sun, Zhao (bib0025) 2020; 100 Isola, Zhu, Zhou, Efros (bib0018) 2017 Sun, Lei, Guan, Li, Kuang (bib0027) 2021; 59 Mahapatra, Ge (bib0017) 2020; 100 Penna, Mascarenhas (bib0026) 2019; 57 Ozcelik, Alganci, Sertel, Unal (bib0002) 2021; 59 Li, Du, He (bib0007) 2020; 100 Qian, Huang, Wang, Xiao, Zhang (bib0005) 2020; 107 Liu, Gao, Lei, Wang, Hu, Ma, Zhang (bib0028) 2021; 59 Xie, Zhang, Li, Lei, Li, Du (bib0024) 2021 (2014). Schmitt, Hughes, Zhu (bib0030) 2018 Xie, Lei, Fang, Li, Jia, Li (bib0021) 2021; 118 Enomoto, Sakurada, Wang, Kawaguchi, Matsuoka, Nakamura (bib0012) 2018 Ji, Wang, Zhou, Xia, Zhong, Gong (bib0001) 2021; 18 Merkle, Fischer, Auer, Müller (bib0031) 2017 Fang, Deng, Du, Hu (bib0006) 2020; 102 Ignatov, Kobyshev, Timofte, Vanhoey, Van Gool (bib0032) 2017 Gammulle, Denman, Sridharan, Fookes (bib0004) 2020; 98 Zhao, Jiao, Zhao, Gu, Zhao (bib0023) 2017; 61 Gao, Chen, Zhao, Shao, Shen (bib0013) 2021; 110 Fang (10.1016/j.patcog.2021.108208_bib0006) 2020; 102 Zhao (10.1016/j.patcog.2021.108208_bib0023) 2017; 61 Liu (10.1016/j.patcog.2021.108208_bib0028) 2021; 59 Niu (10.1016/j.patcog.2021.108208_bib0011) 2018 Xu (10.1016/j.patcog.2021.108208_bib0008) 2019; 93 Chen (10.1016/j.patcog.2021.108208_bib0020) 2020 Isola (10.1016/j.patcog.2021.108208_bib0018) 2017 Ozcelik (10.1016/j.patcog.2021.108208_bib0002) 2021; 59 Zhu (10.1016/j.patcog.2021.108208_bib0019) 2017 Xie (10.1016/j.patcog.2021.108208_bib0029) 2019; 31 Yao (10.1016/j.patcog.2021.108208_bib0015) 2020; 104 Merkle (10.1016/j.patcog.2021.108208_bib0031) 2017 Xie (10.1016/j.patcog.2021.108208_bib0024) 2021 Qian (10.1016/j.patcog.2021.108208_bib0005) 2020; 107 10.1016/j.patcog.2021.108208_bib0009 Schmitt (10.1016/j.patcog.2021.108208_bib0030) 2018 Li (10.1016/j.patcog.2021.108208_bib0007) 2020; 100 Penna (10.1016/j.patcog.2021.108208_bib0026) 2019; 57 Gammulle (10.1016/j.patcog.2021.108208_bib0004) 2020; 98 Xie (10.1016/j.patcog.2021.108208_bib0021) 2021; 118 Enomoto (10.1016/j.patcog.2021.108208_bib0012) 2018 Mittal (10.1016/j.patcog.2021.108208_bib0033) 2012; 20 Li (10.1016/j.patcog.2021.108208_bib0025) 2020; 100 Mahapatra (10.1016/j.patcog.2021.108208_bib0017) 2020; 100 Ji (10.1016/j.patcog.2021.108208_bib0001) 2021; 18 Toriya (10.1016/j.patcog.2021.108208_bib0010) 2019 Goodfellow (10.1016/j.patcog.2021.108208_bib0003) 2014; 27 Dong (10.1016/j.patcog.2021.108208_bib0022) 2019; 96 Gao (10.1016/j.patcog.2021.108208_bib0013) 2021; 110 Sun (10.1016/j.patcog.2021.108208_bib0027) 2021; 59 Zhao (10.1016/j.patcog.2021.108208_bib0014) 2020; 100 Ignatov (10.1016/j.patcog.2021.108208_bib0032) 2017 Sun (10.1016/j.patcog.2021.108208_bib0016) 2020; 98 |
References_xml | – volume: 98 start-page: 107051 year: 2020 ident: bib0016 article-title: Learning image compressed sensing with sub-pixel convolutional generative adversarial network publication-title: Pattern Recognit. – volume: 110 start-page: 107384 year: 2021 ident: bib0013 article-title: Lightweight dynamic conditional GAN with pyramid attention for text-to-image synthesis publication-title: Pattern Recognit. – volume: 59 start-page: 3486 year: 2021 end-page: 3501 ident: bib0002 article-title: Rethinking CNN-based pansharpening: guided colorization of panchromatic images via GANs publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 100 start-page: 107085 year: 2020 ident: bib0007 article-title: Semi-supervised cross-modal image generation with generative adversarial networks publication-title: Pattern Recognit. – reference: (2014). – start-page: 141 year: 2018 end-page: 146 ident: bib0030 article-title: The SEN1-2 dataset for deep learning in SAR-Optical data fusion publication-title: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences – start-page: 923 year: 2019 end-page: 926 ident: bib0010 article-title: SAR2OPT: image alignment between multi-modal images using generative adversarial networks publication-title: IEEE International Geoscience and Remote Sensing Symposium – start-page: 2223 year: 2017 end-page: 2232 ident: bib0019 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 61 start-page: 686 year: 2017 end-page: 701 ident: bib0023 article-title: Discriminant deep belief network for high-resolution SAR image classification publication-title: Pattern Recognit. – volume: 100 start-page: 107110 year: 2020 ident: bib0025 article-title: Complex contourlet-cnn for polarimetric SAR image classification publication-title: Pattern Recognit. – start-page: 1 year: 2021 end-page: 12 ident: bib0024 article-title: Weakly supervised low-rank representation for hyperspectral anomaly detection publication-title: IEEE Trans. Cybern. – volume: 27 year: 2014 ident: bib0003 article-title: Generative adversarial networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 3277 year: 2017 end-page: 3285 ident: bib0032 article-title: DSLR-quality photos on mobile devices with deep convolutional networks publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 93 start-page: 570 year: 2019 end-page: 580 ident: bib0008 article-title: Toward learning a unified many-to-many mapping for diverse image translation publication-title: Pattern Recognit. – volume: 31 start-page: 1529 year: 2019 end-page: 1543 ident: bib0029 article-title: Hyperspectral pansharpening with deep priors publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 1752 year: 2018 end-page: 1755 ident: bib0012 article-title: Image translation between SAR and optical imagery with generative adversarial nets publication-title: IEEE International Geoscience and Remote Sensing Symposium – volume: 18 start-page: 296 year: 2021 end-page: 300 ident: bib0001 article-title: SAR image colorization using multidomain cycle-consistency generative adversarial network publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 98 start-page: 107039 year: 2020 ident: bib0004 article-title: Fine-grained action segmentation using the semi-supervised action GAN publication-title: Pattern Recognit. – volume: 100 start-page: 107097 year: 2020 ident: bib0014 article-title: Disentangled representation learning and residual GAN for age-invariant face verification publication-title: Pattern Recognit. – volume: 118 start-page: 107992 year: 2021 ident: bib0021 article-title: Dual feature extraction network for hyperspectral image analysis publication-title: Pattern Recognit. – reference: M. Mirza, S. Osindero, Conditional Generative Adversarial Nets, – start-page: 1125 year: 2017 end-page: 1134 ident: bib0018 article-title: Image-to-image translation with conditional adversarial networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 59 start-page: 3956 year: 2021 end-page: 3966 ident: bib0028 article-title: SAR speckle removal using hybrid frequency modulations publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 8168 year: 2020 end-page: 8177 ident: bib0020 article-title: Reusing discriminators for encoding: towards unsupervised image-to-image translation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 104 start-page: 107350 year: 2020 ident: bib0015 article-title: GAN-based person search via deep complementary classifier with center-constrained triplet loss publication-title: Pattern Recognit. – start-page: 245 year: 2018 end-page: 255 ident: bib0011 article-title: Image translation between high-resolution remote sensing optical and SAR data using conditional GAN publication-title: Pacific Rim Conference on Multimedia – volume: 96 start-page: 106972 year: 2019 ident: bib0022 article-title: Target recognition in SAR images via sparse representation in the frequency domain publication-title: Pattern Recognit. – volume: 100 start-page: 107109 year: 2020 ident: bib0017 article-title: Training data independent image registration using generative adversarial networks and domain adaptation publication-title: Pattern Recognit. – start-page: 2633 year: 2017 end-page: 2636 ident: bib0031 article-title: On the possibility of conditional adversarial networks for multi-sensor image matching publication-title: IEEE International Geoscience and Remote Sensing Symposium – volume: 20 start-page: 209 year: 2012 end-page: 212 ident: bib0033 article-title: Making a ǣcompletely blindǥ image quality analyzer publication-title: IEEE Signal Process. Lett. – volume: 59 start-page: 1231. year: 2021 end-page: 1249 ident: bib0027 article-title: SAR image speckle reduction based on nonconvex hybrid total variation model publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 102 start-page: 107249 year: 2020 ident: bib0006 article-title: Identity-aware CycleGAN for face photo-sketch synthesis and recognition publication-title: Pattern Recognit. – volume: 57 start-page: 7194 year: 2019 end-page: 7208 ident: bib0026 article-title: SAR speckle nonlocal filtering with statistical modeling of HAAR wavelet coefficients and stochastic distances publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 107 start-page: 107453 year: 2020 ident: bib0005 article-title: Generative adversarial classifier for handwriting characters super-resolution publication-title: Pattern Recognit. – volume: 100 start-page: 107110 year: 2020 ident: 10.1016/j.patcog.2021.108208_bib0025 article-title: Complex contourlet-cnn for polarimetric SAR image classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107110 – volume: 93 start-page: 570 year: 2019 ident: 10.1016/j.patcog.2021.108208_bib0008 article-title: Toward learning a unified many-to-many mapping for diverse image translation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.05.017 – start-page: 245 year: 2018 ident: 10.1016/j.patcog.2021.108208_bib0011 article-title: Image translation between high-resolution remote sensing optical and SAR data using conditional GAN – volume: 102 start-page: 107249 year: 2020 ident: 10.1016/j.patcog.2021.108208_bib0006 article-title: Identity-aware CycleGAN for face photo-sketch synthesis and recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107249 – ident: 10.1016/j.patcog.2021.108208_bib0009 – start-page: 141 year: 2018 ident: 10.1016/j.patcog.2021.108208_bib0030 article-title: The SEN1-2 dataset for deep learning in SAR-Optical data fusion – volume: 59 start-page: 3956 issue: 5 year: 2021 ident: 10.1016/j.patcog.2021.108208_bib0028 article-title: SAR speckle removal using hybrid frequency modulations publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3014130 – volume: 107 start-page: 107453 year: 2020 ident: 10.1016/j.patcog.2021.108208_bib0005 article-title: Generative adversarial classifier for handwriting characters super-resolution publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107453 – start-page: 8168 year: 2020 ident: 10.1016/j.patcog.2021.108208_bib0020 article-title: Reusing discriminators for encoding: towards unsupervised image-to-image translation – volume: 100 start-page: 107097 year: 2020 ident: 10.1016/j.patcog.2021.108208_bib0014 article-title: Disentangled representation learning and residual GAN for age-invariant face verification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107097 – volume: 27 year: 2014 ident: 10.1016/j.patcog.2021.108208_bib0003 article-title: Generative adversarial networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 1752 year: 2018 ident: 10.1016/j.patcog.2021.108208_bib0012 article-title: Image translation between SAR and optical imagery with generative adversarial nets – volume: 96 start-page: 106972 year: 2019 ident: 10.1016/j.patcog.2021.108208_bib0022 article-title: Target recognition in SAR images via sparse representation in the frequency domain publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.106972 – start-page: 3277 year: 2017 ident: 10.1016/j.patcog.2021.108208_bib0032 article-title: DSLR-quality photos on mobile devices with deep convolutional networks – start-page: 1 year: 2021 ident: 10.1016/j.patcog.2021.108208_bib0024 article-title: Weakly supervised low-rank representation for hyperspectral anomaly detection publication-title: IEEE Trans. Cybern. – volume: 100 start-page: 107085 year: 2020 ident: 10.1016/j.patcog.2021.108208_bib0007 article-title: Semi-supervised cross-modal image generation with generative adversarial networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107085 – volume: 57 start-page: 7194 issue: 9 year: 2019 ident: 10.1016/j.patcog.2021.108208_bib0026 article-title: SAR speckle nonlocal filtering with statistical modeling of HAAR wavelet coefficients and stochastic distances publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2912153 – volume: 98 start-page: 107051 year: 2020 ident: 10.1016/j.patcog.2021.108208_bib0016 article-title: Learning image compressed sensing with sub-pixel convolutional generative adversarial network publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107051 – volume: 100 start-page: 107109 year: 2020 ident: 10.1016/j.patcog.2021.108208_bib0017 article-title: Training data independent image registration using generative adversarial networks and domain adaptation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107109 – volume: 118 start-page: 107992 year: 2021 ident: 10.1016/j.patcog.2021.108208_bib0021 article-title: Dual feature extraction network for hyperspectral image analysis publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.107992 – volume: 18 start-page: 296 issue: 2 year: 2021 ident: 10.1016/j.patcog.2021.108208_bib0001 article-title: SAR image colorization using multidomain cycle-consistency generative adversarial network publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2020.2969891 – volume: 59 start-page: 3486 issue: 4 year: 2021 ident: 10.1016/j.patcog.2021.108208_bib0002 article-title: Rethinking CNN-based pansharpening: guided colorization of panchromatic images via GANs publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3010441 – volume: 98 start-page: 107039 year: 2020 ident: 10.1016/j.patcog.2021.108208_bib0004 article-title: Fine-grained action segmentation using the semi-supervised action GAN publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107039 – volume: 31 start-page: 1529 issue: 5 year: 2019 ident: 10.1016/j.patcog.2021.108208_bib0029 article-title: Hyperspectral pansharpening with deep priors publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2920857 – start-page: 923 year: 2019 ident: 10.1016/j.patcog.2021.108208_bib0010 article-title: SAR2OPT: image alignment between multi-modal images using generative adversarial networks – start-page: 2223 year: 2017 ident: 10.1016/j.patcog.2021.108208_bib0019 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks – volume: 104 start-page: 107350 year: 2020 ident: 10.1016/j.patcog.2021.108208_bib0015 article-title: GAN-based person search via deep complementary classifier with center-constrained triplet loss publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107350 – volume: 59 start-page: 1231. issue: 2 year: 2021 ident: 10.1016/j.patcog.2021.108208_bib0027 article-title: SAR image speckle reduction based on nonconvex hybrid total variation model publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3002561 – start-page: 1125 year: 2017 ident: 10.1016/j.patcog.2021.108208_bib0018 article-title: Image-to-image translation with conditional adversarial networks – start-page: 2633 year: 2017 ident: 10.1016/j.patcog.2021.108208_bib0031 article-title: On the possibility of conditional adversarial networks for multi-sensor image matching – volume: 20 start-page: 209 issue: 3 year: 2012 ident: 10.1016/j.patcog.2021.108208_bib0033 article-title: Making a ǣcompletely blindǥ image quality analyzer publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2012.2227726 – volume: 110 start-page: 107384 year: 2021 ident: 10.1016/j.patcog.2021.108208_bib0013 article-title: Lightweight dynamic conditional GAN with pyramid attention for text-to-image synthesis publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107384 – volume: 61 start-page: 686 year: 2017 ident: 10.1016/j.patcog.2021.108208_bib0023 article-title: Discriminant deep belief network for high-resolution SAR image classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.05.028 |
SSID | ssj0017142 |
Score | 2.5745637 |
Snippet | •We propose an improved CGAN method for SAR-to-optical image translation.•We propose a parallel feature fusion generator to improve the contour sharpness.•We... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108208 |
SubjectTerms | Chromatic aberration loss ICGAN SAR-to-optical image translation |
Title | SAR-to-optical image translation based on improved CGAN |
URI | https://dx.doi.org/10.1016/j.patcog.2021.108208 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH6UevHiLtalzMHr2CyTpcdQrFWhB7XQW5glkYg2ocSrv933MklREAVvQ5iB4cvM9817vAXgUjlGqFwaLo30uMh0xKWQkiNhoti6EZoITYDsPJwtxN0yWPZg0uXCUFhly_2W0xu2br-MWjRHVVFQji-VHXQoCYWqxFFGOVWvwzN99bEJ86D-3rZiuO9ymt2lzzUxXhXSXfmMVqLnUrCdR00mf5KnL5Iz3YOd9q3IErudfehlqwPY7fowsPZaHkL0mDzwuuRl1TimWfGGJMFqUiEb6cZIqwzDQdH4EHA8uUnmR7CYXj9NZrxtiMA1vuxrHiuROTIa63GIKo9anGvpx5L8F7EKVIRqHGuNEOdaB3mYhwqtnWBs8NZmaKpo_xj6q3KVnQDzQ5FJ6VK7c1e4nomVF8gc76AxjpB5OAC_wyHVbbVwalrxmnZhYS-pRS8l9FKL3gD4ZlVlq2X8MT_qIE6__fUUCf3Xlaf_XnkG2x6lMDRulHPo1-v37AIfFrUaNidnCFvJ7f1s_gnLtcq_ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ7U9qAX38b65OB1Ux4LS4-ksba2ctA26W2z7ILBaCEG_7-zsDSaGE28bQiTkA_2-3aGeQDcJLaiSSYUEUq4hKaSEUGFIEiYKLYOQxehTpCNg8mS3q_8VQdGbS2MTqs03N9wes3W5srAoDko81zX-Oq2g7YuQtFd4tgW9HR3KtqFXjSdTeLNzwTm0KZpuOcQbdBW0NVpXiUyXvGMjqLr6Hw7V8-Z_EmhvqjOeB92zXHRiponOoBOuj6EvXYUg2V25hGwp-iRVAUpyjo2beVvyBNWpYWoSXaztFwpCxd5HUbA9eguio9hOb5djCbEzEQgEg_3FQkTmtqCDeUwQKFHOc6k8EKhQxhh4icMBTmUElHOpPSzIAsSdHj8ocKNm6K3Ir0T6K6LdXoKlhfQVAhHTzx3qOOqMHF9keE2VMqmIgv64LU4cGkahuu5Fa-8zQx74Q16XKPHG_T6QDZWZdMw44_7WQsx__biOXL6r5Zn_7a8hu3J4mHO59N4dg47rq5oqKMqF9Ct3j_SSzxnVMmV-Y4-AdhBzXA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAR-to-optical+image+translation+based+on+improved+CGAN&rft.jtitle=Pattern+recognition&rft.au=Yang%2C+Xi&rft.au=Zhao%2C+Jingyi&rft.au=Wei%2C+Ziyu&rft.au=Wang%2C+Nannan&rft.date=2022-01-01&rft.issn=0031-3203&rft.volume=121&rft.spage=108208&rft_id=info:doi/10.1016%2Fj.patcog.2021.108208&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2021_108208 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |