Spline adaptive filter with arctangent-momentum strategy for nonlinear system identification
•An enhanced SAF is proposed.•The arctangent cost function is adopted to improve the robustness against the impulsive noises.•A modified momentum SGD is proposed to improve the convergence speed and reduce the steady-state error. In order to mitigate the interference of impulsive noises in the ident...
Saved in:
Published in | Signal processing Vol. 164; pp. 99 - 109 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0165-1684 1872-7557 |
DOI | 10.1016/j.sigpro.2019.06.007 |
Cover
Abstract | •An enhanced SAF is proposed.•The arctangent cost function is adopted to improve the robustness against the impulsive noises.•A modified momentum SGD is proposed to improve the convergence speed and reduce the steady-state error.
In order to mitigate the interference of impulsive noises in the identification of Wiener-type nonlinear systems using traditional spline adaptive filter (SAF) algorithm, an enhanced SAF, named SAF-ARC-MMSGD, is proposed in this paper. Two improvements have been made in the proposed algorithm. First, the arctangent (ARC) function which is insensitive to large outliers is adopted to construct the cost function, so that the robustness of SAF against impulsive noises is improved. In addition, a modified momentum stochastic gradient descent (MMSGD) method containing two modifications, which are decay technique and selective strategy, is put forward in order to further improve the convergence speed and decrease the steady-state error during iteration. The convergence property of the proposed algorithm has been theoretically analyzed. The results of the numerical simulations have confirmed that the proposed algorithm has superior performance compared with the existing SAF related algorithms. |
---|---|
AbstractList | •An enhanced SAF is proposed.•The arctangent cost function is adopted to improve the robustness against the impulsive noises.•A modified momentum SGD is proposed to improve the convergence speed and reduce the steady-state error.
In order to mitigate the interference of impulsive noises in the identification of Wiener-type nonlinear systems using traditional spline adaptive filter (SAF) algorithm, an enhanced SAF, named SAF-ARC-MMSGD, is proposed in this paper. Two improvements have been made in the proposed algorithm. First, the arctangent (ARC) function which is insensitive to large outliers is adopted to construct the cost function, so that the robustness of SAF against impulsive noises is improved. In addition, a modified momentum stochastic gradient descent (MMSGD) method containing two modifications, which are decay technique and selective strategy, is put forward in order to further improve the convergence speed and decrease the steady-state error during iteration. The convergence property of the proposed algorithm has been theoretically analyzed. The results of the numerical simulations have confirmed that the proposed algorithm has superior performance compared with the existing SAF related algorithms. |
Author | Yang, Liangdong Liu, Jinxin Yan, Ruqiang Chen, Xuefeng |
Author_xml | – sequence: 1 givenname: Liangdong surname: Yang fullname: Yang, Liangdong organization: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China – sequence: 2 givenname: Jinxin orcidid: 0000-0003-1084-3223 surname: Liu fullname: Liu, Jinxin email: jinxin.liu@xjtu.edu.cn organization: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China – sequence: 3 givenname: Ruqiang surname: Yan fullname: Yan, Ruqiang organization: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China – sequence: 4 givenname: Xuefeng surname: Chen fullname: Chen, Xuefeng organization: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China |
BookMark | eNqFkMtKAzEUhoNUsK2-gYu8wIwnc8nMuBCkeAPBhboTQiaXesrcSGKlb29qXbnQ1dn8389_vgWZDeNgCDlnkDJg_GKTelxPbkwzYE0KPAWojsic1VWWVGVZzcg8xsqE8bo4IQvvNwDAcg5z8vY8dTgYKrWcAm4NtdgF4-gnhncqnQpyWJshJP3Yx_PRUx-cDGa9o3Z0NO7Y09JRv_PB9BR1TKFFJQOOwyk5trLz5uznLsnr7c3L6j55fLp7WF0_JioHHpIaNLSgWJkXRrG6KYpGcW1tnbWmVU0FkDPb2qrNdNZCzQC0bLIcMlbzRuVtviSXh17lRu-dsUJh-F4Qx2InGIi9J7ERB09i70kAF9FThItf8OSwl273H3Z1wEx8bIvGCa_QDMpodEYFoUf8u-AL20KJag |
CitedBy_id | crossref_primary_10_1016_j_dsp_2022_103452 crossref_primary_10_1109_TIM_2023_3271721 crossref_primary_10_1016_j_sigpro_2020_107752 crossref_primary_10_3390_math9232999 crossref_primary_10_1016_j_sigpro_2020_107836 crossref_primary_10_1038_s41598_021_01863_6 crossref_primary_10_1109_TCSII_2023_3303365 crossref_primary_10_1007_s00034_022_02115_2 crossref_primary_10_1007_s00034_021_01798_3 crossref_primary_10_1109_TAES_2022_3188238 crossref_primary_10_1007_s00034_023_02476_2 crossref_primary_10_1109_ACCESS_2024_3454517 crossref_primary_10_1007_s11760_024_03557_8 crossref_primary_10_1007_s11071_022_07636_8 crossref_primary_10_1155_2019_2920845 crossref_primary_10_1371_journal_pone_0258155 crossref_primary_10_1631_FITEE_2300817 crossref_primary_10_1016_j_apacoust_2021_107973 crossref_primary_10_1016_j_ins_2024_120888 crossref_primary_10_1016_j_jai_2022_100008 crossref_primary_10_3390_pr11061594 crossref_primary_10_1016_j_sigpro_2021_107965 crossref_primary_10_1016_j_ins_2023_120026 crossref_primary_10_1109_ACCESS_2020_2969219 crossref_primary_10_1049_cmu2_12188 crossref_primary_10_1007_s11071_021_06595_w crossref_primary_10_1142_S0218126625500185 crossref_primary_10_1007_s11071_020_05899_7 crossref_primary_10_1007_s11071_023_08583_8 crossref_primary_10_1007_s11760_024_03285_z crossref_primary_10_1177_1461348419886745 crossref_primary_10_1007_s00034_022_02139_8 crossref_primary_10_1007_s00034_022_02041_3 crossref_primary_10_1007_s00034_024_02654_w crossref_primary_10_1007_s11760_021_02085_z crossref_primary_10_1007_s11071_021_06882_6 crossref_primary_10_1088_1361_6501_abaf2b crossref_primary_10_1109_TIE_2022_3213886 crossref_primary_10_1007_s12530_024_09607_3 |
Cites_doi | 10.1007/s11063-017-9606-6 10.1016/0165-1684(94)00152-P 10.1016/j.sigpro.2014.01.019 10.1016/j.neunet.2015.05.002 10.1016/j.sigpro.2014.08.045 10.1109/TSP.2007.907881 10.1109/72.80202 10.1109/TAC.1978.1101898 10.1109/TASL.2011.2136336 10.1016/j.sigpro.2017.01.009 10.1002/acs.2772 10.1016/B978-0-12-079050-0.50020-5 10.1016/S0893-6080(98)00116-6 10.3390/s18030808 10.1109/TCSI.2015.2423791 10.1162/neco.1993.5.3.456 10.1016/j.na.2009.01.150 10.1016/0005-1098(94)00150-H 10.1016/j.sigpro.2012.09.021 10.1016/j.apacoust.2015.01.009 10.1007/s11071-017-3754-0 10.1016/j.sigpro.2018.02.022 10.1109/TSP.2015.2493986 10.1109/78.875477 10.1109/91.842153 10.1016/S1474-6670(17)42917-X 10.1007/BF02547519 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.sigpro.2019.06.007 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-7557 |
EndPage | 109 |
ExternalDocumentID | 10_1016_j_sigpro_2019_06_007 S0165168419302154 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-80d0b0c1534ec189449c6dff82bebc970031fbf7b2d2b08100da923021869c3b3 |
IEDL.DBID | AIKHN |
ISSN | 0165-1684 |
IngestDate | Thu Apr 24 22:57:38 EDT 2025 Tue Jul 01 02:07:26 EDT 2025 Fri Feb 23 02:45:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wiener model Momentum Impulsive noise Spline adaptive filter Nonlinear system identification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-80d0b0c1534ec189449c6dff82bebc970031fbf7b2d2b08100da923021869c3b3 |
ORCID | 0000-0003-1084-3223 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1016_j_sigpro_2019_06_007 crossref_primary_10_1016_j_sigpro_2019_06_007 elsevier_sciencedirect_doi_10_1016_j_sigpro_2019_06_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2019 2019-11-00 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: November 2019 |
PublicationDecade | 2010 |
PublicationTitle | Signal processing |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Doyle, Ogunnaike, Pearson (bib0009) 1995; 31 Guan, Li (bib0031) 2017; 46 Haykin (bib0004) 1994 Patel, George (bib0033) 2015; 93 Liu, Zhang, Tang (bib0030) 2018; 148 Peng, Wu, Zhang, Chen (bib0029) 2015 Scarpiniti, Comminiello, Scarano, Parisi, Uncini (bib0027) 2016; 64 Zheng, Fu, Li, Yuan (bib0020) 2018; 18 Scarpiniti, Comminiello, Parisi, Uncini (bib0008) 2015; 108 Scardapane, Scarpiniti, Comminiello, Uncini (bib0028) 2016 Yang, Yang, Niu (bib0034) 2017; 90 Sicuranza, Carini (bib0014) 2011; 19 Wiener (bib0022) 1958 Narendra, Parthasarathy (bib0012) 1990; 1 Patel, Comminiello, Scarpiniti, George, Uncini (bib0032) 2016 Back, Tsoi (bib0037) 1993; 5 Haykin (bib0011) 2009 Nelles (bib0003) 1997; 30 Comminiello, Scarpiniti, Azpicueta-Ruiz, Arenas-García, Uncini (bib0019) 2017; 135 Giri (bib0021) 2010 Qian (bib0036) 1999; 12 Schetzen (bib0010) 1980 Patra, Pal (bib0013) 1995; 43 Scarpiniti, Comminiello, Parisi, Uncini (bib0024) 2013; 93 Hammerstein (bib0023) 1930; 54 Ljung (bib0001) 1987 Catmull, Rom (bib0035) 1974; 97 Rahrooh, Shepard (bib0006) 2009; 71 Liu (bib0016) 2010 Liu, Pokharel, Principe (bib0015) 2008; 56 Mao, Ding, Yang (bib0018) 2017; 31 Sebald, Bucklew (bib0007) 2000; 48 Lesiak, Krener (bib0002) 1978; 23 Cao, Frank (bib0005) 2000; 8 Comminiello, Scarpiniti, Scardapane, Parisi, Uncini (bib0017) 2015; 69 Scarpiniti, Comminiello, Parisi, Uncini (bib0025) 2014; 100 Scarpiniti, Comminiello, Parisi, Uncini (bib0026) 2015; 62 Haykin (10.1016/j.sigpro.2019.06.007_bib0011) 2009 Nelles (10.1016/j.sigpro.2019.06.007_bib0003) 1997; 30 Cao (10.1016/j.sigpro.2019.06.007_bib0005) 2000; 8 Scarpiniti (10.1016/j.sigpro.2019.06.007_bib0027) 2016; 64 Mao (10.1016/j.sigpro.2019.06.007_bib0018) 2017; 31 Sebald (10.1016/j.sigpro.2019.06.007_bib0007) 2000; 48 Scarpiniti (10.1016/j.sigpro.2019.06.007_bib0008) 2015; 108 Patra (10.1016/j.sigpro.2019.06.007_bib0013) 1995; 43 Scarpiniti (10.1016/j.sigpro.2019.06.007_bib0026) 2015; 62 Catmull (10.1016/j.sigpro.2019.06.007_bib0035) 1974; 97 Qian (10.1016/j.sigpro.2019.06.007_bib0036) 1999; 12 Giri (10.1016/j.sigpro.2019.06.007_bib0021) 2010 Haykin (10.1016/j.sigpro.2019.06.007_bib0004) 1994 Ljung (10.1016/j.sigpro.2019.06.007_bib0001) 1987 Hammerstein (10.1016/j.sigpro.2019.06.007_bib0023) 1930; 54 Scarpiniti (10.1016/j.sigpro.2019.06.007_bib0024) 2013; 93 Guan (10.1016/j.sigpro.2019.06.007_bib0031) 2017; 46 Liu (10.1016/j.sigpro.2019.06.007_bib0016) 2010 Zheng (10.1016/j.sigpro.2019.06.007_bib0020) 2018; 18 Patel (10.1016/j.sigpro.2019.06.007_bib0032) 2016 Schetzen (10.1016/j.sigpro.2019.06.007_bib0010) 1980 Liu (10.1016/j.sigpro.2019.06.007_bib0015) 2008; 56 Sicuranza (10.1016/j.sigpro.2019.06.007_bib0014) 2011; 19 Narendra (10.1016/j.sigpro.2019.06.007_bib0012) 1990; 1 Comminiello (10.1016/j.sigpro.2019.06.007_bib0019) 2017; 135 Wiener (10.1016/j.sigpro.2019.06.007_bib0022) 1958 Doyle (10.1016/j.sigpro.2019.06.007_bib0009) 1995; 31 Rahrooh (10.1016/j.sigpro.2019.06.007_bib0006) 2009; 71 Patel (10.1016/j.sigpro.2019.06.007_bib0033) 2015; 93 Scardapane (10.1016/j.sigpro.2019.06.007_bib0028) 2016 Scarpiniti (10.1016/j.sigpro.2019.06.007_bib0025) 2014; 100 Lesiak (10.1016/j.sigpro.2019.06.007_bib0002) 1978; 23 Comminiello (10.1016/j.sigpro.2019.06.007_bib0017) 2015; 69 Peng (10.1016/j.sigpro.2019.06.007_bib0029) 2015 Back (10.1016/j.sigpro.2019.06.007_bib0037) 1993; 5 Liu (10.1016/j.sigpro.2019.06.007_bib0030) 2018; 148 Yang (10.1016/j.sigpro.2019.06.007_bib0034) 2017; 90 |
References_xml | – volume: 71 start-page: e1198 year: 2009 end-page: e1202 ident: bib0006 article-title: Identification of nonlinear systems using NARMAX model publication-title: Nonlinear Anal. – volume: 135 start-page: 168 year: 2017 end-page: 178 ident: bib0019 article-title: Combined nonlinear filtering architectures involving sparse functional link adaptive filters publication-title: Signal Process. – start-page: 3420 year: 2016 end-page: 3425 ident: bib0032 article-title: Design of hybrid nonlinear spline adaptive filters for active noise control publication-title: International Joint Conference on Neural Networks (IJCNN) – year: 1980 ident: bib0010 article-title: The Volterra and Wiener Theories of Nonlinear Systems – start-page: 1498 year: 2016 end-page: 1502 ident: bib0028 article-title: Diffusion spline adaptive filtering publication-title: European Signal Processing Conference (EUSIPCO) – year: 1958 ident: bib0022 article-title: Nonlinear Problems in Random Theory – volume: 46 start-page: 595 year: 2017 end-page: 607 ident: bib0031 article-title: Normalised spline adaptive filtering algorithm for nonlinear system identification publication-title: Neural Process. Lett. – volume: 31 start-page: 1388 year: 2017 end-page: 1400 ident: bib0018 article-title: Adaptive filtering-based multi-innovation gradient algorithm for input nonlinear systems with autoregressive noise publication-title: Int. J. Adapt. Control Signal Process. – volume: 23 start-page: 1090 year: 1978 end-page: 1095 ident: bib0002 article-title: The existence and uniqueness of Volterra series for nonlinear systems publication-title: IEEE Trans. Autom. Control – volume: 97 start-page: 317 year: 1974 end-page: 326 ident: bib0035 article-title: A class of local interpolating splines publication-title: Comput. Aided Geom. Des. – year: 1987 ident: bib0001 article-title: System identification: Theory for the User – volume: 43 start-page: 181 year: 1995 end-page: 185 ident: bib0013 article-title: A functional link artificial neural network for adaptive channel equalization publication-title: Signal Process. – year: 2010 ident: bib0016 article-title: Kernel Adaptive Filtering: A Comprehensive Introduction – volume: 5 start-page: 456 year: 1993 end-page: 462 ident: bib0037 article-title: A simplified gradient algorithm for IIR synapse multilayer perceptrons publication-title: Neural Comput. – volume: 1 start-page: 4 year: 1990 end-page: 27 ident: bib0012 article-title: Identification and control of dynamical systems using neural networks publication-title: IEEE Trans. Neural Netw. – year: 1994 ident: bib0004 article-title: Neural networks: a comprehensive foundation – volume: 56 start-page: 543 year: 2008 end-page: 554 ident: bib0015 article-title: The kernel least-mean-square algorithm publication-title: IEEE Trans. Signal Process. – volume: 30 start-page: 639 year: 1997 end-page: 644 ident: bib0003 article-title: Orthonormal basis functions for nonlinear system identification with local linear model trees (LOLIMOT) publication-title: IFAC Proc. Vol. – volume: 31 start-page: 697 year: 1995 end-page: 714 ident: bib0009 article-title: Nonlinear model-based control using second order Volterra models publication-title: Automatica – volume: 100 start-page: 112 year: 2014 end-page: 123 ident: bib0025 article-title: Hammerstein uniform cubic spline adaptive filters: learning and convergence properties publication-title: Signal Process. – volume: 62 start-page: 1825 year: 2015 end-page: 1835 ident: bib0026 article-title: Novel cascade spline architectures for the identification of nonlinear systems publication-title: IEEE Trans. Circuits Syst. – volume: 148 start-page: 234 year: 2018 end-page: 240 ident: bib0030 article-title: Sign normalised spline adaptive filtering algorithms against impulsive noise publication-title: Signal Process. – volume: 54 start-page: 117 year: 1930 end-page: 176 ident: bib0023 article-title: Nichtlineare integralgleichung nebst anwendungen publication-title: Acta Mathematica – volume: 93 start-page: 772 year: 2013 end-page: 783 ident: bib0024 article-title: Nonlinear spline adaptive filtering publication-title: Signal Process. – volume: 69 start-page: 51 year: 2015 end-page: 59 ident: bib0017 article-title: Improving nonlinear modeling capabilities of functional link adaptive filters publication-title: Neural Netw. – volume: 8 start-page: 200 year: 2000 end-page: 211 ident: bib0005 article-title: Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach publication-title: IEEE Trans. Fuzzy Syst. – volume: 64 start-page: 816 year: 2016 end-page: 828 ident: bib0027 article-title: Steady-state performance of spline adaptive filters publication-title: IEEE Trans. Signal Process. – volume: 18 start-page: 808 year: 2018 ident: bib0020 article-title: A robust adaptive unscented Kalman filter for nonlinear estimation with uncertain noise covariance publication-title: Sensors – year: 2010 ident: bib0021 article-title: Block-oriented Nonlinear System Identification – start-page: 1 year: 2015 end-page: 5 ident: bib0029 article-title: Nonlinear spline adaptive filtering under maximum correntropy criterion publication-title: TENCON 2015 - 2015 IEEE Region 10 Conference – volume: 19 start-page: 2412 year: 2011 end-page: 2417 ident: bib0014 article-title: A generalized FLANN filter for nonlinear active noise control publication-title: IEEE Trans. Audio Speech Lang. Process. – volume: 108 start-page: 30 year: 2015 end-page: 35 ident: bib0008 article-title: Nonlinear system identification using IIR spline adaptive filters publication-title: Signal Process. – volume: 12 start-page: 145 year: 1999 end-page: 151 ident: bib0036 article-title: On the momentum term in gradient descent learning algorithms publication-title: Neural Netw. – volume: 90 start-page: 1647 year: 2017 end-page: 1659 ident: bib0034 article-title: Spline adaptive filter with fractional-order adaptive strategy for nonlinear model identification of magnetostrictive actuator publication-title: Nonlinear Dyn. – year: 2009 ident: bib0011 article-title: Neural Networks and Learning Machines – volume: 93 start-page: 38 year: 2015 end-page: 43 ident: bib0033 article-title: Nonlinear active noise control using spline adaptive filters publication-title: Appl. Acoust. – volume: 48 start-page: 3217 year: 2000 end-page: 3226 ident: bib0007 article-title: Support vector machine techniques for nonlinear equalization publication-title: IEEE Trans. Signal Process. – start-page: 3420 year: 2016 ident: 10.1016/j.sigpro.2019.06.007_bib0032 article-title: Design of hybrid nonlinear spline adaptive filters for active noise control – volume: 46 start-page: 595 issue: 2 year: 2017 ident: 10.1016/j.sigpro.2019.06.007_bib0031 article-title: Normalised spline adaptive filtering algorithm for nonlinear system identification publication-title: Neural Process. Lett. doi: 10.1007/s11063-017-9606-6 – volume: 43 start-page: 181 issue: 2 year: 1995 ident: 10.1016/j.sigpro.2019.06.007_bib0013 article-title: A functional link artificial neural network for adaptive channel equalization publication-title: Signal Process. doi: 10.1016/0165-1684(94)00152-P – volume: 100 start-page: 112 year: 2014 ident: 10.1016/j.sigpro.2019.06.007_bib0025 article-title: Hammerstein uniform cubic spline adaptive filters: learning and convergence properties publication-title: Signal Process. doi: 10.1016/j.sigpro.2014.01.019 – start-page: 1498 year: 2016 ident: 10.1016/j.sigpro.2019.06.007_bib0028 article-title: Diffusion spline adaptive filtering – volume: 69 start-page: 51 year: 2015 ident: 10.1016/j.sigpro.2019.06.007_bib0017 article-title: Improving nonlinear modeling capabilities of functional link adaptive filters publication-title: Neural Netw. doi: 10.1016/j.neunet.2015.05.002 – volume: 108 start-page: 30 year: 2015 ident: 10.1016/j.sigpro.2019.06.007_bib0008 article-title: Nonlinear system identification using IIR spline adaptive filters publication-title: Signal Process. doi: 10.1016/j.sigpro.2014.08.045 – volume: 56 start-page: 543 issue: 2 year: 2008 ident: 10.1016/j.sigpro.2019.06.007_bib0015 article-title: The kernel least-mean-square algorithm publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.907881 – volume: 1 start-page: 4 issue: 1 year: 1990 ident: 10.1016/j.sigpro.2019.06.007_bib0012 article-title: Identification and control of dynamical systems using neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.80202 – year: 2010 ident: 10.1016/j.sigpro.2019.06.007_bib0021 – start-page: 1 year: 2015 ident: 10.1016/j.sigpro.2019.06.007_bib0029 article-title: Nonlinear spline adaptive filtering under maximum correntropy criterion – volume: 23 start-page: 1090 issue: 6 year: 1978 ident: 10.1016/j.sigpro.2019.06.007_bib0002 article-title: The existence and uniqueness of Volterra series for nonlinear systems publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1978.1101898 – volume: 19 start-page: 2412 issue: 8 year: 2011 ident: 10.1016/j.sigpro.2019.06.007_bib0014 article-title: A generalized FLANN filter for nonlinear active noise control publication-title: IEEE Trans. Audio Speech Lang. Process. doi: 10.1109/TASL.2011.2136336 – volume: 135 start-page: 168 year: 2017 ident: 10.1016/j.sigpro.2019.06.007_bib0019 article-title: Combined nonlinear filtering architectures involving sparse functional link adaptive filters publication-title: Signal Process. doi: 10.1016/j.sigpro.2017.01.009 – year: 1958 ident: 10.1016/j.sigpro.2019.06.007_bib0022 – year: 1980 ident: 10.1016/j.sigpro.2019.06.007_bib0010 – volume: 31 start-page: 1388 issue: 10 year: 2017 ident: 10.1016/j.sigpro.2019.06.007_bib0018 article-title: Adaptive filtering-based multi-innovation gradient algorithm for input nonlinear systems with autoregressive noise publication-title: Int. J. Adapt. Control Signal Process. doi: 10.1002/acs.2772 – year: 1994 ident: 10.1016/j.sigpro.2019.06.007_bib0004 – volume: 97 start-page: 317 year: 1974 ident: 10.1016/j.sigpro.2019.06.007_bib0035 article-title: A class of local interpolating splines publication-title: Comput. Aided Geom. Des. doi: 10.1016/B978-0-12-079050-0.50020-5 – volume: 12 start-page: 145 issue: 1 year: 1999 ident: 10.1016/j.sigpro.2019.06.007_bib0036 article-title: On the momentum term in gradient descent learning algorithms publication-title: Neural Netw. doi: 10.1016/S0893-6080(98)00116-6 – year: 2009 ident: 10.1016/j.sigpro.2019.06.007_bib0011 – volume: 18 start-page: 808 issue: 3 year: 2018 ident: 10.1016/j.sigpro.2019.06.007_bib0020 article-title: A robust adaptive unscented Kalman filter for nonlinear estimation with uncertain noise covariance publication-title: Sensors doi: 10.3390/s18030808 – volume: 62 start-page: 1825 issue: 7 year: 2015 ident: 10.1016/j.sigpro.2019.06.007_bib0026 article-title: Novel cascade spline architectures for the identification of nonlinear systems publication-title: IEEE Trans. Circuits Syst. doi: 10.1109/TCSI.2015.2423791 – volume: 5 start-page: 456 issue: 3 year: 1993 ident: 10.1016/j.sigpro.2019.06.007_bib0037 article-title: A simplified gradient algorithm for IIR synapse multilayer perceptrons publication-title: Neural Comput. doi: 10.1162/neco.1993.5.3.456 – year: 2010 ident: 10.1016/j.sigpro.2019.06.007_bib0016 – volume: 71 start-page: e1198 issue: 12 year: 2009 ident: 10.1016/j.sigpro.2019.06.007_bib0006 article-title: Identification of nonlinear systems using NARMAX model publication-title: Nonlinear Anal. doi: 10.1016/j.na.2009.01.150 – volume: 31 start-page: 697 issue: 5 year: 1995 ident: 10.1016/j.sigpro.2019.06.007_bib0009 article-title: Nonlinear model-based control using second order Volterra models publication-title: Automatica doi: 10.1016/0005-1098(94)00150-H – volume: 93 start-page: 772 issue: 4 year: 2013 ident: 10.1016/j.sigpro.2019.06.007_bib0024 article-title: Nonlinear spline adaptive filtering publication-title: Signal Process. doi: 10.1016/j.sigpro.2012.09.021 – volume: 93 start-page: 38 year: 2015 ident: 10.1016/j.sigpro.2019.06.007_bib0033 article-title: Nonlinear active noise control using spline adaptive filters publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2015.01.009 – volume: 90 start-page: 1647 issue: 3 year: 2017 ident: 10.1016/j.sigpro.2019.06.007_bib0034 article-title: Spline adaptive filter with fractional-order adaptive strategy for nonlinear model identification of magnetostrictive actuator publication-title: Nonlinear Dyn. doi: 10.1007/s11071-017-3754-0 – volume: 148 start-page: 234 year: 2018 ident: 10.1016/j.sigpro.2019.06.007_bib0030 article-title: Sign normalised spline adaptive filtering algorithms against impulsive noise publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.02.022 – year: 1987 ident: 10.1016/j.sigpro.2019.06.007_bib0001 – volume: 64 start-page: 816 issue: 4 year: 2016 ident: 10.1016/j.sigpro.2019.06.007_bib0027 article-title: Steady-state performance of spline adaptive filters publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2493986 – volume: 48 start-page: 3217 issue: 11 year: 2000 ident: 10.1016/j.sigpro.2019.06.007_bib0007 article-title: Support vector machine techniques for nonlinear equalization publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.875477 – volume: 8 start-page: 200 issue: 2 year: 2000 ident: 10.1016/j.sigpro.2019.06.007_bib0005 article-title: Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.842153 – volume: 30 start-page: 639 issue: 11 year: 1997 ident: 10.1016/j.sigpro.2019.06.007_bib0003 article-title: Orthonormal basis functions for nonlinear system identification with local linear model trees (LOLIMOT) publication-title: IFAC Proc. Vol. doi: 10.1016/S1474-6670(17)42917-X – volume: 54 start-page: 117 issue: 1 year: 1930 ident: 10.1016/j.sigpro.2019.06.007_bib0023 article-title: Nichtlineare integralgleichung nebst anwendungen publication-title: Acta Mathematica doi: 10.1007/BF02547519 |
SSID | ssj0001360 |
Score | 2.4588995 |
Snippet | •An enhanced SAF is proposed.•The arctangent cost function is adopted to improve the robustness against the impulsive noises.•A modified momentum SGD is... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 99 |
SubjectTerms | Impulsive noise Momentum Nonlinear system identification Spline adaptive filter Wiener model |
Title | Spline adaptive filter with arctangent-momentum strategy for nonlinear system identification |
URI | https://dx.doi.org/10.1016/j.sigpro.2019.06.007 |
Volume | 164 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76uOhBfGJ9lD14jU2zaZI9lmKpir3UQg9C2KdEbCltevDib3cnm5QKouAxYYeE2d1vZpP5vgG4oVoaJZTdaUlsvJAJ5bG4F3txIKWvfC6EwIPi0zgaTcOHWW9Wg0HFhcGyyhL7HaYXaF3e6ZTe7CyzrDNBIk43SkKbgmDgCuvQDCiLeg1o9u8fR-MtIHdpQRbG8R4aVAy6osxrnb1aqMIaL1YIeWJf2Z8i1E7UGR7CQZkukr57oyOo6cUx7O-ICJ7AywRJtZpwxZeIXcRk-Aec4BdWYpdxzgv6lDdHrYV8MydrJ0j7QWy-ShZOKoOviNN0Jpkq64eKKTuF6fDueTDyyp4JnrTJf24DjvKFLy2OhVp2ExaGTEbKmCQQWkgW4yY2wsQiUIGw6YDvK25zPNeaSlJBz6Bhn6zPgXDrL8kp9aU2oTL2YCYo8wVnVCsZCd4CWvkplaWgOPa1eE-ryrG31Hk3Re-mRQFd3AJva7V0ghp_jI-rKUi_LYzUYv6vlhf_tryEPbxylMMraOSrjb62uUcu2lC__ey2yxX2BdvV3Mk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YHVNK3dOBlRRVWg7dJW6oAU-YmCaFW16cDCb8cXJ1AkBBJr4lOis333OfnuO4SuqVFWS-12WsQtYbHUJOYtTnhTqUAHQkoJB8X-IOyO2cOkNamgdlkLA7TKIvb7mJ5H6-JKvfBmfZ6m9SEU4jTCiDkIAomLbaBN1qIceH037188jwbNS4VhNIHhZf1cTvJaps8uUAHDK85lPKGr7E_5aS3ndPbQbgEW8a1_n31UMbMDtLMmIXiInoZQUmuw0GIOkQvbFP5_Y_i-it0izkRePEWmoLSQraZ46eVo37BDq3jmhTLEAntFZ5zqgj2UT9gRGnfuRu0uKTomEOWgf-bSjQ5koFwUY0Y1opixWIXa2qgpjVQxhy1speWyqZvSgYEg0MIhPN-YSlFJj1HVPdmcICycv5SgNFDGMm3dsUzSOJAipkarUIoaoqWfElXIiUNXi9ek5I29JN67CXg3yelzvIbIp9Xcy2n8MZ6XU5B8WxaJi_i_Wp7-2_IKbXVH_V7Sux88nqFtuOOLD89RNVuszIVDIZm8zFfZB7w63ZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spline+adaptive+filter+with+arctangent-momentum+strategy+for+nonlinear+system+identification&rft.jtitle=Signal+processing&rft.au=Yang%2C+Liangdong&rft.au=Liu%2C+Jinxin&rft.au=Yan%2C+Ruqiang&rft.au=Chen%2C+Xuefeng&rft.date=2019-11-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=164&rft.spage=99&rft.epage=109&rft_id=info:doi/10.1016%2Fj.sigpro.2019.06.007&rft.externalDocID=S0165168419302154 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |