Learning quality characteristics for plastic injection molding processes using a combination of simulated and measured data

During the initial sampling of injection molds, the determination of suitable process parameter values to achieve a desired quality of the resulting parts, can be a time-consuming and demanding task. This is due to the complex viscoelastic properties of injection molding processes. Conducting techno...

Full description

Saved in:
Bibliographic Details
Published inJournal of manufacturing processes Vol. 60; pp. 134 - 143
Main Authors Finkeldey, Felix, Volke, Julia, Zarges, Jan-Christoph, Heim, Hans-Peter, Wiederkehr, Petra
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract During the initial sampling of injection molds, the determination of suitable process parameter values to achieve a desired quality of the resulting parts, can be a time-consuming and demanding task. This is due to the complex viscoelastic properties of injection molding processes. Conducting technological investigations and using simulation techniques are popular approaches to support the design of the regarded process. However, while the former approach can require extensive research efforts, it can be difficult to design simulations and validate their prediction accuracy, especially when few process measurements are available as a baseline. In addition, the knowledge obtained by both, simulation and technologically based approaches, is only valid for the analyzed process configurations. In contrast, models based on machine learning (ML) approaches can provide forecasts for previously unseen data and can be evaluated quickly. Unfortunately, a high amount of data is required to train such models reasonably. In this contribution, a novel ML-based methodology to predict quality characteristics of an injection molding process for different process parameter values using an intelligent combination of simulation data and measurements, is presented.
AbstractList During the initial sampling of injection molds, the determination of suitable process parameter values to achieve a desired quality of the resulting parts, can be a time-consuming and demanding task. This is due to the complex viscoelastic properties of injection molding processes. Conducting technological investigations and using simulation techniques are popular approaches to support the design of the regarded process. However, while the former approach can require extensive research efforts, it can be difficult to design simulations and validate their prediction accuracy, especially when few process measurements are available as a baseline. In addition, the knowledge obtained by both, simulation and technologically based approaches, is only valid for the analyzed process configurations. In contrast, models based on machine learning (ML) approaches can provide forecasts for previously unseen data and can be evaluated quickly. Unfortunately, a high amount of data is required to train such models reasonably. In this contribution, a novel ML-based methodology to predict quality characteristics of an injection molding process for different process parameter values using an intelligent combination of simulation data and measurements, is presented.
Author Volke, Julia
Zarges, Jan-Christoph
Heim, Hans-Peter
Finkeldey, Felix
Wiederkehr, Petra
Author_xml – sequence: 1
  givenname: Felix
  surname: Finkeldey
  fullname: Finkeldey, Felix
  email: felix.finkeldey@tu-dortmund.de
  organization: Virtual Machining, Chair for Software Engineering, TU Dortmund University, 44227 Dortmund, Germany
– sequence: 2
  givenname: Julia
  surname: Volke
  fullname: Volke, Julia
  email: volke@uni-kassel.de
  organization: Institute of Material Engineering, Polymer Engineering, University of Kassel, 34125 Kassel, Germany
– sequence: 3
  givenname: Jan-Christoph
  surname: Zarges
  fullname: Zarges, Jan-Christoph
  email: zarges@uni-kassel.de
  organization: Institute of Material Engineering, Polymer Engineering, University of Kassel, 34125 Kassel, Germany
– sequence: 4
  givenname: Hans-Peter
  surname: Heim
  fullname: Heim, Hans-Peter
  email: heim@uni-kassel.de
  organization: Institute of Material Engineering, Polymer Engineering, University of Kassel, 34125 Kassel, Germany
– sequence: 5
  givenname: Petra
  surname: Wiederkehr
  fullname: Wiederkehr, Petra
  email: petra.wiederkehr@tu-dortmund.de
  organization: Virtual Machining, Chair for Software Engineering, TU Dortmund University, 44227 Dortmund, Germany
BookMark eNp9kN1Kw0AQhRepYFt9Ay_2BVL3J90kN4IU_6Dghd6HyWSiG5LdupsIxZc3sV57NZzDnDPDt2IL5x0xdi3FRgppbtpN28Mh-I0SarY2QuVnbKmUVElqpFmwpdwqkxipthdsFWMrhFSpkEv2vScIzrp3_jlCZ4cjxw8IgAMFGweLkTc-8EMHs-DWtYSD9Y73vqvn1HQVKUaKfIyzBo6-r6yD3y3f8Gj7sYOBag6u5j1BHMMkahjgkp030EW6-ptr9vpw_7Z7SvYvj8-7u32CWpghyQBR5DrVCrVuZCWLmigtqlxpbDKoCgVVhZSJQqdGgEQNFZoiyzWiknrN0lMrBh9joKY8BNtDOJZSlDO-si1P-MoZ3-xO-KbY7SlG02dflkIZ0ZJDqm2YGJS1t_8X_ABC4oCj
CitedBy_id crossref_primary_10_1016_j_jmapro_2021_06_069
crossref_primary_10_1016_j_jmapro_2023_03_076
crossref_primary_10_3390_app13042617
crossref_primary_10_1016_j_eng_2022_06_019
crossref_primary_10_1016_j_jmsy_2024_04_021
crossref_primary_10_1016_j_jmapro_2023_03_072
crossref_primary_10_1088_2631_8695_acefaf
crossref_primary_10_1016_j_ins_2022_06_057
crossref_primary_10_1038_s41598_023_48679_0
crossref_primary_10_3390_polym15204046
crossref_primary_10_3390_ma15072511
crossref_primary_10_1515_eng_2021_0094
crossref_primary_10_3390_polym16010054
crossref_primary_10_1007_s00170_023_12329_6
crossref_primary_10_1109_JSEN_2023_3346849
crossref_primary_10_47836_pjst_31_1_03
crossref_primary_10_1155_2022_1949061
crossref_primary_10_14775_ksmpe_2024_23_05_054
crossref_primary_10_1007_s00170_023_11100_1
crossref_primary_10_3390_polym13244293
crossref_primary_10_3390_polym16091265
crossref_primary_10_3390_info13100488
crossref_primary_10_1109_ACCESS_2022_3142515
crossref_primary_10_1007_s00170_023_12602_8
crossref_primary_10_3390_polym15143094
crossref_primary_10_1002_pts_2706
crossref_primary_10_1007_s00521_024_09473_9
crossref_primary_10_31590_ejosat_993601
crossref_primary_10_3390_ma14102543
crossref_primary_10_1016_j_jmapro_2023_08_030
Cites_doi 10.1016/j.matdes.2011.01.058
10.1145/2939672.2939785
10.1016/j.procir.2018.03.087
10.1016/j.eswa.2007.07.037
10.1198/1061860032733
10.1007/s10888-011-9188-x
10.1016/j.matdes.2009.10.026
10.1162/neco.1992.4.1.1
10.1109/ICNN.1996.548872
10.1137/S0097539792240406
10.1109/TSMCC.2004.843228
10.1002/app.40804
10.1145/347090.347153
10.1080/00401706.1970.10488634
10.1016/S0957-4174(99)00019-6
10.1016/S0924-0136(00)00498-2
10.1111/j.2517-6161.1996.tb02080.x
10.1007/BF00058655
10.1006/jcss.1997.1504
10.1007/978-3-642-15381-5_15
10.1023/A:1010933404324
10.1016/S0098-1354(02)00092-3
10.4310/SII.2009.v2.n3.a8
10.1109/TSMCC.2008.2001707
10.1016/S0924-0136(01)00901-3
10.1214/aos/1013203451
10.1016/j.compchemeng.2013.04.005
10.1016/j.jmatprotec.2005.04.120
10.15623/ijret.2014.0305067
10.1109/TASSP.1978.1163055
10.1016/j.simpat.2013.11.003
10.1007/BF02289263
10.1109/ICDMA.2011.54
10.1016/j.cirpj.2016.08.002
10.1111/j.1467-9868.2005.00503.x
10.1016/j.jmatprotec.2017.05.038
ContentType Journal Article
Copyright 2020 The Society of Manufacturing Engineers
Copyright_xml – notice: 2020 The Society of Manufacturing Engineers
DBID AAYXX
CITATION
DOI 10.1016/j.jmapro.2020.10.028
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2212-4616
EndPage 143
ExternalDocumentID 10_1016_j_jmapro_2020_10_028
S1526612520306964
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29K
3V.
4.4
457
4G.
5GY
5VS
7-5
71M
7WY
883
88I
8AO
8FE
8FG
8FL
8FW
8P~
8R4
8R5
9M8
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJCF
ABJNI
ABMAC
ABUWG
ABXDB
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKRA
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BENPR
BEZIV
BGLVJ
BJAXD
BKOJK
BLXMC
BPHCQ
CCPQU
CS3
D-I
DU5
DWQXO
E3Z
EBS
EFJIC
EFLBG
EJD
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FRNLG
FYGXN
GBLVA
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
HCIFZ
HVGLF
HZ~
H~9
J1W
JJJVA
K60
K6~
KOM
L6V
M0C
M0F
M2P
M41
M7S
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQBIZ
PQQKQ
PROAC
PTHSS
Q2X
Q38
R2-
RIG
RNS
ROL
RWL
S0X
SDF
SES
SPC
SPCBC
SST
SSZ
T5K
TAE
TN5
U5U
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
PQBZA
ID FETCH-LOGICAL-c306t-7acc083432c33f1b19dee49b823cf7ab92abbce7093460a1c3abc69783cc213
IEDL.DBID AIKHN
ISSN 1526-6125
IngestDate Thu Sep 26 20:35:19 EDT 2024
Fri Feb 23 02:45:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Injection molding
Predictive models
Simulation
Artificial intelligence
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-7acc083432c33f1b19dee49b823cf7ab92abbce7093460a1c3abc69783cc213
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_jmapro_2020_10_028
elsevier_sciencedirect_doi_10_1016_j_jmapro_2020_10_028
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Journal of manufacturing processes
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhu, Wang, Shen (bib0035) 2011
Ribeiro (bib0070) 2005; 35
Sadeghi (bib0045) 2000; 103
Deng, Zhang, Lam (bib0085) 2010; 31
Bhat (bib0030) 2014; 03
Freund, Schapire (bib0220) 1997; 55
Rencher, Christensen (bib0140) 2012
Tercan, Guajardo, Heinisch, Thiele, Hopmann, Meisen (bib0020) 2018; 72
Chen, Guestrin (bib0215) 2016
Yarlagadda, Khong (bib0050) 2001; 118
Li, Hu, Du (bib0075) 2008; 38
Bergstra, Bengio (bib0230) 2012; 13
Natarajan (bib0155) 1995; 24
Ueda, Nakano (bib0125) 1996
Hastie, Tibshirani, Friedman (bib0135) 2009
Dang (bib0015) 2014; 41
Sakoe, Chiba (bib0105) 1978; 26
Li, Jia, Yu (bib0055) 2002; 26
Breiman (bib0195) 1984
Cohagan, Grzymala-Busse, Hippe (bib0175) 2010
Gini (bib0185) 1912
Lau, Wong, Pun (bib0040) 1999; 17
Zhou, Zhang, Mao, Zhou (bib0100) 2017; 249
Guerrier, Tosello, Hattel (bib0025) 2017; 16
Yin, Mao, Hua (bib0065) 2011; 32
Friedman (bib0210) 2001; 29
Geman, Bienenstock, Doursat (bib0145) 1992; 4
Breiman (bib0205) 1997
Ozcelik, Erzurumlu (bib0080) 2006; 171
Berti, Monti (bib0095) 2013; 54
Ceriani, Verme (bib0190) 2012; 10
Freund, Schapire (bib0200) 1996
Keogh, Pazzani (bib0110) 2000
Breiman (bib0170) 1996; 24
Breiman (bib0180) 2001; 45
Elder, John (bib0130) 2003; 12
Tibshirani (bib0160) 1996; 58
Hastie, Rosset, Zhu, Zou (bib0225) 2009; 2
Yu, Zhang, Yang, Zhou, Li (bib0010) 2014; 131
Chen, Tai, Wang, Deng, Chen (bib0060) 2008; 35
Hoerl, Kennard (bib0150) 1970; 12
Zou, Hastie (bib0165) 2005; 67
Thorndike (bib0235) 1953; 18
Zhang, Ling (bib0090) 2018; 4
Rosato, Rosato, Rosato (bib0005) 2000
Sollich, Krogh (bib0120) 1996
Tresp, Taniguchi (bib0115) 1995
Bhat (10.1016/j.jmapro.2020.10.028_bib0030) 2014; 03
Lau (10.1016/j.jmapro.2020.10.028_bib0040) 1999; 17
Natarajan (10.1016/j.jmapro.2020.10.028_bib0155) 1995; 24
Freund (10.1016/j.jmapro.2020.10.028_bib0200) 1996
Rosato (10.1016/j.jmapro.2020.10.028_bib0005) 2000
Li (10.1016/j.jmapro.2020.10.028_bib0075) 2008; 38
Keogh (10.1016/j.jmapro.2020.10.028_bib0110) 2000
Ceriani (10.1016/j.jmapro.2020.10.028_bib0190) 2012; 10
Hastie (10.1016/j.jmapro.2020.10.028_bib0135) 2009
Sollich (10.1016/j.jmapro.2020.10.028_bib0120) 1996
Zhou (10.1016/j.jmapro.2020.10.028_bib0100) 2017; 249
Tercan (10.1016/j.jmapro.2020.10.028_bib0020) 2018; 72
Rencher (10.1016/j.jmapro.2020.10.028_bib0140) 2012
Li (10.1016/j.jmapro.2020.10.028_bib0055) 2002; 26
Chen (10.1016/j.jmapro.2020.10.028_bib0215) 2016
Yarlagadda (10.1016/j.jmapro.2020.10.028_bib0050) 2001; 118
Thorndike (10.1016/j.jmapro.2020.10.028_bib0235) 1953; 18
Zhu (10.1016/j.jmapro.2020.10.028_bib0035) 2011
Zhang (10.1016/j.jmapro.2020.10.028_bib0090) 2018; 4
Breiman (10.1016/j.jmapro.2020.10.028_bib0170) 1996; 24
Yu (10.1016/j.jmapro.2020.10.028_bib0010) 2014; 131
Cohagan (10.1016/j.jmapro.2020.10.028_bib0175) 2010
Sakoe (10.1016/j.jmapro.2020.10.028_bib0105) 1978; 26
Zou (10.1016/j.jmapro.2020.10.028_bib0165) 2005; 67
Tresp (10.1016/j.jmapro.2020.10.028_bib0115) 1995
Bergstra (10.1016/j.jmapro.2020.10.028_bib0230) 2012; 13
Gini (10.1016/j.jmapro.2020.10.028_bib0185) 1912
Breiman (10.1016/j.jmapro.2020.10.028_bib0180) 2001; 45
Breiman (10.1016/j.jmapro.2020.10.028_bib0205) 1997
Friedman (10.1016/j.jmapro.2020.10.028_bib0210) 2001; 29
Ueda (10.1016/j.jmapro.2020.10.028_bib0125) 1996
Deng (10.1016/j.jmapro.2020.10.028_bib0085) 2010; 31
Hoerl (10.1016/j.jmapro.2020.10.028_bib0150) 1970; 12
Elder (10.1016/j.jmapro.2020.10.028_bib0130) 2003; 12
Breiman (10.1016/j.jmapro.2020.10.028_bib0195) 1984
Ribeiro (10.1016/j.jmapro.2020.10.028_bib0070) 2005; 35
Tibshirani (10.1016/j.jmapro.2020.10.028_bib0160) 1996; 58
Yin (10.1016/j.jmapro.2020.10.028_bib0065) 2011; 32
Geman (10.1016/j.jmapro.2020.10.028_bib0145) 1992; 4
Freund (10.1016/j.jmapro.2020.10.028_bib0220) 1997; 55
Chen (10.1016/j.jmapro.2020.10.028_bib0060) 2008; 35
Ozcelik (10.1016/j.jmapro.2020.10.028_bib0080) 2006; 171
Guerrier (10.1016/j.jmapro.2020.10.028_bib0025) 2017; 16
Berti (10.1016/j.jmapro.2020.10.028_bib0095) 2013; 54
Sadeghi (10.1016/j.jmapro.2020.10.028_bib0045) 2000; 103
Hastie (10.1016/j.jmapro.2020.10.028_bib0225) 2009; 2
Dang (10.1016/j.jmapro.2020.10.028_bib0015) 2014; 41
References_xml – volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: bib0220
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J Comput Syst Sci
  contributor:
    fullname: Schapire
– volume: 16
  start-page: 12
  year: 2017
  end-page: 20
  ident: bib0025
  article-title: Flow visualization and simulation of the filling process during injection molding
  publication-title: CIRP J Manuf Sci Technol
  contributor:
    fullname: Hattel
– volume: 35
  start-page: 843
  year: 2008
  end-page: 849
  ident: bib0060
  article-title: A neural network-based approach for dynamic quality prediction in a plastic injection molding process
  publication-title: Expert Syst Appl
  contributor:
    fullname: Chen
– volume: 32
  start-page: 3457
  year: 2011
  end-page: 3464
  ident: bib0065
  article-title: A hybrid of back propagation neural network and genetic algorithm for optimization of injection molding process parameters
  publication-title: Mater Des
  contributor:
    fullname: Hua
– year: 1984
  ident: bib0195
  article-title: Classification and regression trees
  contributor:
    fullname: Breiman
– start-page: 90
  year: 1996
  end-page: 95
  ident: bib0125
  article-title: Generalization error of ensemble estimators
  publication-title: Proceedings of international conference on neural networks (ICNN’96), vol. 1
  contributor:
    fullname: Nakano
– volume: 18
  start-page: 267
  year: 1953
  end-page: 276
  ident: bib0235
  article-title: Who belongs in the family?
  publication-title: Psychometrika
  contributor:
    fullname: Thorndike
– volume: 4
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib0090
  article-title: A strategy to apply machine learning to small datasets in materials science
  publication-title: Npj Computat Mater
  contributor:
    fullname: Ling
– volume: 171
  start-page: 437
  year: 2006
  end-page: 445
  ident: bib0080
  article-title: Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm
  publication-title: J Mater Process Technol
  contributor:
    fullname: Erzurumlu
– year: 2012
  ident: bib0140
  article-title: Methods of multivariate analysis
  contributor:
    fullname: Christensen
– volume: 4
  start-page: 1
  year: 1992
  end-page: 58
  ident: bib0145
  article-title: Neural networks and the bias/variance dilemma
  publication-title: Neural Comput
  contributor:
    fullname: Doursat
– volume: 41
  start-page: 15
  year: 2014
  end-page: 27
  ident: bib0015
  article-title: General frameworks for optimization of plastic injection molding process parameters
  publication-title: Simul Model Pract Theory
  contributor:
    fullname: Dang
– year: 2009
  ident: bib0135
  article-title: The elements of statistical learning
  contributor:
    fullname: Friedman
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: bib0230
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
  contributor:
    fullname: Bengio
– year: 2000
  ident: bib0005
  article-title: Injection molding handbook
  contributor:
    fullname: Rosato
– volume: 24
  start-page: 227
  year: 1995
  end-page: 234
  ident: bib0155
  article-title: Sparse approximate solutions to linear systems
  publication-title: SIAM J Comput
  contributor:
    fullname: Natarajan
– year: 2016
  ident: bib0215
  article-title: Xgboost: a scalable tree boosting system
  publication-title: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining – KDD ’16
  contributor:
    fullname: Guestrin
– year: 1912
  ident: bib0185
  article-title: Variabilità e Mutabilità: Contributo allo studio delle distribuzioni e delle relazioni statistiche. Fascicolo 1: Introduzione - Indici di variabilità – Indici di mutabilità, Studi economico-giuridici pubblicati per cura della facoltà di Giurisprudenza della R
  contributor:
    fullname: Gini
– volume: 17
  start-page: 33
  year: 1999
  end-page: 43
  ident: bib0040
  article-title: Neural-fuzzy modeling of plastic injection molding machine for intelligent control
  publication-title: Expert Syst Appl
  contributor:
    fullname: Pun
– volume: 103
  start-page: 411
  year: 2000
  end-page: 416
  ident: bib0045
  article-title: A BP-neural network predictor model for plastic injection molding process
  publication-title: J Mater Process Technol
  contributor:
    fullname: Sadeghi
– start-page: 419
  year: 1995
  end-page: 426
  ident: bib0115
  article-title: Combining estimators using non-constant weighting functions
  publication-title: Advances in neural information processing systems
  contributor:
    fullname: Taniguchi
– volume: 2
  start-page: 349
  year: 2009
  end-page: 360
  ident: bib0225
  article-title: Multi-class AdaBoost
  publication-title: Stat Interface
  contributor:
    fullname: Zou
– volume: 72
  start-page: 185
  year: 2018
  end-page: 190
  ident: bib0020
  article-title: Transfer-learning: bridging the gap between real and simulation data for machine learning in injection molding
  publication-title: Procedia CIRP
  contributor:
    fullname: Meisen
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: bib0165
  article-title: Regularization and variable selection via the elastic net
  publication-title: J Roy Stat Soc Ser B (Methodol)
  contributor:
    fullname: Hastie
– volume: 03
  start-page: 366
  year: 2014
  end-page: 372
  ident: bib0030
  article-title: Analysis and design of mold for plastic side release buckle using moldflow software
  publication-title: Int J Res Eng Technol
  contributor:
    fullname: Bhat
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bib0170
  article-title: Bagging predictors
  publication-title: Mach Learn
  contributor:
    fullname: Breiman
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0180
  article-title: Random forests
  publication-title: Mach Learn
  contributor:
    fullname: Breiman
– volume: 249
  start-page: 358
  year: 2017
  end-page: 366
  ident: bib0100
  article-title: Monitoring and dynamic control of quality stability for injection molding process
  publication-title: J Mater Process Technol
  contributor:
    fullname: Zhou
– start-page: 285
  year: 2000
  end-page: 289
  ident: bib0110
  article-title: Scaling up dynamic time warping for datamining applications
  publication-title: Proceedings of the sixth ACM SIGKDD international conference on knowledge discovery and data mining
  contributor:
    fullname: Pazzani
– start-page: 190
  year: 1996
  end-page: 196
  ident: bib0120
  article-title: Learning with ensembles: how overfitting can be useful
  publication-title: Advances in neural information processing systems
  contributor:
    fullname: Krogh
– year: 1997
  ident: bib0205
  article-title: Arcing the edge. Technical report
  contributor:
    fullname: Breiman
– start-page: 118
  year: 2010
  end-page: 125
  ident: bib0175
  article-title: A comparison of three voting methods for bagging with the MLEM2 algorithm
  publication-title: Intelligent data engineering and automated learning – IDEAL 2010
  contributor:
    fullname: Hippe
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib0160
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Roy Stat Soc Ser B (Methodol)
  contributor:
    fullname: Tibshirani
– volume: 12
  start-page: 853
  year: 2003
  end-page: 864
  ident: bib0130
  article-title: The generalization paradox of ensembles
  publication-title: J Comput Graph Stat
  contributor:
    fullname: John
– volume: 26
  start-page: 43
  year: 1978
  end-page: 49
  ident: bib0105
  article-title: Dynamic programming algorithm optimization for spoken word recognition
  publication-title: IEEE Trans Acoust Speech Signal Process
  contributor:
    fullname: Chiba
– start-page: 148
  year: 1996
  end-page: 156
  ident: bib0200
  article-title: Experiments with a new boosting algorithm
  publication-title: Proceedings of the thirteenth international conference on international conference on machine learning, ICML’96
  contributor:
    fullname: Schapire
– volume: 54
  start-page: 159
  year: 2013
  end-page: 169
  ident: bib0095
  article-title: A virtual prototyping environment for a robust design of an injection moulding process
  publication-title: Comput Chem Eng
  contributor:
    fullname: Monti
– volume: 10
  start-page: 421
  year: 2012
  end-page: 443
  ident: bib0190
  article-title: The origins of the Gini index: extracts from Variabilità e Mutabilità (1912) by Corrado Gini
  publication-title: J Econ Inequal
  contributor:
    fullname: Verme
– volume: 118
  start-page: 109
  year: 2001
  end-page: 115
  ident: bib0050
  article-title: Development of a hybrid neural network system for prediction of process parameters in injection moulding
  publication-title: J Mater Process Technol
  contributor:
    fullname: Khong
– volume: 26
  start-page: 1253
  year: 2002
  end-page: 1263
  ident: bib0055
  article-title: A genetic neural fuzzy system-based quality prediction model for injection process
  publication-title: Comput Chem Eng
  contributor:
    fullname: Yu
– volume: 31
  start-page: 2118
  year: 2010
  end-page: 2123
  ident: bib0085
  article-title: A hybrid of mode-pursuing sampling method and genetic algorithm for minimization of injection molding warpage
  publication-title: Mater Des
  contributor:
    fullname: Lam
– volume: 12
  start-page: 55
  year: 1970
  end-page: 67
  ident: bib0150
  article-title: Ridge regression: biased estimation for nonorthogonal problems
  publication-title: Technometrics
  contributor:
    fullname: Kennard
– volume: 131
  year: 2014
  ident: bib0010
  article-title: Offline prediction of process windows for robust injection molding
  publication-title: J Appl Polym Sci
  contributor:
    fullname: Li
– start-page: 193
  year: 2011
  end-page: 195
  ident: bib0035
  article-title: Analysis of injection molding of thin-walled parts based on moldflow
  publication-title: 2011 second international conference on digital manufacturing automation
  contributor:
    fullname: Shen
– volume: 35
  start-page: 401
  year: 2005
  end-page: 410
  ident: bib0070
  article-title: Support vector machines for quality monitoring in a plastic injection molding process
  publication-title: IEEE Trans Syst Man Cybern Part C (Appl Rev)
  contributor:
    fullname: Ribeiro
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: bib0210
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann Stat
  contributor:
    fullname: Friedman
– volume: 38
  start-page: 827
  year: 2008
  end-page: 833
  ident: bib0075
  article-title: Predicting the parts weight in plastic injection molding using least squares support vector regression
  publication-title: IEEE Trans Syst Man Cybern Part C (Appl Rev)
  contributor:
    fullname: Du
– year: 2012
  ident: 10.1016/j.jmapro.2020.10.028_bib0140
  contributor:
    fullname: Rencher
– year: 1912
  ident: 10.1016/j.jmapro.2020.10.028_bib0185
  contributor:
    fullname: Gini
– volume: 32
  start-page: 3457
  year: 2011
  ident: 10.1016/j.jmapro.2020.10.028_bib0065
  article-title: A hybrid of back propagation neural network and genetic algorithm for optimization of injection molding process parameters
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2011.01.058
  contributor:
    fullname: Yin
– year: 2009
  ident: 10.1016/j.jmapro.2020.10.028_bib0135
  contributor:
    fullname: Hastie
– year: 2016
  ident: 10.1016/j.jmapro.2020.10.028_bib0215
  article-title: Xgboost: a scalable tree boosting system
  publication-title: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining – KDD ’16
  doi: 10.1145/2939672.2939785
  contributor:
    fullname: Chen
– volume: 72
  start-page: 185
  year: 2018
  ident: 10.1016/j.jmapro.2020.10.028_bib0020
  article-title: Transfer-learning: bridging the gap between real and simulation data for machine learning in injection molding
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.03.087
  contributor:
    fullname: Tercan
– volume: 35
  start-page: 843
  year: 2008
  ident: 10.1016/j.jmapro.2020.10.028_bib0060
  article-title: A neural network-based approach for dynamic quality prediction in a plastic injection molding process
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.07.037
  contributor:
    fullname: Chen
– volume: 12
  start-page: 853
  year: 2003
  ident: 10.1016/j.jmapro.2020.10.028_bib0130
  article-title: The generalization paradox of ensembles
  publication-title: J Comput Graph Stat
  doi: 10.1198/1061860032733
  contributor:
    fullname: Elder
– volume: 10
  start-page: 421
  year: 2012
  ident: 10.1016/j.jmapro.2020.10.028_bib0190
  article-title: The origins of the Gini index: extracts from Variabilità e Mutabilità (1912) by Corrado Gini
  publication-title: J Econ Inequal
  doi: 10.1007/s10888-011-9188-x
  contributor:
    fullname: Ceriani
– year: 1984
  ident: 10.1016/j.jmapro.2020.10.028_bib0195
  contributor:
    fullname: Breiman
– volume: 31
  start-page: 2118
  year: 2010
  ident: 10.1016/j.jmapro.2020.10.028_bib0085
  article-title: A hybrid of mode-pursuing sampling method and genetic algorithm for minimization of injection molding warpage
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2009.10.026
  contributor:
    fullname: Deng
– volume: 4
  start-page: 1
  year: 1992
  ident: 10.1016/j.jmapro.2020.10.028_bib0145
  article-title: Neural networks and the bias/variance dilemma
  publication-title: Neural Comput
  doi: 10.1162/neco.1992.4.1.1
  contributor:
    fullname: Geman
– start-page: 90
  year: 1996
  ident: 10.1016/j.jmapro.2020.10.028_bib0125
  article-title: Generalization error of ensemble estimators
  publication-title: Proceedings of international conference on neural networks (ICNN’96), vol. 1
  doi: 10.1109/ICNN.1996.548872
  contributor:
    fullname: Ueda
– volume: 24
  start-page: 227
  year: 1995
  ident: 10.1016/j.jmapro.2020.10.028_bib0155
  article-title: Sparse approximate solutions to linear systems
  publication-title: SIAM J Comput
  doi: 10.1137/S0097539792240406
  contributor:
    fullname: Natarajan
– volume: 35
  start-page: 401
  year: 2005
  ident: 10.1016/j.jmapro.2020.10.028_bib0070
  article-title: Support vector machines for quality monitoring in a plastic injection molding process
  publication-title: IEEE Trans Syst Man Cybern Part C (Appl Rev)
  doi: 10.1109/TSMCC.2004.843228
  contributor:
    fullname: Ribeiro
– volume: 131
  year: 2014
  ident: 10.1016/j.jmapro.2020.10.028_bib0010
  article-title: Offline prediction of process windows for robust injection molding
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.40804
  contributor:
    fullname: Yu
– start-page: 285
  year: 2000
  ident: 10.1016/j.jmapro.2020.10.028_bib0110
  article-title: Scaling up dynamic time warping for datamining applications
  publication-title: Proceedings of the sixth ACM SIGKDD international conference on knowledge discovery and data mining
  doi: 10.1145/347090.347153
  contributor:
    fullname: Keogh
– volume: 13
  start-page: 281
  year: 2012
  ident: 10.1016/j.jmapro.2020.10.028_bib0230
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
  contributor:
    fullname: Bergstra
– volume: 12
  start-page: 55
  year: 1970
  ident: 10.1016/j.jmapro.2020.10.028_bib0150
  article-title: Ridge regression: biased estimation for nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
  contributor:
    fullname: Hoerl
– volume: 17
  start-page: 33
  year: 1999
  ident: 10.1016/j.jmapro.2020.10.028_bib0040
  article-title: Neural-fuzzy modeling of plastic injection molding machine for intelligent control
  publication-title: Expert Syst Appl
  doi: 10.1016/S0957-4174(99)00019-6
  contributor:
    fullname: Lau
– start-page: 190
  year: 1996
  ident: 10.1016/j.jmapro.2020.10.028_bib0120
  article-title: Learning with ensembles: how overfitting can be useful
  publication-title: Advances in neural information processing systems
  contributor:
    fullname: Sollich
– volume: 103
  start-page: 411
  year: 2000
  ident: 10.1016/j.jmapro.2020.10.028_bib0045
  article-title: A BP-neural network predictor model for plastic injection molding process
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(00)00498-2
  contributor:
    fullname: Sadeghi
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.jmapro.2020.10.028_bib0160
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Roy Stat Soc Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
  contributor:
    fullname: Tibshirani
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.jmapro.2020.10.028_bib0170
  article-title: Bagging predictors
  publication-title: Mach Learn
  doi: 10.1007/BF00058655
  contributor:
    fullname: Breiman
– volume: 55
  start-page: 119
  year: 1997
  ident: 10.1016/j.jmapro.2020.10.028_bib0220
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J Comput Syst Sci
  doi: 10.1006/jcss.1997.1504
  contributor:
    fullname: Freund
– year: 2000
  ident: 10.1016/j.jmapro.2020.10.028_bib0005
  contributor:
    fullname: Rosato
– start-page: 118
  year: 2010
  ident: 10.1016/j.jmapro.2020.10.028_bib0175
  article-title: A comparison of three voting methods for bagging with the MLEM2 algorithm
  publication-title: Intelligent data engineering and automated learning – IDEAL 2010
  doi: 10.1007/978-3-642-15381-5_15
  contributor:
    fullname: Cohagan
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.jmapro.2020.10.028_bib0180
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: Breiman
– volume: 26
  start-page: 1253
  year: 2002
  ident: 10.1016/j.jmapro.2020.10.028_bib0055
  article-title: A genetic neural fuzzy system-based quality prediction model for injection process
  publication-title: Comput Chem Eng
  doi: 10.1016/S0098-1354(02)00092-3
  contributor:
    fullname: Li
– volume: 2
  start-page: 349
  year: 2009
  ident: 10.1016/j.jmapro.2020.10.028_bib0225
  article-title: Multi-class AdaBoost
  publication-title: Stat Interface
  doi: 10.4310/SII.2009.v2.n3.a8
  contributor:
    fullname: Hastie
– volume: 38
  start-page: 827
  year: 2008
  ident: 10.1016/j.jmapro.2020.10.028_bib0075
  article-title: Predicting the parts weight in plastic injection molding using least squares support vector regression
  publication-title: IEEE Trans Syst Man Cybern Part C (Appl Rev)
  doi: 10.1109/TSMCC.2008.2001707
  contributor:
    fullname: Li
– volume: 118
  start-page: 109
  year: 2001
  ident: 10.1016/j.jmapro.2020.10.028_bib0050
  article-title: Development of a hybrid neural network system for prediction of process parameters in injection moulding
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(01)00901-3
  contributor:
    fullname: Yarlagadda
– volume: 29
  start-page: 1189
  year: 2001
  ident: 10.1016/j.jmapro.2020.10.028_bib0210
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann Stat
  doi: 10.1214/aos/1013203451
  contributor:
    fullname: Friedman
– volume: 54
  start-page: 159
  year: 2013
  ident: 10.1016/j.jmapro.2020.10.028_bib0095
  article-title: A virtual prototyping environment for a robust design of an injection moulding process
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2013.04.005
  contributor:
    fullname: Berti
– year: 1997
  ident: 10.1016/j.jmapro.2020.10.028_bib0205
  contributor:
    fullname: Breiman
– volume: 171
  start-page: 437
  year: 2006
  ident: 10.1016/j.jmapro.2020.10.028_bib0080
  article-title: Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2005.04.120
  contributor:
    fullname: Ozcelik
– volume: 03
  start-page: 366
  year: 2014
  ident: 10.1016/j.jmapro.2020.10.028_bib0030
  article-title: Analysis and design of mold for plastic side release buckle using moldflow software
  publication-title: Int J Res Eng Technol
  doi: 10.15623/ijret.2014.0305067
  contributor:
    fullname: Bhat
– volume: 26
  start-page: 43
  year: 1978
  ident: 10.1016/j.jmapro.2020.10.028_bib0105
  article-title: Dynamic programming algorithm optimization for spoken word recognition
  publication-title: IEEE Trans Acoust Speech Signal Process
  doi: 10.1109/TASSP.1978.1163055
  contributor:
    fullname: Sakoe
– volume: 41
  start-page: 15
  year: 2014
  ident: 10.1016/j.jmapro.2020.10.028_bib0015
  article-title: General frameworks for optimization of plastic injection molding process parameters
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2013.11.003
  contributor:
    fullname: Dang
– volume: 18
  start-page: 267
  year: 1953
  ident: 10.1016/j.jmapro.2020.10.028_bib0235
  article-title: Who belongs in the family?
  publication-title: Psychometrika
  doi: 10.1007/BF02289263
  contributor:
    fullname: Thorndike
– start-page: 193
  year: 2011
  ident: 10.1016/j.jmapro.2020.10.028_bib0035
  article-title: Analysis of injection molding of thin-walled parts based on moldflow
  publication-title: 2011 second international conference on digital manufacturing automation
  doi: 10.1109/ICDMA.2011.54
  contributor:
    fullname: Zhu
– start-page: 419
  year: 1995
  ident: 10.1016/j.jmapro.2020.10.028_bib0115
  article-title: Combining estimators using non-constant weighting functions
  publication-title: Advances in neural information processing systems
  contributor:
    fullname: Tresp
– volume: 16
  start-page: 12
  year: 2017
  ident: 10.1016/j.jmapro.2020.10.028_bib0025
  article-title: Flow visualization and simulation of the filling process during injection molding
  publication-title: CIRP J Manuf Sci Technol
  doi: 10.1016/j.cirpj.2016.08.002
  contributor:
    fullname: Guerrier
– volume: 67
  start-page: 301
  year: 2005
  ident: 10.1016/j.jmapro.2020.10.028_bib0165
  article-title: Regularization and variable selection via the elastic net
  publication-title: J Roy Stat Soc Ser B (Methodol)
  doi: 10.1111/j.1467-9868.2005.00503.x
  contributor:
    fullname: Zou
– volume: 4
  start-page: 1
  year: 2018
  ident: 10.1016/j.jmapro.2020.10.028_bib0090
  article-title: A strategy to apply machine learning to small datasets in materials science
  publication-title: Npj Computat Mater
  contributor:
    fullname: Zhang
– volume: 249
  start-page: 358
  year: 2017
  ident: 10.1016/j.jmapro.2020.10.028_bib0100
  article-title: Monitoring and dynamic control of quality stability for injection molding process
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2017.05.038
  contributor:
    fullname: Zhou
– start-page: 148
  year: 1996
  ident: 10.1016/j.jmapro.2020.10.028_bib0200
  article-title: Experiments with a new boosting algorithm
  publication-title: Proceedings of the thirteenth international conference on international conference on machine learning, ICML’96
  contributor:
    fullname: Freund
SSID ssj0012401
Score 2.4530602
Snippet During the initial sampling of injection molds, the determination of suitable process parameter values to achieve a desired quality of the resulting parts, can...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 134
SubjectTerms Artificial intelligence
Injection molding
Machine learning
Predictive models
Simulation
Title Learning quality characteristics for plastic injection molding processes using a combination of simulated and measured data
URI https://dx.doi.org/10.1016/j.jmapro.2020.10.028
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe9GD-MT6KHPwujb7aNIcS7FURS8q9Bb2FWmhMdh6EMHf7m42EQXx4HEHBsK3YR4738wAnNOBUTRXlsicDonQJiGKaUvymKvESMpN1bd2exdPH8X1bDBrwbjphfG0ytr2B5teWeta0q_R7Jfzef_eeZ7Y-2fmw940FhvQqYpEbeiMrm6md1_FBOe0wthUFhOv0HTQVTSvxVI6U-USReZFF5Ffy_6bh_rmdSY7sF2HizgKX7QLLVvswda3IYL78F6PSH3C0CD5hvrnEGZ0cSmWLkp2B5wXi4p8VeAy1J2wDK0CdoWeA_-EEh0WLl-urgyfc1zNl37HlzUoC4PL8Kho0HNLD-B-cvkwnpJ6pQLRDqQ1SaTWLugSnGnOc6poaqwVqRoyrvNEqpRJpbRNopSLOJJUc6l07J-HtGaUH0K7eC7sESDjRkljc6PUQJghk7lIqUvMjZCGWxZ1gTQgZmWYm5E1hLJFFkDPPOhe6kDvQtIgnf24_8yZ9j81j_-teQKb_hTIKafQXr-82jMXYqxVDzYuPmiv_pE-AU611hk
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HtSD-MS3c_Aa2zy62z0WUVq1vbSCtyWvLS10W7QexD_vZLMrLYgHjztLIHwJM98k30wIuWEtq1mmHVUZa1NpbEw1N45mkdCxVUzYom6tP4i6L_LxtfVaI3dVLYyXVZa-P_j0wluXlkaJZmMxmTSGGHkiH5-5p71JJDfIJrKBBDf7Zqf31B38XCZg0AptU3lE_YCqgq6QeU1nCl0VJorcm26b_ln23yLUStR52CO7JV2ETpjRPqm5_IDsrDQRPCRfZYvUMYQCyU8w602YAXkpLJAl4wdM8mkhvsphFu6dYBFKBdw7eA38GBQgFpgvF0sG8wzeJzP_xpezoHILs3CoaMFrS4_I8OF-dNel5ZMK1CBISxorY5B0ScGNEBnTLLHOyUS3uTBZrHTCldbGxc1EyKipmBFKm8gfDxnDmTgm9XyeuxMCXFitrMus1i1p21xlMmGYmFuprHC8eUpoBWK6CH0z0kpQNk0D6KkH3VsR9FMSV0ina-ufomv_c-TZv0dek63uqP-cPvcGT-dk2_8JQpULUl--fbhLpBtLfVVup2-UvNgW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+quality+characteristics+for+plastic+injection+molding+processes+using+a+combination+of+simulated+and+measured+data&rft.jtitle=Journal+of+manufacturing+processes&rft.au=Finkeldey%2C+Felix&rft.au=Volke%2C+Julia&rft.au=Zarges%2C+Jan-Christoph&rft.au=Heim%2C+Hans-Peter&rft.date=2020-12-01&rft.issn=1526-6125&rft.volume=60&rft.spage=134&rft.epage=143&rft_id=info:doi/10.1016%2Fj.jmapro.2020.10.028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmapro_2020_10_028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-6125&client=summon