Decentralized k-anonymization of trajectories via privacy-preserving tit-for-tat
Mobility data, and specifically trajectories, are used to monitor the mobility of the population and are crucial to improve public health, transportation, urban planning, economic planning, etc. However, trajectories are personally identifiable information and hence they should be anonymized before...
Saved in:
Published in | Computer communications Vol. 190; pp. 57 - 68 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0140-3664 |
DOI | 10.1016/j.comcom.2022.04.011 |
Cover
Abstract | Mobility data, and specifically trajectories, are used to monitor the mobility of the population and are crucial to improve public health, transportation, urban planning, economic planning, etc. However, trajectories are personally identifiable information and hence they should be anonymized before releasing them for secondary use. Anonymization cannot be limited to suppressing the metadata containing the subject’s identity, because the origin, the destination and even the intermediate points of a trajectory may allow re-identifying the subject who followed it. Proper anonymization requires masking detailed spatiotemporal information. The standard approach to build anonymized data sets is centralized: the subjects send their original movement data to a controller, who takes care of producing an anonymized mobility data set. This requires subjects to blindly trust the controller. In this paper, we empower subjects with the ability to anonymize their trajectories locally by adhering to a privacy model in order to achieve formal privacy guarantees. After reviewing the state of the art, we motivate our choice of k-anonymity as a privacy model. We then set out to decentralize k-anonymity in a rational setting: a subject k-anonymizes her completed trajectory by aggregating with k−1 similar trajectories obtained from other (unknown) subjects. The latter trajectories are gathered via an anonymous and privacy-preserving tit-for-tat data exchange protocol, which runs on a fully decentralized peer-to-peer network. Experiments show that, without relying on a (trusted) data controller and while ensuring privacy w.r.t. other peers, our approach yields k-anonymized mobility data sets that are still reasonably useful compared to the near-optimal data sets obtained in the centralized approach. |
---|---|
AbstractList | Mobility data, and specifically trajectories, are used to monitor the mobility of the population and are crucial to improve public health, transportation, urban planning, economic planning, etc. However, trajectories are personally identifiable information and hence they should be anonymized before releasing them for secondary use. Anonymization cannot be limited to suppressing the metadata containing the subject’s identity, because the origin, the destination and even the intermediate points of a trajectory may allow re-identifying the subject who followed it. Proper anonymization requires masking detailed spatiotemporal information. The standard approach to build anonymized data sets is centralized: the subjects send their original movement data to a controller, who takes care of producing an anonymized mobility data set. This requires subjects to blindly trust the controller. In this paper, we empower subjects with the ability to anonymize their trajectories locally by adhering to a privacy model in order to achieve formal privacy guarantees. After reviewing the state of the art, we motivate our choice of k-anonymity as a privacy model. We then set out to decentralize k-anonymity in a rational setting: a subject k-anonymizes her completed trajectory by aggregating with k−1 similar trajectories obtained from other (unknown) subjects. The latter trajectories are gathered via an anonymous and privacy-preserving tit-for-tat data exchange protocol, which runs on a fully decentralized peer-to-peer network. Experiments show that, without relying on a (trusted) data controller and while ensuring privacy w.r.t. other peers, our approach yields k-anonymized mobility data sets that are still reasonably useful compared to the near-optimal data sets obtained in the centralized approach. |
Author | Domingo-Ferrer, Josep Martínez, Sergio Sánchez, David |
Author_xml | – sequence: 1 givenname: Josep surname: Domingo-Ferrer fullname: Domingo-Ferrer, Josep email: josep.domingo@urv.cat – sequence: 2 givenname: Sergio surname: Martínez fullname: Martínez, Sergio email: sergio.martinezl@urv.cat – sequence: 3 givenname: David surname: Sánchez fullname: Sánchez, David email: david.sanchez@urv.cat |
BookMark | eNqFkE1LAzEQhnOoYKv-Aw_7B7JOdpNs14Mg9RMKetBzSLMTydpuShIW2l9vaj15UBiYw_C8vPPMyGTwAxJyyaBkwORVXxq_yVNWUFUl8BIYm5ApMA60lpKfklmMPQDwpqmn5PUODQ4p6LXbY1d8Up3zdhu318n5ofC2yLceTfLBYSxGp4ttcKM2O7oNGDGMbvgokkvU-kCTTufkxOp1xIuffUbeH-7fFk90-fL4vLhdUlODTLSxRrZz1q7qTsiV0MICazuLfG5AV9YywTkXphYouK6bxgqowMiqnVtpsLX1Gbk-5prgYwxolXHpu3Qu7NaKgTr4UL06-lAHHwq4yj4yzH_B-amNDrv_sJsjhvmx0WFQ0TgcDHYuZEWq8-7vgC-aAYJL |
CitedBy_id | crossref_primary_10_1007_s11227_024_06854_8 crossref_primary_10_1016_j_ins_2025_121949 crossref_primary_10_1002_tee_24254 crossref_primary_10_1109_TMC_2023_3249465 |
Cites_doi | 10.1007/s10618-005-0007-5 10.1109/CSF.2015.12 10.1126/science.aad9295 10.1007/978-3-540-73540-3_15 10.1140/epjds/s13688-015-0049-x 10.1145/3433638 10.1109/TMC.2012.208 10.1109/5.993400 10.1145/1653771.1653808 10.1016/j.neucom.2021.04.137 10.1109/MDM.2015.15 10.1109/TIFS.2016.2631952 10.1109/TAI.2020.3020521 10.1145/2810103.2813640 10.14778/3137628.3137630 10.1126/sciadv.abc0764 10.1145/2716281.2836111 10.1007/s00778-019-00574-9 10.1016/j.ins.2012.04.015 10.1109/ACCESS.2018.2873779 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.comcom.2022.04.011 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 68 |
ExternalDocumentID | 10_1016_j_comcom_2022_04_011 S0140366422001153 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 77K 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SSH SST SSV SSZ T5K WH7 ZMT ~G- 07C 29F AAQXK AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD F0J FEDTE FGOYB HLZ HVGLF HZ~ R2- RIG SBC SEW TAE UHS VH1 VOH WUQ XPP ZY4 |
ID | FETCH-LOGICAL-c306t-7fc69819b3d56b5a5f019dfe48c0a2ff154445c35e54a377f5020c6298f6ce9f3 |
IEDL.DBID | AIKHN |
ISSN | 0140-3664 |
IngestDate | Tue Jul 01 02:43:08 EDT 2025 Thu Apr 24 22:57:16 EDT 2025 Sun Apr 06 06:53:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Privacy Decentralized anonymization P2P k-anonymity |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-7fc69819b3d56b5a5f019dfe48c0a2ff154445c35e54a377f5020c6298f6ce9f3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0140366422001153 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1016_j_comcom_2022_04_011 crossref_primary_10_1016_j_comcom_2022_04_011 elsevier_sciencedirect_doi_10_1016_j_comcom_2022_04_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 2022-06-00 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Computer communications |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gasmelseed, Mahmood (b33) 1963; 1 Murakami, Kanemura, Hino (b7) 2017; 12 Hay, Machanavajjhala, Miklau, Chen, Zhang (b22) 2016; vol. 16 Salas, Megías, Torra (b10) 2018 M. Castro, P. Druschel, Y.C. Hu, A. Rowstron, Exploiting Network Proximity in Peer-to-Peer Overlay Networks, Technical report MSR-TR2002-82, 2002. Chan, Fu, Yu (b34) 2003; 15 Domingo-Ferrer, Sánchez, Blanco-Justicia (b24) 2021; 64 Oliver, Lepri, Sterly, Lambiotte, Deletaille, De Nadai, Letouzé, Ali Salah, Benjamins, Cattuto, Colizza, de Cordes, Fraiberger, Koebe, Lehmann, Murillo, Pentland, Pham, Pivetta, Saramäki, Scarpino, Tizzoni, Verhulst, Vinck (b2) 2020; 6 Sánchez, Martínez, Domingo-Ferrer (b11) 2016; 351 Stoica, Morris, Karger, Frans Kaashoek, Balakrishnan (b29) 2001; vol. 01 Piorkowski, Sarafijanovic-Djukic, Grossglauser (b36) 2022 (b4) 2016 Rossi, Walker, Musolesi (b8) 2015; 4 Samarati, Sweeney (b12) 1998 Monreale, Adrienko, Adrienko, Giannotti, Pedreschi, Rinzivillo, Wrobel (b16) 2010; 3 Nergiz, Atzori, Saygin, Guc (b17) 2009; 2 Y. Xiao, L. Xiong, Protecting locations with differential privacy under temporal correlations, in: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, 2015, pp. 1298–1309. Andrés, Bordenabe, Chatzikokolakis, Palamidessi (b25) 2021; 2013 Meijering (b31) 2002; 90 Domingo-Ferrer, Trujillo-Rasua (b6) 2012; 208 Dwork, McSherry, Nissim, Smith (b18) 2006; vol. 06 M. Gramaglia, M. Fiore, Hiding mobile traffic fingerprints with glove, in: Proceedings of the 11th ACM Conference on Emerging Networking Experiments and Technologies, 2015, pp. 1–13. C.Y. Chow, M.F. Mokbel, Enabling private continuous queries for revealed user locations, in: International Symposium on Spatial and Temporal Databases, 2007, pp. 258–275. Domingo-Ferrer, Torra (b28) 2005; 11 Y. Cao, M. Yoshikawa, Differentially private real-time data release over infinite trajectory streams, in: 2015 16th IEEE International Conference on Mobile Data Management, Vol. 2, 2015, pp. 68–73. Su, Liu, Zheng, Zhou, Zheng (b32) 2020; 29 Fiore, Katsikouli, Zavou, Cunche, Fessant, Le Hello, Matchi Aivodji, Olivier, Quertier, Stanica (b5) 2020; 13 Brunet, Canard, Gambs, Olivier (b21) 2016 X. Pan, X. Meng, J. Xu, Mobimix: Protecting location privacy with mix-zones over road networks, in: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2009, pp. 256–265. Shang, Chen, Wei, Jensen, Zheng, Kalnis (b35) 2017; 10 Latif, Usman, Manzoor, Iqbal, Qadir, Tyson, Castro, Razi, Kamel Boulos, Weller, Crowcroft (b3) 2020; 1 Cheng, Wen, Huang, Miao, Wang (b27) 2022; 472 Dewri (b26) 2012; 12 Y. Song, D. Dahlmeier, S. Bressan, Not so unique in the crowd: A simple and effective algorithm for anonymizing location data, in: International Workshop on Privacy Preserving IR, PIR 2014, 2014, pp. 19–24. H. Ngo, J. Kim, Location privacy via differential private perturbation of cloaking area, in: 2015 IEEE 28th Computer Security Foundations Symposium, 2015, pp. 63–74. Kong, Li, Ma, Tian, Wang, Ning, Xia (b1) 2018; 6 10.1016/j.comcom.2022.04.011_b30 Meijering (10.1016/j.comcom.2022.04.011_b31) 2002; 90 Hay (10.1016/j.comcom.2022.04.011_b22) 2016; vol. 16 10.1016/j.comcom.2022.04.011_b13 10.1016/j.comcom.2022.04.011_b15 10.1016/j.comcom.2022.04.011_b14 Stoica (10.1016/j.comcom.2022.04.011_b29) 2001; vol. 01 Samarati (10.1016/j.comcom.2022.04.011_b12) 1998 Su (10.1016/j.comcom.2022.04.011_b32) 2020; 29 Salas (10.1016/j.comcom.2022.04.011_b10) 2018 Brunet (10.1016/j.comcom.2022.04.011_b21) 2016 Cheng (10.1016/j.comcom.2022.04.011_b27) 2022; 472 Nergiz (10.1016/j.comcom.2022.04.011_b17) 2009; 2 Domingo-Ferrer (10.1016/j.comcom.2022.04.011_b24) 2021; 64 Chan (10.1016/j.comcom.2022.04.011_b34) 2003; 15 10.1016/j.comcom.2022.04.011_b19 Sánchez (10.1016/j.comcom.2022.04.011_b11) 2016; 351 Gasmelseed (10.1016/j.comcom.2022.04.011_b33) 1963; 1 10.1016/j.comcom.2022.04.011_b20 Rossi (10.1016/j.comcom.2022.04.011_b8) 2015; 4 Oliver (10.1016/j.comcom.2022.04.011_b2) 2020; 6 10.1016/j.comcom.2022.04.011_b23 Murakami (10.1016/j.comcom.2022.04.011_b7) 2017; 12 Domingo-Ferrer (10.1016/j.comcom.2022.04.011_b28) 2005; 11 Latif (10.1016/j.comcom.2022.04.011_b3) 2020; 1 Shang (10.1016/j.comcom.2022.04.011_b35) 2017; 10 Monreale (10.1016/j.comcom.2022.04.011_b16) 2010; 3 Andrés (10.1016/j.comcom.2022.04.011_b25) 2021; 2013 (10.1016/j.comcom.2022.04.011_b4) 2016 Piorkowski (10.1016/j.comcom.2022.04.011_b36) 2022 Kong (10.1016/j.comcom.2022.04.011_b1) 2018; 6 Domingo-Ferrer (10.1016/j.comcom.2022.04.011_b6) 2012; 208 Fiore (10.1016/j.comcom.2022.04.011_b5) 2020; 13 Dewri (10.1016/j.comcom.2022.04.011_b26) 2012; 12 10.1016/j.comcom.2022.04.011_b9 Dwork (10.1016/j.comcom.2022.04.011_b18) 2006; vol. 06 |
References_xml | – year: 2016 ident: b4 article-title: General data protection regulation – volume: 208 start-page: 55 year: 2012 end-page: 80 ident: b6 article-title: Microaggregation and permutation-based anonymization of movement data publication-title: Inform. Sci. – volume: 351 start-page: 1274 year: 2016 ident: b11 article-title: Comment on ’unique in the shopping mall: On the reidentifiability of credit card metadata’ publication-title: Science – reference: C.Y. Chow, M.F. Mokbel, Enabling private continuous queries for revealed user locations, in: International Symposium on Spatial and Temporal Databases, 2007, pp. 258–275. – reference: H. Ngo, J. Kim, Location privacy via differential private perturbation of cloaking area, in: 2015 IEEE 28th Computer Security Foundations Symposium, 2015, pp. 63–74. – volume: 12 start-page: 2360 year: 2012 end-page: 2372 ident: b26 article-title: Local differential perturbations: location privacy under approximate knowledge attackers publication-title: IEEE Trans. Mob. Comput. – volume: vol. 16 start-page: 139 year: 2016 end-page: 154 ident: b22 article-title: Principled evaluation of differentially private algorithms using dpbench publication-title: Proceedings of the 2016 International Conference on Management of Data – volume: 2 start-page: 47 year: 2009 end-page: 75 ident: b17 article-title: Towards trajectory anonymization: a generalization-based approach publication-title: Trans. Data Priv. – volume: 15 start-page: 686 year: 2003 end-page: 705 ident: b34 article-title: Haar wavelets for efficient similarity search of time-series: with and without time warping publication-title: IEEE Trans. Knowl. Data Eng. – volume: 13 start-page: 91 year: 2020 end-page: 149 ident: b5 article-title: Privacy in trajectory micro-data publishing: a survey publication-title: Trans. Data Priv. – volume: 472 start-page: 201 year: 2022 end-page: 211 ident: b27 article-title: OPTDP: Towards optimal personalized trajectory differential privacy for trajectory data publishing publication-title: Neurocomputing – start-page: 331 year: 2018 end-page: 346 ident: b10 article-title: Swapmob: Swapping trajectories for mobility anonymization publication-title: Privacy in Statistical Databases – volume: 10 start-page: 1178 year: 2017 end-page: 1189 ident: b35 article-title: Trajectory similarity join in spatial networks publication-title: Proc. VLDB Endow. – volume: 1 start-page: 85 year: 2020 end-page: 103 ident: b3 article-title: Leveraging data science to combat COVID-19: a comprehensive review publication-title: IEEE Trans. Artif. Intel. – volume: 4 year: 2015 ident: b8 article-title: Spatio-temporal techniques for user identification by means of GPS mobility data publication-title: EPJ Data Sci. – volume: vol. 01 start-page: 149 year: 2001 end-page: 160 ident: b29 article-title: Chord: A scalable peer-to-peer lookup service for internet applications publication-title: Proceedings of the 2001 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications – volume: 12 start-page: 689 year: 2017 end-page: 704 ident: b7 article-title: Group sparsity tensor factorization for re-identification of open mobility traces publication-title: IEEE Trans. Inf. Forensics Secur. – year: 2022 ident: b36 article-title: Dataset epfl/mobility (v. 2009-02-24) – volume: 6 year: 2020 ident: b2 article-title: Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle publication-title: Sci. Adv. – reference: M. Gramaglia, M. Fiore, Hiding mobile traffic fingerprints with glove, in: Proceedings of the 11th ACM Conference on Emerging Networking Experiments and Technologies, 2015, pp. 1–13. – reference: Y. Cao, M. Yoshikawa, Differentially private real-time data release over infinite trajectory streams, in: 2015 16th IEEE International Conference on Mobile Data Management, Vol. 2, 2015, pp. 68–73. – volume: 3 start-page: 91 year: 2010 end-page: 121 ident: b16 article-title: Movement data anonymity through generalization publication-title: Trans. Data Priv. – volume: 1 start-page: 41 year: 1963 end-page: 46 ident: b33 article-title: Study of hand preferences on signature for right-handed and left-handed peoples publication-title: Int. J. Adv. Eng. Technol. – volume: 90 start-page: 319 year: 2002 end-page: 342 ident: b31 article-title: A chronology of interpolation: from ancient astronomy to modern signal and image processing publication-title: Proc. IEEE – volume: 29 start-page: 3 year: 2020 end-page: 32 ident: b32 article-title: A survey of trajectory distance measures and performance evaluation publication-title: VLDB J. – reference: X. Pan, X. Meng, J. Xu, Mobimix: Protecting location privacy with mix-zones over road networks, in: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2009, pp. 256–265. – volume: 6 start-page: 58295 year: 2018 end-page: 58306 ident: b1 article-title: Big trajectory data: a survey of applications and services publication-title: IEEE Access – reference: M. Castro, P. Druschel, Y.C. Hu, A. Rowstron, Exploiting Network Proximity in Peer-to-Peer Overlay Networks, Technical report MSR-TR2002-82, 2002. – volume: vol. 06 start-page: 265 year: 2006 end-page: 284 ident: b18 article-title: Calibrating noise to sensitivity in private data analysis publication-title: Proceedings of the Third Conference on Theory of Cryptography – volume: 2013 start-page: 901 year: 2021 end-page: 914 ident: b25 article-title: Geo-indistinguishability: differential privacy for location-based systems publication-title: ACM CCS – reference: Y. Xiao, L. Xiong, Protecting locations with differential privacy under temporal correlations, in: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, 2015, pp. 1298–1309. – start-page: 745 year: 2016 ident: b21 article-title: Novel differentially private mechanisms for graphs publication-title: IEEE Trans. Inf. Forensics Secur. – reference: Y. Song, D. Dahlmeier, S. Bressan, Not so unique in the crowd: A simple and effective algorithm for anonymizing location data, in: International Workshop on Privacy Preserving IR, PIR 2014, 2014, pp. 19–24. – year: 1998 ident: b12 article-title: Protecting Privacy when Disclosing Information: K-Anonymity and Its Enforcement Through Generalization and Suppression – volume: 64 start-page: 34 year: 2021 end-page: 36 ident: b24 article-title: The limits of differential privacy (and its misuse in data release and machine learning) publication-title: Commun. ACM – volume: 11 start-page: 195 year: 2005 end-page: 212 ident: b28 article-title: Ordinal, continuous and heterogeneous k-anonymity through microaggregation publication-title: Data Min. Knowl. Discov. – volume: 11 start-page: 195 issue: 2 year: 2005 ident: 10.1016/j.comcom.2022.04.011_b28 article-title: Ordinal, continuous and heterogeneous k-anonymity through microaggregation publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-005-0007-5 – volume: 13 start-page: 91 year: 2020 ident: 10.1016/j.comcom.2022.04.011_b5 article-title: Privacy in trajectory micro-data publishing: a survey publication-title: Trans. Data Priv. – volume: 2 start-page: 47 issue: 1 year: 2009 ident: 10.1016/j.comcom.2022.04.011_b17 article-title: Towards trajectory anonymization: a generalization-based approach publication-title: Trans. Data Priv. – ident: 10.1016/j.comcom.2022.04.011_b19 doi: 10.1109/CSF.2015.12 – volume: 351 start-page: 1274 year: 2016 ident: 10.1016/j.comcom.2022.04.011_b11 article-title: Comment on ’unique in the shopping mall: On the reidentifiability of credit card metadata’ publication-title: Science doi: 10.1126/science.aad9295 – volume: 15 start-page: 686 issue: 3 year: 2003 ident: 10.1016/j.comcom.2022.04.011_b34 article-title: Haar wavelets for efficient similarity search of time-series: with and without time warping – ident: 10.1016/j.comcom.2022.04.011_b13 doi: 10.1007/978-3-540-73540-3_15 – volume: vol. 01 start-page: 149 year: 2001 ident: 10.1016/j.comcom.2022.04.011_b29 article-title: Chord: A scalable peer-to-peer lookup service for internet applications – volume: 4 issue: 1 year: 2015 ident: 10.1016/j.comcom.2022.04.011_b8 article-title: Spatio-temporal techniques for user identification by means of GPS mobility data publication-title: EPJ Data Sci. doi: 10.1140/epjds/s13688-015-0049-x – year: 2022 ident: 10.1016/j.comcom.2022.04.011_b36 – volume: 64 start-page: 34 issue: 7 year: 2021 ident: 10.1016/j.comcom.2022.04.011_b24 article-title: The limits of differential privacy (and its misuse in data release and machine learning) publication-title: Commun. ACM doi: 10.1145/3433638 – volume: 12 start-page: 2360 issue: 12 year: 2012 ident: 10.1016/j.comcom.2022.04.011_b26 article-title: Local differential perturbations: location privacy under approximate knowledge attackers publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2012.208 – volume: 1 start-page: 41 issue: 5 year: 1963 ident: 10.1016/j.comcom.2022.04.011_b33 article-title: Study of hand preferences on signature for right-handed and left-handed peoples publication-title: Int. J. Adv. Eng. Technol. – volume: 90 start-page: 319 issue: 3 year: 2002 ident: 10.1016/j.comcom.2022.04.011_b31 article-title: A chronology of interpolation: from ancient astronomy to modern signal and image processing publication-title: Proc. IEEE doi: 10.1109/5.993400 – year: 1998 ident: 10.1016/j.comcom.2022.04.011_b12 – ident: 10.1016/j.comcom.2022.04.011_b14 doi: 10.1145/1653771.1653808 – year: 2016 ident: 10.1016/j.comcom.2022.04.011_b4 – ident: 10.1016/j.comcom.2022.04.011_b30 – volume: 472 start-page: 201 year: 2022 ident: 10.1016/j.comcom.2022.04.011_b27 article-title: OPTDP: Towards optimal personalized trajectory differential privacy for trajectory data publishing publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.04.137 – volume: 3 start-page: 91 issue: 2 year: 2010 ident: 10.1016/j.comcom.2022.04.011_b16 article-title: Movement data anonymity through generalization publication-title: Trans. Data Priv. – volume: vol. 16 start-page: 139 year: 2016 ident: 10.1016/j.comcom.2022.04.011_b22 article-title: Principled evaluation of differentially private algorithms using dpbench – ident: 10.1016/j.comcom.2022.04.011_b23 doi: 10.1109/MDM.2015.15 – volume: 12 start-page: 689 issue: 3 year: 2017 ident: 10.1016/j.comcom.2022.04.011_b7 article-title: Group sparsity tensor factorization for re-identification of open mobility traces publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2016.2631952 – volume: 1 start-page: 85 issue: 1 year: 2020 ident: 10.1016/j.comcom.2022.04.011_b3 article-title: Leveraging data science to combat COVID-19: a comprehensive review publication-title: IEEE Trans. Artif. Intel. doi: 10.1109/TAI.2020.3020521 – ident: 10.1016/j.comcom.2022.04.011_b20 doi: 10.1145/2810103.2813640 – volume: 10 start-page: 1178 issue: 11 year: 2017 ident: 10.1016/j.comcom.2022.04.011_b35 article-title: Trajectory similarity join in spatial networks publication-title: Proc. VLDB Endow. doi: 10.14778/3137628.3137630 – volume: 6 issue: 23 year: 2020 ident: 10.1016/j.comcom.2022.04.011_b2 article-title: Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle publication-title: Sci. Adv. doi: 10.1126/sciadv.abc0764 – ident: 10.1016/j.comcom.2022.04.011_b15 doi: 10.1145/2716281.2836111 – start-page: 745 year: 2016 ident: 10.1016/j.comcom.2022.04.011_b21 article-title: Novel differentially private mechanisms for graphs publication-title: IEEE Trans. Inf. Forensics Secur. – volume: vol. 06 start-page: 265 year: 2006 ident: 10.1016/j.comcom.2022.04.011_b18 article-title: Calibrating noise to sensitivity in private data analysis – volume: 29 start-page: 3 issue: 1 year: 2020 ident: 10.1016/j.comcom.2022.04.011_b32 article-title: A survey of trajectory distance measures and performance evaluation publication-title: VLDB J. doi: 10.1007/s00778-019-00574-9 – volume: 208 start-page: 55 year: 2012 ident: 10.1016/j.comcom.2022.04.011_b6 article-title: Microaggregation and permutation-based anonymization of movement data publication-title: Inform. Sci. doi: 10.1016/j.ins.2012.04.015 – ident: 10.1016/j.comcom.2022.04.011_b9 – volume: 2013 start-page: 901 year: 2021 ident: 10.1016/j.comcom.2022.04.011_b25 article-title: Geo-indistinguishability: differential privacy for location-based systems publication-title: ACM CCS – volume: 6 start-page: 58295 year: 2018 ident: 10.1016/j.comcom.2022.04.011_b1 article-title: Big trajectory data: a survey of applications and services publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2873779 – start-page: 331 year: 2018 ident: 10.1016/j.comcom.2022.04.011_b10 article-title: Swapmob: Swapping trajectories for mobility anonymization |
SSID | ssj0004773 |
Score | 2.3832629 |
Snippet | Mobility data, and specifically trajectories, are used to monitor the mobility of the population and are crucial to improve public health, transportation,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 57 |
SubjectTerms | [formula omitted]-anonymity Decentralized anonymization P2P Privacy |
Title | Decentralized k-anonymization of trajectories via privacy-preserving tit-for-tat |
URI | https://dx.doi.org/10.1016/j.comcom.2022.04.011 |
Volume | 190 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76uOhBfOKz5OB1bZt9JUeplqooHiz0tmw2u5IqWqQKevC3O5tstIIoeMxjwvIxzHyz-WYW4DCWucx8kSOpyQgTWY9oygxhSDUwRUjrrN8auLwSozE7n_BJAwZ1L4yXVYbYX8X0MlqHO92AZndWFN1SlkQF8ue45DW0Ce2YpoK3oH18djG6-mqPlNWPZq9k9AZ1B10p88LPe9lIjLmsnHna7_-coRayznAVVgJdjI6rFa1Bwz6sw_LCEMENuD6xQWFZvNk8uiO6rOhDf2X06CJ8Ni0357Eqjl4KHc2eihdtXokXwfpY8XAbodMQ5K8EuecmjIenN4MRCeckEIOEf06kMyLFzJ7RnIuMa-6Qt-XOssT0dOycH7jDuKHccqaplI4jRzQiThMnjE0d3YIWrsxuQ6T9vPs4MXnqYqatTUwi-omzvcwi1s7uAK2xUSYMEfdnWdyrWi02VRWiyiOqekwhojtAPq1m1RCNP96XNezqmzMojPO_Wu7-23IPlvxVpQLbh9b86dkeIN-YZx1oHr33O8GrPgCAb9XY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HtSD-MT63IPX2Hbz2j1KtVRti4cWegvZbCJbpZZSC3rwtzvJ7moFUfC6yWTDR5j5JnwzQeg8FKlIXJIjiE4w5UkDK0I1pkA1IEQIY427Guj1eWdIb0dsVEGtshbGySoL35_7dO-tiy_1As36NMvqXpZEOPDn0PMasoJWKSPC6fou3r90HvBXUuoY3fSyfs6LvGBxJxoJIZL5jqfN5s_xaSnmtLfQZkEWg8t8P9uoYiY7aGOpheAuur8yhb4yezNp8IiVz-eL6srg2QYwNvZX85ATB4tMBdNZtlD6FTsJrPMUk4cAjgwG9oqBee6hYft60Org4pUErIHuz7GwmscQ1xOSMp4wxSywttQaGumGCq117XYo04QZRhURwjJgiJqHcWS5NrEl-6gKOzMHKFCu230Y6TS2IVXGRDrizciaRmIAaWtqiJTYSF20EHcvWTzJUis2ljmi0iEqG1QCojWEP62meQuNP-aLEnb57ShI8PK_Wh7-2_IMrXUGva7s3vTvjtC6G8n1YMeoOp-9mBNgHvPk1J-sD05w1qM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decentralized+k-anonymization+of+trajectories+via+privacy-preserving+tit-for-tat&rft.jtitle=Computer+communications&rft.au=Domingo-Ferrer%2C+Josep&rft.au=Mart%C3%ADnez%2C+Sergio&rft.au=S%C3%A1nchez%2C+David&rft.date=2022-06-01&rft.pub=Elsevier+B.V&rft.issn=0140-3664&rft.volume=190&rft.spage=57&rft.epage=68&rft_id=info:doi/10.1016%2Fj.comcom.2022.04.011&rft.externalDocID=S0140366422001153 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon |