The geometry of prior selection
This contribution is devoted to the selection of prior in a Bayesian learning framework. There is an extensive literature on the construction of non-informative priors and the subject seems far from a definite solution [Kass and Wasserman, Formal rules for selecting prior distributions: a review and...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 67; pp. 214 - 244 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2005
|
Subjects | |
Online Access | Get full text |
ISSN | 0925-2312 1872-8286 |
DOI | 10.1016/j.neucom.2004.11.038 |
Cover
Abstract | This contribution is devoted to the selection of prior in a Bayesian learning framework. There is an extensive literature on the construction of non-informative priors and the subject seems far from a definite solution [Kass and Wasserman, Formal rules for selecting prior distributions: a review and annotated bibliography, Technical Report No. 583, Department of Statistics, Carnegie Mellon University, 1994]. We consider this problem in the light of the recent development of information geometric tools [Amari and Nagaoka, Methods of information geometry, in: Translations of Mathematical Monographs, AMS, vol. 191, Oxford University Press, Oxford, 2000]. The differential geometric analysis allows the formulation of the prior selection problem in a general manifold valued set of probability distributions. In order to construct the prior distribution, we propose a criteria expressing the trade off between decision error and uniformity constraint. The solution has an explicit expression obtained by variational calculus. In addition, it has two important invariance properties: invariance to the dominant measure of the data space and also invariance to the parametrization of a restricted parametric manifold. We show how the construction of a prior by projection is the best way to take into account the restriction to a particular family of parametric models. For instance, we apply this procedure to autoparallel restricted families. Two practical examples illustrate the proposed construction of prior. The first example deals with the learning of a mixture of multivariate Gaussians in a classification perspective. We show in this learning problem how the penalization of likelihood by the proposed prior eliminates the degeneracy occurring when approaching singularity points. The second example treats the blind source separation problem. |
---|---|
AbstractList | This contribution is devoted to the selection of prior in a Bayesian learning framework. There is an extensive literature on the construction of non-informative priors and the subject seems far from a definite solution [Kass and Wasserman, Formal rules for selecting prior distributions: a review and annotated bibliography, Technical Report No. 583, Department of Statistics, Carnegie Mellon University, 1994]. We consider this problem in the light of the recent development of information geometric tools [Amari and Nagaoka, Methods of information geometry, in: Translations of Mathematical Monographs, AMS, vol. 191, Oxford University Press, Oxford, 2000]. The differential geometric analysis allows the formulation of the prior selection problem in a general manifold valued set of probability distributions. In order to construct the prior distribution, we propose a criteria expressing the trade off between decision error and uniformity constraint. The solution has an explicit expression obtained by variational calculus. In addition, it has two important invariance properties: invariance to the dominant measure of the data space and also invariance to the parametrization of a restricted parametric manifold. We show how the construction of a prior by projection is the best way to take into account the restriction to a particular family of parametric models. For instance, we apply this procedure to autoparallel restricted families. Two practical examples illustrate the proposed construction of prior. The first example deals with the learning of a mixture of multivariate Gaussians in a classification perspective. We show in this learning problem how the penalization of likelihood by the proposed prior eliminates the degeneracy occurring when approaching singularity points. The second example treats the blind source separation problem. |
Author | Snoussi, Hichem |
Author_xml | – sequence: 1 givenname: Hichem surname: Snoussi fullname: Snoussi, Hichem email: Hichem.Snoussi@utt.fr organization: IRCCyN, Institut de Recherche en Communications et Cybernétiques de Nantes, Ecole Centrale de Nantes, 1, Rue de la Noë, BP 92101, 44321, Nantes, France |
BookMark | eNqFz89Kw0AQx_FFKthW30AwL5A4M9kkGw-CFP9BwUs9L9vNrG5ps7Ibhb69KfXkQU9z-v6Yz0xM-tCzEJcIBQLW15ui508bdgUByAKxgFKdiCmqhnJFqp6IKbRU5VQinYlZShsAbJDaqbhavXP2xmHHQ9xnwWUf0YeYJd6yHXzoz8WpM9vEFz93Ll4f7leLp3z58vi8uFvmtoR6yBvupJHrtbKu7EhW3Kiq6sgSGaxsjS1xKx24Clo2qkanJK4VWOeAyhqgnIub466NIaXITls_mMMHQzR-qxH0gao3-kjVB6pG1CN1jOWveFTsTNz_l90eMx5hX56jTtZzb7nzcdTrLvi_B74BVs5w_A |
CitedBy_id | crossref_primary_10_1016_j_cam_2018_03_043 crossref_primary_10_1162_neco_2008_03_07_489 crossref_primary_10_1142_S0129065708001415 |
Cites_doi | 10.1109/NNSP.2002.1030060 10.1007/BF02309013 10.1162/neco.1997.9.2.349 10.1007/978-1-4612-5056-2 |
ContentType | Journal Article |
Copyright | 2005 Elsevier B.V. |
Copyright_xml | – notice: 2005 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.neucom.2004.11.038 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-8286 |
EndPage | 244 |
ExternalDocumentID | 10_1016_j_neucom_2004_11_038 S0925231205001153 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSN SSV SSZ T5K WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-7ed4a4bb8cf3d245e7855d2c22a15c6192e94f0f509ea861f841b80cff0236003 |
IEDL.DBID | .~1 |
ISSN | 0925-2312 |
IngestDate | Thu Apr 24 22:57:25 EDT 2025 Tue Jul 01 03:05:12 EDT 2025 Fri Feb 23 02:21:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Prior selection Blind source separation Differential geometry Bayesian learning Mixture of Gaussians |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-7ed4a4bb8cf3d245e7855d2c22a15c6192e94f0f509ea861f841b80cff0236003 |
PageCount | 31 |
ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2004_11_038 crossref_primary_10_1016_j_neucom_2004_11_038 elsevier_sciencedirect_doi_10_1016_j_neucom_2004_11_038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-08-01 |
PublicationDateYYYYMMDD | 2005-08-01 |
PublicationDate_xml | – month: 08 year: 2005 text: 2005-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2005 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | January 1996. R.E. Kass, L. Wasserman, Formal rules for selecting prior distributions: a review and annotated bibliography, Technical Report No. 583, Department of Statistics, Carnegie Mellon University, 1994. 1991. Knuth (bib7) 1999 Snoussi, Mohammad-Djafari (bib11) August 2001 Rodríguez (bib10) August 2001 H. Zhu, R. Rohwer, Bayesian invariant measurements of generalisation for continuous distributions, Technical Report, NCRG/4352 Snoussi, Mohammad-Djafari (bib12) August 2002 Mohammad-Djafari (bib8) July 1999 V. Balasubramanian, Statistical inference, Occam's razor and statistical mechanics on the space of probability distributions, Neural Comput. 9(2) (1997) (cond-mat/9601030). V. Balasubramanian, A geometric formulation of Occam's razor for inference of parametric distributions, Technical Report, Princeton, Preprint PUPT-1588 and Aston University, 1995. S. Amari, H. Nagaoka, Methods of information geometry, in: Translations of Mathematical Monographs, vol. 191, 2000, AMS, Oxford University Press, Oxford. H. Snoussi, A. Mohammad-Djafari, MCMC joint separation and segmentation of hidden Markov fields, in: Neural Networks for Signal Processing XII, IEEE Workshop, September 2002, pp. 485–494. S. Amari, Differential-Geometrical Methods in Statistics, Springer Lecture Notes in Statistics, vol. 28, Springer, New York, 1985. C. Rodríguez, Entropic priors, Technical Report, Electronic form Box, Tiao (bib5) 1972 Zhu, Rohwer (bib14) 1995; 2 10.1016/j.neucom.2004.11.038_bib9 10.1016/j.neucom.2004.11.038_bib6 10.1016/j.neucom.2004.11.038_bib4 10.1016/j.neucom.2004.11.038_bib3 10.1016/j.neucom.2004.11.038_bib2 Rodríguez (10.1016/j.neucom.2004.11.038_bib10) 2001 10.1016/j.neucom.2004.11.038_bib1 10.1016/j.neucom.2004.11.038_bib15 Zhu (10.1016/j.neucom.2004.11.038_bib14) 1995; 2 Mohammad-Djafari (10.1016/j.neucom.2004.11.038_bib8) 1999 Snoussi (10.1016/j.neucom.2004.11.038_bib11) 2001 Snoussi (10.1016/j.neucom.2004.11.038_bib12) 2002 10.1016/j.neucom.2004.11.038_bib13 Box (10.1016/j.neucom.2004.11.038_bib5) 1972 Knuth (10.1016/j.neucom.2004.11.038_bib7) 1999 |
References_xml | – reference: S. Amari, H. Nagaoka, Methods of information geometry, in: Translations of Mathematical Monographs, vol. 191, 2000, AMS, Oxford University Press, Oxford. – start-page: 307 year: August 2002 end-page: 327 ident: bib12 article-title: Information geometry and prior selection publication-title: Bayesian Inference and Maximum Entropy Methods, MaxEnt Workshops – reference: , Aston University, 1995. – start-page: 283 year: 1999 end-page: 288 ident: bib7 article-title: A Bayesian approach to source separation publication-title: Proceedings of Independent Component Analysis Workshop – reference: C. Rodríguez, Entropic priors, Technical Report, Electronic form – start-page: 36 year: August 2001 end-page: 46 ident: bib11 article-title: Penalized maximum likelihood for multivariate Gaussian mixture publication-title: Bayesian Inference and Maximum Entropy Methods, MaxEnt Workshops – start-page: 410 year: August 2001 end-page: 432 ident: bib10 article-title: Entropic priors for discrete probabilistic networks and for mixtures of Gaussians models publication-title: Bayesian Inference and Maximum Entropy Methods, MaxEnt Workshops – reference: V. Balasubramanian, A geometric formulation of Occam's razor for inference of parametric distributions, Technical Report, Princeton, Preprint PUPT-1588 and – reference: S. Amari, Differential-Geometrical Methods in Statistics, Springer Lecture Notes in Statistics, vol. 28, Springer, New York, 1985. – reference: R.E. Kass, L. Wasserman, Formal rules for selecting prior distributions: a review and annotated bibliography, Technical Report No. 583, Department of Statistics, Carnegie Mellon University, 1994. – reference: , 1991. – volume: 2 start-page: 28 year: 1995 end-page: 31 ident: bib14 article-title: Bayesian invariant measurements of generalisation publication-title: Neural Proc. Lett. – reference: , January 1996. – reference: H. Zhu, R. Rohwer, Bayesian invariant measurements of generalisation for continuous distributions, Technical Report, NCRG/4352, – year: 1972 ident: bib5 article-title: Bayesian Inference in Statistical Analysis – year: July 1999 ident: bib8 article-title: A Bayesian approach to source separation publication-title: Bayesian Inference and Maximum Entropy Methods, Boise, – reference: V. Balasubramanian, Statistical inference, Occam's razor and statistical mechanics on the space of probability distributions, Neural Comput. 9(2) (1997) (cond-mat/9601030). – reference: H. Snoussi, A. Mohammad-Djafari, MCMC joint separation and segmentation of hidden Markov fields, in: Neural Networks for Signal Processing XII, IEEE Workshop, September 2002, pp. 485–494. – ident: 10.1016/j.neucom.2004.11.038_bib13 doi: 10.1109/NNSP.2002.1030060 – volume: 2 start-page: 28 issue: 6 year: 1995 ident: 10.1016/j.neucom.2004.11.038_bib14 article-title: Bayesian invariant measurements of generalisation publication-title: Neural Proc. Lett. doi: 10.1007/BF02309013 – year: 1999 ident: 10.1016/j.neucom.2004.11.038_bib8 article-title: A Bayesian approach to source separation – ident: 10.1016/j.neucom.2004.11.038_bib3 – year: 1972 ident: 10.1016/j.neucom.2004.11.038_bib5 – ident: 10.1016/j.neucom.2004.11.038_bib2 – ident: 10.1016/j.neucom.2004.11.038_bib4 doi: 10.1162/neco.1997.9.2.349 – start-page: 410 year: 2001 ident: 10.1016/j.neucom.2004.11.038_bib10 article-title: Entropic priors for discrete probabilistic networks and for mixtures of Gaussians models – start-page: 36 year: 2001 ident: 10.1016/j.neucom.2004.11.038_bib11 article-title: Penalized maximum likelihood for multivariate Gaussian mixture – start-page: 307 year: 2002 ident: 10.1016/j.neucom.2004.11.038_bib12 article-title: Information geometry and prior selection – ident: 10.1016/j.neucom.2004.11.038_bib1 doi: 10.1007/978-1-4612-5056-2 – start-page: 283 year: 1999 ident: 10.1016/j.neucom.2004.11.038_bib7 article-title: A Bayesian approach to source separation – ident: 10.1016/j.neucom.2004.11.038_bib9 – ident: 10.1016/j.neucom.2004.11.038_bib6 – ident: 10.1016/j.neucom.2004.11.038_bib15 |
SSID | ssj0017129 |
Score | 1.7626364 |
Snippet | This contribution is devoted to the selection of prior in a Bayesian learning framework. There is an extensive literature on the construction of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 214 |
SubjectTerms | Bayesian learning Blind source separation Differential geometry Mixture of Gaussians Prior selection |
Title | The geometry of prior selection |
URI | https://dx.doi.org/10.1016/j.neucom.2004.11.038 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6P2YPXbE2WNNlxDMdU3EUHu5U0fZGJtqN2By_-7SZpOxREwWvJg_R9P_jl9xC6EsZoopTAXIsU20jUWNrhB6eJJlIaW2E8Zf79LJrO2e2CL1po3LyFcbDKOvdXOd1n6_pLv9Zmf7Vc9h_CIbVTFKEh932NY_xkTDhf731sYB5EEFrx7VGO3enm-ZzHeGWwdpgR5yk9x-XpXqn8VJ6-lJzJHtqpe8VgVF1nH7UgO0C7zR6GoA7LQ3RpbR08Qf4KZfEe5CZYFcu8CN78ihur9yM0n1w_jqe4XnyAte3gSywgZYolidRmkFLGQUjOU6opVYRrN_LAkJnQ2GIPSkbESEYSGWpjHB-8jdNj1M7yDE5QYHgEjFo7cVAMIqGM4ENgLI006EjpDho0_xvrmhXcLad4iRv413NcacktrGR2YIitljoIb6RWFSvGH-dFo8r4m3Vjm7h_lTz9t-QZ2vY0qx6sd47aZbGGC9tAlEnXe0gXbY1u7qazTyZFxMM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMsDCG1FezcDqtnbs2B1RRVWg7UIrdYscx0ZFkFQhHVj47dh5IJAQSKyRT3LufC_pu-8ArrgxCkvJEVM8RtYTFRK2-UFxpLAQxmaYgjJ_Mg1Gc3q3YIsGDOpZGAerrGJ_GdOLaF196Vba7K6Wy-5Dr09sF4VJjxV1jb8Bm5T53OH6Ou-fOA_MMSkJ9whD7ng9P1eAvBK9dqAR91Q6jszTjan8lJ--5JzhHuxUxaJ3Xd5nHxo6OYDdehGDV_nlIbStsb1Hnb7oPHvzUuOtsmWaea_Fjhur-COYD29mgxGqNh8gZUv4HHEdU0mjSCjjx4QyzQVjMVGESMyU63l0n5qesdleSxFgIyiORE8Z4wjhraMeQzNJE30CnmGBpsQaimlJdcCl4ayvKY0DpVUgVQv8-n9DVdGCu-0Uz2GN_3oKSy25jZXUdgyh1VIL0KfUqqTF-OM8r1UZfjNvaCP3r5Kn_5Zsw9ZoNhmH49vp_RlsF5yrBXLvHJp5ttYXtprIo8vitXwA7DnGVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+geometry+of+prior+selection&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Snoussi%2C+Hichem&rft.date=2005-08-01&rft.issn=0925-2312&rft.volume=67&rft.spage=214&rft.epage=244&rft_id=info:doi/10.1016%2Fj.neucom.2004.11.038&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2004_11_038 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |