Expectation-maximization algorithm for direct position determination
Transmitter localization is used extensively in civilian and military applications. In this paper, we focus on the Direct Position Determination (DPD) approach, based on Time of Arrival (TOA) measurements, in which the transmitter location is obtained directly, in one step, from the signals intercep...
Saved in:
Published in | Signal processing Vol. 133; pp. 32 - 39 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transmitter localization is used extensively in civilian and military applications. In this paper, we focus on the Direct Position Determination (DPD) approach, based on Time of Arrival (TOA) measurements, in which the transmitter location is obtained directly, in one step, from the signals intercepted by all sensors. The DPD objective function is often non-convex and therefore finding the maximum usually require s exhaustive search, since gradient based methods usually converge to local maxima. In this paper we present an efficient technique for finding the extremum of the objective function that corresponds to the transmitter location. The proposed method is based on the Expectation-Maximization (EM) algorithm. The EM algorithm is designed to find the Maximum Likelihood (ML) estimate when the available data can be viewed as “incomplete data”, while the “complete data” is hidden in the model. By choosing the appropriate “incomplete data” we replace the high dimensional search, associated with the ML algorithm, with several sub-problems that require only one dimensional search. We demonstrate that although the EM algorithm does not guarantee a convergence to the global maximum, it does so with high probability and therefore it outperforms the common gradient-based methods.
•A framework to solve TOA/TDOA based localization in the presence of nuisance parameters, using the EM algorithm.•Application of the framework to the DPD method which is usually solved using variants of exhaustive search, due to the non-convex structure of the objective function.•Demonstration by simulations that the proposed EM approach achieves the global maximum at various scenarios, and SNR levels with high probability.•Application of the EM algorithm to the traditional two step method with a closed from solution at each iteration without using derivatives (or Jacobians).•Demonstration that the algorithm is more stable than the well-known Gauss-Newton algorithm, and generally converges quickly. |
---|---|
AbstractList | Transmitter localization is used extensively in civilian and military applications. In this paper, we focus on the Direct Position Determination (DPD) approach, based on Time of Arrival (TOA) measurements, in which the transmitter location is obtained directly, in one step, from the signals intercepted by all sensors. The DPD objective function is often non-convex and therefore finding the maximum usually require s exhaustive search, since gradient based methods usually converge to local maxima. In this paper we present an efficient technique for finding the extremum of the objective function that corresponds to the transmitter location. The proposed method is based on the Expectation-Maximization (EM) algorithm. The EM algorithm is designed to find the Maximum Likelihood (ML) estimate when the available data can be viewed as “incomplete data”, while the “complete data” is hidden in the model. By choosing the appropriate “incomplete data” we replace the high dimensional search, associated with the ML algorithm, with several sub-problems that require only one dimensional search. We demonstrate that although the EM algorithm does not guarantee a convergence to the global maximum, it does so with high probability and therefore it outperforms the common gradient-based methods.
•A framework to solve TOA/TDOA based localization in the presence of nuisance parameters, using the EM algorithm.•Application of the framework to the DPD method which is usually solved using variants of exhaustive search, due to the non-convex structure of the objective function.•Demonstration by simulations that the proposed EM approach achieves the global maximum at various scenarios, and SNR levels with high probability.•Application of the EM algorithm to the traditional two step method with a closed from solution at each iteration without using derivatives (or Jacobians).•Demonstration that the algorithm is more stable than the well-known Gauss-Newton algorithm, and generally converges quickly. |
Author | Weiss, Anthony J. Tzoreff, Elad |
Author_xml | – sequence: 1 givenname: Elad surname: Tzoreff fullname: Tzoreff, Elad email: eladtzor@post.tau.ac.il – sequence: 2 givenname: Anthony J. surname: Weiss fullname: Weiss, Anthony J. email: ajw@eng.tau.ac.il |
BookMark | eNqFkM1OwzAQhC0EEm3hDTjkBRLsOLYTDkiolB-pEhc4W7azLq6aOLIjVHh63IYTBzitZmdmpf3m6LT3PSB0RXBBMOHX2yK6zRB8USaVVgUm7ATNSC3KXDAmTtEsGSwnvK7O0TzGLcaYUI5n6H61H8CManS-zzu1d537OopM7TY-uPG9y6wPWetCimWDj-7otjBC6Fx_zF6gM6t2ES5_5gK9Paxel0_5-uXxeXm3zg3FfMyFbWxrKLPKslJwbUtdU9CMNlVbtsJYoGCZxtAAbqqKM6OFFkrxliuta6ALVE13TfAxBrByCK5T4VMSLA8k5FZOJOSBxGGbSKTaza-acdPHY1Bu91_5dipDeuzDQZDROOgNTERk693fB74Bx5eCGg |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2929805 crossref_primary_10_3390_s17071550 crossref_primary_10_3390_s18051479 crossref_primary_10_1016_j_dsp_2019_102600 crossref_primary_10_1016_j_cja_2019_07_027 crossref_primary_10_1016_j_dsp_2022_103751 crossref_primary_10_1016_j_dsp_2024_104564 crossref_primary_10_1155_2021_6616729 crossref_primary_10_1109_TSP_2021_3092363 crossref_primary_10_1109_TVT_2023_3311521 crossref_primary_10_1016_j_compeleceng_2020_106635 crossref_primary_10_3390_s20164516 crossref_primary_10_3390_rs15112829 crossref_primary_10_3390_su10020341 crossref_primary_10_1016_j_sigpro_2021_108111 crossref_primary_10_1155_2022_2222247 crossref_primary_10_1080_20008066_2023_2220632 crossref_primary_10_1109_ACCESS_2018_2875822 crossref_primary_10_3390_s19071541 crossref_primary_10_3390_e20040263 crossref_primary_10_3390_s18124139 crossref_primary_10_1016_j_sigpro_2019_07_006 crossref_primary_10_1109_TVT_2019_2928638 crossref_primary_10_1016_j_dsp_2020_102734 crossref_primary_10_1155_2021_9992120 crossref_primary_10_1109_ACCESS_2022_3146431 crossref_primary_10_3390_s18020324 crossref_primary_10_1002_cjce_25169 crossref_primary_10_1109_JSEN_2024_3386869 crossref_primary_10_1109_LWC_2024_3371789 crossref_primary_10_1186_s13634_018_0555_7 crossref_primary_10_1109_ACCESS_2024_3479091 crossref_primary_10_1080_03610918_2024_2417809 crossref_primary_10_1007_s11042_018_7093_z crossref_primary_10_1109_TASLP_2020_3021500 crossref_primary_10_1155_2021_5863496 crossref_primary_10_1109_LGRS_2021_3057902 crossref_primary_10_3390_jsan9010002 crossref_primary_10_1007_s00521_019_04635_6 crossref_primary_10_1109_LWC_2021_3057502 crossref_primary_10_1007_s00034_019_01170_6 crossref_primary_10_1016_j_sigpro_2020_107587 crossref_primary_10_1049_iet_spr_2019_0020 crossref_primary_10_1109_TWC_2021_3128415 crossref_primary_10_1109_TGRS_2022_3186767 crossref_primary_10_1016_j_sigpro_2021_108453 crossref_primary_10_1016_j_sigpro_2023_109149 crossref_primary_10_1007_s11760_019_01425_4 crossref_primary_10_1109_JIOT_2022_3181450 crossref_primary_10_1109_LSENS_2022_3202100 crossref_primary_10_1109_TNNLS_2019_2919723 crossref_primary_10_1109_ACCESS_2018_2849574 |
Cites_doi | 10.1109/LSP.2004.826501 10.1109/ICASSP.2004.1326215 10.1109/78.285648 10.1109/TSP.2007.909342 10.1109/TIT.1965.1053749 10.1109/ICASSP.2013.6638427 10.1109/TSP.2004.840721 10.1109/79.543975 10.1109/TASSP.1987.1165089 10.1109/29.1552 10.1109/TSP.2015.2430842 10.1109/LSP.2006.888360 10.1109/ICASSP.2007.366862 10.1080/01621459.1987.10478395 10.1016/B978-1-55860-332-5.50009-2 10.1115/1.3625776 10.1109/TSP.1993.193142 10.1109/TSP.2014.2298831 10.1109/78.324732 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.sigpro.2016.10.015 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-7557 |
EndPage | 39 |
ExternalDocumentID | 10_1016_j_sigpro_2016_10_015 S0165168416302821 |
GrantInformation_xml | – fundername: Amnon Pazi Foundation grantid: 010/15 – fundername: Israel Science Foundation grantid: 503/15; 965/15 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-7f9fdc35faf5276bf2b83eb5394d2d7cfe3ef5b0e9e094465cb7b7aa6d6abb8e3 |
IEDL.DBID | .~1 |
ISSN | 0165-1684 |
IngestDate | Thu Apr 24 23:05:07 EDT 2025 Tue Jul 01 02:07:22 EDT 2025 Fri Feb 23 02:33:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Time of Arrival (TOA) Direct Position Determination (DPD) Laplace Method Expectation Maximization (EM) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-7f9fdc35faf5276bf2b83eb5394d2d7cfe3ef5b0e9e094465cb7b7aa6d6abb8e3 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1016_j_sigpro_2016_10_015 crossref_citationtrail_10_1016_j_sigpro_2016_10_015 elsevier_sciencedirect_doi_10_1016_j_sigpro_2016_10_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2017 2017-04-00 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: April 2017 |
PublicationDecade | 2010 |
PublicationTitle | Signal processing |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Weiss (bib1) 2004; 11 A. Beck, M. Teboulle, Gradient-based Algorithms with Applications to Signal Recovery, Convex Optimization in Signal Processing and Communications. N. G. De Bruijn, Asymptotic Methods in Analysis, vol. 4, Courier Corporation,1970. Feder, Weinstein (bib14) 1988; 36 Weinstein, Oppenheim, Feder, Buck (bib16) 1994; 42 R.M. Vaghefi, R.M. Buehrer, Asynchronous time-of-arrival-based source localization, in: Proceedings of the ICASSP, 2013, pp. 4086–4090. Fessler, Hero (bib11) 1994; 42 M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, no. 55, Courier Corporation, 1964. Feder (bib15) 1993; 41 Tzoreff, Bobrovsky, Weiss (bib2) 2014; 62 Viterbi (bib22) 1965; 11 Moon (bib13) 1996; 13 Vaghefi, Buehrer (bib7) 2015; 63 K.W. Cheung, W.-K. Ma, H.-C. So, Accurate approximation algorithm for toa-based maximum likelihood mobile location using semidefinite programming, in: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP'04), vol. 2, 2004, pp. ii–145. Cheung, So (bib8) 2005; 53 P. Closas, C. Fernandez-Prades, J.A. Fernkndez-Rubiot, Ml estimation of position in a gnss receiver using the sage algorithm, in: Proceedings of the International Conference on IEEE Acoustics, Speech and Signal Processing-ICASSP’07, vol.3, 2007, pp. III–1045. J. Nocedal, S. Wright, Numerical optimization, Springer Science & Business Media, 2006. Beck, Stoica, Li (bib5) 2008; 56 Smith, Abel (bib3) 1987; 35 Boyd, Vandenberghe (bib19) 2004 Closas, Fernandez-Prades, Fernandez-Rubio (bib10) 2007; 14 Laird, Lange, Stram (bib17) 1987; 82 A. Azevedo-Filho, R.D. Shachter, Laplace’s method approximations for probabilistic inference in belief networks with continuous variables, in: Proceedings of the Tenth International Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc., 1994, pp. 28–36. Trees (bib23) 1968; 1 Trees (10.1016/j.sigpro.2016.10.015_bib23) 1968; 1 10.1016/j.sigpro.2016.10.015_bib4 10.1016/j.sigpro.2016.10.015_bib9 Feder (10.1016/j.sigpro.2016.10.015_bib14) 1988; 36 10.1016/j.sigpro.2016.10.015_bib6 Tzoreff (10.1016/j.sigpro.2016.10.015_bib2) 2014; 62 Beck (10.1016/j.sigpro.2016.10.015_bib5) 2008; 56 Fessler (10.1016/j.sigpro.2016.10.015_bib11) 1994; 42 Laird (10.1016/j.sigpro.2016.10.015_bib17) 1987; 82 Weiss (10.1016/j.sigpro.2016.10.015_bib1) 2004; 11 Vaghefi (10.1016/j.sigpro.2016.10.015_bib7) 2015; 63 10.1016/j.sigpro.2016.10.015_bib24 10.1016/j.sigpro.2016.10.015_bib12 Weinstein (10.1016/j.sigpro.2016.10.015_bib16) 1994; 42 Viterbi (10.1016/j.sigpro.2016.10.015_bib22) 1965; 11 Moon (10.1016/j.sigpro.2016.10.015_bib13) 1996; 13 Boyd (10.1016/j.sigpro.2016.10.015_bib19) 2004 10.1016/j.sigpro.2016.10.015_bib21 10.1016/j.sigpro.2016.10.015_bib20 Cheung (10.1016/j.sigpro.2016.10.015_bib8) 2005; 53 Smith (10.1016/j.sigpro.2016.10.015_bib3) 1987; 35 Closas (10.1016/j.sigpro.2016.10.015_bib10) 2007; 14 10.1016/j.sigpro.2016.10.015_bib18 Feder (10.1016/j.sigpro.2016.10.015_bib15) 1993; 41 |
References_xml | – volume: 82 start-page: 97 year: 1987 end-page: 105 ident: bib17 article-title: Maximum likeli-hood computations with repeated measures: application of the em algorithm publication-title: J. Am. Stat. Assoc. – reference: K.W. Cheung, W.-K. Ma, H.-C. So, Accurate approximation algorithm for toa-based maximum likelihood mobile location using semidefinite programming, in: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP'04), vol. 2, 2004, pp. ii–145. – volume: 36 start-page: 477 year: 1988 end-page: 489 ident: bib14 article-title: Parameter estimation of superimposed signals using the em algorithm publication-title: IEEE Trans. Acoust. Speech Signal Process. – volume: 56 start-page: 1770 year: 2008 end-page: 1778 ident: bib5 article-title: Exact and approximate solutions of source localization problems publication-title: IEEE Trans. Signal Process. – volume: 11 start-page: 513 year: 2004 end-page: 516 ident: bib1 article-title: Direct position determination of narrowband radio frequency transmitters publication-title: IEEE Signal Process. Lett. – volume: 53 start-page: 460 year: 2005 end-page: 470 ident: bib8 article-title: A multidimensional scaling framework for mobile location using time-of-arrival measurements publication-title: IEEE Trans. Signal Process. – volume: 62 start-page: 1377 year: 2014 end-page: 1385 ident: bib2 article-title: Single receiver emitter geolocation based on signal periodicity with oscillator instability publication-title: IEEE Trans. Signal Process. – reference: M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, no. 55, Courier Corporation, 1964. – reference: P. Closas, C. Fernandez-Prades, J.A. Fernkndez-Rubiot, Ml estimation of position in a gnss receiver using the sage algorithm, in: Proceedings of the International Conference on IEEE Acoustics, Speech and Signal Processing-ICASSP’07, vol.3, 2007, pp. III–1045. – volume: 63 start-page: 3615 year: 2015 end-page: 3627 ident: bib7 article-title: Cooperative joint synchronization and localization in wireless sensor networks publication-title: IEEE Trans. Signal Process. – reference: J. Nocedal, S. Wright, Numerical optimization, Springer Science & Business Media, 2006. – volume: 13 start-page: 47 year: 1996 end-page: 60 ident: bib13 article-title: The expectation-maximization algorithm publication-title: IEEE Signal Process. Mag. – reference: N. G. De Bruijn, Asymptotic Methods in Analysis, vol. 4, Courier Corporation,1970. – reference: A. Azevedo-Filho, R.D. Shachter, Laplace’s method approximations for probabilistic inference in belief networks with continuous variables, in: Proceedings of the Tenth International Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc., 1994, pp. 28–36. – reference: R.M. Vaghefi, R.M. Buehrer, Asynchronous time-of-arrival-based source localization, in: Proceedings of the ICASSP, 2013, pp. 4086–4090. – volume: 35 start-page: 1661 year: 1987 end-page: 1669 ident: bib3 article-title: Closed-form least-squares source location estimation from range-difference measurements publication-title: IEEE Trans. Acoust. Speech Signal Process. – volume: 42 start-page: 846 year: 1994 end-page: 859 ident: bib16 article-title: Iterative and sequential algorithms for multisensor signal enhancement publication-title: IEEE Trans. Signal Process. – volume: 1 year: 1968 ident: bib23 article-title: Detection, Estimation and Modulation Theory – volume: 11 start-page: 239 year: 1965 end-page: 246 ident: bib22 article-title: Optimum detection and signal selection for partially coherent binary communication publication-title: IEEE Trans. Inf. Theory – volume: 14 start-page: 359 year: 2007 end-page: 362 ident: bib10 article-title: Maximum likelihood estimation of position in gnss publication-title: IEEE Signal Process. Lett. – year: 2004 ident: bib19 article-title: Convex Optimization – reference: A. Beck, M. Teboulle, Gradient-based Algorithms with Applications to Signal Recovery, Convex Optimization in Signal Processing and Communications. – volume: 42 start-page: 2664 year: 1994 end-page: 2677 ident: bib11 article-title: Space-alternating generalized expectation-maximization algorithm publication-title: IEEE Trans. Signal Process. – volume: 41 start-page: 232 year: 1993 end-page: 244 ident: bib15 article-title: Parameter estimation and extraction of helicopter signals observed with a wide-band interference publication-title: IEEE Trans. Signal Process. – volume: 11 start-page: 513 issue: 5 year: 2004 ident: 10.1016/j.sigpro.2016.10.015_bib1 article-title: Direct position determination of narrowband radio frequency transmitters publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2004.826501 – ident: 10.1016/j.sigpro.2016.10.015_bib4 doi: 10.1109/ICASSP.2004.1326215 – ident: 10.1016/j.sigpro.2016.10.015_bib20 – year: 2004 ident: 10.1016/j.sigpro.2016.10.015_bib19 – volume: 42 start-page: 846 issue: 4 year: 1994 ident: 10.1016/j.sigpro.2016.10.015_bib16 article-title: Iterative and sequential algorithms for multisensor signal enhancement publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.285648 – ident: 10.1016/j.sigpro.2016.10.015_bib18 – volume: 1 year: 1968 ident: 10.1016/j.sigpro.2016.10.015_bib23 – volume: 56 start-page: 1770 issue: 5 year: 2008 ident: 10.1016/j.sigpro.2016.10.015_bib5 article-title: Exact and approximate solutions of source localization problems publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.909342 – volume: 11 start-page: 239 issue: 2 year: 1965 ident: 10.1016/j.sigpro.2016.10.015_bib22 article-title: Optimum detection and signal selection for partially coherent binary communication publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1965.1053749 – ident: 10.1016/j.sigpro.2016.10.015_bib6 doi: 10.1109/ICASSP.2013.6638427 – volume: 53 start-page: 460 issue: 2 year: 2005 ident: 10.1016/j.sigpro.2016.10.015_bib8 article-title: A multidimensional scaling framework for mobile location using time-of-arrival measurements publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2004.840721 – volume: 13 start-page: 47 issue: 6 year: 1996 ident: 10.1016/j.sigpro.2016.10.015_bib13 article-title: The expectation-maximization algorithm publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.543975 – volume: 35 start-page: 1661 issue: 12 year: 1987 ident: 10.1016/j.sigpro.2016.10.015_bib3 article-title: Closed-form least-squares source location estimation from range-difference measurements publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1987.1165089 – volume: 36 start-page: 477 issue: 4 year: 1988 ident: 10.1016/j.sigpro.2016.10.015_bib14 article-title: Parameter estimation of superimposed signals using the em algorithm publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/29.1552 – volume: 63 start-page: 3615 issue: 14 year: 2015 ident: 10.1016/j.sigpro.2016.10.015_bib7 article-title: Cooperative joint synchronization and localization in wireless sensor networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2430842 – volume: 14 start-page: 359 issue: 5 year: 2007 ident: 10.1016/j.sigpro.2016.10.015_bib10 article-title: Maximum likelihood estimation of position in gnss publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2006.888360 – ident: 10.1016/j.sigpro.2016.10.015_bib12 doi: 10.1109/ICASSP.2007.366862 – volume: 82 start-page: 97 issue: 397 year: 1987 ident: 10.1016/j.sigpro.2016.10.015_bib17 article-title: Maximum likeli-hood computations with repeated measures: application of the em algorithm publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1987.10478395 – ident: 10.1016/j.sigpro.2016.10.015_bib21 doi: 10.1016/B978-1-55860-332-5.50009-2 – ident: 10.1016/j.sigpro.2016.10.015_bib24 doi: 10.1115/1.3625776 – ident: 10.1016/j.sigpro.2016.10.015_bib9 – volume: 41 start-page: 232 issue: 1 year: 1993 ident: 10.1016/j.sigpro.2016.10.015_bib15 article-title: Parameter estimation and extraction of helicopter signals observed with a wide-band interference publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.1993.193142 – volume: 62 start-page: 1377 issue: 6 year: 2014 ident: 10.1016/j.sigpro.2016.10.015_bib2 article-title: Single receiver emitter geolocation based on signal periodicity with oscillator instability publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2298831 – volume: 42 start-page: 2664 issue: 10 year: 1994 ident: 10.1016/j.sigpro.2016.10.015_bib11 article-title: Space-alternating generalized expectation-maximization algorithm publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.324732 |
SSID | ssj0001360 |
Score | 2.4492588 |
Snippet | Transmitter localization is used extensively in civilian and military applications. In this paper, we focus on the Direct Position Determination (DPD)... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 32 |
SubjectTerms | Direct Position Determination (DPD) Expectation Maximization (EM) Laplace Method Time of Arrival (TOA) |
Title | Expectation-maximization algorithm for direct position determination |
URI | https://dx.doi.org/10.1016/j.sigpro.2016.10.015 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA5FL3oQV6xLmYPXtNPJNjmWaqmKvWihtyFrrXRDK3jyt5s3i1YQBY8T3oPMS3gL-b73ELqgQjNJOcFMJwqH_NZgbZwOB2JibaTw3APf-W7A-0N6M2KjGupWXBiAVZa-v_DpubcuV1qlNVvLyaR1D0ScNodnMwKFQ85gpwJuefP9C-bRJjlTGIQxSFf0uRzj9TIZBz8FAC_eBIwXDMf9KTythZzeLtopc8WoU2xnD9XcfB9tr3UQPECX0KrYFM_peKbeJrOSVxmp6XgRCv_HWRTS0qj4y6iCaEW2QsHA1yEa9q4eun1cDkbAJmT4Kyy89NYQ5pVnieDaJzolTjMiqU2sMN4R55mOnXSheqOcGS20UIpbrrROHTlCG_PF3B2jSEhuYxYrTlRCCY1TI60MVQttpykxltQRqeyRmbJrOAyvmGYVPOwpK6yYgRVhNVixjvCn1rLomvGHvKhMnX07_Sw49l81T_6teYq2EgjROQrnDG2snl_deUgwVrqR36AG2uxc3_YHH-KO0pk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA6lPagHccW6zsFr7HSyzRxLtUztcrGF3oYkk9RKN7SCP9-8WYqCKHickAcz34S3kO97D6FbKhSLKCeYqUBil99qrLRR7odoX-lIWG5B7zwY8nhMHydsUkHtUgsDtMrC9-c-PfPWxUqjQLOxns0aTyDEaXK4NiNQOLgSqAbdqVgV1VrdXjzcOuQmycTCsB-DQamgy2heb7Opc1XA8eJ3QPOC-bg_RagvUadzgPaLdNFr5W90iCpmeYT2vjQRPEb30K1Y5zfqeCE_ZotCWunJ-XTlav_nhecyUy__UK9kaXlpSYSBpxM07jyM2jEuZiNg7ZL8DRY2sqkmzErLAsGVDVRIjGIkommQCm0NMZYp30TGFXCUM62EElLylEulQkNOUXW5Wpoz5ImIpz7zJScyoIT6oY7SyBUutBmGRKekjkiJR6KLxuEwv2KelAyxlyRHMQEUYdWhWEd4a7XOG2f8sV-UUCffDkDifPuvluf_trxBO_Fo0E_63WHvAu0GELEzUs4lqm5e382Vyzc26ro4T58khNVK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expectation-maximization+algorithm+for+direct+position+determination&rft.jtitle=Signal+processing&rft.au=Tzoreff%2C+Elad&rft.au=Weiss%2C+Anthony+J.&rft.date=2017-04-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=133&rft.spage=32&rft.epage=39&rft_id=info:doi/10.1016%2Fj.sigpro.2016.10.015&rft.externalDocID=S0165168416302821 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |