The geometry of prior selection

This contribution is devoted to the selection of prior in a Bayesian learning framework. There is an extensive literature on the construction of non-informative priors and the subject seems far from a definite solution [Kass and Wasserman, Formal rules for selecting prior distributions: a review and...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 67; pp. 214 - 244
Main Author Snoussi, Hichem
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2005
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2004.11.038

Cover

Abstract This contribution is devoted to the selection of prior in a Bayesian learning framework. There is an extensive literature on the construction of non-informative priors and the subject seems far from a definite solution [Kass and Wasserman, Formal rules for selecting prior distributions: a review and annotated bibliography, Technical Report No. 583, Department of Statistics, Carnegie Mellon University, 1994]. We consider this problem in the light of the recent development of information geometric tools [Amari and Nagaoka, Methods of information geometry, in: Translations of Mathematical Monographs, AMS, vol. 191, Oxford University Press, Oxford, 2000]. The differential geometric analysis allows the formulation of the prior selection problem in a general manifold valued set of probability distributions. In order to construct the prior distribution, we propose a criteria expressing the trade off between decision error and uniformity constraint. The solution has an explicit expression obtained by variational calculus. In addition, it has two important invariance properties: invariance to the dominant measure of the data space and also invariance to the parametrization of a restricted parametric manifold. We show how the construction of a prior by projection is the best way to take into account the restriction to a particular family of parametric models. For instance, we apply this procedure to autoparallel restricted families. Two practical examples illustrate the proposed construction of prior. The first example deals with the learning of a mixture of multivariate Gaussians in a classification perspective. We show in this learning problem how the penalization of likelihood by the proposed prior eliminates the degeneracy occurring when approaching singularity points. The second example treats the blind source separation problem.
AbstractList This contribution is devoted to the selection of prior in a Bayesian learning framework. There is an extensive literature on the construction of non-informative priors and the subject seems far from a definite solution [Kass and Wasserman, Formal rules for selecting prior distributions: a review and annotated bibliography, Technical Report No. 583, Department of Statistics, Carnegie Mellon University, 1994]. We consider this problem in the light of the recent development of information geometric tools [Amari and Nagaoka, Methods of information geometry, in: Translations of Mathematical Monographs, AMS, vol. 191, Oxford University Press, Oxford, 2000]. The differential geometric analysis allows the formulation of the prior selection problem in a general manifold valued set of probability distributions. In order to construct the prior distribution, we propose a criteria expressing the trade off between decision error and uniformity constraint. The solution has an explicit expression obtained by variational calculus. In addition, it has two important invariance properties: invariance to the dominant measure of the data space and also invariance to the parametrization of a restricted parametric manifold. We show how the construction of a prior by projection is the best way to take into account the restriction to a particular family of parametric models. For instance, we apply this procedure to autoparallel restricted families. Two practical examples illustrate the proposed construction of prior. The first example deals with the learning of a mixture of multivariate Gaussians in a classification perspective. We show in this learning problem how the penalization of likelihood by the proposed prior eliminates the degeneracy occurring when approaching singularity points. The second example treats the blind source separation problem.
Author Snoussi, Hichem
Author_xml – sequence: 1
  givenname: Hichem
  surname: Snoussi
  fullname: Snoussi, Hichem
  email: Hichem.Snoussi@utt.fr
  organization: IRCCyN, Institut de Recherche en Communications et Cybernétiques de Nantes, Ecole Centrale de Nantes, 1, Rue de la Noë, BP 92101, 44321, Nantes, France
BookMark eNqFz89Kw0AQx_FFKthW30AwL5A4M9kkGw-CFP9BwUs9L9vNrG5ps7Ibhb69KfXkQU9z-v6Yz0xM-tCzEJcIBQLW15ui508bdgUByAKxgFKdiCmqhnJFqp6IKbRU5VQinYlZShsAbJDaqbhavXP2xmHHQ9xnwWUf0YeYJd6yHXzoz8WpM9vEFz93Ll4f7leLp3z58vi8uFvmtoR6yBvupJHrtbKu7EhW3Kiq6sgSGaxsjS1xKx24Clo2qkanJK4VWOeAyhqgnIub466NIaXITls_mMMHQzR-qxH0gao3-kjVB6pG1CN1jOWveFTsTNz_l90eMx5hX56jTtZzb7nzcdTrLvi_B74BVs5w_A
CitedBy_id crossref_primary_10_1016_j_cam_2018_03_043
crossref_primary_10_1162_neco_2008_03_07_489
crossref_primary_10_1142_S0129065708001415
Cites_doi 10.1109/NNSP.2002.1030060
10.1007/BF02309013
10.1162/neco.1997.9.2.349
10.1007/978-1-4612-5056-2
ContentType Journal Article
Copyright 2005 Elsevier B.V.
Copyright_xml – notice: 2005 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2004.11.038
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 244
ExternalDocumentID 10_1016_j_neucom_2004_11_038
S0925231205001153
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSN
SSV
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-7ed4a4bb8cf3d245e7855d2c22a15c6192e94f0f509ea861f841b80cff0236003
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Thu Apr 24 22:57:25 EDT 2025
Tue Jul 01 03:05:12 EDT 2025
Fri Feb 23 02:21:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Prior selection
Blind source separation
Differential geometry
Bayesian learning
Mixture of Gaussians
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-7ed4a4bb8cf3d245e7855d2c22a15c6192e94f0f509ea861f841b80cff0236003
PageCount 31
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2004_11_038
crossref_primary_10_1016_j_neucom_2004_11_038
elsevier_sciencedirect_doi_10_1016_j_neucom_2004_11_038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-08-01
PublicationDateYYYYMMDD 2005-08-01
PublicationDate_xml – month: 08
  year: 2005
  text: 2005-08-01
  day: 01
PublicationDecade 2000
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2005
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References January 1996.
R.E. Kass, L. Wasserman, Formal rules for selecting prior distributions: a review and annotated bibliography, Technical Report No. 583, Department of Statistics, Carnegie Mellon University, 1994.
1991.
Knuth (bib7) 1999
Snoussi, Mohammad-Djafari (bib11) August 2001
Rodríguez (bib10) August 2001
H. Zhu, R. Rohwer, Bayesian invariant measurements of generalisation for continuous distributions, Technical Report, NCRG/4352
Snoussi, Mohammad-Djafari (bib12) August 2002
Mohammad-Djafari (bib8) July 1999
V. Balasubramanian, Statistical inference, Occam's razor and statistical mechanics on the space of probability distributions, Neural Comput. 9(2) (1997) (cond-mat/9601030).
V. Balasubramanian, A geometric formulation of Occam's razor for inference of parametric distributions, Technical Report, Princeton, Preprint PUPT-1588 and
Aston University, 1995.
S. Amari, H. Nagaoka, Methods of information geometry, in: Translations of Mathematical Monographs, vol. 191, 2000, AMS, Oxford University Press, Oxford.
H. Snoussi, A. Mohammad-Djafari, MCMC joint separation and segmentation of hidden Markov fields, in: Neural Networks for Signal Processing XII, IEEE Workshop, September 2002, pp. 485–494.
S. Amari, Differential-Geometrical Methods in Statistics, Springer Lecture Notes in Statistics, vol. 28, Springer, New York, 1985.
C. Rodríguez, Entropic priors, Technical Report, Electronic form
Box, Tiao (bib5) 1972
Zhu, Rohwer (bib14) 1995; 2
10.1016/j.neucom.2004.11.038_bib9
10.1016/j.neucom.2004.11.038_bib6
10.1016/j.neucom.2004.11.038_bib4
10.1016/j.neucom.2004.11.038_bib3
10.1016/j.neucom.2004.11.038_bib2
Rodríguez (10.1016/j.neucom.2004.11.038_bib10) 2001
10.1016/j.neucom.2004.11.038_bib1
10.1016/j.neucom.2004.11.038_bib15
Zhu (10.1016/j.neucom.2004.11.038_bib14) 1995; 2
Mohammad-Djafari (10.1016/j.neucom.2004.11.038_bib8) 1999
Snoussi (10.1016/j.neucom.2004.11.038_bib11) 2001
Snoussi (10.1016/j.neucom.2004.11.038_bib12) 2002
10.1016/j.neucom.2004.11.038_bib13
Box (10.1016/j.neucom.2004.11.038_bib5) 1972
Knuth (10.1016/j.neucom.2004.11.038_bib7) 1999
References_xml – reference: S. Amari, H. Nagaoka, Methods of information geometry, in: Translations of Mathematical Monographs, vol. 191, 2000, AMS, Oxford University Press, Oxford.
– start-page: 307
  year: August 2002
  end-page: 327
  ident: bib12
  article-title: Information geometry and prior selection
  publication-title: Bayesian Inference and Maximum Entropy Methods, MaxEnt Workshops
– reference: , Aston University, 1995.
– start-page: 283
  year: 1999
  end-page: 288
  ident: bib7
  article-title: A Bayesian approach to source separation
  publication-title: Proceedings of Independent Component Analysis Workshop
– reference: C. Rodríguez, Entropic priors, Technical Report, Electronic form
– start-page: 36
  year: August 2001
  end-page: 46
  ident: bib11
  article-title: Penalized maximum likelihood for multivariate Gaussian mixture
  publication-title: Bayesian Inference and Maximum Entropy Methods, MaxEnt Workshops
– start-page: 410
  year: August 2001
  end-page: 432
  ident: bib10
  article-title: Entropic priors for discrete probabilistic networks and for mixtures of Gaussians models
  publication-title: Bayesian Inference and Maximum Entropy Methods, MaxEnt Workshops
– reference: V. Balasubramanian, A geometric formulation of Occam's razor for inference of parametric distributions, Technical Report, Princeton, Preprint PUPT-1588 and
– reference: S. Amari, Differential-Geometrical Methods in Statistics, Springer Lecture Notes in Statistics, vol. 28, Springer, New York, 1985.
– reference: R.E. Kass, L. Wasserman, Formal rules for selecting prior distributions: a review and annotated bibliography, Technical Report No. 583, Department of Statistics, Carnegie Mellon University, 1994.
– reference: , 1991.
– volume: 2
  start-page: 28
  year: 1995
  end-page: 31
  ident: bib14
  article-title: Bayesian invariant measurements of generalisation
  publication-title: Neural Proc. Lett.
– reference: , January 1996.
– reference: H. Zhu, R. Rohwer, Bayesian invariant measurements of generalisation for continuous distributions, Technical Report, NCRG/4352,
– year: 1972
  ident: bib5
  article-title: Bayesian Inference in Statistical Analysis
– year: July 1999
  ident: bib8
  article-title: A Bayesian approach to source separation
  publication-title: Bayesian Inference and Maximum Entropy Methods, Boise,
– reference: V. Balasubramanian, Statistical inference, Occam's razor and statistical mechanics on the space of probability distributions, Neural Comput. 9(2) (1997) (cond-mat/9601030).
– reference: H. Snoussi, A. Mohammad-Djafari, MCMC joint separation and segmentation of hidden Markov fields, in: Neural Networks for Signal Processing XII, IEEE Workshop, September 2002, pp. 485–494.
– ident: 10.1016/j.neucom.2004.11.038_bib13
  doi: 10.1109/NNSP.2002.1030060
– volume: 2
  start-page: 28
  issue: 6
  year: 1995
  ident: 10.1016/j.neucom.2004.11.038_bib14
  article-title: Bayesian invariant measurements of generalisation
  publication-title: Neural Proc. Lett.
  doi: 10.1007/BF02309013
– year: 1999
  ident: 10.1016/j.neucom.2004.11.038_bib8
  article-title: A Bayesian approach to source separation
– ident: 10.1016/j.neucom.2004.11.038_bib3
– year: 1972
  ident: 10.1016/j.neucom.2004.11.038_bib5
– ident: 10.1016/j.neucom.2004.11.038_bib2
– ident: 10.1016/j.neucom.2004.11.038_bib4
  doi: 10.1162/neco.1997.9.2.349
– start-page: 410
  year: 2001
  ident: 10.1016/j.neucom.2004.11.038_bib10
  article-title: Entropic priors for discrete probabilistic networks and for mixtures of Gaussians models
– start-page: 36
  year: 2001
  ident: 10.1016/j.neucom.2004.11.038_bib11
  article-title: Penalized maximum likelihood for multivariate Gaussian mixture
– start-page: 307
  year: 2002
  ident: 10.1016/j.neucom.2004.11.038_bib12
  article-title: Information geometry and prior selection
– ident: 10.1016/j.neucom.2004.11.038_bib1
  doi: 10.1007/978-1-4612-5056-2
– start-page: 283
  year: 1999
  ident: 10.1016/j.neucom.2004.11.038_bib7
  article-title: A Bayesian approach to source separation
– ident: 10.1016/j.neucom.2004.11.038_bib9
– ident: 10.1016/j.neucom.2004.11.038_bib6
– ident: 10.1016/j.neucom.2004.11.038_bib15
SSID ssj0017129
Score 1.7626364
Snippet This contribution is devoted to the selection of prior in a Bayesian learning framework. There is an extensive literature on the construction of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 214
SubjectTerms Bayesian learning
Blind source separation
Differential geometry
Mixture of Gaussians
Prior selection
Title The geometry of prior selection
URI https://dx.doi.org/10.1016/j.neucom.2004.11.038
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6P2YPXbE2WNNlxDMdU3EUHu5U0fZGJtqN2By_-7SZpOxREwWvJg_R9P_jl9xC6EsZoopTAXIsU20jUWNrhB6eJJlIaW2E8Zf79LJrO2e2CL1po3LyFcbDKOvdXOd1n6_pLv9Zmf7Vc9h_CIbVTFKEh932NY_xkTDhf731sYB5EEFrx7VGO3enm-ZzHeGWwdpgR5yk9x-XpXqn8VJ6-lJzJHtqpe8VgVF1nH7UgO0C7zR6GoA7LQ3RpbR08Qf4KZfEe5CZYFcu8CN78ihur9yM0n1w_jqe4XnyAte3gSywgZYolidRmkFLGQUjOU6opVYRrN_LAkJnQ2GIPSkbESEYSGWpjHB-8jdNj1M7yDE5QYHgEjFo7cVAMIqGM4ENgLI006EjpDho0_xvrmhXcLad4iRv413NcacktrGR2YIitljoIb6RWFSvGH-dFo8r4m3Vjm7h_lTz9t-QZ2vY0qx6sd47aZbGGC9tAlEnXe0gXbY1u7qazTyZFxMM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMsDCG1FezcDqtnbs2B1RRVWg7UIrdYscx0ZFkFQhHVj47dh5IJAQSKyRT3LufC_pu-8ArrgxCkvJEVM8RtYTFRK2-UFxpLAQxmaYgjJ_Mg1Gc3q3YIsGDOpZGAerrGJ_GdOLaF196Vba7K6Wy-5Dr09sF4VJjxV1jb8Bm5T53OH6Ou-fOA_MMSkJ9whD7ng9P1eAvBK9dqAR91Q6jszTjan8lJ--5JzhHuxUxaJ3Xd5nHxo6OYDdehGDV_nlIbStsb1Hnb7oPHvzUuOtsmWaea_Fjhur-COYD29mgxGqNh8gZUv4HHEdU0mjSCjjx4QyzQVjMVGESMyU63l0n5qesdleSxFgIyiORE8Z4wjhraMeQzNJE30CnmGBpsQaimlJdcCl4ayvKY0DpVUgVQv8-n9DVdGCu-0Uz2GN_3oKSy25jZXUdgyh1VIL0KfUqqTF-OM8r1UZfjNvaCP3r5Kn_5Zsw9ZoNhmH49vp_RlsF5yrBXLvHJp5ttYXtprIo8vitXwA7DnGVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+geometry+of+prior+selection&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Snoussi%2C+Hichem&rft.date=2005-08-01&rft.issn=0925-2312&rft.volume=67&rft.spage=214&rft.epage=244&rft_id=info:doi/10.1016%2Fj.neucom.2004.11.038&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2004_11_038
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon