Learning quality characteristics for plastic injection molding processes using a combination of simulated and measured data
During the initial sampling of injection molds, the determination of suitable process parameter values to achieve a desired quality of the resulting parts, can be a time-consuming and demanding task. This is due to the complex viscoelastic properties of injection molding processes. Conducting techno...
Saved in:
Published in | Journal of manufacturing processes Vol. 60; pp. 134 - 143 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | During the initial sampling of injection molds, the determination of suitable process parameter values to achieve a desired quality of the resulting parts, can be a time-consuming and demanding task. This is due to the complex viscoelastic properties of injection molding processes. Conducting technological investigations and using simulation techniques are popular approaches to support the design of the regarded process. However, while the former approach can require extensive research efforts, it can be difficult to design simulations and validate their prediction accuracy, especially when few process measurements are available as a baseline. In addition, the knowledge obtained by both, simulation and technologically based approaches, is only valid for the analyzed process configurations. In contrast, models based on machine learning (ML) approaches can provide forecasts for previously unseen data and can be evaluated quickly. Unfortunately, a high amount of data is required to train such models reasonably. In this contribution, a novel ML-based methodology to predict quality characteristics of an injection molding process for different process parameter values using an intelligent combination of simulation data and measurements, is presented. |
---|---|
AbstractList | During the initial sampling of injection molds, the determination of suitable process parameter values to achieve a desired quality of the resulting parts, can be a time-consuming and demanding task. This is due to the complex viscoelastic properties of injection molding processes. Conducting technological investigations and using simulation techniques are popular approaches to support the design of the regarded process. However, while the former approach can require extensive research efforts, it can be difficult to design simulations and validate their prediction accuracy, especially when few process measurements are available as a baseline. In addition, the knowledge obtained by both, simulation and technologically based approaches, is only valid for the analyzed process configurations. In contrast, models based on machine learning (ML) approaches can provide forecasts for previously unseen data and can be evaluated quickly. Unfortunately, a high amount of data is required to train such models reasonably. In this contribution, a novel ML-based methodology to predict quality characteristics of an injection molding process for different process parameter values using an intelligent combination of simulation data and measurements, is presented. |
Author | Volke, Julia Zarges, Jan-Christoph Heim, Hans-Peter Finkeldey, Felix Wiederkehr, Petra |
Author_xml | – sequence: 1 givenname: Felix surname: Finkeldey fullname: Finkeldey, Felix email: felix.finkeldey@tu-dortmund.de organization: Virtual Machining, Chair for Software Engineering, TU Dortmund University, 44227 Dortmund, Germany – sequence: 2 givenname: Julia surname: Volke fullname: Volke, Julia email: volke@uni-kassel.de organization: Institute of Material Engineering, Polymer Engineering, University of Kassel, 34125 Kassel, Germany – sequence: 3 givenname: Jan-Christoph surname: Zarges fullname: Zarges, Jan-Christoph email: zarges@uni-kassel.de organization: Institute of Material Engineering, Polymer Engineering, University of Kassel, 34125 Kassel, Germany – sequence: 4 givenname: Hans-Peter surname: Heim fullname: Heim, Hans-Peter email: heim@uni-kassel.de organization: Institute of Material Engineering, Polymer Engineering, University of Kassel, 34125 Kassel, Germany – sequence: 5 givenname: Petra surname: Wiederkehr fullname: Wiederkehr, Petra email: petra.wiederkehr@tu-dortmund.de organization: Virtual Machining, Chair for Software Engineering, TU Dortmund University, 44227 Dortmund, Germany |
BookMark | eNp9kN1Kw0AQhRepYFt9Ay_2BVL3J90kN4IU_6Dghd6HyWSiG5LdupsIxZc3sV57NZzDnDPDt2IL5x0xdi3FRgppbtpN28Mh-I0SarY2QuVnbKmUVElqpFmwpdwqkxipthdsFWMrhFSpkEv2vScIzrp3_jlCZ4cjxw8IgAMFGweLkTc-8EMHs-DWtYSD9Y73vqvn1HQVKUaKfIyzBo6-r6yD3y3f8Gj7sYOBag6u5j1BHMMkahjgkp030EW6-ptr9vpw_7Z7SvYvj8-7u32CWpghyQBR5DrVCrVuZCWLmigtqlxpbDKoCgVVhZSJQqdGgEQNFZoiyzWiknrN0lMrBh9joKY8BNtDOJZSlDO-si1P-MoZ3-xO-KbY7SlG02dflkIZ0ZJDqm2YGJS1t_8X_ABC4oCj |
CitedBy_id | crossref_primary_10_1016_j_jmapro_2021_06_069 crossref_primary_10_1016_j_jmapro_2023_03_076 crossref_primary_10_3390_app13042617 crossref_primary_10_1016_j_eng_2022_06_019 crossref_primary_10_1016_j_jmsy_2024_04_021 crossref_primary_10_1016_j_jmapro_2023_03_072 crossref_primary_10_1088_2631_8695_acefaf crossref_primary_10_1016_j_ins_2022_06_057 crossref_primary_10_1038_s41598_023_48679_0 crossref_primary_10_3390_polym15204046 crossref_primary_10_3390_ma15072511 crossref_primary_10_1515_eng_2021_0094 crossref_primary_10_3390_polym16010054 crossref_primary_10_1007_s00170_023_12329_6 crossref_primary_10_1109_JSEN_2023_3346849 crossref_primary_10_47836_pjst_31_1_03 crossref_primary_10_1155_2022_1949061 crossref_primary_10_14775_ksmpe_2024_23_05_054 crossref_primary_10_1007_s00170_023_11100_1 crossref_primary_10_3390_polym13244293 crossref_primary_10_3390_polym16091265 crossref_primary_10_3390_info13100488 crossref_primary_10_1109_ACCESS_2022_3142515 crossref_primary_10_1007_s00170_023_12602_8 crossref_primary_10_3390_polym15143094 crossref_primary_10_1002_pts_2706 crossref_primary_10_1007_s00521_024_09473_9 crossref_primary_10_31590_ejosat_993601 crossref_primary_10_3390_ma14102543 crossref_primary_10_1016_j_jmapro_2023_08_030 |
Cites_doi | 10.1016/j.matdes.2011.01.058 10.1145/2939672.2939785 10.1016/j.procir.2018.03.087 10.1016/j.eswa.2007.07.037 10.1198/1061860032733 10.1007/s10888-011-9188-x 10.1016/j.matdes.2009.10.026 10.1162/neco.1992.4.1.1 10.1109/ICNN.1996.548872 10.1137/S0097539792240406 10.1109/TSMCC.2004.843228 10.1002/app.40804 10.1145/347090.347153 10.1080/00401706.1970.10488634 10.1016/S0957-4174(99)00019-6 10.1016/S0924-0136(00)00498-2 10.1111/j.2517-6161.1996.tb02080.x 10.1007/BF00058655 10.1006/jcss.1997.1504 10.1007/978-3-642-15381-5_15 10.1023/A:1010933404324 10.1016/S0098-1354(02)00092-3 10.4310/SII.2009.v2.n3.a8 10.1109/TSMCC.2008.2001707 10.1016/S0924-0136(01)00901-3 10.1214/aos/1013203451 10.1016/j.compchemeng.2013.04.005 10.1016/j.jmatprotec.2005.04.120 10.15623/ijret.2014.0305067 10.1109/TASSP.1978.1163055 10.1016/j.simpat.2013.11.003 10.1007/BF02289263 10.1109/ICDMA.2011.54 10.1016/j.cirpj.2016.08.002 10.1111/j.1467-9868.2005.00503.x 10.1016/j.jmatprotec.2017.05.038 |
ContentType | Journal Article |
Copyright | 2020 The Society of Manufacturing Engineers |
Copyright_xml | – notice: 2020 The Society of Manufacturing Engineers |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jmapro.2020.10.028 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2212-4616 |
EndPage | 143 |
ExternalDocumentID | 10_1016_j_jmapro_2020_10_028 S1526612520306964 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 3V. 4.4 457 4G. 5GY 5VS 7-5 71M 7WY 883 88I 8AO 8FE 8FG 8FL 8FW 8P~ 8R4 8R5 9M8 AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJCF ABJNI ABMAC ABUWG ABXDB ABYKQ ACDAQ ACGFS ACGOD ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKRA AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN AZQEC BENPR BEZIV BGLVJ BJAXD BKOJK BLXMC BPHCQ CCPQU CS3 D-I DU5 DWQXO E3Z EBS EFJIC EFLBG EJD EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FRNLG FYGXN GBLVA GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH HCIFZ HVGLF HZ~ H~9 J1W JJJVA K60 K6~ KOM L6V M0C M0F M2P M41 M7S MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQBIZ PQQKQ PROAC PTHSS Q2X Q38 R2- RIG RNS ROL RWL S0X SDF SES SPC SPCBC SST SSZ T5K TAE TN5 U5U ~G- AAXKI AAYXX AFJKZ AKRWK CITATION PQBZA |
ID | FETCH-LOGICAL-c306t-7acc083432c33f1b19dee49b823cf7ab92abbce7093460a1c3abc69783cc213 |
IEDL.DBID | AIKHN |
ISSN | 1526-6125 |
IngestDate | Thu Sep 26 20:35:19 EDT 2024 Fri Feb 23 02:45:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Injection molding Predictive models Simulation Artificial intelligence Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-7acc083432c33f1b19dee49b823cf7ab92abbce7093460a1c3abc69783cc213 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_jmapro_2020_10_028 elsevier_sciencedirect_doi_10_1016_j_jmapro_2020_10_028 |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationTitle | Journal of manufacturing processes |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhu, Wang, Shen (bib0035) 2011 Ribeiro (bib0070) 2005; 35 Sadeghi (bib0045) 2000; 103 Deng, Zhang, Lam (bib0085) 2010; 31 Bhat (bib0030) 2014; 03 Freund, Schapire (bib0220) 1997; 55 Rencher, Christensen (bib0140) 2012 Tercan, Guajardo, Heinisch, Thiele, Hopmann, Meisen (bib0020) 2018; 72 Chen, Guestrin (bib0215) 2016 Yarlagadda, Khong (bib0050) 2001; 118 Li, Hu, Du (bib0075) 2008; 38 Bergstra, Bengio (bib0230) 2012; 13 Natarajan (bib0155) 1995; 24 Ueda, Nakano (bib0125) 1996 Hastie, Tibshirani, Friedman (bib0135) 2009 Dang (bib0015) 2014; 41 Sakoe, Chiba (bib0105) 1978; 26 Li, Jia, Yu (bib0055) 2002; 26 Breiman (bib0195) 1984 Cohagan, Grzymala-Busse, Hippe (bib0175) 2010 Gini (bib0185) 1912 Lau, Wong, Pun (bib0040) 1999; 17 Zhou, Zhang, Mao, Zhou (bib0100) 2017; 249 Guerrier, Tosello, Hattel (bib0025) 2017; 16 Yin, Mao, Hua (bib0065) 2011; 32 Friedman (bib0210) 2001; 29 Geman, Bienenstock, Doursat (bib0145) 1992; 4 Breiman (bib0205) 1997 Ozcelik, Erzurumlu (bib0080) 2006; 171 Berti, Monti (bib0095) 2013; 54 Ceriani, Verme (bib0190) 2012; 10 Freund, Schapire (bib0200) 1996 Keogh, Pazzani (bib0110) 2000 Breiman (bib0170) 1996; 24 Breiman (bib0180) 2001; 45 Elder, John (bib0130) 2003; 12 Tibshirani (bib0160) 1996; 58 Hastie, Rosset, Zhu, Zou (bib0225) 2009; 2 Yu, Zhang, Yang, Zhou, Li (bib0010) 2014; 131 Chen, Tai, Wang, Deng, Chen (bib0060) 2008; 35 Hoerl, Kennard (bib0150) 1970; 12 Zou, Hastie (bib0165) 2005; 67 Thorndike (bib0235) 1953; 18 Zhang, Ling (bib0090) 2018; 4 Rosato, Rosato, Rosato (bib0005) 2000 Sollich, Krogh (bib0120) 1996 Tresp, Taniguchi (bib0115) 1995 Bhat (10.1016/j.jmapro.2020.10.028_bib0030) 2014; 03 Lau (10.1016/j.jmapro.2020.10.028_bib0040) 1999; 17 Natarajan (10.1016/j.jmapro.2020.10.028_bib0155) 1995; 24 Freund (10.1016/j.jmapro.2020.10.028_bib0200) 1996 Rosato (10.1016/j.jmapro.2020.10.028_bib0005) 2000 Li (10.1016/j.jmapro.2020.10.028_bib0075) 2008; 38 Keogh (10.1016/j.jmapro.2020.10.028_bib0110) 2000 Ceriani (10.1016/j.jmapro.2020.10.028_bib0190) 2012; 10 Hastie (10.1016/j.jmapro.2020.10.028_bib0135) 2009 Sollich (10.1016/j.jmapro.2020.10.028_bib0120) 1996 Zhou (10.1016/j.jmapro.2020.10.028_bib0100) 2017; 249 Tercan (10.1016/j.jmapro.2020.10.028_bib0020) 2018; 72 Rencher (10.1016/j.jmapro.2020.10.028_bib0140) 2012 Li (10.1016/j.jmapro.2020.10.028_bib0055) 2002; 26 Chen (10.1016/j.jmapro.2020.10.028_bib0215) 2016 Yarlagadda (10.1016/j.jmapro.2020.10.028_bib0050) 2001; 118 Thorndike (10.1016/j.jmapro.2020.10.028_bib0235) 1953; 18 Zhu (10.1016/j.jmapro.2020.10.028_bib0035) 2011 Zhang (10.1016/j.jmapro.2020.10.028_bib0090) 2018; 4 Breiman (10.1016/j.jmapro.2020.10.028_bib0170) 1996; 24 Yu (10.1016/j.jmapro.2020.10.028_bib0010) 2014; 131 Cohagan (10.1016/j.jmapro.2020.10.028_bib0175) 2010 Sakoe (10.1016/j.jmapro.2020.10.028_bib0105) 1978; 26 Zou (10.1016/j.jmapro.2020.10.028_bib0165) 2005; 67 Tresp (10.1016/j.jmapro.2020.10.028_bib0115) 1995 Bergstra (10.1016/j.jmapro.2020.10.028_bib0230) 2012; 13 Gini (10.1016/j.jmapro.2020.10.028_bib0185) 1912 Breiman (10.1016/j.jmapro.2020.10.028_bib0180) 2001; 45 Breiman (10.1016/j.jmapro.2020.10.028_bib0205) 1997 Friedman (10.1016/j.jmapro.2020.10.028_bib0210) 2001; 29 Ueda (10.1016/j.jmapro.2020.10.028_bib0125) 1996 Deng (10.1016/j.jmapro.2020.10.028_bib0085) 2010; 31 Hoerl (10.1016/j.jmapro.2020.10.028_bib0150) 1970; 12 Elder (10.1016/j.jmapro.2020.10.028_bib0130) 2003; 12 Breiman (10.1016/j.jmapro.2020.10.028_bib0195) 1984 Ribeiro (10.1016/j.jmapro.2020.10.028_bib0070) 2005; 35 Tibshirani (10.1016/j.jmapro.2020.10.028_bib0160) 1996; 58 Yin (10.1016/j.jmapro.2020.10.028_bib0065) 2011; 32 Geman (10.1016/j.jmapro.2020.10.028_bib0145) 1992; 4 Freund (10.1016/j.jmapro.2020.10.028_bib0220) 1997; 55 Chen (10.1016/j.jmapro.2020.10.028_bib0060) 2008; 35 Ozcelik (10.1016/j.jmapro.2020.10.028_bib0080) 2006; 171 Guerrier (10.1016/j.jmapro.2020.10.028_bib0025) 2017; 16 Berti (10.1016/j.jmapro.2020.10.028_bib0095) 2013; 54 Sadeghi (10.1016/j.jmapro.2020.10.028_bib0045) 2000; 103 Hastie (10.1016/j.jmapro.2020.10.028_bib0225) 2009; 2 Dang (10.1016/j.jmapro.2020.10.028_bib0015) 2014; 41 |
References_xml | – volume: 55 start-page: 119 year: 1997 end-page: 139 ident: bib0220 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J Comput Syst Sci contributor: fullname: Schapire – volume: 16 start-page: 12 year: 2017 end-page: 20 ident: bib0025 article-title: Flow visualization and simulation of the filling process during injection molding publication-title: CIRP J Manuf Sci Technol contributor: fullname: Hattel – volume: 35 start-page: 843 year: 2008 end-page: 849 ident: bib0060 article-title: A neural network-based approach for dynamic quality prediction in a plastic injection molding process publication-title: Expert Syst Appl contributor: fullname: Chen – volume: 32 start-page: 3457 year: 2011 end-page: 3464 ident: bib0065 article-title: A hybrid of back propagation neural network and genetic algorithm for optimization of injection molding process parameters publication-title: Mater Des contributor: fullname: Hua – year: 1984 ident: bib0195 article-title: Classification and regression trees contributor: fullname: Breiman – start-page: 90 year: 1996 end-page: 95 ident: bib0125 article-title: Generalization error of ensemble estimators publication-title: Proceedings of international conference on neural networks (ICNN’96), vol. 1 contributor: fullname: Nakano – volume: 18 start-page: 267 year: 1953 end-page: 276 ident: bib0235 article-title: Who belongs in the family? publication-title: Psychometrika contributor: fullname: Thorndike – volume: 4 start-page: 1 year: 2018 end-page: 8 ident: bib0090 article-title: A strategy to apply machine learning to small datasets in materials science publication-title: Npj Computat Mater contributor: fullname: Ling – volume: 171 start-page: 437 year: 2006 end-page: 445 ident: bib0080 article-title: Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm publication-title: J Mater Process Technol contributor: fullname: Erzurumlu – year: 2012 ident: bib0140 article-title: Methods of multivariate analysis contributor: fullname: Christensen – volume: 4 start-page: 1 year: 1992 end-page: 58 ident: bib0145 article-title: Neural networks and the bias/variance dilemma publication-title: Neural Comput contributor: fullname: Doursat – volume: 41 start-page: 15 year: 2014 end-page: 27 ident: bib0015 article-title: General frameworks for optimization of plastic injection molding process parameters publication-title: Simul Model Pract Theory contributor: fullname: Dang – year: 2009 ident: bib0135 article-title: The elements of statistical learning contributor: fullname: Friedman – volume: 13 start-page: 281 year: 2012 end-page: 305 ident: bib0230 article-title: Random search for hyper-parameter optimization publication-title: J Mach Learn Res contributor: fullname: Bengio – year: 2000 ident: bib0005 article-title: Injection molding handbook contributor: fullname: Rosato – volume: 24 start-page: 227 year: 1995 end-page: 234 ident: bib0155 article-title: Sparse approximate solutions to linear systems publication-title: SIAM J Comput contributor: fullname: Natarajan – year: 2016 ident: bib0215 article-title: Xgboost: a scalable tree boosting system publication-title: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining – KDD ’16 contributor: fullname: Guestrin – year: 1912 ident: bib0185 article-title: Variabilità e Mutabilità: Contributo allo studio delle distribuzioni e delle relazioni statistiche. Fascicolo 1: Introduzione - Indici di variabilità – Indici di mutabilità, Studi economico-giuridici pubblicati per cura della facoltà di Giurisprudenza della R contributor: fullname: Gini – volume: 17 start-page: 33 year: 1999 end-page: 43 ident: bib0040 article-title: Neural-fuzzy modeling of plastic injection molding machine for intelligent control publication-title: Expert Syst Appl contributor: fullname: Pun – volume: 103 start-page: 411 year: 2000 end-page: 416 ident: bib0045 article-title: A BP-neural network predictor model for plastic injection molding process publication-title: J Mater Process Technol contributor: fullname: Sadeghi – start-page: 419 year: 1995 end-page: 426 ident: bib0115 article-title: Combining estimators using non-constant weighting functions publication-title: Advances in neural information processing systems contributor: fullname: Taniguchi – volume: 2 start-page: 349 year: 2009 end-page: 360 ident: bib0225 article-title: Multi-class AdaBoost publication-title: Stat Interface contributor: fullname: Zou – volume: 72 start-page: 185 year: 2018 end-page: 190 ident: bib0020 article-title: Transfer-learning: bridging the gap between real and simulation data for machine learning in injection molding publication-title: Procedia CIRP contributor: fullname: Meisen – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: bib0165 article-title: Regularization and variable selection via the elastic net publication-title: J Roy Stat Soc Ser B (Methodol) contributor: fullname: Hastie – volume: 03 start-page: 366 year: 2014 end-page: 372 ident: bib0030 article-title: Analysis and design of mold for plastic side release buckle using moldflow software publication-title: Int J Res Eng Technol contributor: fullname: Bhat – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: bib0170 article-title: Bagging predictors publication-title: Mach Learn contributor: fullname: Breiman – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0180 article-title: Random forests publication-title: Mach Learn contributor: fullname: Breiman – volume: 249 start-page: 358 year: 2017 end-page: 366 ident: bib0100 article-title: Monitoring and dynamic control of quality stability for injection molding process publication-title: J Mater Process Technol contributor: fullname: Zhou – start-page: 285 year: 2000 end-page: 289 ident: bib0110 article-title: Scaling up dynamic time warping for datamining applications publication-title: Proceedings of the sixth ACM SIGKDD international conference on knowledge discovery and data mining contributor: fullname: Pazzani – start-page: 190 year: 1996 end-page: 196 ident: bib0120 article-title: Learning with ensembles: how overfitting can be useful publication-title: Advances in neural information processing systems contributor: fullname: Krogh – year: 1997 ident: bib0205 article-title: Arcing the edge. Technical report contributor: fullname: Breiman – start-page: 118 year: 2010 end-page: 125 ident: bib0175 article-title: A comparison of three voting methods for bagging with the MLEM2 algorithm publication-title: Intelligent data engineering and automated learning – IDEAL 2010 contributor: fullname: Hippe – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib0160 article-title: Regression shrinkage and selection via the lasso publication-title: J Roy Stat Soc Ser B (Methodol) contributor: fullname: Tibshirani – volume: 12 start-page: 853 year: 2003 end-page: 864 ident: bib0130 article-title: The generalization paradox of ensembles publication-title: J Comput Graph Stat contributor: fullname: John – volume: 26 start-page: 43 year: 1978 end-page: 49 ident: bib0105 article-title: Dynamic programming algorithm optimization for spoken word recognition publication-title: IEEE Trans Acoust Speech Signal Process contributor: fullname: Chiba – start-page: 148 year: 1996 end-page: 156 ident: bib0200 article-title: Experiments with a new boosting algorithm publication-title: Proceedings of the thirteenth international conference on international conference on machine learning, ICML’96 contributor: fullname: Schapire – volume: 54 start-page: 159 year: 2013 end-page: 169 ident: bib0095 article-title: A virtual prototyping environment for a robust design of an injection moulding process publication-title: Comput Chem Eng contributor: fullname: Monti – volume: 10 start-page: 421 year: 2012 end-page: 443 ident: bib0190 article-title: The origins of the Gini index: extracts from Variabilità e Mutabilità (1912) by Corrado Gini publication-title: J Econ Inequal contributor: fullname: Verme – volume: 118 start-page: 109 year: 2001 end-page: 115 ident: bib0050 article-title: Development of a hybrid neural network system for prediction of process parameters in injection moulding publication-title: J Mater Process Technol contributor: fullname: Khong – volume: 26 start-page: 1253 year: 2002 end-page: 1263 ident: bib0055 article-title: A genetic neural fuzzy system-based quality prediction model for injection process publication-title: Comput Chem Eng contributor: fullname: Yu – volume: 31 start-page: 2118 year: 2010 end-page: 2123 ident: bib0085 article-title: A hybrid of mode-pursuing sampling method and genetic algorithm for minimization of injection molding warpage publication-title: Mater Des contributor: fullname: Lam – volume: 12 start-page: 55 year: 1970 end-page: 67 ident: bib0150 article-title: Ridge regression: biased estimation for nonorthogonal problems publication-title: Technometrics contributor: fullname: Kennard – volume: 131 year: 2014 ident: bib0010 article-title: Offline prediction of process windows for robust injection molding publication-title: J Appl Polym Sci contributor: fullname: Li – start-page: 193 year: 2011 end-page: 195 ident: bib0035 article-title: Analysis of injection molding of thin-walled parts based on moldflow publication-title: 2011 second international conference on digital manufacturing automation contributor: fullname: Shen – volume: 35 start-page: 401 year: 2005 end-page: 410 ident: bib0070 article-title: Support vector machines for quality monitoring in a plastic injection molding process publication-title: IEEE Trans Syst Man Cybern Part C (Appl Rev) contributor: fullname: Ribeiro – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: bib0210 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann Stat contributor: fullname: Friedman – volume: 38 start-page: 827 year: 2008 end-page: 833 ident: bib0075 article-title: Predicting the parts weight in plastic injection molding using least squares support vector regression publication-title: IEEE Trans Syst Man Cybern Part C (Appl Rev) contributor: fullname: Du – year: 2012 ident: 10.1016/j.jmapro.2020.10.028_bib0140 contributor: fullname: Rencher – year: 1912 ident: 10.1016/j.jmapro.2020.10.028_bib0185 contributor: fullname: Gini – volume: 32 start-page: 3457 year: 2011 ident: 10.1016/j.jmapro.2020.10.028_bib0065 article-title: A hybrid of back propagation neural network and genetic algorithm for optimization of injection molding process parameters publication-title: Mater Des doi: 10.1016/j.matdes.2011.01.058 contributor: fullname: Yin – year: 2009 ident: 10.1016/j.jmapro.2020.10.028_bib0135 contributor: fullname: Hastie – year: 2016 ident: 10.1016/j.jmapro.2020.10.028_bib0215 article-title: Xgboost: a scalable tree boosting system publication-title: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining – KDD ’16 doi: 10.1145/2939672.2939785 contributor: fullname: Chen – volume: 72 start-page: 185 year: 2018 ident: 10.1016/j.jmapro.2020.10.028_bib0020 article-title: Transfer-learning: bridging the gap between real and simulation data for machine learning in injection molding publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.03.087 contributor: fullname: Tercan – volume: 35 start-page: 843 year: 2008 ident: 10.1016/j.jmapro.2020.10.028_bib0060 article-title: A neural network-based approach for dynamic quality prediction in a plastic injection molding process publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2007.07.037 contributor: fullname: Chen – volume: 12 start-page: 853 year: 2003 ident: 10.1016/j.jmapro.2020.10.028_bib0130 article-title: The generalization paradox of ensembles publication-title: J Comput Graph Stat doi: 10.1198/1061860032733 contributor: fullname: Elder – volume: 10 start-page: 421 year: 2012 ident: 10.1016/j.jmapro.2020.10.028_bib0190 article-title: The origins of the Gini index: extracts from Variabilità e Mutabilità (1912) by Corrado Gini publication-title: J Econ Inequal doi: 10.1007/s10888-011-9188-x contributor: fullname: Ceriani – year: 1984 ident: 10.1016/j.jmapro.2020.10.028_bib0195 contributor: fullname: Breiman – volume: 31 start-page: 2118 year: 2010 ident: 10.1016/j.jmapro.2020.10.028_bib0085 article-title: A hybrid of mode-pursuing sampling method and genetic algorithm for minimization of injection molding warpage publication-title: Mater Des doi: 10.1016/j.matdes.2009.10.026 contributor: fullname: Deng – volume: 4 start-page: 1 year: 1992 ident: 10.1016/j.jmapro.2020.10.028_bib0145 article-title: Neural networks and the bias/variance dilemma publication-title: Neural Comput doi: 10.1162/neco.1992.4.1.1 contributor: fullname: Geman – start-page: 90 year: 1996 ident: 10.1016/j.jmapro.2020.10.028_bib0125 article-title: Generalization error of ensemble estimators publication-title: Proceedings of international conference on neural networks (ICNN’96), vol. 1 doi: 10.1109/ICNN.1996.548872 contributor: fullname: Ueda – volume: 24 start-page: 227 year: 1995 ident: 10.1016/j.jmapro.2020.10.028_bib0155 article-title: Sparse approximate solutions to linear systems publication-title: SIAM J Comput doi: 10.1137/S0097539792240406 contributor: fullname: Natarajan – volume: 35 start-page: 401 year: 2005 ident: 10.1016/j.jmapro.2020.10.028_bib0070 article-title: Support vector machines for quality monitoring in a plastic injection molding process publication-title: IEEE Trans Syst Man Cybern Part C (Appl Rev) doi: 10.1109/TSMCC.2004.843228 contributor: fullname: Ribeiro – volume: 131 year: 2014 ident: 10.1016/j.jmapro.2020.10.028_bib0010 article-title: Offline prediction of process windows for robust injection molding publication-title: J Appl Polym Sci doi: 10.1002/app.40804 contributor: fullname: Yu – start-page: 285 year: 2000 ident: 10.1016/j.jmapro.2020.10.028_bib0110 article-title: Scaling up dynamic time warping for datamining applications publication-title: Proceedings of the sixth ACM SIGKDD international conference on knowledge discovery and data mining doi: 10.1145/347090.347153 contributor: fullname: Keogh – volume: 13 start-page: 281 year: 2012 ident: 10.1016/j.jmapro.2020.10.028_bib0230 article-title: Random search for hyper-parameter optimization publication-title: J Mach Learn Res contributor: fullname: Bergstra – volume: 12 start-page: 55 year: 1970 ident: 10.1016/j.jmapro.2020.10.028_bib0150 article-title: Ridge regression: biased estimation for nonorthogonal problems publication-title: Technometrics doi: 10.1080/00401706.1970.10488634 contributor: fullname: Hoerl – volume: 17 start-page: 33 year: 1999 ident: 10.1016/j.jmapro.2020.10.028_bib0040 article-title: Neural-fuzzy modeling of plastic injection molding machine for intelligent control publication-title: Expert Syst Appl doi: 10.1016/S0957-4174(99)00019-6 contributor: fullname: Lau – start-page: 190 year: 1996 ident: 10.1016/j.jmapro.2020.10.028_bib0120 article-title: Learning with ensembles: how overfitting can be useful publication-title: Advances in neural information processing systems contributor: fullname: Sollich – volume: 103 start-page: 411 year: 2000 ident: 10.1016/j.jmapro.2020.10.028_bib0045 article-title: A BP-neural network predictor model for plastic injection molding process publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(00)00498-2 contributor: fullname: Sadeghi – volume: 58 start-page: 267 year: 1996 ident: 10.1016/j.jmapro.2020.10.028_bib0160 article-title: Regression shrinkage and selection via the lasso publication-title: J Roy Stat Soc Ser B (Methodol) doi: 10.1111/j.2517-6161.1996.tb02080.x contributor: fullname: Tibshirani – volume: 24 start-page: 123 year: 1996 ident: 10.1016/j.jmapro.2020.10.028_bib0170 article-title: Bagging predictors publication-title: Mach Learn doi: 10.1007/BF00058655 contributor: fullname: Breiman – volume: 55 start-page: 119 year: 1997 ident: 10.1016/j.jmapro.2020.10.028_bib0220 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J Comput Syst Sci doi: 10.1006/jcss.1997.1504 contributor: fullname: Freund – year: 2000 ident: 10.1016/j.jmapro.2020.10.028_bib0005 contributor: fullname: Rosato – start-page: 118 year: 2010 ident: 10.1016/j.jmapro.2020.10.028_bib0175 article-title: A comparison of three voting methods for bagging with the MLEM2 algorithm publication-title: Intelligent data engineering and automated learning – IDEAL 2010 doi: 10.1007/978-3-642-15381-5_15 contributor: fullname: Cohagan – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.jmapro.2020.10.028_bib0180 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 contributor: fullname: Breiman – volume: 26 start-page: 1253 year: 2002 ident: 10.1016/j.jmapro.2020.10.028_bib0055 article-title: A genetic neural fuzzy system-based quality prediction model for injection process publication-title: Comput Chem Eng doi: 10.1016/S0098-1354(02)00092-3 contributor: fullname: Li – volume: 2 start-page: 349 year: 2009 ident: 10.1016/j.jmapro.2020.10.028_bib0225 article-title: Multi-class AdaBoost publication-title: Stat Interface doi: 10.4310/SII.2009.v2.n3.a8 contributor: fullname: Hastie – volume: 38 start-page: 827 year: 2008 ident: 10.1016/j.jmapro.2020.10.028_bib0075 article-title: Predicting the parts weight in plastic injection molding using least squares support vector regression publication-title: IEEE Trans Syst Man Cybern Part C (Appl Rev) doi: 10.1109/TSMCC.2008.2001707 contributor: fullname: Li – volume: 118 start-page: 109 year: 2001 ident: 10.1016/j.jmapro.2020.10.028_bib0050 article-title: Development of a hybrid neural network system for prediction of process parameters in injection moulding publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(01)00901-3 contributor: fullname: Yarlagadda – volume: 29 start-page: 1189 year: 2001 ident: 10.1016/j.jmapro.2020.10.028_bib0210 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann Stat doi: 10.1214/aos/1013203451 contributor: fullname: Friedman – volume: 54 start-page: 159 year: 2013 ident: 10.1016/j.jmapro.2020.10.028_bib0095 article-title: A virtual prototyping environment for a robust design of an injection moulding process publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2013.04.005 contributor: fullname: Berti – year: 1997 ident: 10.1016/j.jmapro.2020.10.028_bib0205 contributor: fullname: Breiman – volume: 171 start-page: 437 year: 2006 ident: 10.1016/j.jmapro.2020.10.028_bib0080 article-title: Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2005.04.120 contributor: fullname: Ozcelik – volume: 03 start-page: 366 year: 2014 ident: 10.1016/j.jmapro.2020.10.028_bib0030 article-title: Analysis and design of mold for plastic side release buckle using moldflow software publication-title: Int J Res Eng Technol doi: 10.15623/ijret.2014.0305067 contributor: fullname: Bhat – volume: 26 start-page: 43 year: 1978 ident: 10.1016/j.jmapro.2020.10.028_bib0105 article-title: Dynamic programming algorithm optimization for spoken word recognition publication-title: IEEE Trans Acoust Speech Signal Process doi: 10.1109/TASSP.1978.1163055 contributor: fullname: Sakoe – volume: 41 start-page: 15 year: 2014 ident: 10.1016/j.jmapro.2020.10.028_bib0015 article-title: General frameworks for optimization of plastic injection molding process parameters publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2013.11.003 contributor: fullname: Dang – volume: 18 start-page: 267 year: 1953 ident: 10.1016/j.jmapro.2020.10.028_bib0235 article-title: Who belongs in the family? publication-title: Psychometrika doi: 10.1007/BF02289263 contributor: fullname: Thorndike – start-page: 193 year: 2011 ident: 10.1016/j.jmapro.2020.10.028_bib0035 article-title: Analysis of injection molding of thin-walled parts based on moldflow publication-title: 2011 second international conference on digital manufacturing automation doi: 10.1109/ICDMA.2011.54 contributor: fullname: Zhu – start-page: 419 year: 1995 ident: 10.1016/j.jmapro.2020.10.028_bib0115 article-title: Combining estimators using non-constant weighting functions publication-title: Advances in neural information processing systems contributor: fullname: Tresp – volume: 16 start-page: 12 year: 2017 ident: 10.1016/j.jmapro.2020.10.028_bib0025 article-title: Flow visualization and simulation of the filling process during injection molding publication-title: CIRP J Manuf Sci Technol doi: 10.1016/j.cirpj.2016.08.002 contributor: fullname: Guerrier – volume: 67 start-page: 301 year: 2005 ident: 10.1016/j.jmapro.2020.10.028_bib0165 article-title: Regularization and variable selection via the elastic net publication-title: J Roy Stat Soc Ser B (Methodol) doi: 10.1111/j.1467-9868.2005.00503.x contributor: fullname: Zou – volume: 4 start-page: 1 year: 2018 ident: 10.1016/j.jmapro.2020.10.028_bib0090 article-title: A strategy to apply machine learning to small datasets in materials science publication-title: Npj Computat Mater contributor: fullname: Zhang – volume: 249 start-page: 358 year: 2017 ident: 10.1016/j.jmapro.2020.10.028_bib0100 article-title: Monitoring and dynamic control of quality stability for injection molding process publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2017.05.038 contributor: fullname: Zhou – start-page: 148 year: 1996 ident: 10.1016/j.jmapro.2020.10.028_bib0200 article-title: Experiments with a new boosting algorithm publication-title: Proceedings of the thirteenth international conference on international conference on machine learning, ICML’96 contributor: fullname: Freund |
SSID | ssj0012401 |
Score | 2.4530602 |
Snippet | During the initial sampling of injection molds, the determination of suitable process parameter values to achieve a desired quality of the resulting parts, can... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 134 |
SubjectTerms | Artificial intelligence Injection molding Machine learning Predictive models Simulation |
Title | Learning quality characteristics for plastic injection molding processes using a combination of simulated and measured data |
URI | https://dx.doi.org/10.1016/j.jmapro.2020.10.028 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe9GD-MT6KHPwujb7aNIcS7FURS8q9Bb2FWmhMdh6EMHf7m42EQXx4HEHBsK3YR4738wAnNOBUTRXlsicDonQJiGKaUvymKvESMpN1bd2exdPH8X1bDBrwbjphfG0ytr2B5teWeta0q_R7Jfzef_eeZ7Y-2fmw940FhvQqYpEbeiMrm6md1_FBOe0wthUFhOv0HTQVTSvxVI6U-USReZFF5Ffy_6bh_rmdSY7sF2HizgKX7QLLVvswda3IYL78F6PSH3C0CD5hvrnEGZ0cSmWLkp2B5wXi4p8VeAy1J2wDK0CdoWeA_-EEh0WLl-urgyfc1zNl37HlzUoC4PL8Kho0HNLD-B-cvkwnpJ6pQLRDqQ1SaTWLugSnGnOc6poaqwVqRoyrvNEqpRJpbRNopSLOJJUc6l07J-HtGaUH0K7eC7sESDjRkljc6PUQJghk7lIqUvMjZCGWxZ1gTQgZmWYm5E1hLJFFkDPPOhe6kDvQtIgnf24_8yZ9j81j_-teQKb_hTIKafQXr-82jMXYqxVDzYuPmiv_pE-AU611hk |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HtSD-MS3c_Aa2zy62z0WUVq1vbSCtyWvLS10W7QexD_vZLMrLYgHjztLIHwJM98k30wIuWEtq1mmHVUZa1NpbEw1N45mkdCxVUzYom6tP4i6L_LxtfVaI3dVLYyXVZa-P_j0wluXlkaJZmMxmTSGGHkiH5-5p71JJDfIJrKBBDf7Zqf31B38XCZg0AptU3lE_YCqgq6QeU1nCl0VJorcm26b_ln23yLUStR52CO7JV2ETpjRPqm5_IDsrDQRPCRfZYvUMYQCyU8w602YAXkpLJAl4wdM8mkhvsphFu6dYBFKBdw7eA38GBQgFpgvF0sG8wzeJzP_xpezoHILs3CoaMFrS4_I8OF-dNel5ZMK1CBISxorY5B0ScGNEBnTLLHOyUS3uTBZrHTCldbGxc1EyKipmBFKm8gfDxnDmTgm9XyeuxMCXFitrMus1i1p21xlMmGYmFuprHC8eUpoBWK6CH0z0kpQNk0D6KkH3VsR9FMSV0ina-ufomv_c-TZv0dek63uqP-cPvcGT-dk2_8JQpULUl--fbhLpBtLfVVup2-UvNgW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+quality+characteristics+for+plastic+injection+molding+processes+using+a+combination+of+simulated+and+measured+data&rft.jtitle=Journal+of+manufacturing+processes&rft.au=Finkeldey%2C+Felix&rft.au=Volke%2C+Julia&rft.au=Zarges%2C+Jan-Christoph&rft.au=Heim%2C+Hans-Peter&rft.date=2020-12-01&rft.issn=1526-6125&rft.volume=60&rft.spage=134&rft.epage=143&rft_id=info:doi/10.1016%2Fj.jmapro.2020.10.028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmapro_2020_10_028 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-6125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-6125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-6125&client=summon |