Pulsatile flow and heat transfer of blood in an overlapping vibrating atherosclerotic artery: A numerical study

The paper is devoted to a numerical investigation of the pulsatile flow of blood through a porous overlapping constricted artery under the influence of an externally imposed magnetic field and vibration environment that is originated from the body force. Blood is considered as micropolar fluid. The...

Full description

Saved in:
Bibliographic Details
Published inMathematics and computers in simulation Vol. 166; pp. 432 - 450
Main Authors Shit, G.C., Maiti, S., Roy, M., Misra, J.C.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2019
Subjects
Online AccessGet full text
ISSN0378-4754
1872-7166
DOI10.1016/j.matcom.2019.06.015

Cover

Loading…
Abstract The paper is devoted to a numerical investigation of the pulsatile flow of blood through a porous overlapping constricted artery under the influence of an externally imposed magnetic field and vibration environment that is originated from the body force. Blood is considered as micropolar fluid. The heat transfer phenomenon arising out of viscous dissipation is also studied. The problem is solved numerically by developing a Crank–Nicolson finite difference scheme after transforming the original governing equations from the physical domain to a rectangular computational domain. The computational results for the velocity and temperature distributions, fluid acceleration, skin friction and Nusselt number are presented graphically for different values of the physical parameters. The study shows that the Nusselt number increases with rise in Prandtl number and Brinkman number both and that owing to the dissipation of energy caused by blood viscoelasticity and magnetic field effect, during pulsatile flow of blood, the heat transfer rate at the wall of the artery is enhanced. •Numerically studied MHD pulsatile flow of blood and heat transfer in the stenosed artery.•Body acceleration due to vibration is considered for simulating blood flow.•Microrotation of microparticles taken into account suspended in the porous vascular tube.•WSS increases significantly for a rise in the permeability of the porous medium.•Fluid acceleration enhances with an increase in amplitude of body acceleration.
AbstractList The paper is devoted to a numerical investigation of the pulsatile flow of blood through a porous overlapping constricted artery under the influence of an externally imposed magnetic field and vibration environment that is originated from the body force. Blood is considered as micropolar fluid. The heat transfer phenomenon arising out of viscous dissipation is also studied. The problem is solved numerically by developing a Crank–Nicolson finite difference scheme after transforming the original governing equations from the physical domain to a rectangular computational domain. The computational results for the velocity and temperature distributions, fluid acceleration, skin friction and Nusselt number are presented graphically for different values of the physical parameters. The study shows that the Nusselt number increases with rise in Prandtl number and Brinkman number both and that owing to the dissipation of energy caused by blood viscoelasticity and magnetic field effect, during pulsatile flow of blood, the heat transfer rate at the wall of the artery is enhanced. •Numerically studied MHD pulsatile flow of blood and heat transfer in the stenosed artery.•Body acceleration due to vibration is considered for simulating blood flow.•Microrotation of microparticles taken into account suspended in the porous vascular tube.•WSS increases significantly for a rise in the permeability of the porous medium.•Fluid acceleration enhances with an increase in amplitude of body acceleration.
Author Shit, G.C.
Misra, J.C.
Maiti, S.
Roy, M.
Author_xml – sequence: 1
  givenname: G.C.
  surname: Shit
  fullname: Shit, G.C.
  email: gopal_iitkgp@yahoo.co.in
  organization: Department of Mathematics, Jadavpur University, Kolkata 700032, India
– sequence: 2
  givenname: S.
  surname: Maiti
  fullname: Maiti, S.
  organization: Department of Mathematics, Jadavpur University, Kolkata 700032, India
– sequence: 3
  givenname: M.
  surname: Roy
  fullname: Roy, M.
  organization: Department of Mathematics, Sammilani Mahavidyalaya, Kolkata 700094, India
– sequence: 4
  givenname: J.C.
  surname: Misra
  fullname: Misra, J.C.
  organization: Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302, India
BookMark eNqFkM1KAzEUhYNUsK2-gYu8wIxJp5NkXAhS_IOCLnQdMskdm5ImJUkrfXtT6sqFbu69cPkO55wJGvngAaFrSmpKKLtZ1xuVddjUM0K7mrCa0PYMjangs4pTxkZoTBouqjlv5xdoktKaEFLudozC284lla0DPLjwhZU3eAUq4xyVTwNEHAbcuxAMtr58cdhDdGq7tf4T720fC1sulVcQQ9KuzGw1VjFDPNzie-x3G4hWK4dT3pnDJToflEtw9bOn6OPx4X3xXC1fn14W98tKN4TlSoim0UwZAowD69tOmK7v-mbWDmIGvCWDULqda2YaboTgmvVUdYYPrOuZ7rpmim5PurrYShEGqW0uXoMvwayTlMhjdXItT9XJY3WSMFmqK_D8F7yNdqPi4T_s7oRBCba3EGXSFrwGYyPoLE2wfwt8A74ij8E
CitedBy_id crossref_primary_10_1063_5_0165216
crossref_primary_10_1007_s11012_020_01152_y
crossref_primary_10_1140_epjs_s11734_021_00057_5
crossref_primary_10_1016_j_cplett_2022_140209
crossref_primary_10_1016_j_jmmm_2023_170564
crossref_primary_10_1002_zamm_202100532
crossref_primary_10_1016_j_matcom_2021_04_020
crossref_primary_10_1142_S021951942250049X
crossref_primary_10_1142_S0219519422500683
crossref_primary_10_1002_zamm_202200360
crossref_primary_10_1016_j_compbiomed_2021_104595
crossref_primary_10_1016_j_rinp_2020_103544
crossref_primary_10_1088_1402_4896_ac2e81
crossref_primary_10_1007_s41403_022_00349_9
crossref_primary_10_1080_01430750_2021_1979649
crossref_primary_10_1007_s40819_022_01313_5
crossref_primary_10_1186_s13661_025_02007_9
crossref_primary_10_36963_IJTST_2021080103
crossref_primary_10_1177_09544089211013317
crossref_primary_10_1007_s42493_022_00080_1
crossref_primary_10_1038_s41598_021_86051_2
crossref_primary_10_1016_j_icheatmasstransfer_2022_105930
crossref_primary_10_1016_j_compbiomed_2024_109423
crossref_primary_10_1016_j_cplett_2023_140756
crossref_primary_10_1016_j_hybadv_2024_100293
crossref_primary_10_4028_p_n75rbt
crossref_primary_10_1108_HFF_12_2019_0921
crossref_primary_10_1080_10407782_2024_2347568
crossref_primary_10_1002_htj_23078
crossref_primary_10_3390_math10122022
crossref_primary_10_1016_j_colsurfb_2020_111395
crossref_primary_10_1080_17455030_2023_2185085
crossref_primary_10_1007_s13538_022_01061_3
crossref_primary_10_1007_s10404_024_02735_x
crossref_primary_10_1007_s12043_024_02840_0
crossref_primary_10_1016_j_colsurfb_2021_111754
Cites_doi 10.1080/10255842.2016.1196198
10.1017/S1446181100013304
10.1016/0021-9290(89)90089-4
10.1115/1.3426241
10.1142/S0219519417400176
10.1016/S0895-7177(98)00180-0
10.1115/1.3408496
10.1016/j.molliq.2017.04.041
10.1016/0020-7225(86)90018-2
10.1016/S1001-6058(15)60492-9
10.1007/s00521-016-2705-x
10.1016/0021-9290(85)90662-1
10.3233/BIR-1990-27510
10.1016/S0017-9310(03)00301-6
10.1142/S0219519407002303
10.1007/BF02462080
10.3233/BIR-1986-23408
10.1142/S0219519417501093
10.1016/j.molliq.2016.09.096
10.1016/0021-9290(86)90186-7
10.1016/0020-7225(64)90005-9
10.1142/S0219519408002620
10.1002/cjce.21792
10.1016/j.mcm.2011.07.028
10.1007/BF02442631
10.1016/0020-7225(77)90022-2
10.1142/S0219519411003909
10.1142/S021951941850001X
10.1016/j.physa.2018.12.019
10.1142/S1793524511001428
10.1016/j.chaos.2018.09.007
10.1007/s10483-012-1577-8
10.1007/s10483-012-1552-7
10.1007/s42235-017-0014-4
10.1002/mma.1303
10.1007/s40819-014-0012-8
10.1016/S0021-9290(05)80011-9
10.1016/0898-1221(88)90256-8
10.1016/j.euromechflu.2018.03.010
10.1016/j.chaos.2018.12.001
10.1016/j.egyr.2018.05.003
10.3846/1392-6292.2008.13.401-412
10.1016/j.jmmm.2015.04.026
ContentType Journal Article
Copyright 2019 International Association for Mathematics and Computers in Simulation (IMACS)
Copyright_xml – notice: 2019 International Association for Mathematics and Computers in Simulation (IMACS)
DBID AAYXX
CITATION
DOI 10.1016/j.matcom.2019.06.015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7166
EndPage 450
ExternalDocumentID 10_1016_j_matcom_2019_06_015
S0378475419302137
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
63O
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-8833c6ad0e67e6b598d9b9b325f82e750f8ac54c6d37d887c6b1a9d7f69b6c993
IEDL.DBID .~1
ISSN 0378-4754
IngestDate Tue Jul 01 03:39:33 EDT 2025
Thu Apr 24 22:54:15 EDT 2025
Fri Feb 23 02:25:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Body acceleration
Overlapping stenosis
Porous medium
Micropolar fluid
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-8833c6ad0e67e6b598d9b9b325f82e750f8ac54c6d37d887c6b1a9d7f69b6c993
PageCount 19
ParticipantIDs crossref_citationtrail_10_1016_j_matcom_2019_06_015
crossref_primary_10_1016_j_matcom_2019_06_015
elsevier_sciencedirect_doi_10_1016_j_matcom_2019_06_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationTitle Mathematics and computers in simulation
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Eringen (b11) 1964; 2
Misra, Sinha, Shit (b33) 2011; 4
Chaturani, Palanisamy (b7) 1990; 27
Raihi, Roy, Cavazos (b36) 2011; 54
Li, Khan, Shafee, Tlili, Asifa (b18) 2018; 4
Misra, Adhikary, Mallick, Sinha (b21) 2018; 18
Abdullah, Amin (b2) 2010; 33
Shit, Majee (b39) 2017; 70
Shit, Majee (b40) 2018; 71
Misra, Shit, Pramanik (b31) 2018; 15
Abdulhameed, Muhammad, Gital, Yakubu, Khan (b1) 2019; 519
Shit, Roy (b42) 2015; 1
Misra, Chandra, Herwig (b24) 2015; 27
Kirwan (b16) 1986; 24
Young (b51) 1979; 101
MacDonald (b20) 1974
Srivastava (b45) 1985; 18
He, Hua, Gao (b12) 2017; 17
Misra, Shit (b29) 2007; 7
Liepsch (b19) 1986; 23
Misra, Adhikary, Shit (b22) 2008; 13
Tanveer, Hayat, Alsaedi (b47) 2018; 30
Shit, Majee (b38) 2015; 388
Charya (b6) 1977; 15
Khaled, Vafai (b15) 2003; 46
Misra, Maiti (b25) 2012; 33
Lee, Fung (b17) 1970; 37
Tanveer, Hayat, Alsaedi, Ahmad (b49) 2018
Elkot, Abbas (b9) 2017; 20
Chien (b8) 1981; 2
Erigen (b10) 1966; 16
Caro, Pedley, Schroter, Seed (b4) 1978
Chandra, Misra (b5) 2016; 224
Tanveer, Hayat, Alsaedi, Ahmad (b48) 2017; 236
Misra, Shit, Chandra, Kundu (b30) 2011; 2017
Misra, Pal (b26) 1999; 29
Sinha, Misra (b44) 2014; 92
Misra, Patra, Misra (b27) 1993; 26
Vanatham, Parvathamma (b50) 1983; 21
Misra, Sahu (b28) 1988; 16
Muthu, Kumar, Chandra (b34) 2003; 45
Hogan, Henriksen (b13) 1989; 22
Saqib, Khan, Shafie (b37) 2018; 116
Sud, Sekhon (b46) 1984; 46
Shit, Roy (b41) 2011; 11
Misra, Chakravarty (b23) 1986; 19
Imran, Aleem, Riaz, Ali, Khan (b14) 2019; 118
Sinha, Misra (b43) 2012; 33
Ponalagusamy, Priyadharshini (b35) 2017; 17
Burton, Levert, Mischaelsow (b3) 1974; 46
Misra, Sinha, Shit (b32) 2008; 8
Tanveer (10.1016/j.matcom.2019.06.015_b48) 2017; 236
Misra (10.1016/j.matcom.2019.06.015_b28) 1988; 16
Vanatham (10.1016/j.matcom.2019.06.015_b50) 1983; 21
Muthu (10.1016/j.matcom.2019.06.015_b34) 2003; 45
Misra (10.1016/j.matcom.2019.06.015_b31) 2018; 15
Charya (10.1016/j.matcom.2019.06.015_b6) 1977; 15
Chaturani (10.1016/j.matcom.2019.06.015_b7) 1990; 27
Misra (10.1016/j.matcom.2019.06.015_b30) 2011; 2017
Burton (10.1016/j.matcom.2019.06.015_b3) 1974; 46
He (10.1016/j.matcom.2019.06.015_b12) 2017; 17
Srivastava (10.1016/j.matcom.2019.06.015_b45) 1985; 18
Young (10.1016/j.matcom.2019.06.015_b51) 1979; 101
Hogan (10.1016/j.matcom.2019.06.015_b13) 1989; 22
Elkot (10.1016/j.matcom.2019.06.015_b9) 2017; 20
Shit (10.1016/j.matcom.2019.06.015_b40) 2018; 71
Misra (10.1016/j.matcom.2019.06.015_b32) 2008; 8
Misra (10.1016/j.matcom.2019.06.015_b33) 2011; 4
Caro (10.1016/j.matcom.2019.06.015_b4) 1978
Shit (10.1016/j.matcom.2019.06.015_b38) 2015; 388
Raihi (10.1016/j.matcom.2019.06.015_b36) 2011; 54
MacDonald (10.1016/j.matcom.2019.06.015_b20) 1974
Ponalagusamy (10.1016/j.matcom.2019.06.015_b35) 2017; 17
Tanveer (10.1016/j.matcom.2019.06.015_b47) 2018; 30
Liepsch (10.1016/j.matcom.2019.06.015_b19) 1986; 23
Shit (10.1016/j.matcom.2019.06.015_b42) 2015; 1
Shit (10.1016/j.matcom.2019.06.015_b41) 2011; 11
Misra (10.1016/j.matcom.2019.06.015_b23) 1986; 19
Kirwan (10.1016/j.matcom.2019.06.015_b16) 1986; 24
Chien (10.1016/j.matcom.2019.06.015_b8) 1981; 2
Misra (10.1016/j.matcom.2019.06.015_b26) 1999; 29
Misra (10.1016/j.matcom.2019.06.015_b29) 2007; 7
Shit (10.1016/j.matcom.2019.06.015_b39) 2017; 70
Li (10.1016/j.matcom.2019.06.015_b18) 2018; 4
Misra (10.1016/j.matcom.2019.06.015_b22) 2008; 13
Abdullah (10.1016/j.matcom.2019.06.015_b2) 2010; 33
Eringen (10.1016/j.matcom.2019.06.015_b11) 1964; 2
Misra (10.1016/j.matcom.2019.06.015_b25) 2012; 33
Sinha (10.1016/j.matcom.2019.06.015_b43) 2012; 33
Saqib (10.1016/j.matcom.2019.06.015_b37) 2018; 116
Misra (10.1016/j.matcom.2019.06.015_b21) 2018; 18
Khaled (10.1016/j.matcom.2019.06.015_b15) 2003; 46
Sinha (10.1016/j.matcom.2019.06.015_b44) 2014; 92
Lee (10.1016/j.matcom.2019.06.015_b17) 1970; 37
Erigen (10.1016/j.matcom.2019.06.015_b10) 1966; 16
Misra (10.1016/j.matcom.2019.06.015_b27) 1993; 26
Sud (10.1016/j.matcom.2019.06.015_b46) 1984; 46
Chandra (10.1016/j.matcom.2019.06.015_b5) 2016; 224
Tanveer (10.1016/j.matcom.2019.06.015_b49) 2018
Abdulhameed (10.1016/j.matcom.2019.06.015_b1) 2019; 519
Misra (10.1016/j.matcom.2019.06.015_b24) 2015; 27
Imran (10.1016/j.matcom.2019.06.015_b14) 2019; 118
References_xml – volume: 27
  start-page: 350
  year: 2015
  end-page: 358
  ident: b24
  article-title: Flow of a micropolar fluid in a microchannel under the action of an alternating electric field: Estimates of blood flow bio-fluidic devices
  publication-title: J. Hydrodyn.
– volume: 70
  year: 2017
  ident: b39
  article-title: Computational modeling of blood and heat transfer enhancement in a slowly varying arterial segment
  publication-title: Int. J. Heat Fluid Flow
– volume: 116
  start-page: 79
  year: 2018
  end-page: 85
  ident: b37
  article-title: Application of Atangana–Baleanu fractional derivative to MHD channel flow of CMC-based-CNTs nanofluid through a porous medium
  publication-title: Chaos Solitons Fractals
– volume: 519
  start-page: 42
  year: 2019
  end-page: 71
  ident: b1
  article-title: Effect of fractional derivatives on transient MHD flow and radiative heat transfer in a micro-parallel channel at high zeta potentials
  publication-title: Physica A
– volume: 388
  start-page: 106
  year: 2015
  end-page: 115
  ident: b38
  article-title: Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment
  publication-title: J. Magn. Magn. Mater.
– volume: 54
  start-page: 2999
  year: 2011
  end-page: 3006
  ident: b36
  article-title: On arterial blood flow in the presence of an overlapping stenosis
  publication-title: Math. Comput Mod.
– volume: 1
  start-page: 121
  year: 2015
  end-page: 141
  ident: b42
  article-title: Effect of slip velocity on peristaltic transport of a magneto-micropolar fluid through a porous non-uniform channel
  publication-title: Int. J. Appl. Comput. Math.
– year: 2018
  ident: b49
  article-title: Heat transfer analysis for peristalsis of MHD Carreau fluid in a curved channel through modified darcy law
  publication-title: J. Mech.
– volume: 21
  start-page: 438
  year: 1983
  end-page: 445
  ident: b50
  article-title: Flow of micropolar fluid through a tube with stenosis
  publication-title: Med. Bio. Eng. Comput.
– volume: 30
  start-page: 437
  year: 2018
  end-page: 446
  ident: b47
  article-title: Peristaltic flow of MHD Jeffery nanofluid in curved channel with convective boundary conditions: a numerical study
  publication-title: Neural. Comput. Appl.
– volume: 236
  start-page: 290
  year: 2017
  end-page: 297
  ident: b48
  article-title: On modified Darcys law utilization in peristalsis of Sisko fluid
  publication-title: J. Mol. Liq.
– volume: 45
  start-page: 245
  year: 2003
  end-page: 260
  ident: b34
  article-title: On the inference of wall properties in the peristaltic motion of micropolar fluid
  publication-title: ANZIAM J.
– volume: 46
  start-page: 1251
  year: 1974
  end-page: 1253
  ident: b3
  article-title: Man at high sustained
  publication-title: Aerosp. Med.
– volume: 15
  start-page: 719
  year: 1977
  end-page: 725
  ident: b6
  article-title: Flow of micropolar fluid through a constricted channel
  publication-title: Internat. J. Engrg. Sci.
– volume: 46
  start-page: 937
  year: 1984
  end-page: 949
  ident: b46
  article-title: Blood flow subject to a single cycle of body acceleration
  publication-title: Bull. Math. Biol.
– volume: 27
  start-page: 747
  year: 1990
  end-page: 758
  ident: b7
  article-title: Pulsatile flow of power law fluid model for blood flow under periodic body acceleration
  publication-title: Biorheology
– volume: 37
  start-page: 9
  year: 1970
  end-page: 16
  ident: b17
  article-title: Flow in locally constricted tubes at low Reynolds numbers
  publication-title: J. Appl. Mech.
– volume: 4
  start-page: 393
  year: 2018
  end-page: 399
  ident: b18
  article-title: Energy transfer of Jeffery–Hamel nanofluid flow between non-parallel walls using Maxwell–Garnetts (MG) and Brinkman models
  publication-title: Energy Rep.
– volume: 18
  start-page: 479
  year: 1985
  end-page: 485
  ident: b45
  article-title: Flow of couple stress fluid through stenotic blood vessels
  publication-title: J. Biomech.
– volume: 101
  start-page: 157
  year: 1979
  end-page: 175
  ident: b51
  article-title: Fluid mechanics of arterial stenosis
  publication-title: J. Biomech. Eng.
– volume: 16
  start-page: 993
  year: 1988
  end-page: 1016
  ident: b28
  article-title: Flow through blood vessels under the action of a periodic acceleration field
  publication-title: Comput. Math. Appl.
– volume: 13
  start-page: 401
  year: 2008
  end-page: 412
  ident: b22
  article-title: Mathematical analysis of blood flow through an arterial segment with time dependent stenosis
  publication-title: Math. Model. Anal.
– year: 1974
  ident: b20
  article-title: Blood Flow in Arteries
– volume: 20
  start-page: 45
  year: 2017
  end-page: 58
  ident: b9
  article-title: Numerical technique of blood flow through catheterized arteries with overlapping stenosis
  publication-title: Comput. Meth. Biomech. Biomed. Eng.
– volume: 22
  start-page: 211
  year: 1989
  end-page: 218
  ident: b13
  article-title: An evaluation of a micropolar model for blood flow through an idealized stenosis
  publication-title: J. Biomech.
– volume: 19
  start-page: 907
  year: 1986
  end-page: 918
  ident: b23
  article-title: Flow in arteries in the presence of stenosis
  publication-title: J. Biomech.
– volume: 26
  start-page: 1129
  year: 1993
  end-page: 1141
  ident: b27
  article-title: A non-Newtonian fluid model for blood flow through arteries under stenotic conditions
  publication-title: J. Biomech.
– volume: 92
  start-page: 23
  year: 2014
  end-page: 31
  ident: b44
  article-title: MHD flow of blood through a dually stenosed artery: Effects of viscosity variation, variable hematocrit and velocity-slip
  publication-title: Canad. J. Chem. Eng.
– volume: 71
  start-page: 1
  year: 2018
  end-page: 14
  ident: b40
  article-title: Magnetic field interaction with blood flow and heat transfer through diseased artery having Abdominal Aortic Aneurysm
  publication-title: Eur. J. Mech. B Fluids
– volume: 2
  start-page: 205
  year: 1964
  end-page: 217
  ident: b11
  article-title: Simple microfuids
  publication-title: Internat. J. Engrg. Sci.
– volume: 17
  year: 2017
  ident: b12
  article-title: Effects of porosity in a seepage model on hemodynamics
  publication-title: J. Mech. Med. Biol.
– volume: 8
  start-page: 265
  year: 2008
  end-page: 279
  ident: b32
  article-title: Theoretical analysis of blood flow through an arterial segment having multiple stenosis
  publication-title: J. Mech. Med. Biol.
– year: 1978
  ident: b4
  article-title: The Mechanis of the Circulation
– volume: 33
  start-page: 315
  year: 2012
  end-page: 332
  ident: b25
  article-title: Peristaltic transport of rheological fluids: model for movement of food bolus through esophagus
  publication-title: Appl. Math. Mech.
– volume: 46
  start-page: 4989
  year: 2003
  end-page: 5003
  ident: b15
  article-title: The role of porous media in modelling flow and heat transfer in biological tissues
  publication-title: Int. J. Heat Mass Transfer
– volume: 11
  start-page: 643
  year: 2011
  end-page: 661
  ident: b41
  article-title: Pulsatile flow and heat transfer of a magneto-micropolar fluid through a stenosed artery under the influence of body acceleration
  publication-title: J. Mech. Med. Biol.
– volume: 224
  start-page: 818
  year: 2016
  end-page: 824
  ident: b5
  article-title: Influence of hall current and microrotation on the boundary flow of an electrically conducting fluid: Application to hemodynamics
  publication-title: J. Mol. Liq.
– volume: 4
  start-page: 207
  year: 2011
  end-page: 225
  ident: b33
  article-title: Mathematical modeling of blood flow in a porous vessel having double stenosis in the presence of an external magnetic field
  publication-title: Int. J. Biomath.
– volume: 29
  start-page: 89
  year: 1999
  end-page: 106
  ident: b26
  article-title: A mathematical model for the study of pulsatile flow of blood flow under an externally imposed body acceleratio
  publication-title: Math. Comput. Model.
– volume: 23
  start-page: 395
  year: 1986
  end-page: 433
  ident: b19
  article-title: Flow in tubes and arteries - A comparison
  publication-title: Biorheology
– volume: 17
  year: 2017
  ident: b35
  article-title: Couple stress fluid model for pulsatile flow of blood in a porous tapered arterial stenosis under magnetic field and periodic body acceleration
  publication-title: J. Mech. Med. Biol.
– volume: 7
  start-page: 337
  year: 2007
  end-page: 353
  ident: b29
  article-title: Role of slip velocity in blood flow through stenosed arteries: A non-Newtonian model
  publication-title: J. Mech. Med. Biol.
– volume: 33
  start-page: 649
  year: 2012
  end-page: 662
  ident: b43
  article-title: Numerical study of flow and heat transfer during oscillating blood flow in diseased arteries in presence of magnetic fields
  publication-title: Appl. Math. Mech.
– volume: 16
  start-page: 1
  year: 1966
  end-page: 18
  ident: b10
  article-title: Theory of micropolar fluids
  publication-title: J. Math. Mech.
– volume: 15
  start-page: 173
  year: 2018
  end-page: 184
  ident: b31
  article-title: Non-Newtonian flow of blood in a catheterized bifurcated stenosed artery
  publication-title: J. Bionic Eng.
– volume: 33
  start-page: 1910
  year: 2010
  end-page: 1923
  ident: b2
  article-title: A micropolar fluid model of blood flow through a tapered artery with a stenosis
  publication-title: Math. Methods Appl. Sci.
– volume: 118
  start-page: 274
  year: 2019
  end-page: 289
  ident: b14
  article-title: A comprehensive report on convective flow of fractional (ABC) and (CF) MHD viscous fluid subject to generalized boundary conditions
  publication-title: Chaos Solitons Fractals
– volume: 2
  start-page: 21
  year: 1981
  ident: b8
  article-title: Hemorheology in clinical medicine
  publication-title: Recent Adv. Cardio Vascu. Dis.
– volume: 2017
  start-page: 7932
  year: 2011
  end-page: 7939
  ident: b30
  article-title: Electro-osmotic flow of a viscoelastic fluid in a channel: Applications to physiological fluid mechanics
  publication-title: Appl. Math. Comput.
– volume: 24
  start-page: 1237
  year: 1986
  end-page: 1242
  ident: b16
  article-title: Boundary conditions for micropolar fluids
  publication-title: Internat. J. Engrg. Sci.
– volume: 18
  year: 2018
  ident: b21
  article-title: Mathematical modeling blood flow in arteries subject to a vibrating environment
  publication-title: J. Mech. Med. Biol.
– volume: 2
  start-page: 21
  issue: suppl.
  year: 1981
  ident: 10.1016/j.matcom.2019.06.015_b8
  article-title: Hemorheology in clinical medicine
  publication-title: Recent Adv. Cardio Vascu. Dis.
– volume: 20
  start-page: 45
  issue: 1
  year: 2017
  ident: 10.1016/j.matcom.2019.06.015_b9
  article-title: Numerical technique of blood flow through catheterized arteries with overlapping stenosis
  publication-title: Comput. Meth. Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2016.1196198
– volume: 45
  start-page: 245
  year: 2003
  ident: 10.1016/j.matcom.2019.06.015_b34
  article-title: On the inference of wall properties in the peristaltic motion of micropolar fluid
  publication-title: ANZIAM J.
  doi: 10.1017/S1446181100013304
– volume: 22
  start-page: 211
  issue: 3
  year: 1989
  ident: 10.1016/j.matcom.2019.06.015_b13
  article-title: An evaluation of a micropolar model for blood flow through an idealized stenosis
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(89)90089-4
– volume: 101
  start-page: 157
  year: 1979
  ident: 10.1016/j.matcom.2019.06.015_b51
  article-title: Fluid mechanics of arterial stenosis
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3426241
– volume: 2017
  start-page: 7932
  year: 2011
  ident: 10.1016/j.matcom.2019.06.015_b30
  article-title: Electro-osmotic flow of a viscoelastic fluid in a channel: Applications to physiological fluid mechanics
  publication-title: Appl. Math. Comput.
– volume: 17
  year: 2017
  ident: 10.1016/j.matcom.2019.06.015_b12
  article-title: Effects of porosity in a seepage model on hemodynamics
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519417400176
– volume: 29
  start-page: 89
  year: 1999
  ident: 10.1016/j.matcom.2019.06.015_b26
  article-title: A mathematical model for the study of pulsatile flow of blood flow under an externally imposed body acceleratio
  publication-title: Math. Comput. Model.
  doi: 10.1016/S0895-7177(98)00180-0
– year: 1974
  ident: 10.1016/j.matcom.2019.06.015_b20
– volume: 37
  start-page: 9
  year: 1970
  ident: 10.1016/j.matcom.2019.06.015_b17
  article-title: Flow in locally constricted tubes at low Reynolds numbers
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3408496
– volume: 236
  start-page: 290
  year: 2017
  ident: 10.1016/j.matcom.2019.06.015_b48
  article-title: On modified Darcys law utilization in peristalsis of Sisko fluid
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2017.04.041
– volume: 24
  start-page: 1237
  issue: 7
  year: 1986
  ident: 10.1016/j.matcom.2019.06.015_b16
  article-title: Boundary conditions for micropolar fluids
  publication-title: Internat. J. Engrg. Sci.
  doi: 10.1016/0020-7225(86)90018-2
– volume: 27
  start-page: 350
  year: 2015
  ident: 10.1016/j.matcom.2019.06.015_b24
  article-title: Flow of a micropolar fluid in a microchannel under the action of an alternating electric field: Estimates of blood flow bio-fluidic devices
  publication-title: J. Hydrodyn.
  doi: 10.1016/S1001-6058(15)60492-9
– year: 1978
  ident: 10.1016/j.matcom.2019.06.015_b4
– volume: 30
  start-page: 437
  year: 2018
  ident: 10.1016/j.matcom.2019.06.015_b47
  article-title: Peristaltic flow of MHD Jeffery nanofluid in curved channel with convective boundary conditions: a numerical study
  publication-title: Neural. Comput. Appl.
  doi: 10.1007/s00521-016-2705-x
– volume: 18
  start-page: 479
  year: 1985
  ident: 10.1016/j.matcom.2019.06.015_b45
  article-title: Flow of couple stress fluid through stenotic blood vessels
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(85)90662-1
– volume: 27
  start-page: 747
  year: 1990
  ident: 10.1016/j.matcom.2019.06.015_b7
  article-title: Pulsatile flow of power law fluid model for blood flow under periodic body acceleration
  publication-title: Biorheology
  doi: 10.3233/BIR-1990-27510
– volume: 46
  start-page: 4989
  year: 2003
  ident: 10.1016/j.matcom.2019.06.015_b15
  article-title: The role of porous media in modelling flow and heat transfer in biological tissues
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(03)00301-6
– volume: 7
  start-page: 337
  year: 2007
  ident: 10.1016/j.matcom.2019.06.015_b29
  article-title: Role of slip velocity in blood flow through stenosed arteries: A non-Newtonian model
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519407002303
– volume: 46
  start-page: 937
  year: 1984
  ident: 10.1016/j.matcom.2019.06.015_b46
  article-title: Blood flow subject to a single cycle of body acceleration
  publication-title: Bull. Math. Biol.
  doi: 10.1007/BF02462080
– volume: 23
  start-page: 395
  issue: 4
  year: 1986
  ident: 10.1016/j.matcom.2019.06.015_b19
  article-title: Flow in tubes and arteries - A comparison
  publication-title: Biorheology
  doi: 10.3233/BIR-1986-23408
– volume: 17
  year: 2017
  ident: 10.1016/j.matcom.2019.06.015_b35
  article-title: Couple stress fluid model for pulsatile flow of blood in a porous tapered arterial stenosis under magnetic field and periodic body acceleration
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519417501093
– volume: 224
  start-page: 818
  issue: Part A
  year: 2016
  ident: 10.1016/j.matcom.2019.06.015_b5
  article-title: Influence of hall current and microrotation on the boundary flow of an electrically conducting fluid: Application to hemodynamics
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.09.096
– volume: 19
  start-page: 907
  year: 1986
  ident: 10.1016/j.matcom.2019.06.015_b23
  article-title: Flow in arteries in the presence of stenosis
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(86)90186-7
– volume: 2
  start-page: 205
  year: 1964
  ident: 10.1016/j.matcom.2019.06.015_b11
  article-title: Simple microfuids
  publication-title: Internat. J. Engrg. Sci.
  doi: 10.1016/0020-7225(64)90005-9
– volume: 70
  year: 2017
  ident: 10.1016/j.matcom.2019.06.015_b39
  article-title: Computational modeling of blood and heat transfer enhancement in a slowly varying arterial segment
  publication-title: Int. J. Heat Fluid Flow
– volume: 8
  start-page: 265
  year: 2008
  ident: 10.1016/j.matcom.2019.06.015_b32
  article-title: Theoretical analysis of blood flow through an arterial segment having multiple stenosis
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519408002620
– volume: 92
  start-page: 23
  year: 2014
  ident: 10.1016/j.matcom.2019.06.015_b44
  article-title: MHD flow of blood through a dually stenosed artery: Effects of viscosity variation, variable hematocrit and velocity-slip
  publication-title: Canad. J. Chem. Eng.
  doi: 10.1002/cjce.21792
– volume: 54
  start-page: 2999
  year: 2011
  ident: 10.1016/j.matcom.2019.06.015_b36
  article-title: On arterial blood flow in the presence of an overlapping stenosis
  publication-title: Math. Comput Mod.
  doi: 10.1016/j.mcm.2011.07.028
– volume: 21
  start-page: 438
  year: 1983
  ident: 10.1016/j.matcom.2019.06.015_b50
  article-title: Flow of micropolar fluid through a tube with stenosis
  publication-title: Med. Bio. Eng. Comput.
  doi: 10.1007/BF02442631
– volume: 15
  start-page: 719
  year: 1977
  ident: 10.1016/j.matcom.2019.06.015_b6
  article-title: Flow of micropolar fluid through a constricted channel
  publication-title: Internat. J. Engrg. Sci.
  doi: 10.1016/0020-7225(77)90022-2
– volume: 11
  start-page: 643
  year: 2011
  ident: 10.1016/j.matcom.2019.06.015_b41
  article-title: Pulsatile flow and heat transfer of a magneto-micropolar fluid through a stenosed artery under the influence of body acceleration
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519411003909
– volume: 18
  year: 2018
  ident: 10.1016/j.matcom.2019.06.015_b21
  article-title: Mathematical modeling blood flow in arteries subject to a vibrating environment
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S021951941850001X
– volume: 519
  start-page: 42
  year: 2019
  ident: 10.1016/j.matcom.2019.06.015_b1
  article-title: Effect of fractional derivatives on transient MHD flow and radiative heat transfer in a micro-parallel channel at high zeta potentials
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.12.019
– year: 2018
  ident: 10.1016/j.matcom.2019.06.015_b49
  article-title: Heat transfer analysis for peristalsis of MHD Carreau fluid in a curved channel through modified darcy law
  publication-title: J. Mech.
– volume: 4
  start-page: 207
  year: 2011
  ident: 10.1016/j.matcom.2019.06.015_b33
  article-title: Mathematical modeling of blood flow in a porous vessel having double stenosis in the presence of an external magnetic field
  publication-title: Int. J. Biomath.
  doi: 10.1142/S1793524511001428
– volume: 116
  start-page: 79
  year: 2018
  ident: 10.1016/j.matcom.2019.06.015_b37
  article-title: Application of Atangana–Baleanu fractional derivative to MHD channel flow of CMC-based-CNTs nanofluid through a porous medium
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.09.007
– volume: 33
  start-page: 649
  year: 2012
  ident: 10.1016/j.matcom.2019.06.015_b43
  article-title: Numerical study of flow and heat transfer during oscillating blood flow in diseased arteries in presence of magnetic fields
  publication-title: Appl. Math. Mech.
  doi: 10.1007/s10483-012-1577-8
– volume: 46
  start-page: 1251
  year: 1974
  ident: 10.1016/j.matcom.2019.06.015_b3
  article-title: Man at high sustained +Gz acceleration, A review
  publication-title: Aerosp. Med.
– volume: 33
  start-page: 315
  year: 2012
  ident: 10.1016/j.matcom.2019.06.015_b25
  article-title: Peristaltic transport of rheological fluids: model for movement of food bolus through esophagus
  publication-title: Appl. Math. Mech.
  doi: 10.1007/s10483-012-1552-7
– volume: 16
  start-page: 1
  year: 1966
  ident: 10.1016/j.matcom.2019.06.015_b10
  article-title: Theory of micropolar fluids
  publication-title: J. Math. Mech.
– volume: 15
  start-page: 173
  year: 2018
  ident: 10.1016/j.matcom.2019.06.015_b31
  article-title: Non-Newtonian flow of blood in a catheterized bifurcated stenosed artery
  publication-title: J. Bionic Eng.
  doi: 10.1007/s42235-017-0014-4
– volume: 33
  start-page: 1910
  year: 2010
  ident: 10.1016/j.matcom.2019.06.015_b2
  article-title: A micropolar fluid model of blood flow through a tapered artery with a stenosis
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.1303
– volume: 1
  start-page: 121
  year: 2015
  ident: 10.1016/j.matcom.2019.06.015_b42
  article-title: Effect of slip velocity on peristaltic transport of a magneto-micropolar fluid through a porous non-uniform channel
  publication-title: Int. J. Appl. Comput. Math.
  doi: 10.1007/s40819-014-0012-8
– volume: 26
  start-page: 1129
  year: 1993
  ident: 10.1016/j.matcom.2019.06.015_b27
  article-title: A non-Newtonian fluid model for blood flow through arteries under stenotic conditions
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(05)80011-9
– volume: 16
  start-page: 993
  year: 1988
  ident: 10.1016/j.matcom.2019.06.015_b28
  article-title: Flow through blood vessels under the action of a periodic acceleration field
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(88)90256-8
– volume: 71
  start-page: 1
  year: 2018
  ident: 10.1016/j.matcom.2019.06.015_b40
  article-title: Magnetic field interaction with blood flow and heat transfer through diseased artery having Abdominal Aortic Aneurysm
  publication-title: Eur. J. Mech. B Fluids
  doi: 10.1016/j.euromechflu.2018.03.010
– volume: 118
  start-page: 274
  year: 2019
  ident: 10.1016/j.matcom.2019.06.015_b14
  article-title: A comprehensive report on convective flow of fractional (ABC) and (CF) MHD viscous fluid subject to generalized boundary conditions
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.12.001
– volume: 4
  start-page: 393
  year: 2018
  ident: 10.1016/j.matcom.2019.06.015_b18
  article-title: Energy transfer of Jeffery–Hamel nanofluid flow between non-parallel walls using Maxwell–Garnetts (MG) and Brinkman models
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2018.05.003
– volume: 13
  start-page: 401
  year: 2008
  ident: 10.1016/j.matcom.2019.06.015_b22
  article-title: Mathematical analysis of blood flow through an arterial segment with time dependent stenosis
  publication-title: Math. Model. Anal.
  doi: 10.3846/1392-6292.2008.13.401-412
– volume: 388
  start-page: 106
  year: 2015
  ident: 10.1016/j.matcom.2019.06.015_b38
  article-title: Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2015.04.026
SSID ssj0007545
Score 2.3908896
Snippet The paper is devoted to a numerical investigation of the pulsatile flow of blood through a porous overlapping constricted artery under the influence of an...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 432
SubjectTerms Body acceleration
Micropolar fluid
Overlapping stenosis
Porous medium
Title Pulsatile flow and heat transfer of blood in an overlapping vibrating atherosclerotic artery: A numerical study
URI https://dx.doi.org/10.1016/j.matcom.2019.06.015
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdYXe_C69pHsbuKtFEtVKIIWegv7ilRCUmqrePG3O7NJfIAomFuSWTbMzs58Q76dIeTMOJ5qoSTrOaVZGEjNlIy6LHAIlo10kfIs37EYTcLrKZ82yKA-C4O0ysr3lz7de-vqSbvSZns-m7XvOoEE18pDgCAQqAI8UR6GEq38_O2T5gECnsYIwgyl6-NznuMFoBA5IxAEY1_FE5vj_hSevoSc4RbZqLAi7Zefs00aLt8hm3UfBlpty11S3K4yJOVkjqZZ8UJVbin6WLr0qBREi5R6hjqd5fCWIm0zU1iZ4YE-Y76M3GfqsWDxBFMtCpiRerbn6wXt03xV_tfJqK9Gu0cmw8v7wYhVjRSYgYxgybChsBHKdpyQTmgeRzbWsQ56PI16DjBDGinDQyNsIC14HSN0V8VWpiLWwgCC2SfNvMjdAaGBglWHS2sD29-BHXIdyo60xkJqZ6IWCWr9JaaqMo7NLrKkppM9JqXWE9R6gqy6Lm8R9jFqXlbZ-ENe1kuTfLOWBALBryMP_z3yiKzjXUllOSbN5WLlTgCQLPWpt7hTsta_uhmN3wF1XOQ4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7W9aAX3-LbHLyGfbRJWm-LKKuri6CCt5KkqayUVnRX8d87k7aiIAr22M6QMkm_-UK_zAAcWScyI7XifacNDwNluFZRjweOyLJVLtJe5TuWw7vw4l7ct-CkOQtDssoa-ytM92hd3-nU0ew8TSadm26gEFpFiBQEE1Wg5mCeqlOJNswPzkfD8Scgo41XMqI9J4fmBJ2XeSEvJNkI5sHYF_Kk_rg_ZagvWedsBZZqusgG1RutQssVa7DctGJg9Ze5DuX1LCddTu5YlpdvTBcpI5hlU09M0bTMmBeps0mBTxkpN3NNxRke2CttmUn-zDwdLF9wqOcSR2Re8Pl-zAasmFW_dnLmC9JuwN3Z6e3JkNe9FLjFTcGUU09hK3XadVI5aUQcpbGJTdAXWdR3SBuySFsRWpkGKkXgsdL0dJyqTMZGWiQxm9AuysJtAQs0TjxexlhEAIdLUZhQdVVqU9zd2WgbgiZ-ia0LjVO_izxpFGWPSRX1hKKekLCuJ7aBf3o9VYU2_rBXzdQk3xZMgrngV8-df3sewsLw9uoyuTwfj3ZhkZ5UypY9aE-fZ24f-cnUHNTr7wNGIObp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pulsatile+flow+and+heat+transfer+of+blood+in+an+overlapping+vibrating+atherosclerotic+artery%3A+A+numerical+study&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Shit%2C+G.C.&rft.au=Maiti%2C+S.&rft.au=Roy%2C+M.&rft.au=Misra%2C+J.C.&rft.date=2019-12-01&rft.issn=0378-4754&rft.volume=166&rft.spage=432&rft.epage=450&rft_id=info:doi/10.1016%2Fj.matcom.2019.06.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matcom_2019_06_015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon