XGBoost-based prediction of electrical properties for anode aluminium foil
Anode aluminium foil (AAF) shows advantages such as high electrical conductivity, high specific capacitance, and low cost, making it a high-quality electrode material for energy storage. However, the formation of AAF is a material process with multiple influencing factors interacted with each other,...
Saved in:
Published in | Materials today communications Vol. 41; p. 110400 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Anode aluminium foil (AAF) shows advantages such as high electrical conductivity, high specific capacitance, and low cost, making it a high-quality electrode material for energy storage. However, the formation of AAF is a material process with multiple influencing factors interacted with each other, and it is difficult to analyze the influencing mechanism of each factor and predict the electrical properties. To solve the aforementioned problem, the process data of AAF is collected from a actual production line as the research subject firstly. The correlation coefficient between the process parameters and withstand voltage (WV) is used for feature selection of the data sets. XGBoost-based prediction model is established to predict the electrical properties of AAF, which is evaluated using R2 and root-mean-square error (RMSE). The results indicate that the process parameter X70 (Voltage of repair 3) shows the most significant effect on the WV. The magnitude of the WV shows a stepwise increase with the increase of X70. The result of prediction model is a R2 of 0.990 and a RMSE of 3.888. The XGBoost-based prediction model for the electrical properties (WV) of AAF shows excellent prediction characteristic, which contributes to the optimization of process parameters and the properties prediction.
[Display omitted] |
---|---|
AbstractList | Anode aluminium foil (AAF) shows advantages such as high electrical conductivity, high specific capacitance, and low cost, making it a high-quality electrode material for energy storage. However, the formation of AAF is a material process with multiple influencing factors interacted with each other, and it is difficult to analyze the influencing mechanism of each factor and predict the electrical properties. To solve the aforementioned problem, the process data of AAF is collected from a actual production line as the research subject firstly. The correlation coefficient between the process parameters and withstand voltage (WV) is used for feature selection of the data sets. XGBoost-based prediction model is established to predict the electrical properties of AAF, which is evaluated using R2 and root-mean-square error (RMSE). The results indicate that the process parameter X70 (Voltage of repair 3) shows the most significant effect on the WV. The magnitude of the WV shows a stepwise increase with the increase of X70. The result of prediction model is a R2 of 0.990 and a RMSE of 3.888. The XGBoost-based prediction model for the electrical properties (WV) of AAF shows excellent prediction characteristic, which contributes to the optimization of process parameters and the properties prediction.
[Display omitted] |
ArticleNumber | 110400 |
Author | Zhang, Yue Pan, Sining |
Author_xml | – sequence: 1 givenname: Yue surname: Zhang fullname: Zhang, Yue organization: College of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, 541004, Guilin, China – sequence: 2 givenname: Sining orcidid: 0000-0003-3819-1909 surname: Pan fullname: Pan, Sining email: supereve122@163.com organization: College of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, 541004, Guilin, China |
BookMark | eNqFkE1Lw0AQhhepYK39Bx7yBxL3K5vEg6BFq1LwoAdvy2Z2AluSbNndCv57U-pBPOhphhmeF97nnMxGPyIhl4wWjDJ1tS2GBH4YCk65LBijktITMuei5LlseD37sZ-RZYxbSimrSyobOSfP7-s772PKWxPRZruA1kFyfsx8l2GPkIID008Pv8OQHMas8yEzo7eYmX4_uNHth-nm-gty2pk-4vJ7Lsjrw_3b6jHfvKyfVrebHARVKa_AIGdUtICybauyU6gU2KphFUgrmELW8IajBCGa0oKwopaUtZyrulZiQeQxFYKPMWCnd8ENJnxqRvVBiN7qoxB9EKKPQibs-hcGLplD0RSM6_-Db44wTrU-HAYdweEIk6swGdLWu78DvgBJ3YC0 |
CitedBy_id | crossref_primary_10_3390_en18010186 |
Cites_doi | 10.1149/1945-7111/ac4e54 10.1081/SAC-120004319 10.1007/s10854-020-05025-8 10.1007/s00521-021-06530-5 10.1109/TGRS.2023.3294266 10.1016/j.microrel.2023.115003 10.1016/j.microrel.2023.114928 10.1007/s10854-020-03257-2 10.1149/1945-7111/ab6b0e 10.1109/TIE.2020.3028796 10.1016/j.cej.2008.06.030 10.1016/j.electacta.2023.142969 10.1016/j.powtec.2023.118602 10.1016/j.ijoes.2023.100092 10.1007/s13369-022-06602-1 10.1016/j.surfcoat.2024.130508 10.1049/pel2.12529 10.15541/jim20170260 10.1016/j.jallcom.2020.153795 10.1016/j.cej.2023.144671 10.3390/electronics11162492 10.1109/ACCESS.2020.2989211 10.1007/s10854-007-9259-8 10.3390/en16166096 10.1016/j.electacta.2022.140974 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mtcomm.2024.110400 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-4928 |
ExternalDocumentID | 10_1016_j_mtcomm_2024_110400 S235249282402381X |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AABXZ AACTN AAEDT AAEDW AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEZYN AFJKZ AFKWA AFRZQ AFTJW AGHFR AGUBO AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE ROL SPC SPCBC SSM SSZ T5K ~G- AATTM AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-7cae2103bce4bb75f6e66cd7917c4d316e19292e4c3395dc3d38401b2268863 |
IEDL.DBID | AIKHN |
ISSN | 2352-4928 |
IngestDate | Tue Jul 01 02:09:01 EDT 2025 Thu Apr 24 22:51:42 EDT 2025 Sat Dec 21 16:00:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Anode aluminium foil Feature engineering XGBoost Properties prediction Energy storage |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-7cae2103bce4bb75f6e66cd7917c4d316e19292e4c3395dc3d38401b2268863 |
ORCID | 0000-0003-3819-1909 |
ParticipantIDs | crossref_primary_10_1016_j_mtcomm_2024_110400 crossref_citationtrail_10_1016_j_mtcomm_2024_110400 elsevier_sciencedirect_doi_10_1016_j_mtcomm_2024_110400 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationTitle | Materials today communications |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Shahraki, Al-Dahidi, Taleqani, Yadav (b19) 2023; 237 Chaudry, Hamad, Abuhmed (b14) 2021; 26 Li, De Moor (b30) 2002; 31 Kareem, Hur (b20) 2022; 11 Ding, Yao, Li, Long, Yi (b25) 2022; 34 Yu, Zhang, Zhang, Wang (b22) 2023; 18 Binu, Kariyappa (b24) 2021; 68 Covelo, Rodil, Novoa, Hernandez (b11) 2022; 31 Liu, Fang, Zhou, Hong (b31) 2020; 8 Nathan, Hemamalini, Jeremiah, Partheeban (b16) 2023; 145 Wang, Ding, Cao, Li, Dong, Shi, Xing, Liu (b33) 2022; 442 Chen, Thenuwara, Yao, Sandoval, Wang, Kang, Majumdar, Gopalaswamy, McDowell (b4) 2023; 6 Li, Peng, Shang, Wen, He (b10) 2020; 167 Jing-Ping, Fang-Yuan, Xian-Feng, You-Long (b2) 2018; 33 Zhao, Zhou, Zhu, Song, Liu, Luo (b18) 2023; 142 Jian-jun, Shi-yang, Cai-he, Ling, Jia-hu, Hai, Bo-wen, Deng, Shi-yun, Zai-yu (b21) 2024; 479 Fang, Xie, He, Zhang, Hu, Chen, Yang, Jin (b15) 2022; 33 Zeng, Bian, Liang, Cao, Liu, Chen, Wang, Xie, Xie (b7) 2023; 426 Wang, Cai, Tang, Lin, Pei, Wu (b13) 2022; 47 Li, An, Zhao, Hou, Liu, Xu (b8) 2023; 465 Zhu, Liu, Zhou, Cui (b27) 2023; 61 Liu, Zhu, Cheng (b3) 2020; 31 Pan, Liang, Lu, Li (b28) 2020; 823 Chiu, Ou, Lee (b6) 2007; 18 Yang, Zhao, Sun, Xu, Sun, Zhang, Wang (b1) 2023; 37 Yu, Li, Wang, Chen, Zhu, Ying, Song (b5) 2022; 429 Dwivedi, Joshi, Nair, Sapre, Jatti (b26) 2024; 38 Jeong, Kareem, Song, Hur (b17) 2023; 16 Xu, Peng, Wang, Xiao (b9) 2022; 169 Pan, Liang, Lu, Li, Li (b29) 2021; 32 Jiang, Liu, Yang (b23) 2023; 16 Sadoune, Rihani, Marra (b32) 2023; 471 Kaveh, Mohammadi, Ashrafizadeh (b12) 2009; 147 Pan (10.1016/j.mtcomm.2024.110400_b29) 2021; 32 Wang (10.1016/j.mtcomm.2024.110400_b13) 2022; 47 Liu (10.1016/j.mtcomm.2024.110400_b3) 2020; 31 Jeong (10.1016/j.mtcomm.2024.110400_b17) 2023; 16 Yu (10.1016/j.mtcomm.2024.110400_b5) 2022; 429 Li (10.1016/j.mtcomm.2024.110400_b10) 2020; 167 Zhu (10.1016/j.mtcomm.2024.110400_b27) 2023; 61 Wang (10.1016/j.mtcomm.2024.110400_b33) 2022; 442 Liu (10.1016/j.mtcomm.2024.110400_b31) 2020; 8 Fang (10.1016/j.mtcomm.2024.110400_b15) 2022; 33 Shahraki (10.1016/j.mtcomm.2024.110400_b19) 2023; 237 Kareem (10.1016/j.mtcomm.2024.110400_b20) 2022; 11 Yu (10.1016/j.mtcomm.2024.110400_b22) 2023; 18 Chaudry (10.1016/j.mtcomm.2024.110400_b14) 2021; 26 Li (10.1016/j.mtcomm.2024.110400_b30) 2002; 31 Jian-jun (10.1016/j.mtcomm.2024.110400_b21) 2024; 479 Li (10.1016/j.mtcomm.2024.110400_b8) 2023; 465 Pan (10.1016/j.mtcomm.2024.110400_b28) 2020; 823 Yang (10.1016/j.mtcomm.2024.110400_b1) 2023; 37 Zhao (10.1016/j.mtcomm.2024.110400_b18) 2023; 142 Binu (10.1016/j.mtcomm.2024.110400_b24) 2021; 68 Sadoune (10.1016/j.mtcomm.2024.110400_b32) 2023; 471 Nathan (10.1016/j.mtcomm.2024.110400_b16) 2023; 145 Kaveh (10.1016/j.mtcomm.2024.110400_b12) 2009; 147 Covelo (10.1016/j.mtcomm.2024.110400_b11) 2022; 31 Jiang (10.1016/j.mtcomm.2024.110400_b23) 2023; 16 Jing-Ping (10.1016/j.mtcomm.2024.110400_b2) 2018; 33 Chiu (10.1016/j.mtcomm.2024.110400_b6) 2007; 18 Ding (10.1016/j.mtcomm.2024.110400_b25) 2022; 34 Chen (10.1016/j.mtcomm.2024.110400_b4) 2023; 6 Zeng (10.1016/j.mtcomm.2024.110400_b7) 2023; 426 Dwivedi (10.1016/j.mtcomm.2024.110400_b26) 2024; 38 Xu (10.1016/j.mtcomm.2024.110400_b9) 2022; 169 |
References_xml | – volume: 16 year: 2023 ident: b17 article-title: ANN-Based reliability enhancement of SMPS aluminum electrolytic capacitors in cold environments publication-title: Energies – volume: 61 year: 2023 ident: b27 article-title: A XGBoost-Based downscaling-calibration scheme for extreme precipitation events publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 33 year: 2022 ident: b15 article-title: Machine learning accelerates the materials discovery publication-title: Mater. Today Commun. – volume: 479 year: 2024 ident: b21 article-title: Effect of voltage on structure and properties of 2024 aluminum alloy surface anodized aluminum oxide films publication-title: Surface & Coatings Technol. – volume: 8 start-page: 84769 year: 2020 end-page: 84776 ident: b31 article-title: Uncertain Box-Cox regression analysis with rescaled least squares estimation publication-title: IEEE Access – volume: 31 start-page: 673 year: 2002 end-page: 687 ident: b30 article-title: The general Box-Cox transformations in multiple linear regression analysis publication-title: Commun. Stat.-Simul. Comput. – volume: 167 year: 2020 ident: b10 article-title: Optimization of initiation sites of tunnel pits on aluminum foil using self-ordered concave structures publication-title: J. Electrochem. Soc. – volume: 37 year: 2023 ident: b1 article-title: Grain boundary density matters in lithiation performances of aluminum foil anode for lithium ion batteries publication-title: Mater. Today Commun. – volume: 33 start-page: 617 year: 2018 end-page: 622 ident: b2 article-title: Preparation of Al¡sub¿2¡/sub¿O¡sub¿3¡/sub¿/TiO¡sub¿2¡/sub¿ composite film with high specific capacitance by surface self-assembly method publication-title: J. Inorg. Mater. – volume: 31 start-page: 6937 year: 2020 end-page: 6947 ident: b3 article-title: Formation and mechanistic analysis of self-etched tunnels on the surface of aluminum foil by the electrodeposition of trace Cu to form an electrolytic capacitor publication-title: J. Mater. Sci.-Mater. Electron. – volume: 32 start-page: 2579 year: 2021 end-page: 2589 ident: b29 article-title: Effect of azelaic acid on microstructure evolution and electrical properties of anodic aluminum foil for electrolytic capacitor publication-title: J. Mater. Sci.-Mater. Electron. – volume: 465 year: 2023 ident: b8 article-title: Anodizing model and CV simulation for etched aluminium foil for high voltage publication-title: Electrochim. Acta – volume: 142 year: 2023 ident: b18 article-title: A remaining useful life prediction method of aluminum electrolytic capacitor based on wiener process and similarity measurement publication-title: Microelectron. Reliab. – volume: 237 start-page: 16 year: 2023 end-page: 28 ident: b19 article-title: Using LSTM neural network to predict remaining useful life of electrolytic capacitors in dynamic operating conditions publication-title: Proc. Inst. Mech. Eng. O-J. Risk Reliab. – volume: 16 start-page: 2076 year: 2023 end-page: 2090 ident: b23 article-title: Parameter identification of DC-DC converter based on dendrite net under fluctuating input voltages publication-title: IET Power Electron. – volume: 68 start-page: 10097 year: 2021 end-page: 10106 ident: b24 article-title: Rider-Deep-LSTM Network for hybrid distance Score-Based fault prediction in analog circuits publication-title: IEEE Trans. Ind. Electron. – volume: 442 year: 2022 ident: b33 article-title: Comparison of state-of-the-art machine learning algorithms and data-driven optimization methods for mitigating nitrogen crossover in PEM fuel cells publication-title: Chem. Eng. J. – volume: 31 year: 2022 ident: b11 article-title: Development and characterization of sealed anodizing as a corrosion protection for AA2024-T3 in saline media publication-title: Mater. Today Commun. – volume: 38 year: 2024 ident: b26 article-title: Optimizing 3D printed diamond lattice structure and investigating the influence of process parameters on their mechanical integrity using nature-inspired machine learning algorithms publication-title: Mater. Today Commun. – volume: 11 year: 2022 ident: b20 article-title: Towards data-driven fault diagnostics framework for SMPS-AEC using supervised learning algorithms publication-title: Electronics – volume: 823 year: 2020 ident: b28 article-title: Microstructure evolution for oxide film of anodic aluminum foil used in high voltage electrolytic capacitor publication-title: J. Alloys Compounds – volume: 34 start-page: 2083 year: 2022 end-page: 2102 ident: b25 article-title: Incremental learning model based on an improved CKS-PFNN for aluminium electrolysis manufacturing publication-title: Neural Comput. Appl. – volume: 471 year: 2023 ident: b32 article-title: DNN model development of biogas production from an anaerobic wastewater treatment plant using Bayesian hyperparameter optimization publication-title: Chem. Eng. J. – volume: 18 year: 2023 ident: b22 article-title: Research on corrosion resistance of anodized and sealed 6061 aluminum alloy in 3.5 % sodium chloride solution publication-title: Int. J. Electrochem. Sci. – volume: 26 year: 2021 ident: b14 article-title: Machine learning-aided design of aluminum alloys with high performance publication-title: Mater. Today Commun. – volume: 145 year: 2023 ident: b16 article-title: Review of condition monitoring methods for capacitors used in power converters publication-title: Microelectron. Reliab. – volume: 426 year: 2023 ident: b7 article-title: Preparation and characterization of anode foil for aluminum electrolytic capacitors by powder additive manufacturing publication-title: Powder Technol. – volume: 429 year: 2022 ident: b5 article-title: High-specific-capacitance electrolytic capacitors based on anodic publication-title: Electrochim. Acta – volume: 147 start-page: 161 year: 2009 end-page: 172 ident: b12 article-title: Prediction of cell voltage and current efficiency in a lab scale chlor-alkali membrane cell based on support vector machines publication-title: Chem. Eng. J. – volume: 18 start-page: 1239 year: 2007 end-page: 1245 ident: b6 article-title: Effect of thermo-process on anodic capacitor foil manufacturing for AC etching publication-title: J. Mater. Sci.-Mater. Electron. – volume: 169 year: 2022 ident: b9 article-title: Effect of bipolar electrochemical process on tunnel etching characteristics of aluminum foil publication-title: J. Electrochem. Soc. – volume: 6 year: 2023 ident: b4 article-title: Benchmarking the degradation behavior of aluminum foil anodes for lithium-ion batteries publication-title: Batteries Supercaps – volume: 47 start-page: 13995 year: 2022 end-page: 14012 ident: b13 article-title: Prognostics of aluminum electrolytic capacitors based on Chained-SVR and 1D-CNN ensemble learning publication-title: Arabian J. Sci. Eng. – volume: 169 issue: 3 year: 2022 ident: 10.1016/j.mtcomm.2024.110400_b9 article-title: Effect of bipolar electrochemical process on tunnel etching characteristics of aluminum foil publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac4e54 – volume: 31 start-page: 673 issue: 4 year: 2002 ident: 10.1016/j.mtcomm.2024.110400_b30 article-title: The general Box-Cox transformations in multiple linear regression analysis publication-title: Commun. Stat.-Simul. Comput. doi: 10.1081/SAC-120004319 – volume: 32 start-page: 2579 issue: 2 year: 2021 ident: 10.1016/j.mtcomm.2024.110400_b29 article-title: Effect of azelaic acid on microstructure evolution and electrical properties of anodic aluminum foil for electrolytic capacitor publication-title: J. Mater. Sci.-Mater. Electron. doi: 10.1007/s10854-020-05025-8 – volume: 38 year: 2024 ident: 10.1016/j.mtcomm.2024.110400_b26 article-title: Optimizing 3D printed diamond lattice structure and investigating the influence of process parameters on their mechanical integrity using nature-inspired machine learning algorithms publication-title: Mater. Today Commun. – volume: 34 start-page: 2083 issue: 3, SI year: 2022 ident: 10.1016/j.mtcomm.2024.110400_b25 article-title: Incremental learning model based on an improved CKS-PFNN for aluminium electrolysis manufacturing publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06530-5 – volume: 37 year: 2023 ident: 10.1016/j.mtcomm.2024.110400_b1 article-title: Grain boundary density matters in lithiation performances of aluminum foil anode for lithium ion batteries publication-title: Mater. Today Commun. – volume: 61 year: 2023 ident: 10.1016/j.mtcomm.2024.110400_b27 article-title: A XGBoost-Based downscaling-calibration scheme for extreme precipitation events publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2023.3294266 – volume: 145 year: 2023 ident: 10.1016/j.mtcomm.2024.110400_b16 article-title: Review of condition monitoring methods for capacitors used in power converters publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2023.115003 – volume: 142 year: 2023 ident: 10.1016/j.mtcomm.2024.110400_b18 article-title: A remaining useful life prediction method of aluminum electrolytic capacitor based on wiener process and similarity measurement publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2023.114928 – volume: 31 start-page: 6937 issue: 9 year: 2020 ident: 10.1016/j.mtcomm.2024.110400_b3 article-title: Formation and mechanistic analysis of self-etched tunnels on the surface of aluminum foil by the electrodeposition of trace Cu to form an electrolytic capacitor publication-title: J. Mater. Sci.-Mater. Electron. doi: 10.1007/s10854-020-03257-2 – volume: 167 issue: 2 year: 2020 ident: 10.1016/j.mtcomm.2024.110400_b10 article-title: Optimization of initiation sites of tunnel pits on aluminum foil using self-ordered concave structures publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ab6b0e – volume: 68 start-page: 10097 issue: 10 year: 2021 ident: 10.1016/j.mtcomm.2024.110400_b24 article-title: Rider-Deep-LSTM Network for hybrid distance Score-Based fault prediction in analog circuits publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.3028796 – volume: 31 year: 2022 ident: 10.1016/j.mtcomm.2024.110400_b11 article-title: Development and characterization of sealed anodizing as a corrosion protection for AA2024-T3 in saline media publication-title: Mater. Today Commun. – volume: 147 start-page: 161 issue: 2–3 year: 2009 ident: 10.1016/j.mtcomm.2024.110400_b12 article-title: Prediction of cell voltage and current efficiency in a lab scale chlor-alkali membrane cell based on support vector machines publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2008.06.030 – volume: 237 start-page: 16 issue: 1 year: 2023 ident: 10.1016/j.mtcomm.2024.110400_b19 article-title: Using LSTM neural network to predict remaining useful life of electrolytic capacitors in dynamic operating conditions publication-title: Proc. Inst. Mech. Eng. O-J. Risk Reliab. – volume: 442 issue: 1 year: 2022 ident: 10.1016/j.mtcomm.2024.110400_b33 article-title: Comparison of state-of-the-art machine learning algorithms and data-driven optimization methods for mitigating nitrogen crossover in PEM fuel cells publication-title: Chem. Eng. J. – volume: 465 year: 2023 ident: 10.1016/j.mtcomm.2024.110400_b8 article-title: Anodizing model and CV simulation for etched aluminium foil for high voltage publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2023.142969 – volume: 426 year: 2023 ident: 10.1016/j.mtcomm.2024.110400_b7 article-title: Preparation and characterization of anode foil for aluminum electrolytic capacitors by powder additive manufacturing publication-title: Powder Technol. doi: 10.1016/j.powtec.2023.118602 – volume: 26 year: 2021 ident: 10.1016/j.mtcomm.2024.110400_b14 article-title: Machine learning-aided design of aluminum alloys with high performance publication-title: Mater. Today Commun. – volume: 33 year: 2022 ident: 10.1016/j.mtcomm.2024.110400_b15 article-title: Machine learning accelerates the materials discovery publication-title: Mater. Today Commun. – volume: 18 issue: 5 year: 2023 ident: 10.1016/j.mtcomm.2024.110400_b22 article-title: Research on corrosion resistance of anodized and sealed 6061 aluminum alloy in 3.5 % sodium chloride solution publication-title: Int. J. Electrochem. Sci. doi: 10.1016/j.ijoes.2023.100092 – volume: 47 start-page: 13995 issue: 11 year: 2022 ident: 10.1016/j.mtcomm.2024.110400_b13 article-title: Prognostics of aluminum electrolytic capacitors based on Chained-SVR and 1D-CNN ensemble learning publication-title: Arabian J. Sci. Eng. doi: 10.1007/s13369-022-06602-1 – volume: 6 issue: 1 year: 2023 ident: 10.1016/j.mtcomm.2024.110400_b4 article-title: Benchmarking the degradation behavior of aluminum foil anodes for lithium-ion batteries publication-title: Batteries Supercaps – volume: 479 year: 2024 ident: 10.1016/j.mtcomm.2024.110400_b21 article-title: Effect of voltage on structure and properties of 2024 aluminum alloy surface anodized aluminum oxide films publication-title: Surface & Coatings Technol. doi: 10.1016/j.surfcoat.2024.130508 – volume: 16 start-page: 2076 issue: 12 year: 2023 ident: 10.1016/j.mtcomm.2024.110400_b23 article-title: Parameter identification of DC-DC converter based on dendrite net under fluctuating input voltages publication-title: IET Power Electron. doi: 10.1049/pel2.12529 – volume: 33 start-page: 617 issue: 6 year: 2018 ident: 10.1016/j.mtcomm.2024.110400_b2 article-title: Preparation of Al¡sub¿2¡/sub¿O¡sub¿3¡/sub¿/TiO¡sub¿2¡/sub¿ composite film with high specific capacitance by surface self-assembly method publication-title: J. Inorg. Mater. doi: 10.15541/jim20170260 – volume: 823 year: 2020 ident: 10.1016/j.mtcomm.2024.110400_b28 article-title: Microstructure evolution for oxide film of anodic aluminum foil used in high voltage electrolytic capacitor publication-title: J. Alloys Compounds doi: 10.1016/j.jallcom.2020.153795 – volume: 471 year: 2023 ident: 10.1016/j.mtcomm.2024.110400_b32 article-title: DNN model development of biogas production from an anaerobic wastewater treatment plant using Bayesian hyperparameter optimization publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.144671 – volume: 11 issue: 16 year: 2022 ident: 10.1016/j.mtcomm.2024.110400_b20 article-title: Towards data-driven fault diagnostics framework for SMPS-AEC using supervised learning algorithms publication-title: Electronics doi: 10.3390/electronics11162492 – volume: 8 start-page: 84769 year: 2020 ident: 10.1016/j.mtcomm.2024.110400_b31 article-title: Uncertain Box-Cox regression analysis with rescaled least squares estimation publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2989211 – volume: 18 start-page: 1239 issue: 12 year: 2007 ident: 10.1016/j.mtcomm.2024.110400_b6 article-title: Effect of thermo-process on anodic capacitor foil manufacturing for AC etching publication-title: J. Mater. Sci.-Mater. Electron. doi: 10.1007/s10854-007-9259-8 – volume: 16 issue: 16 year: 2023 ident: 10.1016/j.mtcomm.2024.110400_b17 article-title: ANN-Based reliability enhancement of SMPS aluminum electrolytic capacitors in cold environments publication-title: Energies doi: 10.3390/en16166096 – volume: 429 year: 2022 ident: 10.1016/j.mtcomm.2024.110400_b5 article-title: High-specific-capacitance electrolytic capacitors based on anodic TiO2 nanotube arrays publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.140974 |
SSID | ssj0001850494 |
Score | 2.3158545 |
Snippet | Anode aluminium foil (AAF) shows advantages such as high electrical conductivity, high specific capacitance, and low cost, making it a high-quality electrode... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110400 |
SubjectTerms | Anode aluminium foil Energy storage Feature engineering Properties prediction XGBoost |
Title | XGBoost-based prediction of electrical properties for anode aluminium foil |
URI | https://dx.doi.org/10.1016/j.mtcomm.2024.110400 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN7U9uLFaNRYX9mD101lX8CxNtZqYw9WY29k2V0STAukpf_fWR4-EqOJFwgLA-RjM_MNOw-ErlRgVUy1IED9LWy4IIG0PjE2kWCepPGrFd3HmZy88IeFWHTQqM2FcWGVje6vdXqlrZuRQYPmoEjTwZwCd-AhuAy8sjuLHdSjLJQwtXvD--lk9vmrJRCuCkrVZk5Q4mTaJLoq0mtVwjNcVjrlLiqeu2y3n4zUF8Mz3kd7DWPEw_qlDlDHZofoYXF3k-ebkjgrZHCxdustDmOcJ7hubePQhxN54SKn7QYDO8Uqy43FChRSmqXbFYylyyM0H98-jyakaYtANPD7kvhaWXDUWKwtj2NfJNJKqY0PjpfmhnnSAmsLqeWasVAYzQwDL86LgWgFgWTHqJvlmT1BGG4ilKe80BXBi5NQhQmVgiaeSWwQy-s-Yi0KkW4qhrvGFcuoDQ17i2rsIoddVGPXR-RDqqgrZvxxvd8CHH378hEo9V8lT_8teYZ23VEdlnKOuuV6ay-AXJTxZTN53H769Dp9BxI4zkw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKO8CCQIAozwysVkliO8lYKkrfS4uUzXJsRwpqk6hN_z_nPHhICCSWDHbOib5Yd9_F90DoQfhaRI6kGKi_hguh2Gfaw0rHDMwTU155ojtfsNErmYQ0bKFBkwtjwipr3V_p9FJb1yO9Gs1eniS9pQPcgQTgMpDS7oQHqGOqU9E26vTH09Hi81eLT00VlLLNHHWwkWmS6MpIr00BzzBZ6Q4xUfHEZLv9ZKS-GJ7hCTquGaPVr17qFLV0eoYm4ctTlu0KbKyQsvKtOW8xGFtZbFWtbQz6MJHlJnJa7yxgp5ZIM6UtAQopSZP9BsaS9TlaDp9XgxGu2yJgCfy-wJ4UGhw1N5KaRJFHY6YZk8oDx0sS5dpMA2sLHE2k6wZUSVe54MXZERAt32fuBWqnWaovkQWLUGELOzBF8KI4EEHsMOrEtoq1H7HHLnIbFLisK4abxhVr3oSGvfEKO26w4xV2XYQ_pPKqYsYf93sNwPzbl-eg1H-VvPq35D06HK3mMz4bL6bX6MjMVCEqN6hdbPf6FohGEd3VG-kdVmLPjw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=XGBoost-based+prediction+of+electrical+properties+for+anode+aluminium+foil&rft.jtitle=Materials+today+communications&rft.au=Zhang%2C+Yue&rft.au=Pan%2C+Sining&rft.date=2024-12-01&rft.issn=2352-4928&rft.eissn=2352-4928&rft.volume=41&rft.spage=110400&rft_id=info:doi/10.1016%2Fj.mtcomm.2024.110400&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mtcomm_2024_110400 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4928&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4928&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4928&client=summon |