Pulsatile flow and heat transfer of blood in an overlapping vibrating atherosclerotic artery: A numerical study
The paper is devoted to a numerical investigation of the pulsatile flow of blood through a porous overlapping constricted artery under the influence of an externally imposed magnetic field and vibration environment that is originated from the body force. Blood is considered as micropolar fluid. The...
Saved in:
Published in | Mathematics and computers in simulation Vol. 166; pp. 432 - 450 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-4754 1872-7166 |
DOI | 10.1016/j.matcom.2019.06.015 |
Cover
Loading…
Abstract | The paper is devoted to a numerical investigation of the pulsatile flow of blood through a porous overlapping constricted artery under the influence of an externally imposed magnetic field and vibration environment that is originated from the body force. Blood is considered as micropolar fluid. The heat transfer phenomenon arising out of viscous dissipation is also studied. The problem is solved numerically by developing a Crank–Nicolson finite difference scheme after transforming the original governing equations from the physical domain to a rectangular computational domain. The computational results for the velocity and temperature distributions, fluid acceleration, skin friction and Nusselt number are presented graphically for different values of the physical parameters. The study shows that the Nusselt number increases with rise in Prandtl number and Brinkman number both and that owing to the dissipation of energy caused by blood viscoelasticity and magnetic field effect, during pulsatile flow of blood, the heat transfer rate at the wall of the artery is enhanced.
•Numerically studied MHD pulsatile flow of blood and heat transfer in the stenosed artery.•Body acceleration due to vibration is considered for simulating blood flow.•Microrotation of microparticles taken into account suspended in the porous vascular tube.•WSS increases significantly for a rise in the permeability of the porous medium.•Fluid acceleration enhances with an increase in amplitude of body acceleration. |
---|---|
AbstractList | The paper is devoted to a numerical investigation of the pulsatile flow of blood through a porous overlapping constricted artery under the influence of an externally imposed magnetic field and vibration environment that is originated from the body force. Blood is considered as micropolar fluid. The heat transfer phenomenon arising out of viscous dissipation is also studied. The problem is solved numerically by developing a Crank–Nicolson finite difference scheme after transforming the original governing equations from the physical domain to a rectangular computational domain. The computational results for the velocity and temperature distributions, fluid acceleration, skin friction and Nusselt number are presented graphically for different values of the physical parameters. The study shows that the Nusselt number increases with rise in Prandtl number and Brinkman number both and that owing to the dissipation of energy caused by blood viscoelasticity and magnetic field effect, during pulsatile flow of blood, the heat transfer rate at the wall of the artery is enhanced.
•Numerically studied MHD pulsatile flow of blood and heat transfer in the stenosed artery.•Body acceleration due to vibration is considered for simulating blood flow.•Microrotation of microparticles taken into account suspended in the porous vascular tube.•WSS increases significantly for a rise in the permeability of the porous medium.•Fluid acceleration enhances with an increase in amplitude of body acceleration. |
Author | Shit, G.C. Misra, J.C. Maiti, S. Roy, M. |
Author_xml | – sequence: 1 givenname: G.C. surname: Shit fullname: Shit, G.C. email: gopal_iitkgp@yahoo.co.in organization: Department of Mathematics, Jadavpur University, Kolkata 700032, India – sequence: 2 givenname: S. surname: Maiti fullname: Maiti, S. organization: Department of Mathematics, Jadavpur University, Kolkata 700032, India – sequence: 3 givenname: M. surname: Roy fullname: Roy, M. organization: Department of Mathematics, Sammilani Mahavidyalaya, Kolkata 700094, India – sequence: 4 givenname: J.C. surname: Misra fullname: Misra, J.C. organization: Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302, India |
BookMark | eNqFkM1KAzEUhYNUsK2-gYu8wIxJp5NkXAhS_IOCLnQdMskdm5ImJUkrfXtT6sqFbu69cPkO55wJGvngAaFrSmpKKLtZ1xuVddjUM0K7mrCa0PYMjangs4pTxkZoTBouqjlv5xdoktKaEFLudozC284lla0DPLjwhZU3eAUq4xyVTwNEHAbcuxAMtr58cdhDdGq7tf4T720fC1sulVcQQ9KuzGw1VjFDPNzie-x3G4hWK4dT3pnDJToflEtw9bOn6OPx4X3xXC1fn14W98tKN4TlSoim0UwZAowD69tOmK7v-mbWDmIGvCWDULqda2YaboTgmvVUdYYPrOuZ7rpmim5PurrYShEGqW0uXoMvwayTlMhjdXItT9XJY3WSMFmqK_D8F7yNdqPi4T_s7oRBCba3EGXSFrwGYyPoLE2wfwt8A74ij8E |
CitedBy_id | crossref_primary_10_1063_5_0165216 crossref_primary_10_1007_s11012_020_01152_y crossref_primary_10_1140_epjs_s11734_021_00057_5 crossref_primary_10_1016_j_cplett_2022_140209 crossref_primary_10_1016_j_jmmm_2023_170564 crossref_primary_10_1002_zamm_202100532 crossref_primary_10_1016_j_matcom_2021_04_020 crossref_primary_10_1142_S021951942250049X crossref_primary_10_1142_S0219519422500683 crossref_primary_10_1002_zamm_202200360 crossref_primary_10_1016_j_compbiomed_2021_104595 crossref_primary_10_1016_j_rinp_2020_103544 crossref_primary_10_1088_1402_4896_ac2e81 crossref_primary_10_1007_s41403_022_00349_9 crossref_primary_10_1080_01430750_2021_1979649 crossref_primary_10_1007_s40819_022_01313_5 crossref_primary_10_1186_s13661_025_02007_9 crossref_primary_10_36963_IJTST_2021080103 crossref_primary_10_1177_09544089211013317 crossref_primary_10_1007_s42493_022_00080_1 crossref_primary_10_1038_s41598_021_86051_2 crossref_primary_10_1016_j_icheatmasstransfer_2022_105930 crossref_primary_10_1016_j_compbiomed_2024_109423 crossref_primary_10_1016_j_cplett_2023_140756 crossref_primary_10_1016_j_hybadv_2024_100293 crossref_primary_10_4028_p_n75rbt crossref_primary_10_1108_HFF_12_2019_0921 crossref_primary_10_1080_10407782_2024_2347568 crossref_primary_10_1002_htj_23078 crossref_primary_10_3390_math10122022 crossref_primary_10_1016_j_colsurfb_2020_111395 crossref_primary_10_1080_17455030_2023_2185085 crossref_primary_10_1007_s13538_022_01061_3 crossref_primary_10_1007_s10404_024_02735_x crossref_primary_10_1007_s12043_024_02840_0 crossref_primary_10_1016_j_colsurfb_2021_111754 |
Cites_doi | 10.1080/10255842.2016.1196198 10.1017/S1446181100013304 10.1016/0021-9290(89)90089-4 10.1115/1.3426241 10.1142/S0219519417400176 10.1016/S0895-7177(98)00180-0 10.1115/1.3408496 10.1016/j.molliq.2017.04.041 10.1016/0020-7225(86)90018-2 10.1016/S1001-6058(15)60492-9 10.1007/s00521-016-2705-x 10.1016/0021-9290(85)90662-1 10.3233/BIR-1990-27510 10.1016/S0017-9310(03)00301-6 10.1142/S0219519407002303 10.1007/BF02462080 10.3233/BIR-1986-23408 10.1142/S0219519417501093 10.1016/j.molliq.2016.09.096 10.1016/0021-9290(86)90186-7 10.1016/0020-7225(64)90005-9 10.1142/S0219519408002620 10.1002/cjce.21792 10.1016/j.mcm.2011.07.028 10.1007/BF02442631 10.1016/0020-7225(77)90022-2 10.1142/S0219519411003909 10.1142/S021951941850001X 10.1016/j.physa.2018.12.019 10.1142/S1793524511001428 10.1016/j.chaos.2018.09.007 10.1007/s10483-012-1577-8 10.1007/s10483-012-1552-7 10.1007/s42235-017-0014-4 10.1002/mma.1303 10.1007/s40819-014-0012-8 10.1016/S0021-9290(05)80011-9 10.1016/0898-1221(88)90256-8 10.1016/j.euromechflu.2018.03.010 10.1016/j.chaos.2018.12.001 10.1016/j.egyr.2018.05.003 10.3846/1392-6292.2008.13.401-412 10.1016/j.jmmm.2015.04.026 |
ContentType | Journal Article |
Copyright | 2019 International Association for Mathematics and Computers in Simulation (IMACS) |
Copyright_xml | – notice: 2019 International Association for Mathematics and Computers in Simulation (IMACS) |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matcom.2019.06.015 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7166 |
EndPage | 450 |
ExternalDocumentID | 10_1016_j_matcom_2019_06_015 S0378475419302137 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 63O 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SME SPC SPCBC SSB SSD SST SSW SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-8833c6ad0e67e6b598d9b9b325f82e750f8ac54c6d37d887c6b1a9d7f69b6c993 |
IEDL.DBID | .~1 |
ISSN | 0378-4754 |
IngestDate | Tue Jul 01 03:39:33 EDT 2025 Thu Apr 24 22:54:15 EDT 2025 Fri Feb 23 02:25:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Body acceleration Overlapping stenosis Porous medium Micropolar fluid |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-8833c6ad0e67e6b598d9b9b325f82e750f8ac54c6d37d887c6b1a9d7f69b6c993 |
PageCount | 19 |
ParticipantIDs | crossref_citationtrail_10_1016_j_matcom_2019_06_015 crossref_primary_10_1016_j_matcom_2019_06_015 elsevier_sciencedirect_doi_10_1016_j_matcom_2019_06_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2019 2019-12-00 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationTitle | Mathematics and computers in simulation |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Eringen (b11) 1964; 2 Misra, Sinha, Shit (b33) 2011; 4 Chaturani, Palanisamy (b7) 1990; 27 Raihi, Roy, Cavazos (b36) 2011; 54 Li, Khan, Shafee, Tlili, Asifa (b18) 2018; 4 Misra, Adhikary, Mallick, Sinha (b21) 2018; 18 Abdullah, Amin (b2) 2010; 33 Shit, Majee (b39) 2017; 70 Shit, Majee (b40) 2018; 71 Misra, Shit, Pramanik (b31) 2018; 15 Abdulhameed, Muhammad, Gital, Yakubu, Khan (b1) 2019; 519 Shit, Roy (b42) 2015; 1 Misra, Chandra, Herwig (b24) 2015; 27 Kirwan (b16) 1986; 24 Young (b51) 1979; 101 MacDonald (b20) 1974 Srivastava (b45) 1985; 18 He, Hua, Gao (b12) 2017; 17 Misra, Shit (b29) 2007; 7 Liepsch (b19) 1986; 23 Misra, Adhikary, Shit (b22) 2008; 13 Tanveer, Hayat, Alsaedi (b47) 2018; 30 Shit, Majee (b38) 2015; 388 Charya (b6) 1977; 15 Khaled, Vafai (b15) 2003; 46 Misra, Maiti (b25) 2012; 33 Lee, Fung (b17) 1970; 37 Tanveer, Hayat, Alsaedi, Ahmad (b49) 2018 Elkot, Abbas (b9) 2017; 20 Chien (b8) 1981; 2 Erigen (b10) 1966; 16 Caro, Pedley, Schroter, Seed (b4) 1978 Chandra, Misra (b5) 2016; 224 Tanveer, Hayat, Alsaedi, Ahmad (b48) 2017; 236 Misra, Shit, Chandra, Kundu (b30) 2011; 2017 Misra, Pal (b26) 1999; 29 Sinha, Misra (b44) 2014; 92 Misra, Patra, Misra (b27) 1993; 26 Vanatham, Parvathamma (b50) 1983; 21 Misra, Sahu (b28) 1988; 16 Muthu, Kumar, Chandra (b34) 2003; 45 Hogan, Henriksen (b13) 1989; 22 Saqib, Khan, Shafie (b37) 2018; 116 Sud, Sekhon (b46) 1984; 46 Shit, Roy (b41) 2011; 11 Misra, Chakravarty (b23) 1986; 19 Imran, Aleem, Riaz, Ali, Khan (b14) 2019; 118 Sinha, Misra (b43) 2012; 33 Ponalagusamy, Priyadharshini (b35) 2017; 17 Burton, Levert, Mischaelsow (b3) 1974; 46 Misra, Sinha, Shit (b32) 2008; 8 Tanveer (10.1016/j.matcom.2019.06.015_b48) 2017; 236 Misra (10.1016/j.matcom.2019.06.015_b28) 1988; 16 Vanatham (10.1016/j.matcom.2019.06.015_b50) 1983; 21 Muthu (10.1016/j.matcom.2019.06.015_b34) 2003; 45 Misra (10.1016/j.matcom.2019.06.015_b31) 2018; 15 Charya (10.1016/j.matcom.2019.06.015_b6) 1977; 15 Chaturani (10.1016/j.matcom.2019.06.015_b7) 1990; 27 Misra (10.1016/j.matcom.2019.06.015_b30) 2011; 2017 Burton (10.1016/j.matcom.2019.06.015_b3) 1974; 46 He (10.1016/j.matcom.2019.06.015_b12) 2017; 17 Srivastava (10.1016/j.matcom.2019.06.015_b45) 1985; 18 Young (10.1016/j.matcom.2019.06.015_b51) 1979; 101 Hogan (10.1016/j.matcom.2019.06.015_b13) 1989; 22 Elkot (10.1016/j.matcom.2019.06.015_b9) 2017; 20 Shit (10.1016/j.matcom.2019.06.015_b40) 2018; 71 Misra (10.1016/j.matcom.2019.06.015_b32) 2008; 8 Misra (10.1016/j.matcom.2019.06.015_b33) 2011; 4 Caro (10.1016/j.matcom.2019.06.015_b4) 1978 Shit (10.1016/j.matcom.2019.06.015_b38) 2015; 388 Raihi (10.1016/j.matcom.2019.06.015_b36) 2011; 54 MacDonald (10.1016/j.matcom.2019.06.015_b20) 1974 Ponalagusamy (10.1016/j.matcom.2019.06.015_b35) 2017; 17 Tanveer (10.1016/j.matcom.2019.06.015_b47) 2018; 30 Liepsch (10.1016/j.matcom.2019.06.015_b19) 1986; 23 Shit (10.1016/j.matcom.2019.06.015_b42) 2015; 1 Shit (10.1016/j.matcom.2019.06.015_b41) 2011; 11 Misra (10.1016/j.matcom.2019.06.015_b23) 1986; 19 Kirwan (10.1016/j.matcom.2019.06.015_b16) 1986; 24 Chien (10.1016/j.matcom.2019.06.015_b8) 1981; 2 Misra (10.1016/j.matcom.2019.06.015_b26) 1999; 29 Misra (10.1016/j.matcom.2019.06.015_b29) 2007; 7 Shit (10.1016/j.matcom.2019.06.015_b39) 2017; 70 Li (10.1016/j.matcom.2019.06.015_b18) 2018; 4 Misra (10.1016/j.matcom.2019.06.015_b22) 2008; 13 Abdullah (10.1016/j.matcom.2019.06.015_b2) 2010; 33 Eringen (10.1016/j.matcom.2019.06.015_b11) 1964; 2 Misra (10.1016/j.matcom.2019.06.015_b25) 2012; 33 Sinha (10.1016/j.matcom.2019.06.015_b43) 2012; 33 Saqib (10.1016/j.matcom.2019.06.015_b37) 2018; 116 Misra (10.1016/j.matcom.2019.06.015_b21) 2018; 18 Khaled (10.1016/j.matcom.2019.06.015_b15) 2003; 46 Sinha (10.1016/j.matcom.2019.06.015_b44) 2014; 92 Lee (10.1016/j.matcom.2019.06.015_b17) 1970; 37 Erigen (10.1016/j.matcom.2019.06.015_b10) 1966; 16 Misra (10.1016/j.matcom.2019.06.015_b27) 1993; 26 Sud (10.1016/j.matcom.2019.06.015_b46) 1984; 46 Chandra (10.1016/j.matcom.2019.06.015_b5) 2016; 224 Tanveer (10.1016/j.matcom.2019.06.015_b49) 2018 Abdulhameed (10.1016/j.matcom.2019.06.015_b1) 2019; 519 Misra (10.1016/j.matcom.2019.06.015_b24) 2015; 27 Imran (10.1016/j.matcom.2019.06.015_b14) 2019; 118 |
References_xml | – volume: 27 start-page: 350 year: 2015 end-page: 358 ident: b24 article-title: Flow of a micropolar fluid in a microchannel under the action of an alternating electric field: Estimates of blood flow bio-fluidic devices publication-title: J. Hydrodyn. – volume: 70 year: 2017 ident: b39 article-title: Computational modeling of blood and heat transfer enhancement in a slowly varying arterial segment publication-title: Int. J. Heat Fluid Flow – volume: 116 start-page: 79 year: 2018 end-page: 85 ident: b37 article-title: Application of Atangana–Baleanu fractional derivative to MHD channel flow of CMC-based-CNTs nanofluid through a porous medium publication-title: Chaos Solitons Fractals – volume: 519 start-page: 42 year: 2019 end-page: 71 ident: b1 article-title: Effect of fractional derivatives on transient MHD flow and radiative heat transfer in a micro-parallel channel at high zeta potentials publication-title: Physica A – volume: 388 start-page: 106 year: 2015 end-page: 115 ident: b38 article-title: Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment publication-title: J. Magn. Magn. Mater. – volume: 54 start-page: 2999 year: 2011 end-page: 3006 ident: b36 article-title: On arterial blood flow in the presence of an overlapping stenosis publication-title: Math. Comput Mod. – volume: 1 start-page: 121 year: 2015 end-page: 141 ident: b42 article-title: Effect of slip velocity on peristaltic transport of a magneto-micropolar fluid through a porous non-uniform channel publication-title: Int. J. Appl. Comput. Math. – year: 2018 ident: b49 article-title: Heat transfer analysis for peristalsis of MHD Carreau fluid in a curved channel through modified darcy law publication-title: J. Mech. – volume: 21 start-page: 438 year: 1983 end-page: 445 ident: b50 article-title: Flow of micropolar fluid through a tube with stenosis publication-title: Med. Bio. Eng. Comput. – volume: 30 start-page: 437 year: 2018 end-page: 446 ident: b47 article-title: Peristaltic flow of MHD Jeffery nanofluid in curved channel with convective boundary conditions: a numerical study publication-title: Neural. Comput. Appl. – volume: 236 start-page: 290 year: 2017 end-page: 297 ident: b48 article-title: On modified Darcys law utilization in peristalsis of Sisko fluid publication-title: J. Mol. Liq. – volume: 45 start-page: 245 year: 2003 end-page: 260 ident: b34 article-title: On the inference of wall properties in the peristaltic motion of micropolar fluid publication-title: ANZIAM J. – volume: 46 start-page: 1251 year: 1974 end-page: 1253 ident: b3 article-title: Man at high sustained publication-title: Aerosp. Med. – volume: 15 start-page: 719 year: 1977 end-page: 725 ident: b6 article-title: Flow of micropolar fluid through a constricted channel publication-title: Internat. J. Engrg. Sci. – volume: 46 start-page: 937 year: 1984 end-page: 949 ident: b46 article-title: Blood flow subject to a single cycle of body acceleration publication-title: Bull. Math. Biol. – volume: 27 start-page: 747 year: 1990 end-page: 758 ident: b7 article-title: Pulsatile flow of power law fluid model for blood flow under periodic body acceleration publication-title: Biorheology – volume: 37 start-page: 9 year: 1970 end-page: 16 ident: b17 article-title: Flow in locally constricted tubes at low Reynolds numbers publication-title: J. Appl. Mech. – volume: 4 start-page: 393 year: 2018 end-page: 399 ident: b18 article-title: Energy transfer of Jeffery–Hamel nanofluid flow between non-parallel walls using Maxwell–Garnetts (MG) and Brinkman models publication-title: Energy Rep. – volume: 18 start-page: 479 year: 1985 end-page: 485 ident: b45 article-title: Flow of couple stress fluid through stenotic blood vessels publication-title: J. Biomech. – volume: 101 start-page: 157 year: 1979 end-page: 175 ident: b51 article-title: Fluid mechanics of arterial stenosis publication-title: J. Biomech. Eng. – volume: 16 start-page: 993 year: 1988 end-page: 1016 ident: b28 article-title: Flow through blood vessels under the action of a periodic acceleration field publication-title: Comput. Math. Appl. – volume: 13 start-page: 401 year: 2008 end-page: 412 ident: b22 article-title: Mathematical analysis of blood flow through an arterial segment with time dependent stenosis publication-title: Math. Model. Anal. – year: 1974 ident: b20 article-title: Blood Flow in Arteries – volume: 20 start-page: 45 year: 2017 end-page: 58 ident: b9 article-title: Numerical technique of blood flow through catheterized arteries with overlapping stenosis publication-title: Comput. Meth. Biomech. Biomed. Eng. – volume: 22 start-page: 211 year: 1989 end-page: 218 ident: b13 article-title: An evaluation of a micropolar model for blood flow through an idealized stenosis publication-title: J. Biomech. – volume: 19 start-page: 907 year: 1986 end-page: 918 ident: b23 article-title: Flow in arteries in the presence of stenosis publication-title: J. Biomech. – volume: 26 start-page: 1129 year: 1993 end-page: 1141 ident: b27 article-title: A non-Newtonian fluid model for blood flow through arteries under stenotic conditions publication-title: J. Biomech. – volume: 92 start-page: 23 year: 2014 end-page: 31 ident: b44 article-title: MHD flow of blood through a dually stenosed artery: Effects of viscosity variation, variable hematocrit and velocity-slip publication-title: Canad. J. Chem. Eng. – volume: 71 start-page: 1 year: 2018 end-page: 14 ident: b40 article-title: Magnetic field interaction with blood flow and heat transfer through diseased artery having Abdominal Aortic Aneurysm publication-title: Eur. J. Mech. B Fluids – volume: 2 start-page: 205 year: 1964 end-page: 217 ident: b11 article-title: Simple microfuids publication-title: Internat. J. Engrg. Sci. – volume: 17 year: 2017 ident: b12 article-title: Effects of porosity in a seepage model on hemodynamics publication-title: J. Mech. Med. Biol. – volume: 8 start-page: 265 year: 2008 end-page: 279 ident: b32 article-title: Theoretical analysis of blood flow through an arterial segment having multiple stenosis publication-title: J. Mech. Med. Biol. – year: 1978 ident: b4 article-title: The Mechanis of the Circulation – volume: 33 start-page: 315 year: 2012 end-page: 332 ident: b25 article-title: Peristaltic transport of rheological fluids: model for movement of food bolus through esophagus publication-title: Appl. Math. Mech. – volume: 46 start-page: 4989 year: 2003 end-page: 5003 ident: b15 article-title: The role of porous media in modelling flow and heat transfer in biological tissues publication-title: Int. J. Heat Mass Transfer – volume: 11 start-page: 643 year: 2011 end-page: 661 ident: b41 article-title: Pulsatile flow and heat transfer of a magneto-micropolar fluid through a stenosed artery under the influence of body acceleration publication-title: J. Mech. Med. Biol. – volume: 224 start-page: 818 year: 2016 end-page: 824 ident: b5 article-title: Influence of hall current and microrotation on the boundary flow of an electrically conducting fluid: Application to hemodynamics publication-title: J. Mol. Liq. – volume: 4 start-page: 207 year: 2011 end-page: 225 ident: b33 article-title: Mathematical modeling of blood flow in a porous vessel having double stenosis in the presence of an external magnetic field publication-title: Int. J. Biomath. – volume: 29 start-page: 89 year: 1999 end-page: 106 ident: b26 article-title: A mathematical model for the study of pulsatile flow of blood flow under an externally imposed body acceleratio publication-title: Math. Comput. Model. – volume: 23 start-page: 395 year: 1986 end-page: 433 ident: b19 article-title: Flow in tubes and arteries - A comparison publication-title: Biorheology – volume: 17 year: 2017 ident: b35 article-title: Couple stress fluid model for pulsatile flow of blood in a porous tapered arterial stenosis under magnetic field and periodic body acceleration publication-title: J. Mech. Med. Biol. – volume: 7 start-page: 337 year: 2007 end-page: 353 ident: b29 article-title: Role of slip velocity in blood flow through stenosed arteries: A non-Newtonian model publication-title: J. Mech. Med. Biol. – volume: 33 start-page: 649 year: 2012 end-page: 662 ident: b43 article-title: Numerical study of flow and heat transfer during oscillating blood flow in diseased arteries in presence of magnetic fields publication-title: Appl. Math. Mech. – volume: 16 start-page: 1 year: 1966 end-page: 18 ident: b10 article-title: Theory of micropolar fluids publication-title: J. Math. Mech. – volume: 15 start-page: 173 year: 2018 end-page: 184 ident: b31 article-title: Non-Newtonian flow of blood in a catheterized bifurcated stenosed artery publication-title: J. Bionic Eng. – volume: 33 start-page: 1910 year: 2010 end-page: 1923 ident: b2 article-title: A micropolar fluid model of blood flow through a tapered artery with a stenosis publication-title: Math. Methods Appl. Sci. – volume: 118 start-page: 274 year: 2019 end-page: 289 ident: b14 article-title: A comprehensive report on convective flow of fractional (ABC) and (CF) MHD viscous fluid subject to generalized boundary conditions publication-title: Chaos Solitons Fractals – volume: 2 start-page: 21 year: 1981 ident: b8 article-title: Hemorheology in clinical medicine publication-title: Recent Adv. Cardio Vascu. Dis. – volume: 2017 start-page: 7932 year: 2011 end-page: 7939 ident: b30 article-title: Electro-osmotic flow of a viscoelastic fluid in a channel: Applications to physiological fluid mechanics publication-title: Appl. Math. Comput. – volume: 24 start-page: 1237 year: 1986 end-page: 1242 ident: b16 article-title: Boundary conditions for micropolar fluids publication-title: Internat. J. Engrg. Sci. – volume: 18 year: 2018 ident: b21 article-title: Mathematical modeling blood flow in arteries subject to a vibrating environment publication-title: J. Mech. Med. Biol. – volume: 2 start-page: 21 issue: suppl. year: 1981 ident: 10.1016/j.matcom.2019.06.015_b8 article-title: Hemorheology in clinical medicine publication-title: Recent Adv. Cardio Vascu. Dis. – volume: 20 start-page: 45 issue: 1 year: 2017 ident: 10.1016/j.matcom.2019.06.015_b9 article-title: Numerical technique of blood flow through catheterized arteries with overlapping stenosis publication-title: Comput. Meth. Biomech. Biomed. Eng. doi: 10.1080/10255842.2016.1196198 – volume: 45 start-page: 245 year: 2003 ident: 10.1016/j.matcom.2019.06.015_b34 article-title: On the inference of wall properties in the peristaltic motion of micropolar fluid publication-title: ANZIAM J. doi: 10.1017/S1446181100013304 – volume: 22 start-page: 211 issue: 3 year: 1989 ident: 10.1016/j.matcom.2019.06.015_b13 article-title: An evaluation of a micropolar model for blood flow through an idealized stenosis publication-title: J. Biomech. doi: 10.1016/0021-9290(89)90089-4 – volume: 101 start-page: 157 year: 1979 ident: 10.1016/j.matcom.2019.06.015_b51 article-title: Fluid mechanics of arterial stenosis publication-title: J. Biomech. Eng. doi: 10.1115/1.3426241 – volume: 2017 start-page: 7932 year: 2011 ident: 10.1016/j.matcom.2019.06.015_b30 article-title: Electro-osmotic flow of a viscoelastic fluid in a channel: Applications to physiological fluid mechanics publication-title: Appl. Math. Comput. – volume: 17 year: 2017 ident: 10.1016/j.matcom.2019.06.015_b12 article-title: Effects of porosity in a seepage model on hemodynamics publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519417400176 – volume: 29 start-page: 89 year: 1999 ident: 10.1016/j.matcom.2019.06.015_b26 article-title: A mathematical model for the study of pulsatile flow of blood flow under an externally imposed body acceleratio publication-title: Math. Comput. Model. doi: 10.1016/S0895-7177(98)00180-0 – year: 1974 ident: 10.1016/j.matcom.2019.06.015_b20 – volume: 37 start-page: 9 year: 1970 ident: 10.1016/j.matcom.2019.06.015_b17 article-title: Flow in locally constricted tubes at low Reynolds numbers publication-title: J. Appl. Mech. doi: 10.1115/1.3408496 – volume: 236 start-page: 290 year: 2017 ident: 10.1016/j.matcom.2019.06.015_b48 article-title: On modified Darcys law utilization in peristalsis of Sisko fluid publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.04.041 – volume: 24 start-page: 1237 issue: 7 year: 1986 ident: 10.1016/j.matcom.2019.06.015_b16 article-title: Boundary conditions for micropolar fluids publication-title: Internat. J. Engrg. Sci. doi: 10.1016/0020-7225(86)90018-2 – volume: 27 start-page: 350 year: 2015 ident: 10.1016/j.matcom.2019.06.015_b24 article-title: Flow of a micropolar fluid in a microchannel under the action of an alternating electric field: Estimates of blood flow bio-fluidic devices publication-title: J. Hydrodyn. doi: 10.1016/S1001-6058(15)60492-9 – year: 1978 ident: 10.1016/j.matcom.2019.06.015_b4 – volume: 30 start-page: 437 year: 2018 ident: 10.1016/j.matcom.2019.06.015_b47 article-title: Peristaltic flow of MHD Jeffery nanofluid in curved channel with convective boundary conditions: a numerical study publication-title: Neural. Comput. Appl. doi: 10.1007/s00521-016-2705-x – volume: 18 start-page: 479 year: 1985 ident: 10.1016/j.matcom.2019.06.015_b45 article-title: Flow of couple stress fluid through stenotic blood vessels publication-title: J. Biomech. doi: 10.1016/0021-9290(85)90662-1 – volume: 27 start-page: 747 year: 1990 ident: 10.1016/j.matcom.2019.06.015_b7 article-title: Pulsatile flow of power law fluid model for blood flow under periodic body acceleration publication-title: Biorheology doi: 10.3233/BIR-1990-27510 – volume: 46 start-page: 4989 year: 2003 ident: 10.1016/j.matcom.2019.06.015_b15 article-title: The role of porous media in modelling flow and heat transfer in biological tissues publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(03)00301-6 – volume: 7 start-page: 337 year: 2007 ident: 10.1016/j.matcom.2019.06.015_b29 article-title: Role of slip velocity in blood flow through stenosed arteries: A non-Newtonian model publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519407002303 – volume: 46 start-page: 937 year: 1984 ident: 10.1016/j.matcom.2019.06.015_b46 article-title: Blood flow subject to a single cycle of body acceleration publication-title: Bull. Math. Biol. doi: 10.1007/BF02462080 – volume: 23 start-page: 395 issue: 4 year: 1986 ident: 10.1016/j.matcom.2019.06.015_b19 article-title: Flow in tubes and arteries - A comparison publication-title: Biorheology doi: 10.3233/BIR-1986-23408 – volume: 17 year: 2017 ident: 10.1016/j.matcom.2019.06.015_b35 article-title: Couple stress fluid model for pulsatile flow of blood in a porous tapered arterial stenosis under magnetic field and periodic body acceleration publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519417501093 – volume: 224 start-page: 818 issue: Part A year: 2016 ident: 10.1016/j.matcom.2019.06.015_b5 article-title: Influence of hall current and microrotation on the boundary flow of an electrically conducting fluid: Application to hemodynamics publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.09.096 – volume: 19 start-page: 907 year: 1986 ident: 10.1016/j.matcom.2019.06.015_b23 article-title: Flow in arteries in the presence of stenosis publication-title: J. Biomech. doi: 10.1016/0021-9290(86)90186-7 – volume: 2 start-page: 205 year: 1964 ident: 10.1016/j.matcom.2019.06.015_b11 article-title: Simple microfuids publication-title: Internat. J. Engrg. Sci. doi: 10.1016/0020-7225(64)90005-9 – volume: 70 year: 2017 ident: 10.1016/j.matcom.2019.06.015_b39 article-title: Computational modeling of blood and heat transfer enhancement in a slowly varying arterial segment publication-title: Int. J. Heat Fluid Flow – volume: 8 start-page: 265 year: 2008 ident: 10.1016/j.matcom.2019.06.015_b32 article-title: Theoretical analysis of blood flow through an arterial segment having multiple stenosis publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519408002620 – volume: 92 start-page: 23 year: 2014 ident: 10.1016/j.matcom.2019.06.015_b44 article-title: MHD flow of blood through a dually stenosed artery: Effects of viscosity variation, variable hematocrit and velocity-slip publication-title: Canad. J. Chem. Eng. doi: 10.1002/cjce.21792 – volume: 54 start-page: 2999 year: 2011 ident: 10.1016/j.matcom.2019.06.015_b36 article-title: On arterial blood flow in the presence of an overlapping stenosis publication-title: Math. Comput Mod. doi: 10.1016/j.mcm.2011.07.028 – volume: 21 start-page: 438 year: 1983 ident: 10.1016/j.matcom.2019.06.015_b50 article-title: Flow of micropolar fluid through a tube with stenosis publication-title: Med. Bio. Eng. Comput. doi: 10.1007/BF02442631 – volume: 15 start-page: 719 year: 1977 ident: 10.1016/j.matcom.2019.06.015_b6 article-title: Flow of micropolar fluid through a constricted channel publication-title: Internat. J. Engrg. Sci. doi: 10.1016/0020-7225(77)90022-2 – volume: 11 start-page: 643 year: 2011 ident: 10.1016/j.matcom.2019.06.015_b41 article-title: Pulsatile flow and heat transfer of a magneto-micropolar fluid through a stenosed artery under the influence of body acceleration publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519411003909 – volume: 18 year: 2018 ident: 10.1016/j.matcom.2019.06.015_b21 article-title: Mathematical modeling blood flow in arteries subject to a vibrating environment publication-title: J. Mech. Med. Biol. doi: 10.1142/S021951941850001X – volume: 519 start-page: 42 year: 2019 ident: 10.1016/j.matcom.2019.06.015_b1 article-title: Effect of fractional derivatives on transient MHD flow and radiative heat transfer in a micro-parallel channel at high zeta potentials publication-title: Physica A doi: 10.1016/j.physa.2018.12.019 – year: 2018 ident: 10.1016/j.matcom.2019.06.015_b49 article-title: Heat transfer analysis for peristalsis of MHD Carreau fluid in a curved channel through modified darcy law publication-title: J. Mech. – volume: 4 start-page: 207 year: 2011 ident: 10.1016/j.matcom.2019.06.015_b33 article-title: Mathematical modeling of blood flow in a porous vessel having double stenosis in the presence of an external magnetic field publication-title: Int. J. Biomath. doi: 10.1142/S1793524511001428 – volume: 116 start-page: 79 year: 2018 ident: 10.1016/j.matcom.2019.06.015_b37 article-title: Application of Atangana–Baleanu fractional derivative to MHD channel flow of CMC-based-CNTs nanofluid through a porous medium publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.09.007 – volume: 33 start-page: 649 year: 2012 ident: 10.1016/j.matcom.2019.06.015_b43 article-title: Numerical study of flow and heat transfer during oscillating blood flow in diseased arteries in presence of magnetic fields publication-title: Appl. Math. Mech. doi: 10.1007/s10483-012-1577-8 – volume: 46 start-page: 1251 year: 1974 ident: 10.1016/j.matcom.2019.06.015_b3 article-title: Man at high sustained +Gz acceleration, A review publication-title: Aerosp. Med. – volume: 33 start-page: 315 year: 2012 ident: 10.1016/j.matcom.2019.06.015_b25 article-title: Peristaltic transport of rheological fluids: model for movement of food bolus through esophagus publication-title: Appl. Math. Mech. doi: 10.1007/s10483-012-1552-7 – volume: 16 start-page: 1 year: 1966 ident: 10.1016/j.matcom.2019.06.015_b10 article-title: Theory of micropolar fluids publication-title: J. Math. Mech. – volume: 15 start-page: 173 year: 2018 ident: 10.1016/j.matcom.2019.06.015_b31 article-title: Non-Newtonian flow of blood in a catheterized bifurcated stenosed artery publication-title: J. Bionic Eng. doi: 10.1007/s42235-017-0014-4 – volume: 33 start-page: 1910 year: 2010 ident: 10.1016/j.matcom.2019.06.015_b2 article-title: A micropolar fluid model of blood flow through a tapered artery with a stenosis publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.1303 – volume: 1 start-page: 121 year: 2015 ident: 10.1016/j.matcom.2019.06.015_b42 article-title: Effect of slip velocity on peristaltic transport of a magneto-micropolar fluid through a porous non-uniform channel publication-title: Int. J. Appl. Comput. Math. doi: 10.1007/s40819-014-0012-8 – volume: 26 start-page: 1129 year: 1993 ident: 10.1016/j.matcom.2019.06.015_b27 article-title: A non-Newtonian fluid model for blood flow through arteries under stenotic conditions publication-title: J. Biomech. doi: 10.1016/S0021-9290(05)80011-9 – volume: 16 start-page: 993 year: 1988 ident: 10.1016/j.matcom.2019.06.015_b28 article-title: Flow through blood vessels under the action of a periodic acceleration field publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(88)90256-8 – volume: 71 start-page: 1 year: 2018 ident: 10.1016/j.matcom.2019.06.015_b40 article-title: Magnetic field interaction with blood flow and heat transfer through diseased artery having Abdominal Aortic Aneurysm publication-title: Eur. J. Mech. B Fluids doi: 10.1016/j.euromechflu.2018.03.010 – volume: 118 start-page: 274 year: 2019 ident: 10.1016/j.matcom.2019.06.015_b14 article-title: A comprehensive report on convective flow of fractional (ABC) and (CF) MHD viscous fluid subject to generalized boundary conditions publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.12.001 – volume: 4 start-page: 393 year: 2018 ident: 10.1016/j.matcom.2019.06.015_b18 article-title: Energy transfer of Jeffery–Hamel nanofluid flow between non-parallel walls using Maxwell–Garnetts (MG) and Brinkman models publication-title: Energy Rep. doi: 10.1016/j.egyr.2018.05.003 – volume: 13 start-page: 401 year: 2008 ident: 10.1016/j.matcom.2019.06.015_b22 article-title: Mathematical analysis of blood flow through an arterial segment with time dependent stenosis publication-title: Math. Model. Anal. doi: 10.3846/1392-6292.2008.13.401-412 – volume: 388 start-page: 106 year: 2015 ident: 10.1016/j.matcom.2019.06.015_b38 article-title: Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2015.04.026 |
SSID | ssj0007545 |
Score | 2.3908896 |
Snippet | The paper is devoted to a numerical investigation of the pulsatile flow of blood through a porous overlapping constricted artery under the influence of an... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 432 |
SubjectTerms | Body acceleration Micropolar fluid Overlapping stenosis Porous medium |
Title | Pulsatile flow and heat transfer of blood in an overlapping vibrating atherosclerotic artery: A numerical study |
URI | https://dx.doi.org/10.1016/j.matcom.2019.06.015 |
Volume | 166 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdYXe_C69pHsbuKtFEtVKIIWegv7ilRCUmqrePG3O7NJfIAomFuSWTbMzs58Q76dIeTMOJ5qoSTrOaVZGEjNlIy6LHAIlo10kfIs37EYTcLrKZ82yKA-C4O0ysr3lz7de-vqSbvSZns-m7XvOoEE18pDgCAQqAI8UR6GEq38_O2T5gECnsYIwgyl6-NznuMFoBA5IxAEY1_FE5vj_hSevoSc4RbZqLAi7Zefs00aLt8hm3UfBlpty11S3K4yJOVkjqZZ8UJVbin6WLr0qBREi5R6hjqd5fCWIm0zU1iZ4YE-Y76M3GfqsWDxBFMtCpiRerbn6wXt03xV_tfJqK9Gu0cmw8v7wYhVjRSYgYxgybChsBHKdpyQTmgeRzbWsQ56PI16DjBDGinDQyNsIC14HSN0V8VWpiLWwgCC2SfNvMjdAaGBglWHS2sD29-BHXIdyo60xkJqZ6IWCWr9JaaqMo7NLrKkppM9JqXWE9R6gqy6Lm8R9jFqXlbZ-ENe1kuTfLOWBALBryMP_z3yiKzjXUllOSbN5WLlTgCQLPWpt7hTsta_uhmN3wF1XOQ4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7W9aAX3-LbHLyGfbRJWm-LKKuri6CCt5KkqayUVnRX8d87k7aiIAr22M6QMkm_-UK_zAAcWScyI7XifacNDwNluFZRjweOyLJVLtJe5TuWw7vw4l7ct-CkOQtDssoa-ytM92hd3-nU0ew8TSadm26gEFpFiBQEE1Wg5mCeqlOJNswPzkfD8Scgo41XMqI9J4fmBJ2XeSEvJNkI5sHYF_Kk_rg_ZagvWedsBZZqusgG1RutQssVa7DctGJg9Ze5DuX1LCddTu5YlpdvTBcpI5hlU09M0bTMmBeps0mBTxkpN3NNxRke2CttmUn-zDwdLF9wqOcSR2Re8Pl-zAasmFW_dnLmC9JuwN3Z6e3JkNe9FLjFTcGUU09hK3XadVI5aUQcpbGJTdAXWdR3SBuySFsRWpkGKkXgsdL0dJyqTMZGWiQxm9AuysJtAQs0TjxexlhEAIdLUZhQdVVqU9zd2WgbgiZ-ia0LjVO_izxpFGWPSRX1hKKekLCuJ7aBf3o9VYU2_rBXzdQk3xZMgrngV8-df3sewsLw9uoyuTwfj3ZhkZ5UypY9aE-fZ24f-cnUHNTr7wNGIObp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pulsatile+flow+and+heat+transfer+of+blood+in+an+overlapping+vibrating+atherosclerotic+artery%3A+A+numerical+study&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Shit%2C+G.C.&rft.au=Maiti%2C+S.&rft.au=Roy%2C+M.&rft.au=Misra%2C+J.C.&rft.date=2019-12-01&rft.issn=0378-4754&rft.volume=166&rft.spage=432&rft.epage=450&rft_id=info:doi/10.1016%2Fj.matcom.2019.06.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matcom_2019_06_015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon |