XGBoost-based prediction of electrical properties for anode aluminium foil

Anode aluminium foil (AAF) shows advantages such as high electrical conductivity, high specific capacitance, and low cost, making it a high-quality electrode material for energy storage. However, the formation of AAF is a material process with multiple influencing factors interacted with each other,...

Full description

Saved in:
Bibliographic Details
Published inMaterials today communications Vol. 41; p. 110400
Main Authors Zhang, Yue, Pan, Sining
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Anode aluminium foil (AAF) shows advantages such as high electrical conductivity, high specific capacitance, and low cost, making it a high-quality electrode material for energy storage. However, the formation of AAF is a material process with multiple influencing factors interacted with each other, and it is difficult to analyze the influencing mechanism of each factor and predict the electrical properties. To solve the aforementioned problem, the process data of AAF is collected from a actual production line as the research subject firstly. The correlation coefficient between the process parameters and withstand voltage (WV) is used for feature selection of the data sets. XGBoost-based prediction model is established to predict the electrical properties of AAF, which is evaluated using R2 and root-mean-square error (RMSE). The results indicate that the process parameter X70 (Voltage of repair 3) shows the most significant effect on the WV. The magnitude of the WV shows a stepwise increase with the increase of X70. The result of prediction model is a R2 of 0.990 and a RMSE of 3.888. The XGBoost-based prediction model for the electrical properties (WV) of AAF shows excellent prediction characteristic, which contributes to the optimization of process parameters and the properties prediction. [Display omitted]
AbstractList Anode aluminium foil (AAF) shows advantages such as high electrical conductivity, high specific capacitance, and low cost, making it a high-quality electrode material for energy storage. However, the formation of AAF is a material process with multiple influencing factors interacted with each other, and it is difficult to analyze the influencing mechanism of each factor and predict the electrical properties. To solve the aforementioned problem, the process data of AAF is collected from a actual production line as the research subject firstly. The correlation coefficient between the process parameters and withstand voltage (WV) is used for feature selection of the data sets. XGBoost-based prediction model is established to predict the electrical properties of AAF, which is evaluated using R2 and root-mean-square error (RMSE). The results indicate that the process parameter X70 (Voltage of repair 3) shows the most significant effect on the WV. The magnitude of the WV shows a stepwise increase with the increase of X70. The result of prediction model is a R2 of 0.990 and a RMSE of 3.888. The XGBoost-based prediction model for the electrical properties (WV) of AAF shows excellent prediction characteristic, which contributes to the optimization of process parameters and the properties prediction. [Display omitted]
ArticleNumber 110400
Author Zhang, Yue
Pan, Sining
Author_xml – sequence: 1
  givenname: Yue
  surname: Zhang
  fullname: Zhang, Yue
  organization: College of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, 541004, Guilin, China
– sequence: 2
  givenname: Sining
  orcidid: 0000-0003-3819-1909
  surname: Pan
  fullname: Pan, Sining
  email: supereve122@163.com
  organization: College of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, 541004, Guilin, China
BookMark eNqFkE1Lw0AQhhepYK39Bx7yBxL3K5vEg6BFq1LwoAdvy2Z2AluSbNndCv57U-pBPOhphhmeF97nnMxGPyIhl4wWjDJ1tS2GBH4YCk65LBijktITMuei5LlseD37sZ-RZYxbSimrSyobOSfP7-s772PKWxPRZruA1kFyfsx8l2GPkIID008Pv8OQHMas8yEzo7eYmX4_uNHth-nm-gty2pk-4vJ7Lsjrw_3b6jHfvKyfVrebHARVKa_AIGdUtICybauyU6gU2KphFUgrmELW8IajBCGa0oKwopaUtZyrulZiQeQxFYKPMWCnd8ENJnxqRvVBiN7qoxB9EKKPQibs-hcGLplD0RSM6_-Db44wTrU-HAYdweEIk6swGdLWu78DvgBJ3YC0
CitedBy_id crossref_primary_10_3390_en18010186
Cites_doi 10.1149/1945-7111/ac4e54
10.1081/SAC-120004319
10.1007/s10854-020-05025-8
10.1007/s00521-021-06530-5
10.1109/TGRS.2023.3294266
10.1016/j.microrel.2023.115003
10.1016/j.microrel.2023.114928
10.1007/s10854-020-03257-2
10.1149/1945-7111/ab6b0e
10.1109/TIE.2020.3028796
10.1016/j.cej.2008.06.030
10.1016/j.electacta.2023.142969
10.1016/j.powtec.2023.118602
10.1016/j.ijoes.2023.100092
10.1007/s13369-022-06602-1
10.1016/j.surfcoat.2024.130508
10.1049/pel2.12529
10.15541/jim20170260
10.1016/j.jallcom.2020.153795
10.1016/j.cej.2023.144671
10.3390/electronics11162492
10.1109/ACCESS.2020.2989211
10.1007/s10854-007-9259-8
10.3390/en16166096
10.1016/j.electacta.2022.140974
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mtcomm.2024.110400
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2352-4928
ExternalDocumentID 10_1016_j_mtcomm_2024_110400
S235249282402381X
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AABXZ
AACTN
AAEDT
AAEDW
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
ROL
SPC
SPCBC
SSM
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-7cae2103bce4bb75f6e66cd7917c4d316e19292e4c3395dc3d38401b2268863
IEDL.DBID AIKHN
ISSN 2352-4928
IngestDate Tue Jul 01 02:09:01 EDT 2025
Thu Apr 24 22:51:42 EDT 2025
Sat Dec 21 16:00:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Anode aluminium foil
Feature engineering
XGBoost
Properties prediction
Energy storage
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-7cae2103bce4bb75f6e66cd7917c4d316e19292e4c3395dc3d38401b2268863
ORCID 0000-0003-3819-1909
ParticipantIDs crossref_primary_10_1016_j_mtcomm_2024_110400
crossref_citationtrail_10_1016_j_mtcomm_2024_110400
elsevier_sciencedirect_doi_10_1016_j_mtcomm_2024_110400
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Materials today communications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shahraki, Al-Dahidi, Taleqani, Yadav (b19) 2023; 237
Chaudry, Hamad, Abuhmed (b14) 2021; 26
Li, De Moor (b30) 2002; 31
Kareem, Hur (b20) 2022; 11
Ding, Yao, Li, Long, Yi (b25) 2022; 34
Yu, Zhang, Zhang, Wang (b22) 2023; 18
Binu, Kariyappa (b24) 2021; 68
Covelo, Rodil, Novoa, Hernandez (b11) 2022; 31
Liu, Fang, Zhou, Hong (b31) 2020; 8
Nathan, Hemamalini, Jeremiah, Partheeban (b16) 2023; 145
Wang, Ding, Cao, Li, Dong, Shi, Xing, Liu (b33) 2022; 442
Chen, Thenuwara, Yao, Sandoval, Wang, Kang, Majumdar, Gopalaswamy, McDowell (b4) 2023; 6
Li, Peng, Shang, Wen, He (b10) 2020; 167
Jing-Ping, Fang-Yuan, Xian-Feng, You-Long (b2) 2018; 33
Zhao, Zhou, Zhu, Song, Liu, Luo (b18) 2023; 142
Jian-jun, Shi-yang, Cai-he, Ling, Jia-hu, Hai, Bo-wen, Deng, Shi-yun, Zai-yu (b21) 2024; 479
Fang, Xie, He, Zhang, Hu, Chen, Yang, Jin (b15) 2022; 33
Zeng, Bian, Liang, Cao, Liu, Chen, Wang, Xie, Xie (b7) 2023; 426
Wang, Cai, Tang, Lin, Pei, Wu (b13) 2022; 47
Li, An, Zhao, Hou, Liu, Xu (b8) 2023; 465
Zhu, Liu, Zhou, Cui (b27) 2023; 61
Liu, Zhu, Cheng (b3) 2020; 31
Pan, Liang, Lu, Li (b28) 2020; 823
Chiu, Ou, Lee (b6) 2007; 18
Yang, Zhao, Sun, Xu, Sun, Zhang, Wang (b1) 2023; 37
Yu, Li, Wang, Chen, Zhu, Ying, Song (b5) 2022; 429
Dwivedi, Joshi, Nair, Sapre, Jatti (b26) 2024; 38
Jeong, Kareem, Song, Hur (b17) 2023; 16
Xu, Peng, Wang, Xiao (b9) 2022; 169
Pan, Liang, Lu, Li, Li (b29) 2021; 32
Jiang, Liu, Yang (b23) 2023; 16
Sadoune, Rihani, Marra (b32) 2023; 471
Kaveh, Mohammadi, Ashrafizadeh (b12) 2009; 147
Pan (10.1016/j.mtcomm.2024.110400_b29) 2021; 32
Wang (10.1016/j.mtcomm.2024.110400_b13) 2022; 47
Liu (10.1016/j.mtcomm.2024.110400_b3) 2020; 31
Jeong (10.1016/j.mtcomm.2024.110400_b17) 2023; 16
Yu (10.1016/j.mtcomm.2024.110400_b5) 2022; 429
Li (10.1016/j.mtcomm.2024.110400_b10) 2020; 167
Zhu (10.1016/j.mtcomm.2024.110400_b27) 2023; 61
Wang (10.1016/j.mtcomm.2024.110400_b33) 2022; 442
Liu (10.1016/j.mtcomm.2024.110400_b31) 2020; 8
Fang (10.1016/j.mtcomm.2024.110400_b15) 2022; 33
Shahraki (10.1016/j.mtcomm.2024.110400_b19) 2023; 237
Kareem (10.1016/j.mtcomm.2024.110400_b20) 2022; 11
Yu (10.1016/j.mtcomm.2024.110400_b22) 2023; 18
Chaudry (10.1016/j.mtcomm.2024.110400_b14) 2021; 26
Li (10.1016/j.mtcomm.2024.110400_b30) 2002; 31
Jian-jun (10.1016/j.mtcomm.2024.110400_b21) 2024; 479
Li (10.1016/j.mtcomm.2024.110400_b8) 2023; 465
Pan (10.1016/j.mtcomm.2024.110400_b28) 2020; 823
Yang (10.1016/j.mtcomm.2024.110400_b1) 2023; 37
Zhao (10.1016/j.mtcomm.2024.110400_b18) 2023; 142
Binu (10.1016/j.mtcomm.2024.110400_b24) 2021; 68
Sadoune (10.1016/j.mtcomm.2024.110400_b32) 2023; 471
Nathan (10.1016/j.mtcomm.2024.110400_b16) 2023; 145
Kaveh (10.1016/j.mtcomm.2024.110400_b12) 2009; 147
Covelo (10.1016/j.mtcomm.2024.110400_b11) 2022; 31
Jiang (10.1016/j.mtcomm.2024.110400_b23) 2023; 16
Jing-Ping (10.1016/j.mtcomm.2024.110400_b2) 2018; 33
Chiu (10.1016/j.mtcomm.2024.110400_b6) 2007; 18
Ding (10.1016/j.mtcomm.2024.110400_b25) 2022; 34
Chen (10.1016/j.mtcomm.2024.110400_b4) 2023; 6
Zeng (10.1016/j.mtcomm.2024.110400_b7) 2023; 426
Dwivedi (10.1016/j.mtcomm.2024.110400_b26) 2024; 38
Xu (10.1016/j.mtcomm.2024.110400_b9) 2022; 169
References_xml – volume: 16
  year: 2023
  ident: b17
  article-title: ANN-Based reliability enhancement of SMPS aluminum electrolytic capacitors in cold environments
  publication-title: Energies
– volume: 61
  year: 2023
  ident: b27
  article-title: A XGBoost-Based downscaling-calibration scheme for extreme precipitation events
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 33
  year: 2022
  ident: b15
  article-title: Machine learning accelerates the materials discovery
  publication-title: Mater. Today Commun.
– volume: 479
  year: 2024
  ident: b21
  article-title: Effect of voltage on structure and properties of 2024 aluminum alloy surface anodized aluminum oxide films
  publication-title: Surface & Coatings Technol.
– volume: 8
  start-page: 84769
  year: 2020
  end-page: 84776
  ident: b31
  article-title: Uncertain Box-Cox regression analysis with rescaled least squares estimation
  publication-title: IEEE Access
– volume: 31
  start-page: 673
  year: 2002
  end-page: 687
  ident: b30
  article-title: The general Box-Cox transformations in multiple linear regression analysis
  publication-title: Commun. Stat.-Simul. Comput.
– volume: 167
  year: 2020
  ident: b10
  article-title: Optimization of initiation sites of tunnel pits on aluminum foil using self-ordered concave structures
  publication-title: J. Electrochem. Soc.
– volume: 37
  year: 2023
  ident: b1
  article-title: Grain boundary density matters in lithiation performances of aluminum foil anode for lithium ion batteries
  publication-title: Mater. Today Commun.
– volume: 33
  start-page: 617
  year: 2018
  end-page: 622
  ident: b2
  article-title: Preparation of Al¡sub¿2¡/sub¿O¡sub¿3¡/sub¿/TiO¡sub¿2¡/sub¿ composite film with high specific capacitance by surface self-assembly method
  publication-title: J. Inorg. Mater.
– volume: 31
  start-page: 6937
  year: 2020
  end-page: 6947
  ident: b3
  article-title: Formation and mechanistic analysis of self-etched tunnels on the surface of aluminum foil by the electrodeposition of trace Cu to form an electrolytic capacitor
  publication-title: J. Mater. Sci.-Mater. Electron.
– volume: 32
  start-page: 2579
  year: 2021
  end-page: 2589
  ident: b29
  article-title: Effect of azelaic acid on microstructure evolution and electrical properties of anodic aluminum foil for electrolytic capacitor
  publication-title: J. Mater. Sci.-Mater. Electron.
– volume: 465
  year: 2023
  ident: b8
  article-title: Anodizing model and CV simulation for etched aluminium foil for high voltage
  publication-title: Electrochim. Acta
– volume: 142
  year: 2023
  ident: b18
  article-title: A remaining useful life prediction method of aluminum electrolytic capacitor based on wiener process and similarity measurement
  publication-title: Microelectron. Reliab.
– volume: 237
  start-page: 16
  year: 2023
  end-page: 28
  ident: b19
  article-title: Using LSTM neural network to predict remaining useful life of electrolytic capacitors in dynamic operating conditions
  publication-title: Proc. Inst. Mech. Eng. O-J. Risk Reliab.
– volume: 16
  start-page: 2076
  year: 2023
  end-page: 2090
  ident: b23
  article-title: Parameter identification of DC-DC converter based on dendrite net under fluctuating input voltages
  publication-title: IET Power Electron.
– volume: 68
  start-page: 10097
  year: 2021
  end-page: 10106
  ident: b24
  article-title: Rider-Deep-LSTM Network for hybrid distance Score-Based fault prediction in analog circuits
  publication-title: IEEE Trans. Ind. Electron.
– volume: 442
  year: 2022
  ident: b33
  article-title: Comparison of state-of-the-art machine learning algorithms and data-driven optimization methods for mitigating nitrogen crossover in PEM fuel cells
  publication-title: Chem. Eng. J.
– volume: 31
  year: 2022
  ident: b11
  article-title: Development and characterization of sealed anodizing as a corrosion protection for AA2024-T3 in saline media
  publication-title: Mater. Today Commun.
– volume: 38
  year: 2024
  ident: b26
  article-title: Optimizing 3D printed diamond lattice structure and investigating the influence of process parameters on their mechanical integrity using nature-inspired machine learning algorithms
  publication-title: Mater. Today Commun.
– volume: 11
  year: 2022
  ident: b20
  article-title: Towards data-driven fault diagnostics framework for SMPS-AEC using supervised learning algorithms
  publication-title: Electronics
– volume: 823
  year: 2020
  ident: b28
  article-title: Microstructure evolution for oxide film of anodic aluminum foil used in high voltage electrolytic capacitor
  publication-title: J. Alloys Compounds
– volume: 34
  start-page: 2083
  year: 2022
  end-page: 2102
  ident: b25
  article-title: Incremental learning model based on an improved CKS-PFNN for aluminium electrolysis manufacturing
  publication-title: Neural Comput. Appl.
– volume: 471
  year: 2023
  ident: b32
  article-title: DNN model development of biogas production from an anaerobic wastewater treatment plant using Bayesian hyperparameter optimization
  publication-title: Chem. Eng. J.
– volume: 18
  year: 2023
  ident: b22
  article-title: Research on corrosion resistance of anodized and sealed 6061 aluminum alloy in 3.5 % sodium chloride solution
  publication-title: Int. J. Electrochem. Sci.
– volume: 26
  year: 2021
  ident: b14
  article-title: Machine learning-aided design of aluminum alloys with high performance
  publication-title: Mater. Today Commun.
– volume: 145
  year: 2023
  ident: b16
  article-title: Review of condition monitoring methods for capacitors used in power converters
  publication-title: Microelectron. Reliab.
– volume: 426
  year: 2023
  ident: b7
  article-title: Preparation and characterization of anode foil for aluminum electrolytic capacitors by powder additive manufacturing
  publication-title: Powder Technol.
– volume: 429
  year: 2022
  ident: b5
  article-title: High-specific-capacitance electrolytic capacitors based on anodic
  publication-title: Electrochim. Acta
– volume: 147
  start-page: 161
  year: 2009
  end-page: 172
  ident: b12
  article-title: Prediction of cell voltage and current efficiency in a lab scale chlor-alkali membrane cell based on support vector machines
  publication-title: Chem. Eng. J.
– volume: 18
  start-page: 1239
  year: 2007
  end-page: 1245
  ident: b6
  article-title: Effect of thermo-process on anodic capacitor foil manufacturing for AC etching
  publication-title: J. Mater. Sci.-Mater. Electron.
– volume: 169
  year: 2022
  ident: b9
  article-title: Effect of bipolar electrochemical process on tunnel etching characteristics of aluminum foil
  publication-title: J. Electrochem. Soc.
– volume: 6
  year: 2023
  ident: b4
  article-title: Benchmarking the degradation behavior of aluminum foil anodes for lithium-ion batteries
  publication-title: Batteries Supercaps
– volume: 47
  start-page: 13995
  year: 2022
  end-page: 14012
  ident: b13
  article-title: Prognostics of aluminum electrolytic capacitors based on Chained-SVR and 1D-CNN ensemble learning
  publication-title: Arabian J. Sci. Eng.
– volume: 169
  issue: 3
  year: 2022
  ident: 10.1016/j.mtcomm.2024.110400_b9
  article-title: Effect of bipolar electrochemical process on tunnel etching characteristics of aluminum foil
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac4e54
– volume: 31
  start-page: 673
  issue: 4
  year: 2002
  ident: 10.1016/j.mtcomm.2024.110400_b30
  article-title: The general Box-Cox transformations in multiple linear regression analysis
  publication-title: Commun. Stat.-Simul. Comput.
  doi: 10.1081/SAC-120004319
– volume: 32
  start-page: 2579
  issue: 2
  year: 2021
  ident: 10.1016/j.mtcomm.2024.110400_b29
  article-title: Effect of azelaic acid on microstructure evolution and electrical properties of anodic aluminum foil for electrolytic capacitor
  publication-title: J. Mater. Sci.-Mater. Electron.
  doi: 10.1007/s10854-020-05025-8
– volume: 38
  year: 2024
  ident: 10.1016/j.mtcomm.2024.110400_b26
  article-title: Optimizing 3D printed diamond lattice structure and investigating the influence of process parameters on their mechanical integrity using nature-inspired machine learning algorithms
  publication-title: Mater. Today Commun.
– volume: 34
  start-page: 2083
  issue: 3, SI
  year: 2022
  ident: 10.1016/j.mtcomm.2024.110400_b25
  article-title: Incremental learning model based on an improved CKS-PFNN for aluminium electrolysis manufacturing
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06530-5
– volume: 37
  year: 2023
  ident: 10.1016/j.mtcomm.2024.110400_b1
  article-title: Grain boundary density matters in lithiation performances of aluminum foil anode for lithium ion batteries
  publication-title: Mater. Today Commun.
– volume: 61
  year: 2023
  ident: 10.1016/j.mtcomm.2024.110400_b27
  article-title: A XGBoost-Based downscaling-calibration scheme for extreme precipitation events
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2023.3294266
– volume: 145
  year: 2023
  ident: 10.1016/j.mtcomm.2024.110400_b16
  article-title: Review of condition monitoring methods for capacitors used in power converters
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2023.115003
– volume: 142
  year: 2023
  ident: 10.1016/j.mtcomm.2024.110400_b18
  article-title: A remaining useful life prediction method of aluminum electrolytic capacitor based on wiener process and similarity measurement
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2023.114928
– volume: 31
  start-page: 6937
  issue: 9
  year: 2020
  ident: 10.1016/j.mtcomm.2024.110400_b3
  article-title: Formation and mechanistic analysis of self-etched tunnels on the surface of aluminum foil by the electrodeposition of trace Cu to form an electrolytic capacitor
  publication-title: J. Mater. Sci.-Mater. Electron.
  doi: 10.1007/s10854-020-03257-2
– volume: 167
  issue: 2
  year: 2020
  ident: 10.1016/j.mtcomm.2024.110400_b10
  article-title: Optimization of initiation sites of tunnel pits on aluminum foil using self-ordered concave structures
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ab6b0e
– volume: 68
  start-page: 10097
  issue: 10
  year: 2021
  ident: 10.1016/j.mtcomm.2024.110400_b24
  article-title: Rider-Deep-LSTM Network for hybrid distance Score-Based fault prediction in analog circuits
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.3028796
– volume: 31
  year: 2022
  ident: 10.1016/j.mtcomm.2024.110400_b11
  article-title: Development and characterization of sealed anodizing as a corrosion protection for AA2024-T3 in saline media
  publication-title: Mater. Today Commun.
– volume: 147
  start-page: 161
  issue: 2–3
  year: 2009
  ident: 10.1016/j.mtcomm.2024.110400_b12
  article-title: Prediction of cell voltage and current efficiency in a lab scale chlor-alkali membrane cell based on support vector machines
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2008.06.030
– volume: 237
  start-page: 16
  issue: 1
  year: 2023
  ident: 10.1016/j.mtcomm.2024.110400_b19
  article-title: Using LSTM neural network to predict remaining useful life of electrolytic capacitors in dynamic operating conditions
  publication-title: Proc. Inst. Mech. Eng. O-J. Risk Reliab.
– volume: 442
  issue: 1
  year: 2022
  ident: 10.1016/j.mtcomm.2024.110400_b33
  article-title: Comparison of state-of-the-art machine learning algorithms and data-driven optimization methods for mitigating nitrogen crossover in PEM fuel cells
  publication-title: Chem. Eng. J.
– volume: 465
  year: 2023
  ident: 10.1016/j.mtcomm.2024.110400_b8
  article-title: Anodizing model and CV simulation for etched aluminium foil for high voltage
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2023.142969
– volume: 426
  year: 2023
  ident: 10.1016/j.mtcomm.2024.110400_b7
  article-title: Preparation and characterization of anode foil for aluminum electrolytic capacitors by powder additive manufacturing
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2023.118602
– volume: 26
  year: 2021
  ident: 10.1016/j.mtcomm.2024.110400_b14
  article-title: Machine learning-aided design of aluminum alloys with high performance
  publication-title: Mater. Today Commun.
– volume: 33
  year: 2022
  ident: 10.1016/j.mtcomm.2024.110400_b15
  article-title: Machine learning accelerates the materials discovery
  publication-title: Mater. Today Commun.
– volume: 18
  issue: 5
  year: 2023
  ident: 10.1016/j.mtcomm.2024.110400_b22
  article-title: Research on corrosion resistance of anodized and sealed 6061 aluminum alloy in 3.5 % sodium chloride solution
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/j.ijoes.2023.100092
– volume: 47
  start-page: 13995
  issue: 11
  year: 2022
  ident: 10.1016/j.mtcomm.2024.110400_b13
  article-title: Prognostics of aluminum electrolytic capacitors based on Chained-SVR and 1D-CNN ensemble learning
  publication-title: Arabian J. Sci. Eng.
  doi: 10.1007/s13369-022-06602-1
– volume: 6
  issue: 1
  year: 2023
  ident: 10.1016/j.mtcomm.2024.110400_b4
  article-title: Benchmarking the degradation behavior of aluminum foil anodes for lithium-ion batteries
  publication-title: Batteries Supercaps
– volume: 479
  year: 2024
  ident: 10.1016/j.mtcomm.2024.110400_b21
  article-title: Effect of voltage on structure and properties of 2024 aluminum alloy surface anodized aluminum oxide films
  publication-title: Surface & Coatings Technol.
  doi: 10.1016/j.surfcoat.2024.130508
– volume: 16
  start-page: 2076
  issue: 12
  year: 2023
  ident: 10.1016/j.mtcomm.2024.110400_b23
  article-title: Parameter identification of DC-DC converter based on dendrite net under fluctuating input voltages
  publication-title: IET Power Electron.
  doi: 10.1049/pel2.12529
– volume: 33
  start-page: 617
  issue: 6
  year: 2018
  ident: 10.1016/j.mtcomm.2024.110400_b2
  article-title: Preparation of Al¡sub¿2¡/sub¿O¡sub¿3¡/sub¿/TiO¡sub¿2¡/sub¿ composite film with high specific capacitance by surface self-assembly method
  publication-title: J. Inorg. Mater.
  doi: 10.15541/jim20170260
– volume: 823
  year: 2020
  ident: 10.1016/j.mtcomm.2024.110400_b28
  article-title: Microstructure evolution for oxide film of anodic aluminum foil used in high voltage electrolytic capacitor
  publication-title: J. Alloys Compounds
  doi: 10.1016/j.jallcom.2020.153795
– volume: 471
  year: 2023
  ident: 10.1016/j.mtcomm.2024.110400_b32
  article-title: DNN model development of biogas production from an anaerobic wastewater treatment plant using Bayesian hyperparameter optimization
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.144671
– volume: 11
  issue: 16
  year: 2022
  ident: 10.1016/j.mtcomm.2024.110400_b20
  article-title: Towards data-driven fault diagnostics framework for SMPS-AEC using supervised learning algorithms
  publication-title: Electronics
  doi: 10.3390/electronics11162492
– volume: 8
  start-page: 84769
  year: 2020
  ident: 10.1016/j.mtcomm.2024.110400_b31
  article-title: Uncertain Box-Cox regression analysis with rescaled least squares estimation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2989211
– volume: 18
  start-page: 1239
  issue: 12
  year: 2007
  ident: 10.1016/j.mtcomm.2024.110400_b6
  article-title: Effect of thermo-process on anodic capacitor foil manufacturing for AC etching
  publication-title: J. Mater. Sci.-Mater. Electron.
  doi: 10.1007/s10854-007-9259-8
– volume: 16
  issue: 16
  year: 2023
  ident: 10.1016/j.mtcomm.2024.110400_b17
  article-title: ANN-Based reliability enhancement of SMPS aluminum electrolytic capacitors in cold environments
  publication-title: Energies
  doi: 10.3390/en16166096
– volume: 429
  year: 2022
  ident: 10.1016/j.mtcomm.2024.110400_b5
  article-title: High-specific-capacitance electrolytic capacitors based on anodic TiO2 nanotube arrays
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2022.140974
SSID ssj0001850494
Score 2.3158545
Snippet Anode aluminium foil (AAF) shows advantages such as high electrical conductivity, high specific capacitance, and low cost, making it a high-quality electrode...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110400
SubjectTerms Anode aluminium foil
Energy storage
Feature engineering
Properties prediction
XGBoost
Title XGBoost-based prediction of electrical properties for anode aluminium foil
URI https://dx.doi.org/10.1016/j.mtcomm.2024.110400
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN7U9uLFaNRYX9mD101lX8CxNtZqYw9WY29k2V0STAukpf_fWR4-EqOJFwgLA-RjM_MNOw-ErlRgVUy1IED9LWy4IIG0PjE2kWCepPGrFd3HmZy88IeFWHTQqM2FcWGVje6vdXqlrZuRQYPmoEjTwZwCd-AhuAy8sjuLHdSjLJQwtXvD--lk9vmrJRCuCkrVZk5Q4mTaJLoq0mtVwjNcVjrlLiqeu2y3n4zUF8Mz3kd7DWPEw_qlDlDHZofoYXF3k-ebkjgrZHCxdustDmOcJ7hubePQhxN54SKn7QYDO8Uqy43FChRSmqXbFYylyyM0H98-jyakaYtANPD7kvhaWXDUWKwtj2NfJNJKqY0PjpfmhnnSAmsLqeWasVAYzQwDL86LgWgFgWTHqJvlmT1BGG4ilKe80BXBi5NQhQmVgiaeSWwQy-s-Yi0KkW4qhrvGFcuoDQ17i2rsIoddVGPXR-RDqqgrZvxxvd8CHH378hEo9V8lT_8teYZ23VEdlnKOuuV6ay-AXJTxZTN53H769Dp9BxI4zkw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKO8CCQIAozwysVkliO8lYKkrfS4uUzXJsRwpqk6hN_z_nPHhICCSWDHbOib5Yd9_F90DoQfhaRI6kGKi_hguh2Gfaw0rHDMwTU155ojtfsNErmYQ0bKFBkwtjwipr3V_p9FJb1yO9Gs1eniS9pQPcgQTgMpDS7oQHqGOqU9E26vTH09Hi81eLT00VlLLNHHWwkWmS6MpIr00BzzBZ6Q4xUfHEZLv9ZKS-GJ7hCTquGaPVr17qFLV0eoYm4ctTlu0KbKyQsvKtOW8xGFtZbFWtbQz6MJHlJnJa7yxgp5ZIM6UtAQopSZP9BsaS9TlaDp9XgxGu2yJgCfy-wJ4UGhw1N5KaRJFHY6YZk8oDx0sS5dpMA2sLHE2k6wZUSVe54MXZERAt32fuBWqnWaovkQWLUGELOzBF8KI4EEHsMOrEtoq1H7HHLnIbFLisK4abxhVr3oSGvfEKO26w4xV2XYQ_pPKqYsYf93sNwPzbl-eg1H-VvPq35D06HK3mMz4bL6bX6MjMVCEqN6hdbPf6FohGEd3VG-kdVmLPjw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=XGBoost-based+prediction+of+electrical+properties+for+anode+aluminium+foil&rft.jtitle=Materials+today+communications&rft.au=Zhang%2C+Yue&rft.au=Pan%2C+Sining&rft.date=2024-12-01&rft.issn=2352-4928&rft.eissn=2352-4928&rft.volume=41&rft.spage=110400&rft_id=info:doi/10.1016%2Fj.mtcomm.2024.110400&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mtcomm_2024_110400
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4928&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4928&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4928&client=summon