Drone-surveillance for search and rescue in natural disaster
Due to the increasing capability of drones and requirements to monitor remote areas, drone surveillance is becoming popular. In case of natural disaster, it can scan the wide affected-area quickly and make the search and rescue (SAR) faster to save more human lives. However, using autonomous drone f...
Saved in:
Published in | Computer communications Vol. 156; pp. 1 - 10 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.04.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0140-3664 1873-703X |
DOI | 10.1016/j.comcom.2020.03.012 |
Cover
Loading…
Abstract | Due to the increasing capability of drones and requirements to monitor remote areas, drone surveillance is becoming popular. In case of natural disaster, it can scan the wide affected-area quickly and make the search and rescue (SAR) faster to save more human lives. However, using autonomous drone for search and rescue is least explored and require attention of researchers to develop efficient algorithms in autonomous drone surveillance. To develop an automated application using recent advancement of deep-learning, dataset is the key. For this, a substantial amount of human detection and action detection dataset is required to train the deep-learning models. As dataset of drone surveillance in SAR is not available in literature, this paper proposes an image dataset for human action detection for SAR. Proposed dataset contains 2000 unique images filtered from 75,000 images. It contains 30000 human instances of different actions. Also, in this paper various experiments are conducted with proposed dataset, publicly available dataset, and stat-of-the art detection method. Our experiments shows that existing models are not adequate for critical applications such as SAR, and that motivates us to propose a model which is inspired by the pyramidal feature extraction of SSD for human detection and action recognition Proposed model achieves 0.98mAP when applied on proposed dataset which is a significant contribution. In addition, proposed model achieve 7% higher mAP value when applied to standard Okutama dataset in comparison with the state-of-the-art detection models in literature. |
---|---|
AbstractList | Due to the increasing capability of drones and requirements to monitor remote areas, drone surveillance is becoming popular. In case of natural disaster, it can scan the wide affected-area quickly and make the search and rescue (SAR) faster to save more human lives. However, using autonomous drone for search and rescue is least explored and require attention of researchers to develop efficient algorithms in autonomous drone surveillance. To develop an automated application using recent advancement of deep-learning, dataset is the key. For this, a substantial amount of human detection and action detection dataset is required to train the deep-learning models. As dataset of drone surveillance in SAR is not available in literature, this paper proposes an image dataset for human action detection for SAR. Proposed dataset contains 2000 unique images filtered from 75,000 images. It contains 30000 human instances of different actions. Also, in this paper various experiments are conducted with proposed dataset, publicly available dataset, and stat-of-the art detection method. Our experiments shows that existing models are not adequate for critical applications such as SAR, and that motivates us to propose a model which is inspired by the pyramidal feature extraction of SSD for human detection and action recognition Proposed model achieves 0.98mAP when applied on proposed dataset which is a significant contribution. In addition, proposed model achieve 7% higher mAP value when applied to standard Okutama dataset in comparison with the state-of-the-art detection models in literature. |
Author | Narang, Pratik Garg, Deepak Mishra, Vipul Mishra, Balmukund |
Author_xml | – sequence: 1 givenname: Balmukund surname: Mishra fullname: Mishra, Balmukund email: Balmukund.mishra92@gmail.com organization: Department of Computer Science and Engineering, Bennett University, Greater Noida, India – sequence: 2 givenname: Deepak surname: Garg fullname: Garg, Deepak email: deepakgarg108@gmail.com organization: Department of Computer Science and Engineering, Bennett University, Greater Noida, India – sequence: 3 givenname: Pratik surname: Narang fullname: Narang, Pratik email: pratik.narang@pilani.bits-pilani.ac.in organization: Department of CSIS, BITS Pilani, Pilani, India – sequence: 4 givenname: Vipul surname: Mishra fullname: Mishra, Vipul email: vkm.iiti@gmail.com organization: Department of Computer Science and Engineering, Bennett University, Greater Noida, India |
BookMark | eNqFkM1KAzEURoMo2FbfwEVeYMabH5KJiCD1FwpuFNyFTHIHU6YzkqQF394pdeVC4cJdnQPfmZPjYRyQkAsGNQOmLte1HzfT1Rw41CBqYPyIzFijRaVBvB-TGTAJlVBKnpJ5zmsAkFqLGbm-S5Orytu0w9j3bvBIuzHRjC75D-qGQBNmv0UaBzq4sk2upyFmlwumM3LSuT7j-c9fkLeH-9flU7V6eXxe3q4qL0CVqlG-Q4NSI5eMQQvKtLoRXgvGZdcGDF7opuUtKhPANQ0ThhvPpOFBGcPFgsiD16cx54Sd_Uxx49KXZWD3BezaHgrYfQELwk4FJuzqF-ZjcSWOQ0ku9v_BNwcYp2G7iMlmH3HKE2JCX2wY49-Cb_ZVe40 |
CitedBy_id | crossref_primary_10_32604_cmes_2023_026476 crossref_primary_10_1177_01423312241295828 crossref_primary_10_3390_logistics9020045 crossref_primary_10_30785_mbud_1333736 crossref_primary_10_1109_LGRS_2022_3185420 crossref_primary_10_1016_j_ijdrr_2020_102030 crossref_primary_10_2139_ssrn_4137561 crossref_primary_10_1109_TNET_2023_3297876 crossref_primary_10_29109_gujsc_1311627 crossref_primary_10_1007_s11071_022_07294_w crossref_primary_10_3390_rs12203295 crossref_primary_10_1109_TASE_2024_3461726 crossref_primary_10_1126_scirobotics_ado6187 crossref_primary_10_1016_j_robot_2023_104492 crossref_primary_10_1016_j_paerosci_2023_100899 crossref_primary_10_1109_ACCESS_2023_3315130 crossref_primary_10_1080_23307706_2022_2141358 crossref_primary_10_3390_fi13070174 crossref_primary_10_3390_electronics12102310 crossref_primary_10_1016_j_autcon_2023_105253 crossref_primary_10_3389_fpubh_2022_1019626 crossref_primary_10_3390_ijgi9070425 crossref_primary_10_1007_s00607_021_01022_9 crossref_primary_10_1016_j_autcon_2024_105714 crossref_primary_10_1109_TVT_2022_3188769 crossref_primary_10_3390_biomimetics9110694 crossref_primary_10_3390_electronics11152343 crossref_primary_10_3390_electronics12030595 crossref_primary_10_1016_j_future_2023_03_027 crossref_primary_10_1016_j_ijdrr_2021_102567 crossref_primary_10_3390_su132212841 crossref_primary_10_1007_s40747_024_01429_9 crossref_primary_10_3390_drones7050307 crossref_primary_10_3390_drones8090477 crossref_primary_10_1007_s11277_024_11543_z crossref_primary_10_1155_2023_3001812 crossref_primary_10_3390_machines12050337 crossref_primary_10_1007_s43926_021_00014_7 crossref_primary_10_1016_j_scitotenv_2020_138858 crossref_primary_10_1038_s41597_023_02810_y crossref_primary_10_3390_drones7060396 crossref_primary_10_3389_fmars_2024_1486894 crossref_primary_10_1016_j_cie_2024_110730 crossref_primary_10_1016_j_compag_2021_106560 crossref_primary_10_1007_s42979_024_02650_6 crossref_primary_10_1109_ACCESS_2021_3087509 crossref_primary_10_1051_itmconf_20235702008 crossref_primary_10_1080_08839514_2024_2449296 crossref_primary_10_1061_JCEMD4_COENG_14787 crossref_primary_10_1016_j_mex_2021_101472 crossref_primary_10_1109_TCSVT_2023_3281557 crossref_primary_10_3390_electronics13163319 crossref_primary_10_3390_s22051786 crossref_primary_10_1007_s11356_021_13823_8 crossref_primary_10_1007_s42405_023_00632_1 crossref_primary_10_1016_j_adhoc_2022_102937 crossref_primary_10_3390_app11199173 crossref_primary_10_3390_drones7060394 crossref_primary_10_1109_LSP_2023_3286787 crossref_primary_10_1016_j_ijcce_2021_11_005 crossref_primary_10_2139_ssrn_4125865 crossref_primary_10_3390_drones8050193 crossref_primary_10_1109_JSYST_2022_3189011 crossref_primary_10_1007_s11042_024_19611_z crossref_primary_10_1109_TIP_2022_3217695 crossref_primary_10_3390_drones4020015 crossref_primary_10_1109_TRO_2025_3543263 crossref_primary_10_1016_j_comcom_2024_07_011 crossref_primary_10_3390_app11020675 crossref_primary_10_1371_journal_pone_0319603 crossref_primary_10_1109_TASE_2024_3395409 crossref_primary_10_3390_asi6040068 crossref_primary_10_34219_2078_8320_2020_11_4_50_59 crossref_primary_10_1109_JIOT_2024_3394740 crossref_primary_10_1016_j_measurement_2024_116065 crossref_primary_10_3390_a16050229 crossref_primary_10_3390_app11125414 crossref_primary_10_1016_j_cogr_2021_11_001 crossref_primary_10_3390_computation9120127 crossref_primary_10_1016_j_comgeo_2023_102077 crossref_primary_10_3390_drones7100633 crossref_primary_10_1016_j_ijdrr_2023_104094 crossref_primary_10_1016_j_dsp_2024_104881 crossref_primary_10_1109_TIM_2023_3346508 crossref_primary_10_1145_3678549 crossref_primary_10_3390_rs14174355 crossref_primary_10_1360_SST_2021_0374 crossref_primary_10_3390_drones7110675 crossref_primary_10_3390_su16177618 crossref_primary_10_3390_su142214678 crossref_primary_10_1007_s12541_022_00714_2 crossref_primary_10_1016_j_heliyon_2024_e28111 crossref_primary_10_3390_electronics12173567 crossref_primary_10_1016_j_patcog_2023_109505 crossref_primary_10_1360_SSI_2024_0089 crossref_primary_10_3390_s23229216 crossref_primary_10_1007_s11042_024_19891_5 crossref_primary_10_3390_drones7060384 crossref_primary_10_1016_j_ijdrr_2023_104027 crossref_primary_10_1088_1742_6596_2858_1_012024 crossref_primary_10_2139_ssrn_4100367 crossref_primary_10_3390_su14148825 crossref_primary_10_3390_math11244886 crossref_primary_10_3390_drones6100279 crossref_primary_10_1016_j_cosrev_2025_100736 crossref_primary_10_1080_01431161_2022_2061316 crossref_primary_10_1109_ACCESS_2023_3329195 crossref_primary_10_1109_ACCESS_2024_3357148 crossref_primary_10_1109_TRO_2024_3354161 crossref_primary_10_1177_02783649211004959 crossref_primary_10_1007_s13205_020_02581_y crossref_primary_10_1109_TII_2022_3174113 crossref_primary_10_1109_TASE_2024_3432405 crossref_primary_10_3390_rs12203386 crossref_primary_10_1016_j_rsase_2022_100896 crossref_primary_10_1016_j_jvcir_2024_104298 crossref_primary_10_1109_ACCESS_2022_3201889 crossref_primary_10_1088_2634_4386_ad76d5 crossref_primary_10_1007_s13272_024_00747_5 crossref_primary_10_1016_j_jnlssr_2024_02_004 crossref_primary_10_1007_s00521_021_06830_w crossref_primary_10_1088_1755_1315_1261_1_012021 crossref_primary_10_1016_j_ijdrr_2022_102859 crossref_primary_10_1007_s12145_023_00972_2 crossref_primary_10_1109_TAES_2022_3199196 crossref_primary_10_1109_TMC_2021_3135894 crossref_primary_10_1109_TITS_2022_3189948 crossref_primary_10_1016_j_icte_2022_04_011 crossref_primary_10_1016_j_displa_2025_102994 crossref_primary_10_3390_s23052569 crossref_primary_10_3390_drones6020043 crossref_primary_10_1016_j_foreco_2023_121530 crossref_primary_10_1017_jfm_2022_913 crossref_primary_10_3390_app12147333 crossref_primary_10_3390_rs16203753 crossref_primary_10_1002_ett_70023 crossref_primary_10_1016_j_ast_2024_109608 crossref_primary_10_1016_j_aei_2024_102427 crossref_primary_10_1017_jfm_2024_592 crossref_primary_10_1016_j_vehcom_2022_100474 crossref_primary_10_3390_drones5030087 crossref_primary_10_1016_j_comnet_2024_110695 crossref_primary_10_1016_j_eswa_2022_119408 crossref_primary_10_1109_ACCESS_2022_3154388 crossref_primary_10_1109_ACCESS_2022_3182315 crossref_primary_10_3390_s24113349 crossref_primary_10_1016_j_pdisas_2024_100348 crossref_primary_10_1109_ACCESS_2021_3134459 crossref_primary_10_1109_ACCESS_2024_3479988 crossref_primary_10_7731_KIFSE_d4d536d0 crossref_primary_10_1155_2023_5419384 crossref_primary_10_1080_0305215X_2023_2283606 crossref_primary_10_1007_s44163_024_00209_1 crossref_primary_10_1109_TGRS_2024_3417610 crossref_primary_10_1109_TIV_2023_3333768 |
Cites_doi | 10.1109/ICCV.2013.396 10.1155/2016/3754918 10.1134/S1054661818020086 10.1016/j.cviu.2015.08.004 10.3390/s18072244 10.1109/TAES.2017.2732832 10.1007/s11263-013-0620-5 10.1007/s11042-016-4043-5 10.1007/978-3-030-11012-3_9 10.1109/ICCV.2015.169 10.1109/MNET.2018.1700286 10.1109/TPAMI.2009.167 10.1109/CVPR.2016.91 10.3390/jimaging3020021 10.1109/MCE.2019.2941345 10.1109/JSTARS.2017.2694890 10.1109/CVPR.2017.502 10.1109/JIOT.2018.2796243 10.1109/LGRS.2015.2439517 10.1109/CVPRW.2017.267 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.comcom.2020.03.012 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-703X |
EndPage | 10 |
ExternalDocumentID | 10_1016_j_comcom_2020_03_012 S0140366419318602 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SST SSV SSZ T5K WH7 ZMT ~G- 07C 29F AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD F0J FEDTE FGOYB HLZ HVGLF HZ~ R2- RIG SBC SEW SSH TAE UHS VH1 VOH WUQ XPP ZY4 |
ID | FETCH-LOGICAL-c306t-86cfe9e47e24110b069b783c73124fbdedc378b2be69d0a8813929c1492d69923 |
IEDL.DBID | .~1 |
ISSN | 0140-3664 |
IngestDate | Thu Apr 24 23:11:18 EDT 2025 Tue Jul 01 02:43:05 EDT 2025 Fri Feb 23 02:48:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Action recognition Object detection (OD) Convolution neural network (CNN) Aerial action dataset Drone surveillance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-86cfe9e47e24110b069b783c73124fbdedc378b2be69d0a8813929c1492d69923 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_comcom_2020_03_012 crossref_citationtrail_10_1016_j_comcom_2020_03_012 elsevier_sciencedirect_doi_10_1016_j_comcom_2020_03_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-15 |
PublicationDateYYYYMMDD | 2020-04-15 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Computer communications |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sommer, Schuchert, Beyerer (b17) 2017 Kumar, Garg, Singh, Batra, Kumar, You (b26) 2018; 5 Dukowitz (b1) 2019 Pisharady, Saerbeck (b6) 2015; 141 Bonetto, Korshunov, Ramponi, Ebrahimi (b36) 2015 de Oliveira, Wehrmeister (b22) 2018; 18 Henderson, Ferrari (b39) 2016 Jindal, Aggarwal, Gupta (b23) 2018; 28 Joao Carreira, Andrew Zisserman, Quo vadis, action recognition, a new model and the kinetics dataset, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6299–6308. Pham, Le, Vuillerme (b24) 2016; 2016 Rahman, Wang (b38) 2016 Deng, Sun, Zhou, Zhao, Zou (b21) 2017; 10 Hueihan Jhuang, Juergen Gall, Silvia Zuffi, Cordelia Schmid, Michael J Black, Towards understanding action recognition, in: Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 3192–3199. Sommer, Schuchert, Beyerer (b19) 2018 Asanka G. Perera, Yee Wei Law, Javaan Chahl, UAV-GESTURE: a dataset for UAV control and gesture recognition, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018. Soomro, Zamir, Shah (b2) 2012 Garg, Aujla, Kumar, Batra (b27) 2019; 8 Marušić, Božić-Štulić, Gotovac, Marušić (b31) 2018 Song, Demirdjian, Davis (b33) 2011 Oh, Hoogs, Perera, Cuntoor, Chen, Lee, Mukherjee, Aggarwal, Lee, Davis (b34) 2011 Felzenszwalb, Girshick, McAllester, Ramanan (b16) 2009; 32 Purkait, Zhao, Zach (b10) 2017 Liu, Mattyus (b20) 2015; 12 Soleimani, Nasrabadi (b7) 2018 Radovic, Adarkwa, Wang (b29) 2017; 3 Kang, Wildes (b5) 2016 Ross Girshick, Fast r-cnn, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1440–1448. Robicquet, Sadeghian, Alahi, Savarese (b37) 2016 Wang, Wang, Lu, Zhang, Ruan (b13) 2016 Uijlings, Van De Sande, Gevers, Smeulders (b9) 2013; 104 Mohammadamin Barekatain, Miquel Martí, Hsueh-Fu Shih, Samuel Murray, Kotaro Nakayama, Yutaka Matsuo, Helmut Prendinger, Okutama-action: An aerial view video dataset for concurrent human action detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017, pp. 28–35. Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788. Qu, Zhang, Sun (b18) 2017; 76 Ryoo, Aggarwal (b32) 2009 ElMikaty, Stathaki (b30) 2017; 54 Ren, He, Girshick, Sun (b12) 2015 Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (b15) 2016 Garg, Singh, Batra, Kumar, Yang (b25) 2018; 32 Liu, Sun, Highsmith, Wergeles, Sartwell, Raedeke, Mitchell, Hagy, Gilbert, Lubinski (b28) 2018 10.1016/j.comcom.2020.03.012_b3 10.1016/j.comcom.2020.03.012_b4 Pham (10.1016/j.comcom.2020.03.012_b24) 2016; 2016 Garg (10.1016/j.comcom.2020.03.012_b25) 2018; 32 Radovic (10.1016/j.comcom.2020.03.012_b29) 2017; 3 Kumar (10.1016/j.comcom.2020.03.012_b26) 2018; 5 Uijlings (10.1016/j.comcom.2020.03.012_b9) 2013; 104 Ren (10.1016/j.comcom.2020.03.012_b12) 2015 Felzenszwalb (10.1016/j.comcom.2020.03.012_b16) 2009; 32 Marušić (10.1016/j.comcom.2020.03.012_b31) 2018 Pisharady (10.1016/j.comcom.2020.03.012_b6) 2015; 141 10.1016/j.comcom.2020.03.012_b8 Jindal (10.1016/j.comcom.2020.03.012_b23) 2018; 28 Soleimani (10.1016/j.comcom.2020.03.012_b7) 2018 Robicquet (10.1016/j.comcom.2020.03.012_b37) 2016 de Oliveira (10.1016/j.comcom.2020.03.012_b22) 2018; 18 Sommer (10.1016/j.comcom.2020.03.012_b17) 2017 Song (10.1016/j.comcom.2020.03.012_b33) 2011 Liu (10.1016/j.comcom.2020.03.012_b28) 2018 Bonetto (10.1016/j.comcom.2020.03.012_b36) 2015 Henderson (10.1016/j.comcom.2020.03.012_b39) 2016 Kang (10.1016/j.comcom.2020.03.012_b5) 2016 10.1016/j.comcom.2020.03.012_b35 Deng (10.1016/j.comcom.2020.03.012_b21) 2017; 10 10.1016/j.comcom.2020.03.012_b11 Oh (10.1016/j.comcom.2020.03.012_b34) 2011 Purkait (10.1016/j.comcom.2020.03.012_b10) 2017 Qu (10.1016/j.comcom.2020.03.012_b18) 2017; 76 Garg (10.1016/j.comcom.2020.03.012_b27) 2019; 8 Dukowitz (10.1016/j.comcom.2020.03.012_b1) 2019 Liu (10.1016/j.comcom.2020.03.012_b15) 2016 Rahman (10.1016/j.comcom.2020.03.012_b38) 2016 Sommer (10.1016/j.comcom.2020.03.012_b19) 2018 Ryoo (10.1016/j.comcom.2020.03.012_b32) 2009 Wang (10.1016/j.comcom.2020.03.012_b13) 2016 Liu (10.1016/j.comcom.2020.03.012_b20) 2015; 12 Soomro (10.1016/j.comcom.2020.03.012_b2) 2012 ElMikaty (10.1016/j.comcom.2020.03.012_b30) 2017; 54 10.1016/j.comcom.2020.03.012_b14 |
References_xml | – reference: Joao Carreira, Andrew Zisserman, Quo vadis, action recognition, a new model and the kinetics dataset, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6299–6308. – reference: Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788. – start-page: 198 year: 2016 end-page: 213 ident: b39 article-title: End-to-end training of object class detectors for mean average precision publication-title: Asian Conference on Computer Vision – volume: 104 start-page: 154 year: 2013 end-page: 171 ident: b9 article-title: Selective search for object recognition publication-title: Int. J. Comput. Vis. – volume: 2016 year: 2016 ident: b24 article-title: Real-time obstacle detection system in indoor environment for the visually impaired using microsoft kinect sensor publication-title: J. Sens. – reference: Hueihan Jhuang, Juergen Gall, Silvia Zuffi, Cordelia Schmid, Michael J Black, Towards understanding action recognition, in: Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 3192–3199. – year: 2017 ident: b10 article-title: SPP-NEt: Deep absolute pose regression with synthetic views – reference: Ross Girshick, Fast r-cnn, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1440–1448. – volume: 3 start-page: 21 year: 2017 ident: b29 article-title: Object recognition in aerial images using convolutional neural networks publication-title: J. Imaging – volume: 141 start-page: 152 year: 2015 end-page: 165 ident: b6 article-title: Recent methods and databases in vision-based hand gesture recognition: a review publication-title: Comput. Vis. Image Underst. – volume: 18 start-page: 2244 year: 2018 ident: b22 article-title: Using deep learning and low-cost RGB and thermal cameras to detect pedestrians in aerial images captured by multirotor UAV publication-title: Sensors – start-page: 234 year: 2016 end-page: 244 ident: b38 article-title: Optimizing intersection-over-union in deep neural networks for image segmentation publication-title: International Symposium on Visual Computing – start-page: 311 year: 2017 end-page: 319 ident: b17 article-title: Fast deep vehicle detection in aerial images publication-title: 2017 IEEE Winter Conference on Applications of Computer Vision – start-page: 317 year: 2018 end-page: 324 ident: b28 article-title: Performance comparison of deep learning techniques for recognizing birds in aerial images publication-title: 2018 IEEE Third International Conference on Data Science in Cyberspace – reference: Mohammadamin Barekatain, Miquel Martí, Hsueh-Fu Shih, Samuel Murray, Kotaro Nakayama, Yutaka Matsuo, Helmut Prendinger, Okutama-action: An aerial view video dataset for concurrent human action detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017, pp. 28–35. – start-page: 1 year: 2018 end-page: 6 ident: b31 article-title: Region proposal approach for human detection on aerial imagery publication-title: 2018 3rd International Conference on Smart and Sustainable Technologies – start-page: 21 year: 2016 end-page: 37 ident: b15 article-title: Ssd: Single shot multibox detector publication-title: European Conference on Computer Vision – year: 2019 ident: b1 article-title: Drones in search and rescue: 5 stories showcasing ways search and rescue uses drones to save lives – start-page: 91 year: 2015 end-page: 99 ident: b12 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Advances in Neural Information Processing Systems – volume: 28 start-page: 288 year: 2018 end-page: 300 ident: b23 article-title: An obstacle detection method for visually impaired persons by ground plane removal using speeded-up robust features and gray level co-occurrence matrix publication-title: Pattern Recognit. Image Anal. – start-page: 1005 year: 2018 end-page: 1010 ident: b7 article-title: Convolutional neural networks for aerial multi-label pedestrian detection publication-title: 2018 21st International Conference on Information Fusion – year: 2016 ident: b5 article-title: Review of action recognition and detection methods – reference: Asanka G. Perera, Yee Wei Law, Javaan Chahl, UAV-GESTURE: a dataset for UAV control and gesture recognition, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018. – start-page: 500 year: 2011 end-page: 506 ident: b33 article-title: Tracking body and hands for gesture recognition: Natops aircraft handling signals database publication-title: Face and Gesture 2011 – volume: 12 start-page: 1938 year: 2015 end-page: 1942 ident: b20 article-title: Fast multiclass vehicle detection on aerial images publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 76 start-page: 21651 year: 2017 end-page: 21663 ident: b18 article-title: Vehicle detection from high-resolution aerial images using spatial pyramid pooling-based deep convolutional neural networks publication-title: Multimedia Tools Appl. – volume: 54 start-page: 51 year: 2017 end-page: 63 ident: b30 article-title: Car detection in aerial images of dense urban areas publication-title: IEEE Trans. Aerosp. Electron. Syst. – year: 2012 ident: b2 article-title: UCF101: A dataset of 101 human actions classes from videos in the wild – start-page: 825 year: 2016 end-page: 841 ident: b13 article-title: Saliency detection with recurrent fully convolutional networks publication-title: European Conference on Computer Vision – volume: 32 start-page: 1627 year: 2009 end-page: 1645 ident: b16 article-title: Object detection with discriminatively trained part-based models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 32 start-page: 42 year: 2018 end-page: 51 ident: b25 article-title: UAV-empowered edge computing environment for cyber-threat detection in smart vehicles publication-title: IEEE Netw. – volume: 8 start-page: 35 year: 2019 end-page: 41 ident: b27 article-title: Tree-based attack–defense model for risk assessment in multi-UAV networks publication-title: IEEE Consum. Electron. Mag. – start-page: 3153 year: 2011 end-page: 3160 ident: b34 article-title: A large-scale benchmark dataset for event recognition in surveillance video publication-title: CVPR 2011 – volume: 10 start-page: 3652 year: 2017 end-page: 3664 ident: b21 article-title: Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 5 start-page: 1698 year: 2018 end-page: 1707 ident: b26 article-title: MVO-based 2-D path planning scheme for providing quality of service in UAV environment publication-title: IEEE Internet Things J. – start-page: 1 year: 2015 end-page: 6 ident: b36 article-title: Privacy in mini-drone based video surveillance publication-title: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, Vol. 4 – year: 2018 ident: b19 article-title: Comprehensive analysis of deep learning based vehicle detection in aerial images publication-title: IEEE Trans. Circuits Syst. Video Technol. – start-page: 2 year: 2009 ident: b32 article-title: Spatio-temporal relationship match: video structure comparison for recognition of complex human activities publication-title: ICCV, Vol. 1 – start-page: 549 year: 2016 end-page: 565 ident: b37 article-title: Learning social etiquette: Human trajectory understanding in crowded scenes publication-title: European Conference on Computer Vision – year: 2017 ident: 10.1016/j.comcom.2020.03.012_b10 – ident: 10.1016/j.comcom.2020.03.012_b35 doi: 10.1109/ICCV.2013.396 – volume: 2016 year: 2016 ident: 10.1016/j.comcom.2020.03.012_b24 article-title: Real-time obstacle detection system in indoor environment for the visually impaired using microsoft kinect sensor publication-title: J. Sens. doi: 10.1155/2016/3754918 – start-page: 21 year: 2016 ident: 10.1016/j.comcom.2020.03.012_b15 article-title: Ssd: Single shot multibox detector – start-page: 1 year: 2018 ident: 10.1016/j.comcom.2020.03.012_b31 article-title: Region proposal approach for human detection on aerial imagery – volume: 28 start-page: 288 issue: 2 year: 2018 ident: 10.1016/j.comcom.2020.03.012_b23 article-title: An obstacle detection method for visually impaired persons by ground plane removal using speeded-up robust features and gray level co-occurrence matrix publication-title: Pattern Recognit. Image Anal. doi: 10.1134/S1054661818020086 – volume: 141 start-page: 152 year: 2015 ident: 10.1016/j.comcom.2020.03.012_b6 article-title: Recent methods and databases in vision-based hand gesture recognition: a review publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2015.08.004 – start-page: 311 year: 2017 ident: 10.1016/j.comcom.2020.03.012_b17 article-title: Fast deep vehicle detection in aerial images – volume: 18 start-page: 2244 issue: 7 year: 2018 ident: 10.1016/j.comcom.2020.03.012_b22 article-title: Using deep learning and low-cost RGB and thermal cameras to detect pedestrians in aerial images captured by multirotor UAV publication-title: Sensors doi: 10.3390/s18072244 – volume: 54 start-page: 51 issue: 1 year: 2017 ident: 10.1016/j.comcom.2020.03.012_b30 article-title: Car detection in aerial images of dense urban areas publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2017.2732832 – volume: 104 start-page: 154 issue: 2 year: 2013 ident: 10.1016/j.comcom.2020.03.012_b9 article-title: Selective search for object recognition publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-013-0620-5 – start-page: 198 year: 2016 ident: 10.1016/j.comcom.2020.03.012_b39 article-title: End-to-end training of object class detectors for mean average precision – year: 2018 ident: 10.1016/j.comcom.2020.03.012_b19 article-title: Comprehensive analysis of deep learning based vehicle detection in aerial images publication-title: IEEE Trans. Circuits Syst. Video Technol. – start-page: 3153 year: 2011 ident: 10.1016/j.comcom.2020.03.012_b34 article-title: A large-scale benchmark dataset for event recognition in surveillance video – volume: 76 start-page: 21651 issue: 20 year: 2017 ident: 10.1016/j.comcom.2020.03.012_b18 article-title: Vehicle detection from high-resolution aerial images using spatial pyramid pooling-based deep convolutional neural networks publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-016-4043-5 – start-page: 549 year: 2016 ident: 10.1016/j.comcom.2020.03.012_b37 article-title: Learning social etiquette: Human trajectory understanding in crowded scenes – start-page: 825 year: 2016 ident: 10.1016/j.comcom.2020.03.012_b13 article-title: Saliency detection with recurrent fully convolutional networks – ident: 10.1016/j.comcom.2020.03.012_b8 doi: 10.1007/978-3-030-11012-3_9 – ident: 10.1016/j.comcom.2020.03.012_b11 doi: 10.1109/ICCV.2015.169 – volume: 32 start-page: 42 issue: 3 year: 2018 ident: 10.1016/j.comcom.2020.03.012_b25 article-title: UAV-empowered edge computing environment for cyber-threat detection in smart vehicles publication-title: IEEE Netw. doi: 10.1109/MNET.2018.1700286 – start-page: 317 year: 2018 ident: 10.1016/j.comcom.2020.03.012_b28 article-title: Performance comparison of deep learning techniques for recognizing birds in aerial images – start-page: 500 year: 2011 ident: 10.1016/j.comcom.2020.03.012_b33 article-title: Tracking body and hands for gesture recognition: Natops aircraft handling signals database – start-page: 1 year: 2015 ident: 10.1016/j.comcom.2020.03.012_b36 article-title: Privacy in mini-drone based video surveillance – start-page: 91 year: 2015 ident: 10.1016/j.comcom.2020.03.012_b12 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks – volume: 32 start-page: 1627 issue: 9 year: 2009 ident: 10.1016/j.comcom.2020.03.012_b16 article-title: Object detection with discriminatively trained part-based models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.167 – ident: 10.1016/j.comcom.2020.03.012_b14 doi: 10.1109/CVPR.2016.91 – year: 2012 ident: 10.1016/j.comcom.2020.03.012_b2 – volume: 3 start-page: 21 issue: 2 year: 2017 ident: 10.1016/j.comcom.2020.03.012_b29 article-title: Object recognition in aerial images using convolutional neural networks publication-title: J. Imaging doi: 10.3390/jimaging3020021 – start-page: 2 year: 2009 ident: 10.1016/j.comcom.2020.03.012_b32 article-title: Spatio-temporal relationship match: video structure comparison for recognition of complex human activities – volume: 8 start-page: 35 issue: 6 year: 2019 ident: 10.1016/j.comcom.2020.03.012_b27 article-title: Tree-based attack–defense model for risk assessment in multi-UAV networks publication-title: IEEE Consum. Electron. Mag. doi: 10.1109/MCE.2019.2941345 – volume: 10 start-page: 3652 issue: 8 year: 2017 ident: 10.1016/j.comcom.2020.03.012_b21 article-title: Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2694890 – year: 2019 ident: 10.1016/j.comcom.2020.03.012_b1 – year: 2016 ident: 10.1016/j.comcom.2020.03.012_b5 – start-page: 234 year: 2016 ident: 10.1016/j.comcom.2020.03.012_b38 article-title: Optimizing intersection-over-union in deep neural networks for image segmentation – ident: 10.1016/j.comcom.2020.03.012_b4 doi: 10.1109/CVPR.2017.502 – volume: 5 start-page: 1698 issue: 3 year: 2018 ident: 10.1016/j.comcom.2020.03.012_b26 article-title: MVO-based 2-D path planning scheme for providing quality of service in UAV environment publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2796243 – start-page: 1005 year: 2018 ident: 10.1016/j.comcom.2020.03.012_b7 article-title: Convolutional neural networks for aerial multi-label pedestrian detection – volume: 12 start-page: 1938 issue: 9 year: 2015 ident: 10.1016/j.comcom.2020.03.012_b20 article-title: Fast multiclass vehicle detection on aerial images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2439517 – ident: 10.1016/j.comcom.2020.03.012_b3 doi: 10.1109/CVPRW.2017.267 |
SSID | ssj0004773 |
Score | 2.6689193 |
Snippet | Due to the increasing capability of drones and requirements to monitor remote areas, drone surveillance is becoming popular. In case of natural disaster, it... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Action recognition Aerial action dataset Convolution neural network (CNN) Drone surveillance Object detection (OD) |
Title | Drone-surveillance for search and rescue in natural disaster |
URI | https://dx.doi.org/10.1016/j.comcom.2020.03.012 |
Volume | 156 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg5eYzebbLILXkq1VMWeLPQWNi-oyFr68Ohvd7IPrSAKHnfJhDAJM1_IN98gdMl0IqVjlsBxsoTL3JIsNZRIbwx3UmgZheLkx7EYTfj9NJm20KCphQm0yjr2VzG9jNb1n17tzd58NuuVtCQmBAcIQkMnpVDBzmXQz796_6J5cFm9MgcaYxjdlM-VHC-YO3BGYsBMpdQpjX9OTxspZ7iHdmusiPvVcvZRyxUHaGdDQfAQXd8sXgtHluvFmwv9g2D5GGAorg4wzguL4T5t1g7PClyKeMKEdrbMgz7CEZoMb58GI1I3RCAGkP2KpMJ4lzkuHeRdGulIZFqmzEgGWdpr66xhMtWxdiKzUZ6mNKAfA5eg2IoMoNwxahewqhOEE0299BnXVsRcMp9pT6WnPoFZ4ji1HcQaPyhTq4WHphUvqqGFPavKeyp4T0VMgfc6iHxazSu1jD_Gy8bF6tuuKwjov1qe_tvyDG2Hr_AiRJNz1F4t1u4CgMVKd8uT00Vb_buH0fgDgmfNCA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe1AP4hPrMwevS7PZZDcBL0UtqX2cWuhtyb6gIrH04e93Ng-tIApek8yy-TLMfEtmvkHojsqIc0M1BnfSOOSZxkmsCOZWqdBwJrnvmpNHY5ZOw-dZNGugh7oXxpVVVrG_jOlFtK6udCo0O4v5vFOUJVHGQqAgxE1S2kEtp04Fzt7q9gfp-Ks9kpc_ml0lozOoO-iKMi9Y3pWNBECbCrVTEvycobayTu8QHVR00euWOzpCDZMfo_0tEcETdP-4fMsNXm2W78aNEII38ICJeqUPe1muPThSq43x5rlX6HjCgnq-ypxEwima9p4mDymuZiJgBeR-jWOmrElMyA2kXuJLnyWSx1RxConaSm20ojyWgTQs0X4Wx8QRIAXnoECzBNjcGWrmsKtz5EWSWG6TUGoWAGw2kZZwS2wEqwRBrNuI1jgIVQmGu7kVr6KuDHsRJXrCoSd8KgC9NsKfVotSMOOP53kNsfj24QXE9F8tL_5teYt208loKIb98eAS7bk77gcRia5Qc73cmGvgGWt5U_nRB5xWz7k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drone-surveillance+for+search+and+rescue+in+natural+disaster&rft.jtitle=Computer+communications&rft.au=Mishra%2C+Balmukund&rft.au=Garg%2C+Deepak&rft.au=Narang%2C+Pratik&rft.au=Mishra%2C+Vipul&rft.date=2020-04-15&rft.issn=0140-3664&rft.volume=156&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1016%2Fj.comcom.2020.03.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_comcom_2020_03_012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon |