Expectation-maximization algorithm for direct position determination

Transmitter localization is used extensively in civilian and military applications. In this paper, we focus on the Direct Position Determination (DPD) approach, based on Time of Arrival (TOA) measurements, in which the transmitter location is obtained directly, in one step, from the signals intercep...

Full description

Saved in:
Bibliographic Details
Published inSignal processing Vol. 133; pp. 32 - 39
Main Authors Tzoreff, Elad, Weiss, Anthony J.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transmitter localization is used extensively in civilian and military applications. In this paper, we focus on the Direct Position Determination (DPD) approach, based on Time of Arrival (TOA) measurements, in which the transmitter location is obtained directly, in one step, from the signals intercepted by all sensors. The DPD objective function is often non-convex and therefore finding the maximum usually require s exhaustive search, since gradient based methods usually converge to local maxima. In this paper we present an efficient technique for finding the extremum of the objective function that corresponds to the transmitter location. The proposed method is based on the Expectation-Maximization (EM) algorithm. The EM algorithm is designed to find the Maximum Likelihood (ML) estimate when the available data can be viewed as “incomplete data”, while the “complete data” is hidden in the model. By choosing the appropriate “incomplete data” we replace the high dimensional search, associated with the ML algorithm, with several sub-problems that require only one dimensional search. We demonstrate that although the EM algorithm does not guarantee a convergence to the global maximum, it does so with high probability and therefore it outperforms the common gradient-based methods. •A framework to solve TOA/TDOA based localization in the presence of nuisance parameters, using the EM algorithm.•Application of the framework to the DPD method which is usually solved using variants of exhaustive search, due to the non-convex structure of the objective function.•Demonstration by simulations that the proposed EM approach achieves the global maximum at various scenarios, and SNR levels with high probability.•Application of the EM algorithm to the traditional two step method with a closed from solution at each iteration without using derivatives (or Jacobians).•Demonstration that the algorithm is more stable than the well-known Gauss-Newton algorithm, and generally converges quickly.
AbstractList Transmitter localization is used extensively in civilian and military applications. In this paper, we focus on the Direct Position Determination (DPD) approach, based on Time of Arrival (TOA) measurements, in which the transmitter location is obtained directly, in one step, from the signals intercepted by all sensors. The DPD objective function is often non-convex and therefore finding the maximum usually require s exhaustive search, since gradient based methods usually converge to local maxima. In this paper we present an efficient technique for finding the extremum of the objective function that corresponds to the transmitter location. The proposed method is based on the Expectation-Maximization (EM) algorithm. The EM algorithm is designed to find the Maximum Likelihood (ML) estimate when the available data can be viewed as “incomplete data”, while the “complete data” is hidden in the model. By choosing the appropriate “incomplete data” we replace the high dimensional search, associated with the ML algorithm, with several sub-problems that require only one dimensional search. We demonstrate that although the EM algorithm does not guarantee a convergence to the global maximum, it does so with high probability and therefore it outperforms the common gradient-based methods. •A framework to solve TOA/TDOA based localization in the presence of nuisance parameters, using the EM algorithm.•Application of the framework to the DPD method which is usually solved using variants of exhaustive search, due to the non-convex structure of the objective function.•Demonstration by simulations that the proposed EM approach achieves the global maximum at various scenarios, and SNR levels with high probability.•Application of the EM algorithm to the traditional two step method with a closed from solution at each iteration without using derivatives (or Jacobians).•Demonstration that the algorithm is more stable than the well-known Gauss-Newton algorithm, and generally converges quickly.
Author Weiss, Anthony J.
Tzoreff, Elad
Author_xml – sequence: 1
  givenname: Elad
  surname: Tzoreff
  fullname: Tzoreff, Elad
  email: eladtzor@post.tau.ac.il
– sequence: 2
  givenname: Anthony J.
  surname: Weiss
  fullname: Weiss, Anthony J.
  email: ajw@eng.tau.ac.il
BookMark eNqFkM1OwzAQhC0EEm3hDTjkBRLsOLYTDkiolB-pEhc4W7azLq6aOLIjVHh63IYTBzitZmdmpf3m6LT3PSB0RXBBMOHX2yK6zRB8USaVVgUm7ATNSC3KXDAmTtEsGSwnvK7O0TzGLcaYUI5n6H61H8CManS-zzu1d537OopM7TY-uPG9y6wPWetCimWDj-7otjBC6Fx_zF6gM6t2ES5_5gK9Paxel0_5-uXxeXm3zg3FfMyFbWxrKLPKslJwbUtdU9CMNlVbtsJYoGCZxtAAbqqKM6OFFkrxliuta6ALVE13TfAxBrByCK5T4VMSLA8k5FZOJOSBxGGbSKTaza-acdPHY1Bu91_5dipDeuzDQZDROOgNTERk693fB74Bx5eCGg
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2929805
crossref_primary_10_3390_s17071550
crossref_primary_10_3390_s18051479
crossref_primary_10_1016_j_dsp_2019_102600
crossref_primary_10_1016_j_cja_2019_07_027
crossref_primary_10_1016_j_dsp_2022_103751
crossref_primary_10_1016_j_dsp_2024_104564
crossref_primary_10_1155_2021_6616729
crossref_primary_10_1109_TSP_2021_3092363
crossref_primary_10_1109_TVT_2023_3311521
crossref_primary_10_1016_j_compeleceng_2020_106635
crossref_primary_10_3390_s20164516
crossref_primary_10_3390_rs15112829
crossref_primary_10_3390_su10020341
crossref_primary_10_1016_j_sigpro_2021_108111
crossref_primary_10_1155_2022_2222247
crossref_primary_10_1080_20008066_2023_2220632
crossref_primary_10_1109_ACCESS_2018_2875822
crossref_primary_10_3390_s19071541
crossref_primary_10_3390_e20040263
crossref_primary_10_3390_s18124139
crossref_primary_10_1016_j_sigpro_2019_07_006
crossref_primary_10_1109_TVT_2019_2928638
crossref_primary_10_1016_j_dsp_2020_102734
crossref_primary_10_1155_2021_9992120
crossref_primary_10_1109_ACCESS_2022_3146431
crossref_primary_10_3390_s18020324
crossref_primary_10_1002_cjce_25169
crossref_primary_10_1109_JSEN_2024_3386869
crossref_primary_10_1109_LWC_2024_3371789
crossref_primary_10_1186_s13634_018_0555_7
crossref_primary_10_1109_ACCESS_2024_3479091
crossref_primary_10_1080_03610918_2024_2417809
crossref_primary_10_1007_s11042_018_7093_z
crossref_primary_10_1109_TASLP_2020_3021500
crossref_primary_10_1155_2021_5863496
crossref_primary_10_1109_LGRS_2021_3057902
crossref_primary_10_3390_jsan9010002
crossref_primary_10_1007_s00521_019_04635_6
crossref_primary_10_1109_LWC_2021_3057502
crossref_primary_10_1007_s00034_019_01170_6
crossref_primary_10_1016_j_sigpro_2020_107587
crossref_primary_10_1049_iet_spr_2019_0020
crossref_primary_10_1109_TWC_2021_3128415
crossref_primary_10_1109_TGRS_2022_3186767
crossref_primary_10_1016_j_sigpro_2021_108453
crossref_primary_10_1016_j_sigpro_2023_109149
crossref_primary_10_1007_s11760_019_01425_4
crossref_primary_10_1109_JIOT_2022_3181450
crossref_primary_10_1109_LSENS_2022_3202100
crossref_primary_10_1109_TNNLS_2019_2919723
crossref_primary_10_1109_ACCESS_2018_2849574
Cites_doi 10.1109/LSP.2004.826501
10.1109/ICASSP.2004.1326215
10.1109/78.285648
10.1109/TSP.2007.909342
10.1109/TIT.1965.1053749
10.1109/ICASSP.2013.6638427
10.1109/TSP.2004.840721
10.1109/79.543975
10.1109/TASSP.1987.1165089
10.1109/29.1552
10.1109/TSP.2015.2430842
10.1109/LSP.2006.888360
10.1109/ICASSP.2007.366862
10.1080/01621459.1987.10478395
10.1016/B978-1-55860-332-5.50009-2
10.1115/1.3625776
10.1109/TSP.1993.193142
10.1109/TSP.2014.2298831
10.1109/78.324732
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2016.10.015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7557
EndPage 39
ExternalDocumentID 10_1016_j_sigpro_2016_10_015
S0165168416302821
GrantInformation_xml – fundername: Amnon Pazi Foundation
  grantid: 010/15
– fundername: Israel Science Foundation
  grantid: 503/15; 965/15
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-7f9fdc35faf5276bf2b83eb5394d2d7cfe3ef5b0e9e094465cb7b7aa6d6abb8e3
IEDL.DBID .~1
ISSN 0165-1684
IngestDate Thu Apr 24 23:05:07 EDT 2025
Tue Jul 01 02:07:22 EDT 2025
Fri Feb 23 02:33:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Time of Arrival (TOA)
Direct Position Determination (DPD)
Laplace Method
Expectation Maximization (EM)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-7f9fdc35faf5276bf2b83eb5394d2d7cfe3ef5b0e9e094465cb7b7aa6d6abb8e3
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_sigpro_2016_10_015
crossref_citationtrail_10_1016_j_sigpro_2016_10_015
elsevier_sciencedirect_doi_10_1016_j_sigpro_2016_10_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2017
2017-04-00
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: April 2017
PublicationDecade 2010
PublicationTitle Signal processing
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Weiss (bib1) 2004; 11
A. Beck, M. Teboulle, Gradient-based Algorithms with Applications to Signal Recovery, Convex Optimization in Signal Processing and Communications.
N. G. De Bruijn, Asymptotic Methods in Analysis, vol. 4, Courier Corporation,1970.
Feder, Weinstein (bib14) 1988; 36
Weinstein, Oppenheim, Feder, Buck (bib16) 1994; 42
R.M. Vaghefi, R.M. Buehrer, Asynchronous time-of-arrival-based source localization, in: Proceedings of the ICASSP, 2013, pp. 4086–4090.
Fessler, Hero (bib11) 1994; 42
M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, no. 55, Courier Corporation, 1964.
Feder (bib15) 1993; 41
Tzoreff, Bobrovsky, Weiss (bib2) 2014; 62
Viterbi (bib22) 1965; 11
Moon (bib13) 1996; 13
Vaghefi, Buehrer (bib7) 2015; 63
K.W. Cheung, W.-K. Ma, H.-C. So, Accurate approximation algorithm for toa-based maximum likelihood mobile location using semidefinite programming, in: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP'04), vol. 2, 2004, pp. ii–145.
Cheung, So (bib8) 2005; 53
P. Closas, C. Fernandez-Prades, J.A. Fernkndez-Rubiot, Ml estimation of position in a gnss receiver using the sage algorithm, in: Proceedings of the International Conference on IEEE Acoustics, Speech and Signal Processing-ICASSP’07, vol.3, 2007, pp. III–1045.
J. Nocedal, S. Wright, Numerical optimization, Springer Science & Business Media, 2006.
Beck, Stoica, Li (bib5) 2008; 56
Smith, Abel (bib3) 1987; 35
Boyd, Vandenberghe (bib19) 2004
Closas, Fernandez-Prades, Fernandez-Rubio (bib10) 2007; 14
Laird, Lange, Stram (bib17) 1987; 82
A. Azevedo-Filho, R.D. Shachter, Laplace’s method approximations for probabilistic inference in belief networks with continuous variables, in: Proceedings of the Tenth International Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc., 1994, pp. 28–36.
Trees (bib23) 1968; 1
Trees (10.1016/j.sigpro.2016.10.015_bib23) 1968; 1
10.1016/j.sigpro.2016.10.015_bib4
10.1016/j.sigpro.2016.10.015_bib9
Feder (10.1016/j.sigpro.2016.10.015_bib14) 1988; 36
10.1016/j.sigpro.2016.10.015_bib6
Tzoreff (10.1016/j.sigpro.2016.10.015_bib2) 2014; 62
Beck (10.1016/j.sigpro.2016.10.015_bib5) 2008; 56
Fessler (10.1016/j.sigpro.2016.10.015_bib11) 1994; 42
Laird (10.1016/j.sigpro.2016.10.015_bib17) 1987; 82
Weiss (10.1016/j.sigpro.2016.10.015_bib1) 2004; 11
Vaghefi (10.1016/j.sigpro.2016.10.015_bib7) 2015; 63
10.1016/j.sigpro.2016.10.015_bib24
10.1016/j.sigpro.2016.10.015_bib12
Weinstein (10.1016/j.sigpro.2016.10.015_bib16) 1994; 42
Viterbi (10.1016/j.sigpro.2016.10.015_bib22) 1965; 11
Moon (10.1016/j.sigpro.2016.10.015_bib13) 1996; 13
Boyd (10.1016/j.sigpro.2016.10.015_bib19) 2004
10.1016/j.sigpro.2016.10.015_bib21
10.1016/j.sigpro.2016.10.015_bib20
Cheung (10.1016/j.sigpro.2016.10.015_bib8) 2005; 53
Smith (10.1016/j.sigpro.2016.10.015_bib3) 1987; 35
Closas (10.1016/j.sigpro.2016.10.015_bib10) 2007; 14
10.1016/j.sigpro.2016.10.015_bib18
Feder (10.1016/j.sigpro.2016.10.015_bib15) 1993; 41
References_xml – volume: 82
  start-page: 97
  year: 1987
  end-page: 105
  ident: bib17
  article-title: Maximum likeli-hood computations with repeated measures: application of the em algorithm
  publication-title: J. Am. Stat. Assoc.
– reference: K.W. Cheung, W.-K. Ma, H.-C. So, Accurate approximation algorithm for toa-based maximum likelihood mobile location using semidefinite programming, in: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP'04), vol. 2, 2004, pp. ii–145.
– volume: 36
  start-page: 477
  year: 1988
  end-page: 489
  ident: bib14
  article-title: Parameter estimation of superimposed signals using the em algorithm
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– volume: 56
  start-page: 1770
  year: 2008
  end-page: 1778
  ident: bib5
  article-title: Exact and approximate solutions of source localization problems
  publication-title: IEEE Trans. Signal Process.
– volume: 11
  start-page: 513
  year: 2004
  end-page: 516
  ident: bib1
  article-title: Direct position determination of narrowband radio frequency transmitters
  publication-title: IEEE Signal Process. Lett.
– volume: 53
  start-page: 460
  year: 2005
  end-page: 470
  ident: bib8
  article-title: A multidimensional scaling framework for mobile location using time-of-arrival measurements
  publication-title: IEEE Trans. Signal Process.
– volume: 62
  start-page: 1377
  year: 2014
  end-page: 1385
  ident: bib2
  article-title: Single receiver emitter geolocation based on signal periodicity with oscillator instability
  publication-title: IEEE Trans. Signal Process.
– reference: M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, no. 55, Courier Corporation, 1964.
– reference: P. Closas, C. Fernandez-Prades, J.A. Fernkndez-Rubiot, Ml estimation of position in a gnss receiver using the sage algorithm, in: Proceedings of the International Conference on IEEE Acoustics, Speech and Signal Processing-ICASSP’07, vol.3, 2007, pp. III–1045.
– volume: 63
  start-page: 3615
  year: 2015
  end-page: 3627
  ident: bib7
  article-title: Cooperative joint synchronization and localization in wireless sensor networks
  publication-title: IEEE Trans. Signal Process.
– reference: J. Nocedal, S. Wright, Numerical optimization, Springer Science & Business Media, 2006.
– volume: 13
  start-page: 47
  year: 1996
  end-page: 60
  ident: bib13
  article-title: The expectation-maximization algorithm
  publication-title: IEEE Signal Process. Mag.
– reference: N. G. De Bruijn, Asymptotic Methods in Analysis, vol. 4, Courier Corporation,1970.
– reference: A. Azevedo-Filho, R.D. Shachter, Laplace’s method approximations for probabilistic inference in belief networks with continuous variables, in: Proceedings of the Tenth International Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc., 1994, pp. 28–36.
– reference: R.M. Vaghefi, R.M. Buehrer, Asynchronous time-of-arrival-based source localization, in: Proceedings of the ICASSP, 2013, pp. 4086–4090.
– volume: 35
  start-page: 1661
  year: 1987
  end-page: 1669
  ident: bib3
  article-title: Closed-form least-squares source location estimation from range-difference measurements
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– volume: 42
  start-page: 846
  year: 1994
  end-page: 859
  ident: bib16
  article-title: Iterative and sequential algorithms for multisensor signal enhancement
  publication-title: IEEE Trans. Signal Process.
– volume: 1
  year: 1968
  ident: bib23
  article-title: Detection, Estimation and Modulation Theory
– volume: 11
  start-page: 239
  year: 1965
  end-page: 246
  ident: bib22
  article-title: Optimum detection and signal selection for partially coherent binary communication
  publication-title: IEEE Trans. Inf. Theory
– volume: 14
  start-page: 359
  year: 2007
  end-page: 362
  ident: bib10
  article-title: Maximum likelihood estimation of position in gnss
  publication-title: IEEE Signal Process. Lett.
– year: 2004
  ident: bib19
  article-title: Convex Optimization
– reference: A. Beck, M. Teboulle, Gradient-based Algorithms with Applications to Signal Recovery, Convex Optimization in Signal Processing and Communications.
– volume: 42
  start-page: 2664
  year: 1994
  end-page: 2677
  ident: bib11
  article-title: Space-alternating generalized expectation-maximization algorithm
  publication-title: IEEE Trans. Signal Process.
– volume: 41
  start-page: 232
  year: 1993
  end-page: 244
  ident: bib15
  article-title: Parameter estimation and extraction of helicopter signals observed with a wide-band interference
  publication-title: IEEE Trans. Signal Process.
– volume: 11
  start-page: 513
  issue: 5
  year: 2004
  ident: 10.1016/j.sigpro.2016.10.015_bib1
  article-title: Direct position determination of narrowband radio frequency transmitters
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2004.826501
– ident: 10.1016/j.sigpro.2016.10.015_bib4
  doi: 10.1109/ICASSP.2004.1326215
– ident: 10.1016/j.sigpro.2016.10.015_bib20
– year: 2004
  ident: 10.1016/j.sigpro.2016.10.015_bib19
– volume: 42
  start-page: 846
  issue: 4
  year: 1994
  ident: 10.1016/j.sigpro.2016.10.015_bib16
  article-title: Iterative and sequential algorithms for multisensor signal enhancement
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.285648
– ident: 10.1016/j.sigpro.2016.10.015_bib18
– volume: 1
  year: 1968
  ident: 10.1016/j.sigpro.2016.10.015_bib23
– volume: 56
  start-page: 1770
  issue: 5
  year: 2008
  ident: 10.1016/j.sigpro.2016.10.015_bib5
  article-title: Exact and approximate solutions of source localization problems
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.909342
– volume: 11
  start-page: 239
  issue: 2
  year: 1965
  ident: 10.1016/j.sigpro.2016.10.015_bib22
  article-title: Optimum detection and signal selection for partially coherent binary communication
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1965.1053749
– ident: 10.1016/j.sigpro.2016.10.015_bib6
  doi: 10.1109/ICASSP.2013.6638427
– volume: 53
  start-page: 460
  issue: 2
  year: 2005
  ident: 10.1016/j.sigpro.2016.10.015_bib8
  article-title: A multidimensional scaling framework for mobile location using time-of-arrival measurements
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2004.840721
– volume: 13
  start-page: 47
  issue: 6
  year: 1996
  ident: 10.1016/j.sigpro.2016.10.015_bib13
  article-title: The expectation-maximization algorithm
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.543975
– volume: 35
  start-page: 1661
  issue: 12
  year: 1987
  ident: 10.1016/j.sigpro.2016.10.015_bib3
  article-title: Closed-form least-squares source location estimation from range-difference measurements
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1987.1165089
– volume: 36
  start-page: 477
  issue: 4
  year: 1988
  ident: 10.1016/j.sigpro.2016.10.015_bib14
  article-title: Parameter estimation of superimposed signals using the em algorithm
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/29.1552
– volume: 63
  start-page: 3615
  issue: 14
  year: 2015
  ident: 10.1016/j.sigpro.2016.10.015_bib7
  article-title: Cooperative joint synchronization and localization in wireless sensor networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2430842
– volume: 14
  start-page: 359
  issue: 5
  year: 2007
  ident: 10.1016/j.sigpro.2016.10.015_bib10
  article-title: Maximum likelihood estimation of position in gnss
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2006.888360
– ident: 10.1016/j.sigpro.2016.10.015_bib12
  doi: 10.1109/ICASSP.2007.366862
– volume: 82
  start-page: 97
  issue: 397
  year: 1987
  ident: 10.1016/j.sigpro.2016.10.015_bib17
  article-title: Maximum likeli-hood computations with repeated measures: application of the em algorithm
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1987.10478395
– ident: 10.1016/j.sigpro.2016.10.015_bib21
  doi: 10.1016/B978-1-55860-332-5.50009-2
– ident: 10.1016/j.sigpro.2016.10.015_bib24
  doi: 10.1115/1.3625776
– ident: 10.1016/j.sigpro.2016.10.015_bib9
– volume: 41
  start-page: 232
  issue: 1
  year: 1993
  ident: 10.1016/j.sigpro.2016.10.015_bib15
  article-title: Parameter estimation and extraction of helicopter signals observed with a wide-band interference
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.1993.193142
– volume: 62
  start-page: 1377
  issue: 6
  year: 2014
  ident: 10.1016/j.sigpro.2016.10.015_bib2
  article-title: Single receiver emitter geolocation based on signal periodicity with oscillator instability
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2298831
– volume: 42
  start-page: 2664
  issue: 10
  year: 1994
  ident: 10.1016/j.sigpro.2016.10.015_bib11
  article-title: Space-alternating generalized expectation-maximization algorithm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.324732
SSID ssj0001360
Score 2.4492588
Snippet Transmitter localization is used extensively in civilian and military applications. In this paper, we focus on the Direct Position Determination (DPD)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 32
SubjectTerms Direct Position Determination (DPD)
Expectation Maximization (EM)
Laplace Method
Time of Arrival (TOA)
Title Expectation-maximization algorithm for direct position determination
URI https://dx.doi.org/10.1016/j.sigpro.2016.10.015
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA5FL3oQV6xLmYPXtNPJNjmWaqmKvWihtyFrrXRDK3jyt5s3i1YQBY8T3oPMS3gL-b73ELqgQjNJOcFMJwqH_NZgbZwOB2JibaTw3APf-W7A-0N6M2KjGupWXBiAVZa-v_DpubcuV1qlNVvLyaR1D0ScNodnMwKFQ85gpwJuefP9C-bRJjlTGIQxSFf0uRzj9TIZBz8FAC_eBIwXDMf9KTythZzeLtopc8WoU2xnD9XcfB9tr3UQPECX0KrYFM_peKbeJrOSVxmp6XgRCv_HWRTS0qj4y6iCaEW2QsHA1yEa9q4eun1cDkbAJmT4Kyy89NYQ5pVnieDaJzolTjMiqU2sMN4R55mOnXSheqOcGS20UIpbrrROHTlCG_PF3B2jSEhuYxYrTlRCCY1TI60MVQttpykxltQRqeyRmbJrOAyvmGYVPOwpK6yYgRVhNVixjvCn1rLomvGHvKhMnX07_Sw49l81T_6teYq2EgjROQrnDG2snl_deUgwVrqR36AG2uxc3_YHH-KO0pk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA6lPagHccW6zsFr7HSyzRxLtUztcrGF3oYkk9RKN7SCP9-8WYqCKHickAcz34S3kO97D6FbKhSLKCeYqUBil99qrLRR7odoX-lIWG5B7zwY8nhMHydsUkHtUgsDtMrC9-c-PfPWxUqjQLOxns0aTyDEaXK4NiNQOLgSqAbdqVgV1VrdXjzcOuQmycTCsB-DQamgy2heb7Opc1XA8eJ3QPOC-bg_RagvUadzgPaLdNFr5W90iCpmeYT2vjQRPEb30K1Y5zfqeCE_ZotCWunJ-XTlav_nhecyUy__UK9kaXlpSYSBpxM07jyM2jEuZiNg7ZL8DRY2sqkmzErLAsGVDVRIjGIkommQCm0NMZYp30TGFXCUM62EElLylEulQkNOUXW5Wpoz5ImIpz7zJScyoIT6oY7SyBUutBmGRKekjkiJR6KLxuEwv2KelAyxlyRHMQEUYdWhWEd4a7XOG2f8sV-UUCffDkDifPuvluf_trxBO_Fo0E_63WHvAu0GELEzUs4lqm5e382Vyzc26ro4T58khNVK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expectation-maximization+algorithm+for+direct+position+determination&rft.jtitle=Signal+processing&rft.au=Tzoreff%2C+Elad&rft.au=Weiss%2C+Anthony+J.&rft.date=2017-04-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=133&rft.spage=32&rft.epage=39&rft_id=info:doi/10.1016%2Fj.sigpro.2016.10.015&rft.externalDocID=S0165168416302821
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon