Expectation maximization algorithm over Fourier series (EMoFS)

The application of expectation maximization (EM) algorithm for the univariate problems in the literature suffers mainly from the requirement of the prior information on parametrized probability distribution function (pdf) and its family. For the highly dynamic environments, however, there is a high...

Full description

Saved in:
Bibliographic Details
Published inSignal processing Vol. 194; p. 108453
Main Author Yildiz, Mürsel
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The application of expectation maximization (EM) algorithm for the univariate problems in the literature suffers mainly from the requirement of the prior information on parametrized probability distribution function (pdf) and its family. For the highly dynamic environments, however, there is a high potential of mismatch between the domain characteristics and the pre-assumed distribution. The observed data may have been drawn based on an unknown pdf, which can additionally be combination of discontinuous functions with different types. For such cases, it is very likely that an arbitrary selection of a mixture distribution would yield worse performance. Even if the domain characteristics are captured correctly, i.e. the pdf family is known, another complexity may arise due to the fact that a tractable and a closed form cannot always be obtained. Addressing these two problems, we present the EM over Fourier Series (EMoFS) approach for univariate problems to be solved with EM. Our solution produces the true pdf approximately; thus sidesteps the necessity of a prior assumption. Additionally it guarantees a tractable and closed form for E-step. We verify and evaluate our model via comparison with state of the art solutions, theoretical experiments and real world problems.
AbstractList The application of expectation maximization (EM) algorithm for the univariate problems in the literature suffers mainly from the requirement of the prior information on parametrized probability distribution function (pdf) and its family. For the highly dynamic environments, however, there is a high potential of mismatch between the domain characteristics and the pre-assumed distribution. The observed data may have been drawn based on an unknown pdf, which can additionally be combination of discontinuous functions with different types. For such cases, it is very likely that an arbitrary selection of a mixture distribution would yield worse performance. Even if the domain characteristics are captured correctly, i.e. the pdf family is known, another complexity may arise due to the fact that a tractable and a closed form cannot always be obtained. Addressing these two problems, we present the EM over Fourier Series (EMoFS) approach for univariate problems to be solved with EM. Our solution produces the true pdf approximately; thus sidesteps the necessity of a prior assumption. Additionally it guarantees a tractable and closed form for E-step. We verify and evaluate our model via comparison with state of the art solutions, theoretical experiments and real world problems.
ArticleNumber 108453
Author Yildiz, Mürsel
Author_xml – sequence: 1
  givenname: Mürsel
  surname: Yildiz
  fullname: Yildiz, Mürsel
  email: muersel.yildiz@continental-corporation.com
  organization: Continental AG, Germany
BookMark eNqFkLFOwzAQhj0UibbwBgwZYUixG9txGCqhKgWkIgZgthz7Uhw1cWWHqvTpcRUmBph-3Z2-X_pugkad6wChK4JnBBN-28yC3ey8m83xnMSVoCwboXE8sZRwQc_RJIQGY0wyjsdoUR52oHvVW9clrTrY1h6HQW03ztv-o03cHnyycp_exgwQIyTX5bNbvd5coLNabQNc_uQUva_Kt-Vjun55eFrer1OdYd6nguVVwXCe4xyoIQVwQwGIoVjVRhijATQxhtOMaS4YcFZklNUgRFUUFYdsiujQq70LwUMtd962yn9JguXJWzZy8JYnbzl4R-zuF6bt4Np7Zbf_wYsBhii2j-4yaAudBmN9fJk0zv5d8A2IkXse
CitedBy_id crossref_primary_10_1016_j_specom_2023_06_001
crossref_primary_10_1016_j_sigpro_2025_109919
crossref_primary_10_1016_j_ymssp_2023_110113
Cites_doi 10.1016/j.atmosenv.2018.01.056
10.1109/TCOMM.2020.2975169
10.1016/j.compmedimag.2016.11.006
10.1109/TASLP.2016.2553457
10.1007/s13571-012-0055-y
10.1080/02664763.2016.1214692
10.1111/j.1365-2966.2009.15576.x
10.1162/evco.2007.15.1.1
10.1214/aos/1059655912
10.1109/78.324732
10.1111/j.1420-9101.2009.01775.x
10.1016/j.sigpro.2016.10.015
10.1109/LSP.2021.3065600
10.1109/79.543975
10.1016/j.sigpro.2016.04.014
10.1016/j.sigpro.2015.09.031
10.1109/TPAMI.2017.2717829
10.1109/TASE.2016.2624279
10.1111/j.1467-9868.2005.00499.x
10.1111/j.2517-6161.1977.tb01600.x
10.1109/TEVC.2017.2680320
10.1109/JIOT.2018.2871831
10.1016/j.csda.2015.04.011
10.1111/1467-9868.00176
10.1111/j.1467-9876.2006.00560.x
10.1109/ISIT.2005.1523402
10.1016/j.jprocont.2018.12.010
10.1111/j.1439-0388.2012.01000.x
10.1007/s11069-017-2950-z
10.1016/j.eswa.2014.09.059
10.1016/j.sigpro.2018.04.013
10.1109/TPAMI.2016.2522425
10.1371/journal.pcbi.1005896
10.1109/TFUZZ.2018.2857725
10.1561/2000000034
10.1016/j.sigpro.2017.10.012
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2021.108453
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_sigpro_2021_108453
S0165168421004904
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c306t-857b9507707e4d19e6d4ee1d40afd8ddceec1dd6435c685e659345fe88b99b6e3
IEDL.DBID .~1
ISSN 0165-1684
IngestDate Tue Jul 01 02:07:32 EDT 2025
Thu Apr 24 23:05:59 EDT 2025
Sun Apr 06 06:53:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Expectation maximization algorithm
Fourier series
Maximum likelihood
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-857b9507707e4d19e6d4ee1d40afd8ddceec1dd6435c685e659345fe88b99b6e3
ParticipantIDs crossref_primary_10_1016_j_sigpro_2021_108453
crossref_citationtrail_10_1016_j_sigpro_2021_108453
elsevier_sciencedirect_doi_10_1016_j_sigpro_2021_108453
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Booth, Hobert (bib0039) 1999; 61
Wu (bib0052) 1983
Gramacki (bib0056) 2018
Qiu, Chen, Wang, Zhu, Wang, Qiu (bib0009) 2018; 178
Manouchehri, Bouguila (bib0014) 2018
Dempster, Laird, Rubin (bib0002) 1977
Walter, Drude, Haeb-Umbach (bib0048) 2015
Orozco-Lugo, Lara, Sandoval-Curmina, Galvan-Tejada (bib0061) 2020
F. Wu, S. Zilberstein, N.R. Jennings, Monte-carlo expectation maximization for decentralized POMDPs (2013).
(2004).
McLachlan, Krishnan (bib0001) 2007; vol. 382
Schwartz, Gannot, Habets (bib0021) 2016; 24
Allassonniere, Kuhn (bib0037) 2015; 91
Xu, Hsu, Maleki (bib0036) 2016
Matsuyama (bib0025) 2019
S. Borman, The Expectation Maximization Algorithm: A Short Tutorialunpublished paper available at
Ge, Xie, Li, Yang (bib0004) 2016; 124
Yuan, Wu, Guo, Ng, Yuan, Hanzo (bib0005) 2020; 68
Matilainen, Mäntysaari, Lidauer, Strandén, Thompson (bib0028) 2012; 129
Chen, Morris, Martin (bib0049) 2006; 55
Shin, Sekora, Byun (bib0050) 2009; 400
J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring, GNU Octave version 5.2.0 manual: a high-level interactive language for numerical computations, 2020.
Zuo, Lu, Zhang, Liu (bib0045) 2018; 27
Q. Zou, H. Zhang, H. Yang, Expectation-maximization-aided hybrid generalized expectation consistent for sparse signal reconstruction, (2021)
A.B. Dieng, J. Paisley, Reweighted expectation maximization, (2019)
Dellaert (bib0053) 2002
Frank (bib0055) 2009; 22
Moon (bib0034) 1996; 13
Li, Nehorai (bib0008) 2018; 150
.
Gupta, Chen (bib0035) 2011; 4
Ahmed (bib0024) 2017; 44
Guo, Li, Xu, Ansari (bib0013) 2018; 6
Maitra (bib0016) 2013; 75
Chen, Zhu, Teh, Zhang (bib0030) 2018
Song, Ali, Bouguila (bib0046) 2019
Pereira, López-Valcarce, Pages-Zamora (bib0003) 2018; 144
Brookes, Busia, Fannjiang, Murphy, Listgarten (bib0023) 2020
Fessler, Hero (bib0029) 1994; 42
McDowell, Manandhar, Vockley, Schmid, Reddy, Engelhardt (bib0047) 2018; 14
Evangelidis, Horaud (bib0018) 2017; 40
Ravichandar, Dani (bib0020) 2017; 14
M. Desana, C. Schnörr, Expectation maximization for sum-product networks as exponential family mixture models, (2016)
Jackson (bib0060) 2012
Tzoreff, Weiss (bib0007) 2017; 133
Matlab (bib0059) 2012
J. Dauwels, S. Korl, H.-A. Loeliger, Expectation maximization as message passing, (2005)
D’Arca, Robertson, Hopgood (bib0011) 2016; 129
Karakatsanis, Tsoumpas, Zaidi (bib0010) 2017; 60
Deng, Xu, Li, He (bib0051) 2015; 42
Igel, Hansen, Roth (bib0042) 2007; 15
Sammaknejad, Zhao, Huang (bib0012) 2019; 73
K. Greff, S. Van Steenkiste, J. Schmidhuber, Neural expectation maximization, (2017)
Gebru, Alameda-Pineda, Forbes, Horaud (bib0019) 2016; 38
Caffo, Jank, Jones (bib0027) 2005; 67
Forero, Cano, Giannakis (bib0040) 2008
Park, Foulds, Choudhary, Welling (bib0032) 2017
Beyer, Sendhoff (bib0043) 2017; 21
Rasmussen (bib0044) 1999; vol. 12
Pavlenko (bib0057) 2017; 89
Fort, Moulines (bib0026) 2003; 31
Farag, El-Baz, Gimel’farb (bib0041) 2004; vol. 3
Yu, Chen (bib0062) 2019
Nguyen, Forbes, McLachlan (bib0022) 2020
Rasmussen (10.1016/j.sigpro.2021.108453_bib0044) 1999; vol. 12
10.1016/j.sigpro.2021.108453_bib0006
Qiu (10.1016/j.sigpro.2021.108453_bib0009) 2018; 178
Fort (10.1016/j.sigpro.2021.108453_bib0026) 2003; 31
Caffo (10.1016/j.sigpro.2021.108453_bib0027) 2005; 67
Park (10.1016/j.sigpro.2021.108453_bib0032) 2017
Moon (10.1016/j.sigpro.2021.108453_bib0034) 1996; 13
Farag (10.1016/j.sigpro.2021.108453_bib0041) 2004; vol. 3
Sammaknejad (10.1016/j.sigpro.2021.108453_bib0012) 2019; 73
Orozco-Lugo (10.1016/j.sigpro.2021.108453_bib0061) 2020
Manouchehri (10.1016/j.sigpro.2021.108453_bib0014) 2018
Frank (10.1016/j.sigpro.2021.108453_bib0055) 2009; 22
McLachlan (10.1016/j.sigpro.2021.108453_bib0001) 2007; vol. 382
Ahmed (10.1016/j.sigpro.2021.108453_bib0024) 2017; 44
Matsuyama (10.1016/j.sigpro.2021.108453_bib0025) 2019
Nguyen (10.1016/j.sigpro.2021.108453_bib0022) 2020
Dempster (10.1016/j.sigpro.2021.108453_bib0002) 1977
Maitra (10.1016/j.sigpro.2021.108453_bib0016) 2013; 75
Dellaert (10.1016/j.sigpro.2021.108453_sbref0053) 2002
Li (10.1016/j.sigpro.2021.108453_bib0008) 2018; 150
Brookes (10.1016/j.sigpro.2021.108453_bib0023) 2020
Gramacki (10.1016/j.sigpro.2021.108453_bib0056) 2018
10.1016/j.sigpro.2021.108453_bib0031
10.1016/j.sigpro.2021.108453_bib0033
Allassonniere (10.1016/j.sigpro.2021.108453_bib0037) 2015; 91
Gebru (10.1016/j.sigpro.2021.108453_bib0019) 2016; 38
Gupta (10.1016/j.sigpro.2021.108453_bib0035) 2011; 4
10.1016/j.sigpro.2021.108453_bib0038
Beyer (10.1016/j.sigpro.2021.108453_bib0043) 2017; 21
Deng (10.1016/j.sigpro.2021.108453_bib0051) 2015; 42
McDowell (10.1016/j.sigpro.2021.108453_bib0047) 2018; 14
Yuan (10.1016/j.sigpro.2021.108453_bib0005) 2020; 68
Chen (10.1016/j.sigpro.2021.108453_bib0030) 2018
Schwartz (10.1016/j.sigpro.2021.108453_bib0021) 2016; 24
Yu (10.1016/j.sigpro.2021.108453_bib0062) 2019
Shin (10.1016/j.sigpro.2021.108453_bib0050) 2009; 400
Matilainen (10.1016/j.sigpro.2021.108453_bib0028) 2012; 129
Tzoreff (10.1016/j.sigpro.2021.108453_bib0007) 2017; 133
Guo (10.1016/j.sigpro.2021.108453_bib0013) 2018; 6
Forero (10.1016/j.sigpro.2021.108453_bib0040) 2008
Walter (10.1016/j.sigpro.2021.108453_bib0048) 2015
Chen (10.1016/j.sigpro.2021.108453_bib0049) 2006; 55
D’Arca (10.1016/j.sigpro.2021.108453_bib0011) 2016; 129
Fessler (10.1016/j.sigpro.2021.108453_bib0029) 1994; 42
Igel (10.1016/j.sigpro.2021.108453_bib0042) 2007; 15
Song (10.1016/j.sigpro.2021.108453_bib0046) 2019
10.1016/j.sigpro.2021.108453_bib0054
Evangelidis (10.1016/j.sigpro.2021.108453_bib0018) 2017; 40
10.1016/j.sigpro.2021.108453_bib0058
Zuo (10.1016/j.sigpro.2021.108453_bib0045) 2018; 27
Karakatsanis (10.1016/j.sigpro.2021.108453_bib0010) 2017; 60
10.1016/j.sigpro.2021.108453_bib0017
10.1016/j.sigpro.2021.108453_bib0015
Matlab (10.1016/j.sigpro.2021.108453_bib0059) 2012
Wu (10.1016/j.sigpro.2021.108453_bib0052) 1983
Booth (10.1016/j.sigpro.2021.108453_bib0039) 1999; 61
Ge (10.1016/j.sigpro.2021.108453_bib0004) 2016; 124
Pereira (10.1016/j.sigpro.2021.108453_bib0003) 2018; 144
Jackson (10.1016/j.sigpro.2021.108453_bib0060) 2012
Xu (10.1016/j.sigpro.2021.108453_bib0036) 2016
Pavlenko (10.1016/j.sigpro.2021.108453_bib0057) 2017; 89
Ravichandar (10.1016/j.sigpro.2021.108453_bib0020) 2017; 14
References_xml – volume: 75
  start-page: 293
  year: 2013
  end-page: 318
  ident: bib0016
  article-title: On the expectation-maximization algorithm for rice-rayleigh mixtures with application to noise parameter estimation in magnitude MR datasets
  publication-title: Sankhya B
– year: 2012
  ident: bib0059
  article-title: Matlab
– volume: 27
  start-page: 291
  year: 2018
  end-page: 303
  ident: bib0045
  article-title: Fuzzy transfer learning using an infinite gaussian mixture model and active learning
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 129
  start-page: 137
  year: 2016
  end-page: 149
  ident: bib0011
  article-title: Robust indoor speaker recognition in a network of audio and video sensors
  publication-title: Signal Process.
– volume: 24
  start-page: 1495
  year: 2016
  end-page: 1510
  ident: bib0021
  article-title: An expectation-maximization algorithm for multimicrophone speech dereverberation and noise reduction with coherence matrix estimation
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
– volume: 61
  start-page: 265
  year: 1999
  end-page: 285
  ident: bib0039
  article-title: Maximizing generalized linear mixed model likelihoods with an automated monte carlo EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 15
  start-page: 1
  year: 2007
  end-page: 28
  ident: bib0042
  article-title: Covariance matrix adaptation for multi-objective optimization
  publication-title: Evol. Comput.
– volume: 129
  start-page: 457
  year: 2012
  end-page: 468
  ident: bib0028
  article-title: Employing a monte carlo algorithm in expectation maximization restricted maximum likelihood estimation of the linear mixed model
  publication-title: J. Anim. Breed. Genet.
– start-page: 7
  year: 2019
  end-page: 42
  ident: bib0062
  article-title: Stability analysis of frame slotted aloha protocol
  publication-title: Tag Counting and Monitoring in Large-Scale RFID Systems
– start-page: 1989
  year: 2008
  end-page: 1992
  ident: bib0040
  article-title: Consensus-based distributed expectation-maximization algorithm for density estimation and classification using wireless sensor networks
  publication-title: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 6
  start-page: 2573
  year: 2018
  end-page: 2582
  ident: bib0013
  article-title: Expectation maximization indoor localization utilizing supporting set for internet of things
  publication-title: IEEE Internet Things J.
– start-page: 1
  year: 2020
  end-page: 18
  ident: bib0022
  article-title: Mini-batch learning of exponential family finite mixture models
  publication-title: Stat. Comput.
– volume: vol. 3
  start-page: 1871
  year: 2004
  end-page: 1874
  ident: bib0041
  article-title: Density estimation using modified expectation-maximization algorithm for a linear combination of Gaussians
  publication-title: 2004 International Conference on Image Processing, 2004. ICIP’04.
– volume: 400
  start-page: 1897
  year: 2009
  end-page: 1910
  ident: bib0050
  article-title: Detecting variability in massive astronomical time series data–I. Application of an infinite gaussian mixture model
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 144
  start-page: 226
  year: 2018
  end-page: 237
  ident: bib0003
  article-title: Parameter estimation in wireless sensor networks with faulty transducers: a distributed EM approach
  publication-title: Signal Process.
– volume: vol. 12
  start-page: 554
  year: 1999
  end-page: 560
  ident: bib0044
  article-title: The infinite gaussian mixture model
  publication-title: NIPS
– start-page: 7978
  year: 2018
  end-page: 7988
  ident: bib0030
  article-title: Stochastic expectation maximization with variance reduction
  publication-title: NeurIPS
– volume: 124
  start-page: 147
  year: 2016
  end-page: 155
  ident: bib0004
  article-title: Global image completion with joint sparse patch selection and optimal seam synthesis
  publication-title: Signal Process.
– volume: 133
  start-page: 32
  year: 2017
  end-page: 39
  ident: bib0007
  article-title: Expectation-maximization algorithm for direct position determination
  publication-title: Signal Process.
– volume: 60
  start-page: 11
  year: 2017
  end-page: 21
  ident: bib0010
  article-title: Quantitative PET image reconstruction employing nested expectation-maximization deconvolution for motion compensation
  publication-title: Comput. Med. Imaging Graph.
– year: 2018
  ident: bib0056
  article-title: Nonparametric Kernel Density Estimation and Its Computational Aspects
– year: 2002
  ident: bib0053
  article-title: The Expectation Maximization Algorithm
– reference: J. Dauwels, S. Korl, H.-A. Loeliger, Expectation maximization as message passing, (2005)
– volume: 67
  start-page: 235
  year: 2005
  end-page: 251
  ident: bib0027
  article-title: Ascent-based monte carlo expectation–maximization
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 42
  start-page: 1987
  year: 2015
  end-page: 1997
  ident: bib0051
  article-title: An infinite gaussian mixture model with its application in hyperspectral unmixing
  publication-title: Expert Syst. Appl.
– start-page: 107827
  year: 2020
  ident: bib0061
  article-title: Offered load estimation in random access multipacket perception systems using the expectation-maximization algorithm
  publication-title: Signal Process.
– start-page: 264
  year: 2019
  end-page: 274
  ident: bib0046
  article-title: Bayesian learning of infinite asymmetric Gaussian mixture models for background subtraction
  publication-title: International Conference on Image Analysis and Recognition
– reference: S. Borman, The Expectation Maximization Algorithm: A Short Tutorialunpublished paper available at
– volume: 89
  start-page: 19
  year: 2017
  end-page: 33
  ident: bib0057
  article-title: Estimation of the upper bound of seismic hazard curve by using the generalised extreme value distribution
  publication-title: Nat. Hazards
– start-page: 227
  year: 2018
  end-page: 232
  ident: bib0014
  article-title: Learning of finite two-dimensional beta mixture models
  publication-title: 2018 9th International Symposium on Signal, Image, Video and Communications (ISIVC)
– start-page: 896
  year: 2017
  end-page: 904
  ident: bib0032
  article-title: DP-EM: differentially private expectation maximization
  publication-title: Artificial Intelligence and Statistics
– reference: (2004).
– year: 2012
  ident: bib0060
  article-title: Fourier Series and Orthogonal Polynomials
– reference: A.B. Dieng, J. Paisley, Reweighted expectation maximization, (2019)
– volume: 4
  start-page: 223
  year: 2011
  end-page: 296
  ident: bib0035
  article-title: Theory and use of the EM algorithm
  publication-title: Foundations Trends® Signal Process.
– volume: 14
  start-page: e1005896
  year: 2018
  ident: bib0047
  article-title: Clustering gene expression time series data using an infinite gaussian process mixture model
  publication-title: PLoS Comput. Biol.
– start-page: 1
  year: 1977
  end-page: 38
  ident: bib0002
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 38
  start-page: 2402
  year: 2016
  end-page: 2415
  ident: bib0019
  article-title: Em algorithms for weighted-data clustering with application to audio-visual scene analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 55
  start-page: 699
  year: 2006
  end-page: 715
  ident: bib0049
  article-title: Probability density estimation via an infinite Gaussian mixture model: application to statistical process monitoring
  publication-title: J. R. Stat. Soc. Ser. C
– volume: vol. 382
  year: 2007
  ident: bib0001
  article-title: The EM Algorithm and Extensions
– volume: 14
  start-page: 855
  year: 2017
  end-page: 868
  ident: bib0020
  article-title: Human intention inference using expectation-maximization algorithm with online model learning
  publication-title: IEEE Trans. Autom. Sci. Eng.
– reference: F. Wu, S. Zilberstein, N.R. Jennings, Monte-carlo expectation maximization for decentralized POMDPs (2013).
– volume: 68
  start-page: 2963
  year: 2020
  end-page: 2977
  ident: bib0005
  article-title: Iterative joint channel estimation, user activity tracking, and data detection for FTN-NOMA systems supporting random access
  publication-title: IEEE Trans. Commun.
– start-page: 95
  year: 1983
  end-page: 103
  ident: bib0052
  article-title: On the convergence properties of the EM algorithm
  publication-title: Ann. Stat.
– start-page: 2676
  year: 2016
  end-page: 2684
  ident: bib0036
  article-title: Global analysis of expectation maximization for mixtures of two Gaussians
  publication-title: Advances in Neural Information Processing Systems
– volume: 150
  start-page: 116
  year: 2018
  end-page: 121
  ident: bib0008
  article-title: Gaussian mixture learning via adaptive hierarchical clustering
  publication-title: Signal Process.
– volume: 44
  start-page: 1576
  year: 2017
  end-page: 1608
  ident: bib0024
  article-title: Estimation and prediction for the generalized inverted exponential distribution based on progressively first-failure-censored data with application
  publication-title: J. Appl. Stat.
– start-page: 459
  year: 2015
  end-page: 463
  ident: bib0048
  article-title: Source counting in speech mixtures by nonparametric Bayesian estimation of an infinite gaussian mixture model
  publication-title: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– start-page: 727
  year: 2019
  end-page: 731
  ident: bib0025
  article-title: Divergence family attains blockchain applications via
  publication-title: 2019 IEEE International Symposium on Information Theory (ISIT)
– volume: 178
  start-page: 158
  year: 2018
  end-page: 163
  ident: bib0009
  article-title: Atmospheric dispersion prediction and source estimation of hazardous gas using artificial neural network, particle swarm optimization and expectation maximization
  publication-title: Atmos. Environ.
– reference: Q. Zou, H. Zhang, H. Yang, Expectation-maximization-aided hybrid generalized expectation consistent for sparse signal reconstruction, (2021),
– volume: 42
  start-page: 2664
  year: 1994
  end-page: 2677
  ident: bib0029
  article-title: Space-alternating generalized expectation-maximization algorithm
  publication-title: IEEE Trans. Signal Process.
– volume: 22
  start-page: 1563
  year: 2009
  end-page: 1585
  ident: bib0055
  article-title: The common patterns of nature
  publication-title: J. Evol. Biol.
– volume: 73
  start-page: 123
  year: 2019
  end-page: 136
  ident: bib0012
  article-title: A review of the expectation maximization algorithm in data-driven process identification
  publication-title: J. Process Control
– reference: K. Greff, S. Van Steenkiste, J. Schmidhuber, Neural expectation maximization, (2017)
– volume: 13
  start-page: 47
  year: 1996
  end-page: 60
  ident: bib0034
  article-title: The expectation-maximization algorithm
  publication-title: IEEE Signal Process. Mag.
– reference: .
– volume: 91
  start-page: 4
  year: 2015
  end-page: 19
  ident: bib0037
  article-title: Convergent stochastic expectation maximization algorithm with efficient sampling in high dimension. application to deformable template model estimation
  publication-title: Comput. Stat. Data Anal.
– volume: 21
  start-page: 746
  year: 2017
  end-page: 759
  ident: bib0043
  article-title: Simplify your covariance matrix adaptation evolution strategy
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 189
  year: 2020
  end-page: 190
  ident: bib0023
  article-title: A view of estimation of distribution algorithms through the lens of expectation-maximization
  publication-title: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion
– reference: J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring, GNU Octave version 5.2.0 manual: a high-level interactive language for numerical computations, 2020.
– volume: 31
  start-page: 1220
  year: 2003
  end-page: 1259
  ident: bib0026
  article-title: Convergence of the monte carlo expectation maximization for curved exponential families
  publication-title: Ann. Stat.
– reference: M. Desana, C. Schnörr, Expectation maximization for sum-product networks as exponential family mixture models, (2016)
– volume: 40
  start-page: 1397
  year: 2017
  end-page: 1410
  ident: bib0018
  article-title: Joint alignment of multiple point sets with batch and incremental expectation-maximization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 178
  start-page: 158
  year: 2018
  ident: 10.1016/j.sigpro.2021.108453_bib0009
  article-title: Atmospheric dispersion prediction and source estimation of hazardous gas using artificial neural network, particle swarm optimization and expectation maximization
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2018.01.056
– volume: 68
  start-page: 2963
  issue: 5
  year: 2020
  ident: 10.1016/j.sigpro.2021.108453_bib0005
  article-title: Iterative joint channel estimation, user activity tracking, and data detection for FTN-NOMA systems supporting random access
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2020.2975169
– volume: 60
  start-page: 11
  year: 2017
  ident: 10.1016/j.sigpro.2021.108453_bib0010
  article-title: Quantitative PET image reconstruction employing nested expectation-maximization deconvolution for motion compensation
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2016.11.006
– volume: 24
  start-page: 1495
  issue: 9
  year: 2016
  ident: 10.1016/j.sigpro.2021.108453_bib0021
  article-title: An expectation-maximization algorithm for multimicrophone speech dereverberation and noise reduction with coherence matrix estimation
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2016.2553457
– start-page: 896
  year: 2017
  ident: 10.1016/j.sigpro.2021.108453_bib0032
  article-title: DP-EM: differentially private expectation maximization
– volume: 75
  start-page: 293
  issue: 2
  year: 2013
  ident: 10.1016/j.sigpro.2021.108453_bib0016
  article-title: On the expectation-maximization algorithm for rice-rayleigh mixtures with application to noise parameter estimation in magnitude MR datasets
  publication-title: Sankhya B
  doi: 10.1007/s13571-012-0055-y
– volume: 44
  start-page: 1576
  issue: 9
  year: 2017
  ident: 10.1016/j.sigpro.2021.108453_bib0024
  article-title: Estimation and prediction for the generalized inverted exponential distribution based on progressively first-failure-censored data with application
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2016.1214692
– start-page: 189
  year: 2020
  ident: 10.1016/j.sigpro.2021.108453_bib0023
  article-title: A view of estimation of distribution algorithms through the lens of expectation-maximization
– year: 2012
  ident: 10.1016/j.sigpro.2021.108453_bib0059
– start-page: 7978
  year: 2018
  ident: 10.1016/j.sigpro.2021.108453_bib0030
  article-title: Stochastic expectation maximization with variance reduction
– start-page: 1989
  year: 2008
  ident: 10.1016/j.sigpro.2021.108453_bib0040
  article-title: Consensus-based distributed expectation-maximization algorithm for density estimation and classification using wireless sensor networks
– start-page: 107827
  year: 2020
  ident: 10.1016/j.sigpro.2021.108453_bib0061
  article-title: Offered load estimation in random access multipacket perception systems using the expectation-maximization algorithm
  publication-title: Signal Process.
– volume: 400
  start-page: 1897
  issue: 4
  year: 2009
  ident: 10.1016/j.sigpro.2021.108453_bib0050
  article-title: Detecting variability in massive astronomical time series data–I. Application of an infinite gaussian mixture model
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2009.15576.x
– start-page: 2676
  year: 2016
  ident: 10.1016/j.sigpro.2021.108453_bib0036
  article-title: Global analysis of expectation maximization for mixtures of two Gaussians
– volume: 15
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.sigpro.2021.108453_bib0042
  article-title: Covariance matrix adaptation for multi-objective optimization
  publication-title: Evol. Comput.
  doi: 10.1162/evco.2007.15.1.1
– volume: 31
  start-page: 1220
  issue: 4
  year: 2003
  ident: 10.1016/j.sigpro.2021.108453_bib0026
  article-title: Convergence of the monte carlo expectation maximization for curved exponential families
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1059655912
– volume: 42
  start-page: 2664
  issue: 10
  year: 1994
  ident: 10.1016/j.sigpro.2021.108453_bib0029
  article-title: Space-alternating generalized expectation-maximization algorithm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.324732
– start-page: 227
  year: 2018
  ident: 10.1016/j.sigpro.2021.108453_bib0014
  article-title: Learning of finite two-dimensional beta mixture models
– volume: 22
  start-page: 1563
  issue: 8
  year: 2009
  ident: 10.1016/j.sigpro.2021.108453_bib0055
  article-title: The common patterns of nature
  publication-title: J. Evol. Biol.
  doi: 10.1111/j.1420-9101.2009.01775.x
– volume: 133
  start-page: 32
  year: 2017
  ident: 10.1016/j.sigpro.2021.108453_bib0007
  article-title: Expectation-maximization algorithm for direct position determination
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.10.015
– start-page: 727
  year: 2019
  ident: 10.1016/j.sigpro.2021.108453_bib0025
  article-title: Divergence family attains blockchain applications via α-EM algorithm
– year: 2018
  ident: 10.1016/j.sigpro.2021.108453_bib0056
– ident: 10.1016/j.sigpro.2021.108453_bib0017
  doi: 10.1109/LSP.2021.3065600
– volume: 13
  start-page: 47
  issue: 6
  year: 1996
  ident: 10.1016/j.sigpro.2021.108453_bib0034
  article-title: The expectation-maximization algorithm
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.543975
– ident: 10.1016/j.sigpro.2021.108453_bib0058
– volume: 129
  start-page: 137
  year: 2016
  ident: 10.1016/j.sigpro.2021.108453_bib0011
  article-title: Robust indoor speaker recognition in a network of audio and video sensors
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.04.014
– volume: 124
  start-page: 147
  year: 2016
  ident: 10.1016/j.sigpro.2021.108453_bib0004
  article-title: Global image completion with joint sparse patch selection and optimal seam synthesis
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2015.09.031
– start-page: 7
  year: 2019
  ident: 10.1016/j.sigpro.2021.108453_bib0062
  article-title: Stability analysis of frame slotted aloha protocol
– ident: 10.1016/j.sigpro.2021.108453_bib0054
– year: 2012
  ident: 10.1016/j.sigpro.2021.108453_bib0060
– volume: 40
  start-page: 1397
  issue: 6
  year: 2017
  ident: 10.1016/j.sigpro.2021.108453_bib0018
  article-title: Joint alignment of multiple point sets with batch and incremental expectation-maximization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2717829
– ident: 10.1016/j.sigpro.2021.108453_bib0033
– volume: vol. 382
  year: 2007
  ident: 10.1016/j.sigpro.2021.108453_bib0001
– start-page: 95
  year: 1983
  ident: 10.1016/j.sigpro.2021.108453_bib0052
  article-title: On the convergence properties of the EM algorithm
  publication-title: Ann. Stat.
– volume: 14
  start-page: 855
  year: 2017
  ident: 10.1016/j.sigpro.2021.108453_bib0020
  article-title: Human intention inference using expectation-maximization algorithm with online model learning
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2016.2624279
– volume: 67
  start-page: 235
  issue: 2
  year: 2005
  ident: 10.1016/j.sigpro.2021.108453_bib0027
  article-title: Ascent-based monte carlo expectation–maximization
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2005.00499.x
– start-page: 1
  year: 1977
  ident: 10.1016/j.sigpro.2021.108453_bib0002
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 21
  start-page: 746
  issue: 5
  year: 2017
  ident: 10.1016/j.sigpro.2021.108453_bib0043
  article-title: Simplify your covariance matrix adaptation evolution strategy
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2680320
– volume: 6
  start-page: 2573
  issue: 2
  year: 2018
  ident: 10.1016/j.sigpro.2021.108453_bib0013
  article-title: Expectation maximization indoor localization utilizing supporting set for internet of things
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2871831
– volume: 91
  start-page: 4
  year: 2015
  ident: 10.1016/j.sigpro.2021.108453_bib0037
  article-title: Convergent stochastic expectation maximization algorithm with efficient sampling in high dimension. application to deformable template model estimation
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2015.04.011
– volume: 61
  start-page: 265
  issue: 1
  year: 1999
  ident: 10.1016/j.sigpro.2021.108453_bib0039
  article-title: Maximizing generalized linear mixed model likelihoods with an automated monte carlo EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/1467-9868.00176
– start-page: 264
  year: 2019
  ident: 10.1016/j.sigpro.2021.108453_bib0046
  article-title: Bayesian learning of infinite asymmetric Gaussian mixture models for background subtraction
– volume: 55
  start-page: 699
  issue: 5
  year: 2006
  ident: 10.1016/j.sigpro.2021.108453_bib0049
  article-title: Probability density estimation via an infinite Gaussian mixture model: application to statistical process monitoring
  publication-title: J. R. Stat. Soc. Ser. C
  doi: 10.1111/j.1467-9876.2006.00560.x
– ident: 10.1016/j.sigpro.2021.108453_bib0006
  doi: 10.1109/ISIT.2005.1523402
– volume: 73
  start-page: 123
  year: 2019
  ident: 10.1016/j.sigpro.2021.108453_bib0012
  article-title: A review of the expectation maximization algorithm in data-driven process identification
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2018.12.010
– volume: 129
  start-page: 457
  issue: 6
  year: 2012
  ident: 10.1016/j.sigpro.2021.108453_bib0028
  article-title: Employing a monte carlo algorithm in expectation maximization restricted maximum likelihood estimation of the linear mixed model
  publication-title: J. Anim. Breed. Genet.
  doi: 10.1111/j.1439-0388.2012.01000.x
– ident: 10.1016/j.sigpro.2021.108453_bib0038
– start-page: 459
  year: 2015
  ident: 10.1016/j.sigpro.2021.108453_bib0048
  article-title: Source counting in speech mixtures by nonparametric Bayesian estimation of an infinite gaussian mixture model
– volume: 89
  start-page: 19
  issue: 1
  year: 2017
  ident: 10.1016/j.sigpro.2021.108453_bib0057
  article-title: Estimation of the upper bound of seismic hazard curve by using the generalised extreme value distribution
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-017-2950-z
– volume: vol. 12
  start-page: 554
  year: 1999
  ident: 10.1016/j.sigpro.2021.108453_bib0044
  article-title: The infinite gaussian mixture model
– volume: 42
  start-page: 1987
  issue: 4
  year: 2015
  ident: 10.1016/j.sigpro.2021.108453_bib0051
  article-title: An infinite gaussian mixture model with its application in hyperspectral unmixing
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.09.059
– ident: 10.1016/j.sigpro.2021.108453_bib0015
– volume: 150
  start-page: 116
  year: 2018
  ident: 10.1016/j.sigpro.2021.108453_bib0008
  article-title: Gaussian mixture learning via adaptive hierarchical clustering
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.04.013
– volume: 38
  start-page: 2402
  issue: 12
  year: 2016
  ident: 10.1016/j.sigpro.2021.108453_bib0019
  article-title: Em algorithms for weighted-data clustering with application to audio-visual scene analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2522425
– volume: 14
  start-page: e1005896
  issue: 1
  year: 2018
  ident: 10.1016/j.sigpro.2021.108453_bib0047
  article-title: Clustering gene expression time series data using an infinite gaussian process mixture model
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005896
– year: 2002
  ident: 10.1016/j.sigpro.2021.108453_sbref0053
– start-page: 1
  year: 2020
  ident: 10.1016/j.sigpro.2021.108453_bib0022
  article-title: Mini-batch learning of exponential family finite mixture models
  publication-title: Stat. Comput.
– volume: 27
  start-page: 291
  issue: 2
  year: 2018
  ident: 10.1016/j.sigpro.2021.108453_bib0045
  article-title: Fuzzy transfer learning using an infinite gaussian mixture model and active learning
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2018.2857725
– volume: 4
  start-page: 223
  issue: 3
  year: 2011
  ident: 10.1016/j.sigpro.2021.108453_bib0035
  article-title: Theory and use of the EM algorithm
  publication-title: Foundations Trends® Signal Process.
  doi: 10.1561/2000000034
– ident: 10.1016/j.sigpro.2021.108453_bib0031
– volume: vol. 3
  start-page: 1871
  year: 2004
  ident: 10.1016/j.sigpro.2021.108453_bib0041
  article-title: Density estimation using modified expectation-maximization algorithm for a linear combination of Gaussians
– volume: 144
  start-page: 226
  year: 2018
  ident: 10.1016/j.sigpro.2021.108453_bib0003
  article-title: Parameter estimation in wireless sensor networks with faulty transducers: a distributed EM approach
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2017.10.012
SSID ssj0001360
Score 2.3706625
Snippet The application of expectation maximization (EM) algorithm for the univariate problems in the literature suffers mainly from the requirement of the prior...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108453
SubjectTerms Expectation maximization algorithm
Fourier series
Maximum likelihood
Title Expectation maximization algorithm over Fourier series (EMoFS)
URI https://dx.doi.org/10.1016/j.sigpro.2021.108453
Volume 194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD140MPabLK72VyEUhqq0l5qobeQ7E5qpC9sBU_-dnfz0Aqi4DXMQJgsM7OZ7_sGoUvhWn6uxwl3wCVMpIrEOnYIuBq4rySN83-6_YHojdj9mI9rqFNxYSysssz9RU7Ps3X5pFVGs7XMstbQEnGoHSPRfHxlNUEZ8-0pv3n_gnlQL2cKW2NirSv6XI7xWmUTk6fMLdGlFmzHuPdzedooOeEe2i17RdwuXmcf1WB-gHY2FAQP0a2VKlbFOB3P4rdsVvIqcTydLMzF_2mGLUgTh8VuOmxPHKzwVbe_CIfXR2gUdh87PVKuRCDK9PZrIrmfBKaF8x0fmKYBCM0AqGZOnGqptSl5impt2gyuhOQgeOAxnoKUSRAkArxjVJ8v5nCCsGmERKCYlQBLmCPTRMQUhKMDIRMOzG8gr4pEpEq9cLu2YhpVwLDnqIhfZOMXFfFrIPLptSz0Mv6w96sgR9--e2RS-q-ep__2PEPbriUx5LDFc1Rfv7zChWkt1kkzPztNtNW-e-gNPgBDL80j
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEB3S5ND2ULrSdPWhh_YgYtmSLF8KIcQ4zXJJArkZ25JTl2w0KfTzK3kJKZQWejUaMGPx5sl6bwbggVnan2tTRE1pIcKSGIUiNJG0hKROzHGY_dPtD5g_Ji8TOqlAq_TCaFllgf05pmdoXTxpFNlsrNK0MdRGHKyvkXB2fUX2oKa7U9Eq1Jqdrj_YAjK2M7OwXo90QOmgy2Re63SqoEodFC2s9XaE2j9XqJ2q4x3DUUEXjWb-RidQkYtTONxpIngGz7pbcZzfqBvz8DOdF9ZKI5xNl-rs_zo3tE7T8PLxdIbedHJtPLb7S2_4dA5jrz1q-aiYioBiRe83iFMnchWLc0xHEoFdyQSREgtihongQqiqF2MhFNOgMeNUMurahCaS88h1IybtC6gulgt5CYbiQsyNie4CFhGTJxELsWSmcBmPqCROHewyE0FctAzXkytmQakNewvy_AU6f0GevzqgbdQqb5nxx3qnTHLw7dMHCtV_jbz6d-Q97Pujfi_odQbdaziwtKchUzHeQHXz_iFvFdPYRHfFTvoCXfvP1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expectation+maximization+algorithm+over+Fourier+series+%28EMoFS%29&rft.jtitle=Signal+processing&rft.au=Yildiz%2C+M%C3%BCrsel&rft.date=2022-05-01&rft.issn=0165-1684&rft.volume=194&rft.spage=108453&rft_id=info:doi/10.1016%2Fj.sigpro.2021.108453&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2021_108453
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon