Drone-surveillance for search and rescue in natural disaster

Due to the increasing capability of drones and requirements to monitor remote areas, drone surveillance is becoming popular. In case of natural disaster, it can scan the wide affected-area quickly and make the search and rescue (SAR) faster to save more human lives. However, using autonomous drone f...

Full description

Saved in:
Bibliographic Details
Published inComputer communications Vol. 156; pp. 1 - 10
Main Authors Mishra, Balmukund, Garg, Deepak, Narang, Pratik, Mishra, Vipul
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.04.2020
Subjects
Online AccessGet full text
ISSN0140-3664
1873-703X
DOI10.1016/j.comcom.2020.03.012

Cover

Loading…
Abstract Due to the increasing capability of drones and requirements to monitor remote areas, drone surveillance is becoming popular. In case of natural disaster, it can scan the wide affected-area quickly and make the search and rescue (SAR) faster to save more human lives. However, using autonomous drone for search and rescue is least explored and require attention of researchers to develop efficient algorithms in autonomous drone surveillance. To develop an automated application using recent advancement of deep-learning, dataset is the key. For this, a substantial amount of human detection and action detection dataset is required to train the deep-learning models. As dataset of drone surveillance in SAR is not available in literature, this paper proposes an image dataset for human action detection for SAR. Proposed dataset contains 2000 unique images filtered from 75,000 images. It contains 30000 human instances of different actions. Also, in this paper various experiments are conducted with proposed dataset, publicly available dataset, and stat-of-the art detection method. Our experiments shows that existing models are not adequate for critical applications such as SAR, and that motivates us to propose a model which is inspired by the pyramidal feature extraction of SSD for human detection and action recognition Proposed model achieves 0.98mAP when applied on proposed dataset which is a significant contribution. In addition, proposed model achieve 7% higher mAP value when applied to standard Okutama dataset in comparison with the state-of-the-art detection models in literature.
AbstractList Due to the increasing capability of drones and requirements to monitor remote areas, drone surveillance is becoming popular. In case of natural disaster, it can scan the wide affected-area quickly and make the search and rescue (SAR) faster to save more human lives. However, using autonomous drone for search and rescue is least explored and require attention of researchers to develop efficient algorithms in autonomous drone surveillance. To develop an automated application using recent advancement of deep-learning, dataset is the key. For this, a substantial amount of human detection and action detection dataset is required to train the deep-learning models. As dataset of drone surveillance in SAR is not available in literature, this paper proposes an image dataset for human action detection for SAR. Proposed dataset contains 2000 unique images filtered from 75,000 images. It contains 30000 human instances of different actions. Also, in this paper various experiments are conducted with proposed dataset, publicly available dataset, and stat-of-the art detection method. Our experiments shows that existing models are not adequate for critical applications such as SAR, and that motivates us to propose a model which is inspired by the pyramidal feature extraction of SSD for human detection and action recognition Proposed model achieves 0.98mAP when applied on proposed dataset which is a significant contribution. In addition, proposed model achieve 7% higher mAP value when applied to standard Okutama dataset in comparison with the state-of-the-art detection models in literature.
Author Narang, Pratik
Garg, Deepak
Mishra, Vipul
Mishra, Balmukund
Author_xml – sequence: 1
  givenname: Balmukund
  surname: Mishra
  fullname: Mishra, Balmukund
  email: Balmukund.mishra92@gmail.com
  organization: Department of Computer Science and Engineering, Bennett University, Greater Noida, India
– sequence: 2
  givenname: Deepak
  surname: Garg
  fullname: Garg, Deepak
  email: deepakgarg108@gmail.com
  organization: Department of Computer Science and Engineering, Bennett University, Greater Noida, India
– sequence: 3
  givenname: Pratik
  surname: Narang
  fullname: Narang, Pratik
  email: pratik.narang@pilani.bits-pilani.ac.in
  organization: Department of CSIS, BITS Pilani, Pilani, India
– sequence: 4
  givenname: Vipul
  surname: Mishra
  fullname: Mishra, Vipul
  email: vkm.iiti@gmail.com
  organization: Department of Computer Science and Engineering, Bennett University, Greater Noida, India
BookMark eNqFkM1KAzEURoMo2FbfwEVeYMabH5KJiCD1FwpuFNyFTHIHU6YzkqQF394pdeVC4cJdnQPfmZPjYRyQkAsGNQOmLte1HzfT1Rw41CBqYPyIzFijRaVBvB-TGTAJlVBKnpJ5zmsAkFqLGbm-S5Orytu0w9j3bvBIuzHRjC75D-qGQBNmv0UaBzq4sk2upyFmlwumM3LSuT7j-c9fkLeH-9flU7V6eXxe3q4qL0CVqlG-Q4NSI5eMQQvKtLoRXgvGZdcGDF7opuUtKhPANQ0ThhvPpOFBGcPFgsiD16cx54Sd_Uxx49KXZWD3BezaHgrYfQELwk4FJuzqF-ZjcSWOQ0ku9v_BNwcYp2G7iMlmH3HKE2JCX2wY49-Cb_ZVe40
CitedBy_id crossref_primary_10_32604_cmes_2023_026476
crossref_primary_10_1177_01423312241295828
crossref_primary_10_3390_logistics9020045
crossref_primary_10_30785_mbud_1333736
crossref_primary_10_1109_LGRS_2022_3185420
crossref_primary_10_1016_j_ijdrr_2020_102030
crossref_primary_10_2139_ssrn_4137561
crossref_primary_10_1109_TNET_2023_3297876
crossref_primary_10_29109_gujsc_1311627
crossref_primary_10_1007_s11071_022_07294_w
crossref_primary_10_3390_rs12203295
crossref_primary_10_1109_TASE_2024_3461726
crossref_primary_10_1126_scirobotics_ado6187
crossref_primary_10_1016_j_robot_2023_104492
crossref_primary_10_1016_j_paerosci_2023_100899
crossref_primary_10_1109_ACCESS_2023_3315130
crossref_primary_10_1080_23307706_2022_2141358
crossref_primary_10_3390_fi13070174
crossref_primary_10_3390_electronics12102310
crossref_primary_10_1016_j_autcon_2023_105253
crossref_primary_10_3389_fpubh_2022_1019626
crossref_primary_10_3390_ijgi9070425
crossref_primary_10_1007_s00607_021_01022_9
crossref_primary_10_1016_j_autcon_2024_105714
crossref_primary_10_1109_TVT_2022_3188769
crossref_primary_10_3390_biomimetics9110694
crossref_primary_10_3390_electronics11152343
crossref_primary_10_3390_electronics12030595
crossref_primary_10_1016_j_future_2023_03_027
crossref_primary_10_1016_j_ijdrr_2021_102567
crossref_primary_10_3390_su132212841
crossref_primary_10_1007_s40747_024_01429_9
crossref_primary_10_3390_drones7050307
crossref_primary_10_3390_drones8090477
crossref_primary_10_1007_s11277_024_11543_z
crossref_primary_10_1155_2023_3001812
crossref_primary_10_3390_machines12050337
crossref_primary_10_1007_s43926_021_00014_7
crossref_primary_10_1016_j_scitotenv_2020_138858
crossref_primary_10_1038_s41597_023_02810_y
crossref_primary_10_3390_drones7060396
crossref_primary_10_3389_fmars_2024_1486894
crossref_primary_10_1016_j_cie_2024_110730
crossref_primary_10_1016_j_compag_2021_106560
crossref_primary_10_1007_s42979_024_02650_6
crossref_primary_10_1109_ACCESS_2021_3087509
crossref_primary_10_1051_itmconf_20235702008
crossref_primary_10_1080_08839514_2024_2449296
crossref_primary_10_1061_JCEMD4_COENG_14787
crossref_primary_10_1016_j_mex_2021_101472
crossref_primary_10_1109_TCSVT_2023_3281557
crossref_primary_10_3390_electronics13163319
crossref_primary_10_3390_s22051786
crossref_primary_10_1007_s11356_021_13823_8
crossref_primary_10_1007_s42405_023_00632_1
crossref_primary_10_1016_j_adhoc_2022_102937
crossref_primary_10_3390_app11199173
crossref_primary_10_3390_drones7060394
crossref_primary_10_1109_LSP_2023_3286787
crossref_primary_10_1016_j_ijcce_2021_11_005
crossref_primary_10_2139_ssrn_4125865
crossref_primary_10_3390_drones8050193
crossref_primary_10_1109_JSYST_2022_3189011
crossref_primary_10_1007_s11042_024_19611_z
crossref_primary_10_1109_TIP_2022_3217695
crossref_primary_10_3390_drones4020015
crossref_primary_10_1109_TRO_2025_3543263
crossref_primary_10_1016_j_comcom_2024_07_011
crossref_primary_10_3390_app11020675
crossref_primary_10_1371_journal_pone_0319603
crossref_primary_10_1109_TASE_2024_3395409
crossref_primary_10_3390_asi6040068
crossref_primary_10_34219_2078_8320_2020_11_4_50_59
crossref_primary_10_1109_JIOT_2024_3394740
crossref_primary_10_1016_j_measurement_2024_116065
crossref_primary_10_3390_a16050229
crossref_primary_10_3390_app11125414
crossref_primary_10_1016_j_cogr_2021_11_001
crossref_primary_10_3390_computation9120127
crossref_primary_10_1016_j_comgeo_2023_102077
crossref_primary_10_3390_drones7100633
crossref_primary_10_1016_j_ijdrr_2023_104094
crossref_primary_10_1016_j_dsp_2024_104881
crossref_primary_10_1109_TIM_2023_3346508
crossref_primary_10_1145_3678549
crossref_primary_10_3390_rs14174355
crossref_primary_10_1360_SST_2021_0374
crossref_primary_10_3390_drones7110675
crossref_primary_10_3390_su16177618
crossref_primary_10_3390_su142214678
crossref_primary_10_1007_s12541_022_00714_2
crossref_primary_10_1016_j_heliyon_2024_e28111
crossref_primary_10_3390_electronics12173567
crossref_primary_10_1016_j_patcog_2023_109505
crossref_primary_10_1360_SSI_2024_0089
crossref_primary_10_3390_s23229216
crossref_primary_10_1007_s11042_024_19891_5
crossref_primary_10_3390_drones7060384
crossref_primary_10_1016_j_ijdrr_2023_104027
crossref_primary_10_1088_1742_6596_2858_1_012024
crossref_primary_10_2139_ssrn_4100367
crossref_primary_10_3390_su14148825
crossref_primary_10_3390_math11244886
crossref_primary_10_3390_drones6100279
crossref_primary_10_1016_j_cosrev_2025_100736
crossref_primary_10_1080_01431161_2022_2061316
crossref_primary_10_1109_ACCESS_2023_3329195
crossref_primary_10_1109_ACCESS_2024_3357148
crossref_primary_10_1109_TRO_2024_3354161
crossref_primary_10_1177_02783649211004959
crossref_primary_10_1007_s13205_020_02581_y
crossref_primary_10_1109_TII_2022_3174113
crossref_primary_10_1109_TASE_2024_3432405
crossref_primary_10_3390_rs12203386
crossref_primary_10_1016_j_rsase_2022_100896
crossref_primary_10_1016_j_jvcir_2024_104298
crossref_primary_10_1109_ACCESS_2022_3201889
crossref_primary_10_1088_2634_4386_ad76d5
crossref_primary_10_1007_s13272_024_00747_5
crossref_primary_10_1016_j_jnlssr_2024_02_004
crossref_primary_10_1007_s00521_021_06830_w
crossref_primary_10_1088_1755_1315_1261_1_012021
crossref_primary_10_1016_j_ijdrr_2022_102859
crossref_primary_10_1007_s12145_023_00972_2
crossref_primary_10_1109_TAES_2022_3199196
crossref_primary_10_1109_TMC_2021_3135894
crossref_primary_10_1109_TITS_2022_3189948
crossref_primary_10_1016_j_icte_2022_04_011
crossref_primary_10_1016_j_displa_2025_102994
crossref_primary_10_3390_s23052569
crossref_primary_10_3390_drones6020043
crossref_primary_10_1016_j_foreco_2023_121530
crossref_primary_10_1017_jfm_2022_913
crossref_primary_10_3390_app12147333
crossref_primary_10_3390_rs16203753
crossref_primary_10_1002_ett_70023
crossref_primary_10_1016_j_ast_2024_109608
crossref_primary_10_1016_j_aei_2024_102427
crossref_primary_10_1017_jfm_2024_592
crossref_primary_10_1016_j_vehcom_2022_100474
crossref_primary_10_3390_drones5030087
crossref_primary_10_1016_j_comnet_2024_110695
crossref_primary_10_1016_j_eswa_2022_119408
crossref_primary_10_1109_ACCESS_2022_3154388
crossref_primary_10_1109_ACCESS_2022_3182315
crossref_primary_10_3390_s24113349
crossref_primary_10_1016_j_pdisas_2024_100348
crossref_primary_10_1109_ACCESS_2021_3134459
crossref_primary_10_1109_ACCESS_2024_3479988
crossref_primary_10_7731_KIFSE_d4d536d0
crossref_primary_10_1155_2023_5419384
crossref_primary_10_1080_0305215X_2023_2283606
crossref_primary_10_1007_s44163_024_00209_1
crossref_primary_10_1109_TGRS_2024_3417610
crossref_primary_10_1109_TIV_2023_3333768
Cites_doi 10.1109/ICCV.2013.396
10.1155/2016/3754918
10.1134/S1054661818020086
10.1016/j.cviu.2015.08.004
10.3390/s18072244
10.1109/TAES.2017.2732832
10.1007/s11263-013-0620-5
10.1007/s11042-016-4043-5
10.1007/978-3-030-11012-3_9
10.1109/ICCV.2015.169
10.1109/MNET.2018.1700286
10.1109/TPAMI.2009.167
10.1109/CVPR.2016.91
10.3390/jimaging3020021
10.1109/MCE.2019.2941345
10.1109/JSTARS.2017.2694890
10.1109/CVPR.2017.502
10.1109/JIOT.2018.2796243
10.1109/LGRS.2015.2439517
10.1109/CVPRW.2017.267
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.comcom.2020.03.012
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-703X
EndPage 10
ExternalDocumentID 10_1016_j_comcom_2020_03_012
S0140366419318602
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
WH7
ZMT
~G-
07C
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
F0J
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SEW
SSH
TAE
UHS
VH1
VOH
WUQ
XPP
ZY4
ID FETCH-LOGICAL-c306t-86cfe9e47e24110b069b783c73124fbdedc378b2be69d0a8813929c1492d69923
IEDL.DBID .~1
ISSN 0140-3664
IngestDate Thu Apr 24 23:11:18 EDT 2025
Tue Jul 01 02:43:05 EDT 2025
Fri Feb 23 02:48:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Action recognition
Object detection (OD)
Convolution neural network (CNN)
Aerial action dataset
Drone surveillance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-86cfe9e47e24110b069b783c73124fbdedc378b2be69d0a8813929c1492d69923
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_comcom_2020_03_012
crossref_citationtrail_10_1016_j_comcom_2020_03_012
elsevier_sciencedirect_doi_10_1016_j_comcom_2020_03_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-15
PublicationDateYYYYMMDD 2020-04-15
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Computer communications
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sommer, Schuchert, Beyerer (b17) 2017
Kumar, Garg, Singh, Batra, Kumar, You (b26) 2018; 5
Dukowitz (b1) 2019
Pisharady, Saerbeck (b6) 2015; 141
Bonetto, Korshunov, Ramponi, Ebrahimi (b36) 2015
de Oliveira, Wehrmeister (b22) 2018; 18
Henderson, Ferrari (b39) 2016
Jindal, Aggarwal, Gupta (b23) 2018; 28
Joao Carreira, Andrew Zisserman, Quo vadis, action recognition, a new model and the kinetics dataset, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6299–6308.
Pham, Le, Vuillerme (b24) 2016; 2016
Rahman, Wang (b38) 2016
Deng, Sun, Zhou, Zhao, Zou (b21) 2017; 10
Hueihan Jhuang, Juergen Gall, Silvia Zuffi, Cordelia Schmid, Michael J Black, Towards understanding action recognition, in: Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 3192–3199.
Sommer, Schuchert, Beyerer (b19) 2018
Asanka G. Perera, Yee Wei Law, Javaan Chahl, UAV-GESTURE: a dataset for UAV control and gesture recognition, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018.
Soomro, Zamir, Shah (b2) 2012
Garg, Aujla, Kumar, Batra (b27) 2019; 8
Marušić, Božić-Štulić, Gotovac, Marušić (b31) 2018
Song, Demirdjian, Davis (b33) 2011
Oh, Hoogs, Perera, Cuntoor, Chen, Lee, Mukherjee, Aggarwal, Lee, Davis (b34) 2011
Felzenszwalb, Girshick, McAllester, Ramanan (b16) 2009; 32
Purkait, Zhao, Zach (b10) 2017
Liu, Mattyus (b20) 2015; 12
Soleimani, Nasrabadi (b7) 2018
Radovic, Adarkwa, Wang (b29) 2017; 3
Kang, Wildes (b5) 2016
Ross Girshick, Fast r-cnn, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1440–1448.
Robicquet, Sadeghian, Alahi, Savarese (b37) 2016
Wang, Wang, Lu, Zhang, Ruan (b13) 2016
Uijlings, Van De Sande, Gevers, Smeulders (b9) 2013; 104
Mohammadamin Barekatain, Miquel Martí, Hsueh-Fu Shih, Samuel Murray, Kotaro Nakayama, Yutaka Matsuo, Helmut Prendinger, Okutama-action: An aerial view video dataset for concurrent human action detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017, pp. 28–35.
Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788.
Qu, Zhang, Sun (b18) 2017; 76
Ryoo, Aggarwal (b32) 2009
ElMikaty, Stathaki (b30) 2017; 54
Ren, He, Girshick, Sun (b12) 2015
Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (b15) 2016
Garg, Singh, Batra, Kumar, Yang (b25) 2018; 32
Liu, Sun, Highsmith, Wergeles, Sartwell, Raedeke, Mitchell, Hagy, Gilbert, Lubinski (b28) 2018
10.1016/j.comcom.2020.03.012_b3
10.1016/j.comcom.2020.03.012_b4
Pham (10.1016/j.comcom.2020.03.012_b24) 2016; 2016
Garg (10.1016/j.comcom.2020.03.012_b25) 2018; 32
Radovic (10.1016/j.comcom.2020.03.012_b29) 2017; 3
Kumar (10.1016/j.comcom.2020.03.012_b26) 2018; 5
Uijlings (10.1016/j.comcom.2020.03.012_b9) 2013; 104
Ren (10.1016/j.comcom.2020.03.012_b12) 2015
Felzenszwalb (10.1016/j.comcom.2020.03.012_b16) 2009; 32
Marušić (10.1016/j.comcom.2020.03.012_b31) 2018
Pisharady (10.1016/j.comcom.2020.03.012_b6) 2015; 141
10.1016/j.comcom.2020.03.012_b8
Jindal (10.1016/j.comcom.2020.03.012_b23) 2018; 28
Soleimani (10.1016/j.comcom.2020.03.012_b7) 2018
Robicquet (10.1016/j.comcom.2020.03.012_b37) 2016
de Oliveira (10.1016/j.comcom.2020.03.012_b22) 2018; 18
Sommer (10.1016/j.comcom.2020.03.012_b17) 2017
Song (10.1016/j.comcom.2020.03.012_b33) 2011
Liu (10.1016/j.comcom.2020.03.012_b28) 2018
Bonetto (10.1016/j.comcom.2020.03.012_b36) 2015
Henderson (10.1016/j.comcom.2020.03.012_b39) 2016
Kang (10.1016/j.comcom.2020.03.012_b5) 2016
10.1016/j.comcom.2020.03.012_b35
Deng (10.1016/j.comcom.2020.03.012_b21) 2017; 10
10.1016/j.comcom.2020.03.012_b11
Oh (10.1016/j.comcom.2020.03.012_b34) 2011
Purkait (10.1016/j.comcom.2020.03.012_b10) 2017
Qu (10.1016/j.comcom.2020.03.012_b18) 2017; 76
Garg (10.1016/j.comcom.2020.03.012_b27) 2019; 8
Dukowitz (10.1016/j.comcom.2020.03.012_b1) 2019
Liu (10.1016/j.comcom.2020.03.012_b15) 2016
Rahman (10.1016/j.comcom.2020.03.012_b38) 2016
Sommer (10.1016/j.comcom.2020.03.012_b19) 2018
Ryoo (10.1016/j.comcom.2020.03.012_b32) 2009
Wang (10.1016/j.comcom.2020.03.012_b13) 2016
Liu (10.1016/j.comcom.2020.03.012_b20) 2015; 12
Soomro (10.1016/j.comcom.2020.03.012_b2) 2012
ElMikaty (10.1016/j.comcom.2020.03.012_b30) 2017; 54
10.1016/j.comcom.2020.03.012_b14
References_xml – reference: Joao Carreira, Andrew Zisserman, Quo vadis, action recognition, a new model and the kinetics dataset, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6299–6308.
– reference: Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788.
– start-page: 198
  year: 2016
  end-page: 213
  ident: b39
  article-title: End-to-end training of object class detectors for mean average precision
  publication-title: Asian Conference on Computer Vision
– volume: 104
  start-page: 154
  year: 2013
  end-page: 171
  ident: b9
  article-title: Selective search for object recognition
  publication-title: Int. J. Comput. Vis.
– volume: 2016
  year: 2016
  ident: b24
  article-title: Real-time obstacle detection system in indoor environment for the visually impaired using microsoft kinect sensor
  publication-title: J. Sens.
– reference: Hueihan Jhuang, Juergen Gall, Silvia Zuffi, Cordelia Schmid, Michael J Black, Towards understanding action recognition, in: Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 3192–3199.
– year: 2017
  ident: b10
  article-title: SPP-NEt: Deep absolute pose regression with synthetic views
– reference: Ross Girshick, Fast r-cnn, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1440–1448.
– volume: 3
  start-page: 21
  year: 2017
  ident: b29
  article-title: Object recognition in aerial images using convolutional neural networks
  publication-title: J. Imaging
– volume: 141
  start-page: 152
  year: 2015
  end-page: 165
  ident: b6
  article-title: Recent methods and databases in vision-based hand gesture recognition: a review
  publication-title: Comput. Vis. Image Underst.
– volume: 18
  start-page: 2244
  year: 2018
  ident: b22
  article-title: Using deep learning and low-cost RGB and thermal cameras to detect pedestrians in aerial images captured by multirotor UAV
  publication-title: Sensors
– start-page: 234
  year: 2016
  end-page: 244
  ident: b38
  article-title: Optimizing intersection-over-union in deep neural networks for image segmentation
  publication-title: International Symposium on Visual Computing
– start-page: 311
  year: 2017
  end-page: 319
  ident: b17
  article-title: Fast deep vehicle detection in aerial images
  publication-title: 2017 IEEE Winter Conference on Applications of Computer Vision
– start-page: 317
  year: 2018
  end-page: 324
  ident: b28
  article-title: Performance comparison of deep learning techniques for recognizing birds in aerial images
  publication-title: 2018 IEEE Third International Conference on Data Science in Cyberspace
– reference: Mohammadamin Barekatain, Miquel Martí, Hsueh-Fu Shih, Samuel Murray, Kotaro Nakayama, Yutaka Matsuo, Helmut Prendinger, Okutama-action: An aerial view video dataset for concurrent human action detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017, pp. 28–35.
– start-page: 1
  year: 2018
  end-page: 6
  ident: b31
  article-title: Region proposal approach for human detection on aerial imagery
  publication-title: 2018 3rd International Conference on Smart and Sustainable Technologies
– start-page: 21
  year: 2016
  end-page: 37
  ident: b15
  article-title: Ssd: Single shot multibox detector
  publication-title: European Conference on Computer Vision
– year: 2019
  ident: b1
  article-title: Drones in search and rescue: 5 stories showcasing ways search and rescue uses drones to save lives
– start-page: 91
  year: 2015
  end-page: 99
  ident: b12
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 28
  start-page: 288
  year: 2018
  end-page: 300
  ident: b23
  article-title: An obstacle detection method for visually impaired persons by ground plane removal using speeded-up robust features and gray level co-occurrence matrix
  publication-title: Pattern Recognit. Image Anal.
– start-page: 1005
  year: 2018
  end-page: 1010
  ident: b7
  article-title: Convolutional neural networks for aerial multi-label pedestrian detection
  publication-title: 2018 21st International Conference on Information Fusion
– year: 2016
  ident: b5
  article-title: Review of action recognition and detection methods
– reference: Asanka G. Perera, Yee Wei Law, Javaan Chahl, UAV-GESTURE: a dataset for UAV control and gesture recognition, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018.
– start-page: 500
  year: 2011
  end-page: 506
  ident: b33
  article-title: Tracking body and hands for gesture recognition: Natops aircraft handling signals database
  publication-title: Face and Gesture 2011
– volume: 12
  start-page: 1938
  year: 2015
  end-page: 1942
  ident: b20
  article-title: Fast multiclass vehicle detection on aerial images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 76
  start-page: 21651
  year: 2017
  end-page: 21663
  ident: b18
  article-title: Vehicle detection from high-resolution aerial images using spatial pyramid pooling-based deep convolutional neural networks
  publication-title: Multimedia Tools Appl.
– volume: 54
  start-page: 51
  year: 2017
  end-page: 63
  ident: b30
  article-title: Car detection in aerial images of dense urban areas
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– year: 2012
  ident: b2
  article-title: UCF101: A dataset of 101 human actions classes from videos in the wild
– start-page: 825
  year: 2016
  end-page: 841
  ident: b13
  article-title: Saliency detection with recurrent fully convolutional networks
  publication-title: European Conference on Computer Vision
– volume: 32
  start-page: 1627
  year: 2009
  end-page: 1645
  ident: b16
  article-title: Object detection with discriminatively trained part-based models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 32
  start-page: 42
  year: 2018
  end-page: 51
  ident: b25
  article-title: UAV-empowered edge computing environment for cyber-threat detection in smart vehicles
  publication-title: IEEE Netw.
– volume: 8
  start-page: 35
  year: 2019
  end-page: 41
  ident: b27
  article-title: Tree-based attack–defense model for risk assessment in multi-UAV networks
  publication-title: IEEE Consum. Electron. Mag.
– start-page: 3153
  year: 2011
  end-page: 3160
  ident: b34
  article-title: A large-scale benchmark dataset for event recognition in surveillance video
  publication-title: CVPR 2011
– volume: 10
  start-page: 3652
  year: 2017
  end-page: 3664
  ident: b21
  article-title: Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 5
  start-page: 1698
  year: 2018
  end-page: 1707
  ident: b26
  article-title: MVO-based 2-D path planning scheme for providing quality of service in UAV environment
  publication-title: IEEE Internet Things J.
– start-page: 1
  year: 2015
  end-page: 6
  ident: b36
  article-title: Privacy in mini-drone based video surveillance
  publication-title: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, Vol. 4
– year: 2018
  ident: b19
  article-title: Comprehensive analysis of deep learning based vehicle detection in aerial images
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 2
  year: 2009
  ident: b32
  article-title: Spatio-temporal relationship match: video structure comparison for recognition of complex human activities
  publication-title: ICCV, Vol. 1
– start-page: 549
  year: 2016
  end-page: 565
  ident: b37
  article-title: Learning social etiquette: Human trajectory understanding in crowded scenes
  publication-title: European Conference on Computer Vision
– year: 2017
  ident: 10.1016/j.comcom.2020.03.012_b10
– ident: 10.1016/j.comcom.2020.03.012_b35
  doi: 10.1109/ICCV.2013.396
– volume: 2016
  year: 2016
  ident: 10.1016/j.comcom.2020.03.012_b24
  article-title: Real-time obstacle detection system in indoor environment for the visually impaired using microsoft kinect sensor
  publication-title: J. Sens.
  doi: 10.1155/2016/3754918
– start-page: 21
  year: 2016
  ident: 10.1016/j.comcom.2020.03.012_b15
  article-title: Ssd: Single shot multibox detector
– start-page: 1
  year: 2018
  ident: 10.1016/j.comcom.2020.03.012_b31
  article-title: Region proposal approach for human detection on aerial imagery
– volume: 28
  start-page: 288
  issue: 2
  year: 2018
  ident: 10.1016/j.comcom.2020.03.012_b23
  article-title: An obstacle detection method for visually impaired persons by ground plane removal using speeded-up robust features and gray level co-occurrence matrix
  publication-title: Pattern Recognit. Image Anal.
  doi: 10.1134/S1054661818020086
– volume: 141
  start-page: 152
  year: 2015
  ident: 10.1016/j.comcom.2020.03.012_b6
  article-title: Recent methods and databases in vision-based hand gesture recognition: a review
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2015.08.004
– start-page: 311
  year: 2017
  ident: 10.1016/j.comcom.2020.03.012_b17
  article-title: Fast deep vehicle detection in aerial images
– volume: 18
  start-page: 2244
  issue: 7
  year: 2018
  ident: 10.1016/j.comcom.2020.03.012_b22
  article-title: Using deep learning and low-cost RGB and thermal cameras to detect pedestrians in aerial images captured by multirotor UAV
  publication-title: Sensors
  doi: 10.3390/s18072244
– volume: 54
  start-page: 51
  issue: 1
  year: 2017
  ident: 10.1016/j.comcom.2020.03.012_b30
  article-title: Car detection in aerial images of dense urban areas
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2017.2732832
– volume: 104
  start-page: 154
  issue: 2
  year: 2013
  ident: 10.1016/j.comcom.2020.03.012_b9
  article-title: Selective search for object recognition
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-013-0620-5
– start-page: 198
  year: 2016
  ident: 10.1016/j.comcom.2020.03.012_b39
  article-title: End-to-end training of object class detectors for mean average precision
– year: 2018
  ident: 10.1016/j.comcom.2020.03.012_b19
  article-title: Comprehensive analysis of deep learning based vehicle detection in aerial images
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 3153
  year: 2011
  ident: 10.1016/j.comcom.2020.03.012_b34
  article-title: A large-scale benchmark dataset for event recognition in surveillance video
– volume: 76
  start-page: 21651
  issue: 20
  year: 2017
  ident: 10.1016/j.comcom.2020.03.012_b18
  article-title: Vehicle detection from high-resolution aerial images using spatial pyramid pooling-based deep convolutional neural networks
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-016-4043-5
– start-page: 549
  year: 2016
  ident: 10.1016/j.comcom.2020.03.012_b37
  article-title: Learning social etiquette: Human trajectory understanding in crowded scenes
– start-page: 825
  year: 2016
  ident: 10.1016/j.comcom.2020.03.012_b13
  article-title: Saliency detection with recurrent fully convolutional networks
– ident: 10.1016/j.comcom.2020.03.012_b8
  doi: 10.1007/978-3-030-11012-3_9
– ident: 10.1016/j.comcom.2020.03.012_b11
  doi: 10.1109/ICCV.2015.169
– volume: 32
  start-page: 42
  issue: 3
  year: 2018
  ident: 10.1016/j.comcom.2020.03.012_b25
  article-title: UAV-empowered edge computing environment for cyber-threat detection in smart vehicles
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2018.1700286
– start-page: 317
  year: 2018
  ident: 10.1016/j.comcom.2020.03.012_b28
  article-title: Performance comparison of deep learning techniques for recognizing birds in aerial images
– start-page: 500
  year: 2011
  ident: 10.1016/j.comcom.2020.03.012_b33
  article-title: Tracking body and hands for gesture recognition: Natops aircraft handling signals database
– start-page: 1
  year: 2015
  ident: 10.1016/j.comcom.2020.03.012_b36
  article-title: Privacy in mini-drone based video surveillance
– start-page: 91
  year: 2015
  ident: 10.1016/j.comcom.2020.03.012_b12
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
– volume: 32
  start-page: 1627
  issue: 9
  year: 2009
  ident: 10.1016/j.comcom.2020.03.012_b16
  article-title: Object detection with discriminatively trained part-based models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.167
– ident: 10.1016/j.comcom.2020.03.012_b14
  doi: 10.1109/CVPR.2016.91
– year: 2012
  ident: 10.1016/j.comcom.2020.03.012_b2
– volume: 3
  start-page: 21
  issue: 2
  year: 2017
  ident: 10.1016/j.comcom.2020.03.012_b29
  article-title: Object recognition in aerial images using convolutional neural networks
  publication-title: J. Imaging
  doi: 10.3390/jimaging3020021
– start-page: 2
  year: 2009
  ident: 10.1016/j.comcom.2020.03.012_b32
  article-title: Spatio-temporal relationship match: video structure comparison for recognition of complex human activities
– volume: 8
  start-page: 35
  issue: 6
  year: 2019
  ident: 10.1016/j.comcom.2020.03.012_b27
  article-title: Tree-based attack–defense model for risk assessment in multi-UAV networks
  publication-title: IEEE Consum. Electron. Mag.
  doi: 10.1109/MCE.2019.2941345
– volume: 10
  start-page: 3652
  issue: 8
  year: 2017
  ident: 10.1016/j.comcom.2020.03.012_b21
  article-title: Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2694890
– year: 2019
  ident: 10.1016/j.comcom.2020.03.012_b1
– year: 2016
  ident: 10.1016/j.comcom.2020.03.012_b5
– start-page: 234
  year: 2016
  ident: 10.1016/j.comcom.2020.03.012_b38
  article-title: Optimizing intersection-over-union in deep neural networks for image segmentation
– ident: 10.1016/j.comcom.2020.03.012_b4
  doi: 10.1109/CVPR.2017.502
– volume: 5
  start-page: 1698
  issue: 3
  year: 2018
  ident: 10.1016/j.comcom.2020.03.012_b26
  article-title: MVO-based 2-D path planning scheme for providing quality of service in UAV environment
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2796243
– start-page: 1005
  year: 2018
  ident: 10.1016/j.comcom.2020.03.012_b7
  article-title: Convolutional neural networks for aerial multi-label pedestrian detection
– volume: 12
  start-page: 1938
  issue: 9
  year: 2015
  ident: 10.1016/j.comcom.2020.03.012_b20
  article-title: Fast multiclass vehicle detection on aerial images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2439517
– ident: 10.1016/j.comcom.2020.03.012_b3
  doi: 10.1109/CVPRW.2017.267
SSID ssj0004773
Score 2.6689193
Snippet Due to the increasing capability of drones and requirements to monitor remote areas, drone surveillance is becoming popular. In case of natural disaster, it...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Action recognition
Aerial action dataset
Convolution neural network (CNN)
Drone surveillance
Object detection (OD)
Title Drone-surveillance for search and rescue in natural disaster
URI https://dx.doi.org/10.1016/j.comcom.2020.03.012
Volume 156
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg5eYzebbLILXkq1VMWeLPQWNi-oyFr68Ohvd7IPrSAKHnfJhDAJM1_IN98gdMl0IqVjlsBxsoTL3JIsNZRIbwx3UmgZheLkx7EYTfj9NJm20KCphQm0yjr2VzG9jNb1n17tzd58NuuVtCQmBAcIQkMnpVDBzmXQz796_6J5cFm9MgcaYxjdlM-VHC-YO3BGYsBMpdQpjX9OTxspZ7iHdmusiPvVcvZRyxUHaGdDQfAQXd8sXgtHluvFmwv9g2D5GGAorg4wzguL4T5t1g7PClyKeMKEdrbMgz7CEZoMb58GI1I3RCAGkP2KpMJ4lzkuHeRdGulIZFqmzEgGWdpr66xhMtWxdiKzUZ6mNKAfA5eg2IoMoNwxahewqhOEE0299BnXVsRcMp9pT6WnPoFZ4ji1HcQaPyhTq4WHphUvqqGFPavKeyp4T0VMgfc6iHxazSu1jD_Gy8bF6tuuKwjov1qe_tvyDG2Hr_AiRJNz1F4t1u4CgMVKd8uT00Vb_buH0fgDgmfNCA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe1AP4hPrMwevS7PZZDcBL0UtqX2cWuhtyb6gIrH04e93Ng-tIApek8yy-TLMfEtmvkHojsqIc0M1BnfSOOSZxkmsCOZWqdBwJrnvmpNHY5ZOw-dZNGugh7oXxpVVVrG_jOlFtK6udCo0O4v5vFOUJVHGQqAgxE1S2kEtp04Fzt7q9gfp-Ks9kpc_ml0lozOoO-iKMi9Y3pWNBECbCrVTEvycobayTu8QHVR00euWOzpCDZMfo_0tEcETdP-4fMsNXm2W78aNEII38ICJeqUPe1muPThSq43x5rlX6HjCgnq-ypxEwima9p4mDymuZiJgBeR-jWOmrElMyA2kXuJLnyWSx1RxConaSm20ojyWgTQs0X4Wx8QRIAXnoECzBNjcGWrmsKtz5EWSWG6TUGoWAGw2kZZwS2wEqwRBrNuI1jgIVQmGu7kVr6KuDHsRJXrCoSd8KgC9NsKfVotSMOOP53kNsfj24QXE9F8tL_5teYt208loKIb98eAS7bk77gcRia5Qc73cmGvgGWt5U_nRB5xWz7k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drone-surveillance+for+search+and+rescue+in+natural+disaster&rft.jtitle=Computer+communications&rft.au=Mishra%2C+Balmukund&rft.au=Garg%2C+Deepak&rft.au=Narang%2C+Pratik&rft.au=Mishra%2C+Vipul&rft.date=2020-04-15&rft.issn=0140-3664&rft.volume=156&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1016%2Fj.comcom.2020.03.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_comcom_2020_03_012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon