Graphitized porous carbon materials with high sulfur loading for lithium-sulfur batteries
Lithium-sulfur (Li-S) batteries are next generation of chemical power sources for energy storage and electrical vehicles, because of its high theoretical capacity and high energy density with cheap nontoxicity sulfur cathode. However, for the large-scale applications it is still a major challenge to...
Saved in:
Published in | Nano energy Vol. 32; pp. 503 - 510 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium-sulfur (Li-S) batteries are next generation of chemical power sources for energy storage and electrical vehicles, because of its high theoretical capacity and high energy density with cheap nontoxicity sulfur cathode. However, for the large-scale applications it is still a major challenge to produce Li-S batteries with remarkable capacity and long stability. Herein, a graphitized carbon/sulfur composites cathode was fabricated with an ultrahigh sulfur percentage of 90wt%, which could deliver a high initial overall discharge capacity of 1070 mAh g−1(S-C) and a discharge capacity of 804 mAh g−1(S-C) after 50 cycles. Even with a sulfur loading as high as 4mgcm−2, the graphitized C/S composites can still deliver a high initial overall discharge capacity of 908 mAh g−1(S-C) and a discharge capacity of 739 mAh g−1(S-C) after 100 cycles. The graphitized carbon with high electrical conductivity, adjustable pore size, pore volume and surface area was synthesized by using commercialized nano-CaCO3 as template and graphitization catalyst. Density functional theory calculation revealed the graphitized structure exhibited stronger adhesion strength with polysulfide. Moreover, the porosity of graphitized carbon enhances the adsorption between carbon and polysulfide.
[Display omitted]
•Commercialized CaCO3 was used as template and graphitization catalyst to synthesize graphitized carbon.•As-prepared cathode material with a high sulfur loading of 4mgcm−2 and 90wt% sulfur.•Graphitized carbon exhibits stronger adhesion with polysulfide and improve battery performance. |
---|---|
AbstractList | Lithium-sulfur (Li-S) batteries are next generation of chemical power sources for energy storage and electrical vehicles, because of its high theoretical capacity and high energy density with cheap nontoxicity sulfur cathode. However, for the large-scale applications it is still a major challenge to produce Li-S batteries with remarkable capacity and long stability. Herein, a graphitized carbon/sulfur composites cathode was fabricated with an ultrahigh sulfur percentage of 90wt%, which could deliver a high initial overall discharge capacity of 1070 mAh g−1(S-C) and a discharge capacity of 804 mAh g−1(S-C) after 50 cycles. Even with a sulfur loading as high as 4mgcm−2, the graphitized C/S composites can still deliver a high initial overall discharge capacity of 908 mAh g−1(S-C) and a discharge capacity of 739 mAh g−1(S-C) after 100 cycles. The graphitized carbon with high electrical conductivity, adjustable pore size, pore volume and surface area was synthesized by using commercialized nano-CaCO3 as template and graphitization catalyst. Density functional theory calculation revealed the graphitized structure exhibited stronger adhesion strength with polysulfide. Moreover, the porosity of graphitized carbon enhances the adsorption between carbon and polysulfide.
[Display omitted]
•Commercialized CaCO3 was used as template and graphitization catalyst to synthesize graphitized carbon.•As-prepared cathode material with a high sulfur loading of 4mgcm−2 and 90wt% sulfur.•Graphitized carbon exhibits stronger adhesion with polysulfide and improve battery performance. |
Author | Sheng, Tian Li, Jun-Tao Liao, Hong-Gang Huang, Ling Peng, Xin-Xing Zhou, Li-Li Lu, Yan-Qiu Shen, Shou-Yu Sun, Shi-Gang |
Author_xml | – sequence: 1 givenname: Xin-Xing surname: Peng fullname: Peng, Xin-Xing organization: State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China – sequence: 2 givenname: Yan-Qiu surname: Lu fullname: Lu, Yan-Qiu organization: College of Energy, Xiamen University, Xiamen 361005, PR China – sequence: 3 givenname: Li-Li surname: Zhou fullname: Zhou, Li-Li organization: State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China – sequence: 4 givenname: Tian surname: Sheng fullname: Sheng, Tian organization: State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China – sequence: 5 givenname: Shou-Yu surname: Shen fullname: Shen, Shou-Yu organization: State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China – sequence: 6 givenname: Hong-Gang surname: Liao fullname: Liao, Hong-Gang organization: State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China – sequence: 7 givenname: Ling surname: Huang fullname: Huang, Ling organization: State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China – sequence: 8 givenname: Jun-Tao surname: Li fullname: Li, Jun-Tao organization: College of Energy, Xiamen University, Xiamen 361005, PR China – sequence: 9 givenname: Shi-Gang surname: Sun fullname: Sun, Shi-Gang organization: State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China |
BookMark | eNqFkLFOwzAQhj0UiVL6Bgx5gQSf0zgpAxKqoCAhscDAZDnOuXGV2pXtgODpcdVODHDL3enXd9J9F2RinUVCroAWQIFfbwsrrUNbsLQVwArK6YRMGQPIWVNV52Qewpam4hXUwKbkfe3lvjfRfGOX7Z13Y8iU9K2z2U5G9EYOIfs0sc96s-mzMA569NngZGfsJtMuzSk04y4_Ra2MBwzDJTnTCcb5qc_I28P96-oxf35ZP63unnNVUh7zWsqa63pRIm0aupQIrZYaeNtUvFKVXtRtiZLXnDJsGAfKllABoOayQwaqnJHF8a7yLgSPWuy92Un_JYCKgxWxFUcr4mBFABPJSsJufmHKRBmNs9FLM_wH3x5hTI99GPQiKINWYWc8qig6Z_4-8APUFIY_ |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2019_04_300 crossref_primary_10_1016_j_ensm_2018_12_024 crossref_primary_10_1007_s11051_019_4507_4 crossref_primary_10_1021_acsaem_8b01765 crossref_primary_10_1016_j_commatsci_2023_112038 crossref_primary_10_1021_acssuschemeng_7b03777 crossref_primary_10_1021_acsaem_1c02020 crossref_primary_10_1007_s40843_020_1345_3 crossref_primary_10_1039_C8TA05508D crossref_primary_10_3390_nano12213770 crossref_primary_10_1016_j_carbon_2018_05_077 crossref_primary_10_1016_j_jpowsour_2019_227676 crossref_primary_10_3390_nano13020260 crossref_primary_10_1002_chem_201803153 crossref_primary_10_1039_D1RA03744G crossref_primary_10_1007_s11581_019_03271_3 crossref_primary_10_1016_j_electacta_2017_07_131 crossref_primary_10_1016_j_electacta_2021_138284 crossref_primary_10_1016_j_diamond_2019_107687 crossref_primary_10_1166_mex_2022_2140 crossref_primary_10_1002_aenm_202001304 crossref_primary_10_1016_j_cej_2020_124315 crossref_primary_10_1016_j_jallcom_2024_178282 crossref_primary_10_1016_j_apcatb_2023_122829 crossref_primary_10_1016_j_electacta_2018_07_006 crossref_primary_10_1016_j_jmst_2021_12_048 crossref_primary_10_1016_j_mtener_2017_09_001 crossref_primary_10_1021_acsami_9b20426 crossref_primary_10_1016_j_jcis_2023_04_094 crossref_primary_10_1016_j_jtice_2018_05_027 crossref_primary_10_1016_j_ces_2024_119951 crossref_primary_10_1016_j_xcrp_2024_102293 crossref_primary_10_1007_s10853_024_10000_3 crossref_primary_10_1021_jacs_8b12973 crossref_primary_10_1016_j_ensm_2019_02_022 crossref_primary_10_1016_j_jallcom_2021_162243 crossref_primary_10_1021_acsanm_4c02595 crossref_primary_10_1039_C9RA10527A crossref_primary_10_1002_adma_202008447 crossref_primary_10_1021_acsami_8b00915 crossref_primary_10_1039_D1TA05876B crossref_primary_10_1016_j_jallcom_2018_09_103 crossref_primary_10_1155_er_9740805 crossref_primary_10_1021_acsenergylett_8b00561 crossref_primary_10_1007_s11581_020_03798_w crossref_primary_10_1039_D3CP01964K crossref_primary_10_1016_j_nanoen_2018_08_065 crossref_primary_10_1021_acsmaterialslett_3c00450 crossref_primary_10_1007_s12274_017_1737_6 crossref_primary_10_1016_j_jcis_2019_05_042 crossref_primary_10_1039_D3TA07510A crossref_primary_10_1016_j_jpowsour_2019_04_027 crossref_primary_10_1016_j_jallcom_2025_179688 crossref_primary_10_1016_j_electacta_2018_02_012 crossref_primary_10_1039_D1CS01014J crossref_primary_10_1007_s10854_018_9220_z crossref_primary_10_1002_ente_202201409 crossref_primary_10_1016_j_electacta_2023_143276 crossref_primary_10_1039_C9TA11572B crossref_primary_10_1002_advs_202207470 crossref_primary_10_1039_D1QI01561C crossref_primary_10_1016_j_jpowsour_2024_235166 crossref_primary_10_1002_batt_201800067 crossref_primary_10_1039_C8NR09653H crossref_primary_10_1021_acs_inorgchem_4c03195 crossref_primary_10_3866_PKU_WHXB202303061 crossref_primary_10_1016_j_jpcs_2022_110845 crossref_primary_10_1021_acs_energyfuels_3c02072 crossref_primary_10_1038_s41467_018_06144_x crossref_primary_10_1016_j_cej_2022_135535 crossref_primary_10_3390_bios14120623 crossref_primary_10_1016_j_electacta_2019_04_019 crossref_primary_10_1016_j_cej_2021_129087 crossref_primary_10_1016_j_mtsust_2022_100181 crossref_primary_10_1016_j_electacta_2019_135482 crossref_primary_10_1016_j_mtener_2019_05_014 crossref_primary_10_1002_adma_201901125 crossref_primary_10_1021_acs_iecr_1c04372 crossref_primary_10_1016_j_nanoen_2018_06_044 crossref_primary_10_1016_j_cej_2020_124404 crossref_primary_10_1016_j_ensm_2025_104181 crossref_primary_10_1016_S1872_5805_24_60878_4 crossref_primary_10_1016_j_ceramint_2019_08_177 crossref_primary_10_1016_j_cclet_2023_108565 crossref_primary_10_1021_acsaem_1c00281 crossref_primary_10_1016_j_est_2023_110296 crossref_primary_10_1039_C8NR07964A crossref_primary_10_1021_acsanm_4c06605 crossref_primary_10_1016_j_jelechem_2019_113539 crossref_primary_10_1007_s10853_018_2295_3 crossref_primary_10_1016_j_electacta_2023_143054 crossref_primary_10_1039_C8NR07220E crossref_primary_10_1016_j_carbon_2018_05_048 crossref_primary_10_1007_s40843_024_2969_3 crossref_primary_10_1016_j_apsusc_2024_161718 crossref_primary_10_1016_j_carbon_2018_09_061 crossref_primary_10_1016_j_microc_2019_03_083 crossref_primary_10_1021_acs_jpcc_1c04491 crossref_primary_10_1016_j_jssc_2018_08_040 crossref_primary_10_1002_admi_201700783 crossref_primary_10_1007_s12274_020_3181_2 crossref_primary_10_1016_j_cej_2024_153647 crossref_primary_10_1038_s41467_021_24976_y crossref_primary_10_1021_acs_jpcc_9b03686 crossref_primary_10_1002_adfm_201702573 crossref_primary_10_1039_D0TA07292C crossref_primary_10_1021_acscatal_2c03683 crossref_primary_10_1016_j_apsusc_2022_153980 crossref_primary_10_2139_ssrn_4177638 crossref_primary_10_1007_s11581_022_04801_2 crossref_primary_10_1016_j_jece_2020_104929 crossref_primary_10_1016_j_ensm_2018_05_006 crossref_primary_10_1016_j_electacta_2018_05_180 crossref_primary_10_1039_C8TA08188C crossref_primary_10_1016_j_jpowsour_2021_230913 crossref_primary_10_1039_C7TA00445A crossref_primary_10_1016_j_jechem_2019_01_005 crossref_primary_10_1016_j_apsusc_2018_07_139 crossref_primary_10_1016_j_cej_2021_129724 crossref_primary_10_1021_acsami_1c19705 crossref_primary_10_1016_j_jelechem_2022_116908 crossref_primary_10_20964_2018_05_47 crossref_primary_10_1016_j_jechem_2020_06_066 crossref_primary_10_1016_j_nanoen_2018_06_011 crossref_primary_10_1002_er_5070 crossref_primary_10_1007_s41918_018_0010_3 crossref_primary_10_1016_j_est_2025_115544 crossref_primary_10_1016_j_colsurfa_2024_135074 crossref_primary_10_1002_nano_202000157 crossref_primary_10_1016_j_cej_2019_01_048 crossref_primary_10_1002_aenm_201702373 crossref_primary_10_1016_j_carbon_2021_03_029 crossref_primary_10_1016_j_electacta_2021_138898 crossref_primary_10_1039_D0NR06151D |
Cites_doi | 10.1002/aenm.201402290 10.1016/j.nanoen.2013.12.013 10.1002/ange.201107817 10.1002/adfm.201402768 10.1021/ja409508q 10.1002/adfm.201302631 10.1016/S0013-4686(03)00258-5 10.1021/cm902050j 10.1021/nl200658a 10.1002/anie.201100637 10.1002/aenm.201502539 10.1557/mrs.2014.62 10.1016/j.jpowsour.2012.12.102 10.1016/j.jpowsour.2015.10.013 10.1038/ncomms10601 10.1039/b925751a 10.1038/ncomms2327 10.1016/j.carbon.2012.03.050 10.1149/1.3148721 10.1002/adfm.201503726 10.1016/j.nanoen.2014.11.025 10.1002/anie.201411109 10.1002/ange.201205292 10.1039/C3TA14921H 10.1038/ncomms6682 10.1021/am402970x 10.1021/ja308170k 10.1016/j.electacta.2012.03.081 10.1039/c2ee03495f 10.1039/c2cp40808b 10.1016/j.electacta.2011.03.005 10.1021/nl403130h 10.1016/j.jpowsour.2012.10.004 10.1021/cr500062v 10.1039/c002639e 10.1021/am4000535 10.1016/S1388-2481(02)00358-2 10.1038/nmat3191 10.1002/aenm.201502059 10.1002/adfm.201303080 10.1149/2.106311jes 10.1038/nmat2460 10.1021/nl404721h 10.1038/srep04842 10.1021/nl400543y |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2016.12.060 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 510 |
ExternalDocumentID | 10_1016_j_nanoen_2016_12_060 S2211285516306243 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-7aa76f743e08809ae1bfaf16b8565c5f47b3ea67602e82610291511ef6ade21c3 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Tue Jul 01 01:55:54 EDT 2025 Thu Apr 24 23:09:58 EDT 2025 Fri Feb 23 02:30:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-sulfur batteries CaCO3 template High sulfur loading Graphitized carbon |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-7aa76f743e08809ae1bfaf16b8565c5f47b3ea67602e82610291511ef6ade21c3 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1016_j_nanoen_2016_12_060 crossref_citationtrail_10_1016_j_nanoen_2016_12_060 elsevier_sciencedirect_doi_10_1016_j_nanoen_2016_12_060 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2017 2017-02-00 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: February 2017 |
PublicationDecade | 2010 |
PublicationTitle | Nano energy |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Li, Sun, Hou, Jiang, Huang, Geng (bib41) 2016; 7 Tang, Li, Zhang, Zhu, Wang, Shi, Wei (bib24) 2016; 26 Liang, Dudney, Howe (bib16) 2009; 21 Song, Gordin, Xu, Chen, Yu, Sohn, Lu, Ren, Duan, Wang (bib35) 2015; 54 Zheng, Lv, Gu, Wang, Zhang, Liu, Xiao (bib31) 2013; 160 Wei Seh, Li, Cha, Zheng, Yang, McDowell, Hsu, Cui (bib8) 2013; 4 Chen, Zhai, Xu, Jiang, Zhao, Li, Huang, Sun (bib20) 2011; 56 Song, Xu, Gordin, Zhu, Lv, Jiang, Chen, Duan, Wang (bib42) 2014; 24 Wang, Yang, Xie, Xu, Li (bib9) 2002; 4 Wang, Liu, Ling, Yang, Wan, Jiang (bib10) 2003; 48 Cheng, Huang, Zhang, Peng, Zhao, Wei (bib34) 2014; 4 Zhang, Li, Hao, Wang, Li, Qi, Fan, Yin (bib30) 2014; 24 Zhou, Guo, Gao, Goodenough (bib32) 2015; 6 Zhang (bib6) 2013; 231 Lu, Cheng, Wu, Liu (bib29) 2013; 13 Sohn, Gordin, Regula, Kim, Jung, Song, Wang (bib40) 2016; 302 Bruce, Freunberger, Hardwick, Tarascon (bib1) 2012; 11 Wang, Yang, Liang, Robinson, Li, Jackson, Cui, Dai (bib7) 2011; 11 Ji, Nazar (bib2) 2010; 20 Amine, Kanno, Tzeng (bib3) 2014; 39 Yin, Wang, Lin, Yang, Nuli (bib14) 2012; 5 Xu, Xu, Fang, Peng, Fu, Huang, Li, Sun (bib27) 2013; 5 Zheng, Tian, Wu, Gu, Xu, Wang, Gao, Engelhard, Zhang, Liu (bib15) 2014; 14 Wang, Zhou, Li, Wu, Lu, Cheng, Gentle (bib28) 2012; 14 Ji, Lee, Nazar (bib11) 2009; 8 Hagen, Dörfler, Fanz, Berger, Speck, Tübke, Althues, Hoffmann, Scherr, Kaskel (bib37) 2013; 224 Li, Han, Wang, Cheng, Sun, Li (bib38) 2013; 5 Zhang, Wu, Yuan, Guo, Lou (bib26) 2012; 124 Jayaprakash, Shen, Moganty, Corona, Archer (bib19) 2011; 50 Zhang, Qin, Li, Gao (bib18) 2010; 3 Aurbach, Pollak, Elazari, Salitra, Kelley, Affinito (bib45) 2009; 156 Pei, An, Zang, Zhao, Fang, Zheng, Dong, Zheng (bib25) 2016; 6 Lv, Zheng, Li, Xie, Ferrara, Nie, Mehdi, Browning, Zhang, Graff, Liu, Xiao (bib36) 2015; 5 Wang, Su, Wan, Guo, Zhou, Chen, Zhang, Huang (bib39) 2014; 2 Yang, Han, Li, Du (bib43) 2012; 50 Zheng, Han, Han, Zhang, Tang, Yang (bib21) 2014; 4 Liang, Hart, Pang, Garsuch, Weiss, Nazar (bib12) 2015; 6 Zhou, Li, Ma, Wang, Shi, Koratkar, Ren, Li, Cheng (bib33) 2015; 11 Zhou, Yu, Chen, DiSalvo, Abruña (bib5) 2013; 135 Xin, Gu, Zhao, Yin, Zhou, Guo, Wan (bib17) 2012; 134 Schuster, He, Mandlmeier, Yim, Lee, Bein, Nazar (bib22) 2012; 124 Zhang (bib44) 2012; 70 Li, Zhang, Zheng, Seh, Yao, Cui (bib13) 2013; 13 Manthiram, Fu, Chung, Zu, Su (bib4) 2014; 114 Strubel, Thieme, Biemelt, Helmer, Oschatz, Brückner, Althues, Kaskel (bib23) 2015; 25 Wang (10.1016/j.nanoen.2016.12.060_bib7) 2011; 11 Liang (10.1016/j.nanoen.2016.12.060_bib12) 2015; 6 Wei Seh (10.1016/j.nanoen.2016.12.060_bib8) 2013; 4 Cheng (10.1016/j.nanoen.2016.12.060_bib34) 2014; 4 Li (10.1016/j.nanoen.2016.12.060_bib41) 2016; 7 Tang (10.1016/j.nanoen.2016.12.060_bib24) 2016; 26 Song (10.1016/j.nanoen.2016.12.060_bib42) 2014; 24 Zhang (10.1016/j.nanoen.2016.12.060_bib6) 2013; 231 Ji (10.1016/j.nanoen.2016.12.060_bib11) 2009; 8 Wang (10.1016/j.nanoen.2016.12.060_bib39) 2014; 2 Liang (10.1016/j.nanoen.2016.12.060_bib16) 2009; 21 Li (10.1016/j.nanoen.2016.12.060_bib13) 2013; 13 Yin (10.1016/j.nanoen.2016.12.060_bib14) 2012; 5 Zheng (10.1016/j.nanoen.2016.12.060_bib31) 2013; 160 Yang (10.1016/j.nanoen.2016.12.060_bib43) 2012; 50 Lu (10.1016/j.nanoen.2016.12.060_bib29) 2013; 13 Xu (10.1016/j.nanoen.2016.12.060_bib27) 2013; 5 Zhang (10.1016/j.nanoen.2016.12.060_bib30) 2014; 24 Li (10.1016/j.nanoen.2016.12.060_bib38) 2013; 5 Manthiram (10.1016/j.nanoen.2016.12.060_bib4) 2014; 114 Song (10.1016/j.nanoen.2016.12.060_bib35) 2015; 54 Xin (10.1016/j.nanoen.2016.12.060_bib17) 2012; 134 Bruce (10.1016/j.nanoen.2016.12.060_bib1) 2012; 11 Wang (10.1016/j.nanoen.2016.12.060_bib28) 2012; 14 Hagen (10.1016/j.nanoen.2016.12.060_bib37) 2013; 224 Zhou (10.1016/j.nanoen.2016.12.060_bib32) 2015; 6 Pei (10.1016/j.nanoen.2016.12.060_bib25) 2016; 6 Strubel (10.1016/j.nanoen.2016.12.060_bib23) 2015; 25 Ji (10.1016/j.nanoen.2016.12.060_bib2) 2010; 20 Chen (10.1016/j.nanoen.2016.12.060_bib20) 2011; 56 Zheng (10.1016/j.nanoen.2016.12.060_bib21) 2014; 4 Zhou (10.1016/j.nanoen.2016.12.060_bib33) 2015; 11 Lv (10.1016/j.nanoen.2016.12.060_bib36) 2015; 5 Amine (10.1016/j.nanoen.2016.12.060_bib3) 2014; 39 Wang (10.1016/j.nanoen.2016.12.060_bib9) 2002; 4 Sohn (10.1016/j.nanoen.2016.12.060_bib40) 2016; 302 Schuster (10.1016/j.nanoen.2016.12.060_bib22) 2012; 124 Zhou (10.1016/j.nanoen.2016.12.060_bib5) 2013; 135 Wang (10.1016/j.nanoen.2016.12.060_bib10) 2003; 48 Jayaprakash (10.1016/j.nanoen.2016.12.060_bib19) 2011; 50 Zhang (10.1016/j.nanoen.2016.12.060_bib44) 2012; 70 Zhang (10.1016/j.nanoen.2016.12.060_bib26) 2012; 124 Zheng (10.1016/j.nanoen.2016.12.060_bib15) 2014; 14 Aurbach (10.1016/j.nanoen.2016.12.060_bib45) 2009; 156 Zhang (10.1016/j.nanoen.2016.12.060_bib18) 2010; 3 |
References_xml | – volume: 134 start-page: 18510 year: 2012 end-page: 18513 ident: bib17 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 1502539 year: 2016 end-page: 1502547 ident: bib25 publication-title: Adv. Energy Mater. – volume: 26 start-page: 577 year: 2016 end-page: 585 ident: bib24 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 1502059 year: 2015 ident: bib32 publication-title: Adv. Energy Mater. – volume: 13 start-page: 5534 year: 2013 end-page: 5540 ident: bib13 publication-title: Nano Lett. – volume: 24 start-page: 2500 year: 2014 end-page: 2509 ident: bib30 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 19 year: 2012 end-page: 29 ident: bib1 publication-title: Nat. Mater. – volume: 3 start-page: 1531 year: 2010 end-page: 1537 ident: bib18 publication-title: Energy Environ. Sci. – volume: 4 start-page: 1331 year: 2013 ident: bib8 publication-title: Nat. Commun. – volume: 54 start-page: 4325 year: 2015 end-page: 4329 ident: bib35 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 499 year: 2002 end-page: 502 ident: bib9 publication-title: Electrochem. Commun. – volume: 21 start-page: 4724 year: 2009 end-page: 4730 ident: bib16 publication-title: Chem. Mater. – volume: 50 start-page: 3753 year: 2012 end-page: 3765 ident: bib43 publication-title: Carbon – volume: 2 start-page: 5018 year: 2014 end-page: 5023 ident: bib39 publication-title: J. Mater. Chem. A – volume: 7 start-page: 10601 year: 2016 ident: bib41 publication-title: Nat. Commun. – volume: 56 start-page: 9549 year: 2011 end-page: 9555 ident: bib20 publication-title: Electrochim. Acta – volume: 231 start-page: 153 year: 2013 end-page: 162 ident: bib6 publication-title: J. Power Sour. – volume: 24 start-page: 1243 year: 2014 end-page: 1250 ident: bib42 publication-title: Adv. Funct. Mater. – volume: 48 start-page: 1861 year: 2003 end-page: 1867 ident: bib10 publication-title: Electrochim. Acta – volume: 11 start-page: 2644 year: 2011 end-page: 2647 ident: bib7 publication-title: Nano Lett. – volume: 135 start-page: 16736 year: 2013 end-page: 16743 ident: bib5 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 356 year: 2015 end-page: 365 ident: bib33 publication-title: Nano Energy – volume: 4 start-page: 65 year: 2014 end-page: 72 ident: bib34 publication-title: Nano Energy – volume: 114 start-page: 11751 year: 2014 end-page: 11787 ident: bib4 publication-title: Chem. Rev. – volume: 6 start-page: 5682 year: 2015 ident: bib12 publication-title: Nat. Commun. – volume: 70 start-page: 344 year: 2012 end-page: 348 ident: bib44 publication-title: Electrochim. Acta – volume: 156 start-page: A694 year: 2009 end-page: A702 ident: bib45 publication-title: J. Electrochem. Soc. – volume: 5 start-page: 1402290 year: 2015 ident: bib36 publication-title: Adv. Energy Mater. – volume: 39 start-page: 395 year: 2014 end-page: 405 ident: bib3 publication-title: MRS Bull. – volume: 25 start-page: 287 year: 2015 end-page: 297 ident: bib23 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 10782 year: 2013 end-page: 10793 ident: bib27 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 2485 year: 2013 end-page: 2489 ident: bib29 publication-title: Nano Lett. – volume: 14 start-page: 8703 year: 2012 end-page: 8710 ident: bib28 publication-title: Phys. Chem. Chem. Phys. – volume: 14 start-page: 2345 year: 2014 end-page: 2352 ident: bib15 publication-title: Nano Lett. – volume: 8 start-page: 500 year: 2009 end-page: 506 ident: bib11 publication-title: Nat. Mater. – volume: 5 start-page: 6966 year: 2012 end-page: 6972 ident: bib14 publication-title: Energy Environ. Sci. – volume: 4 start-page: 4842 year: 2014 ident: bib21 publication-title: Sci. Rep. – volume: 50 start-page: 5904 year: 2011 end-page: 5908 ident: bib19 publication-title: Angew. Chem. Int. Ed. – volume: 20 start-page: 9821 year: 2010 end-page: 9826 ident: bib2 publication-title: J. Mater. Chem. – volume: 124 start-page: 3651 year: 2012 end-page: 3655 ident: bib22 publication-title: Angew. Chem. Int. Ed. – volume: 124 start-page: 9730 year: 2012 end-page: 9733 ident: bib26 publication-title: Angew. Chem. Int. Ed. – volume: 160 start-page: A2288 year: 2013 end-page: A2292 ident: bib31 publication-title: J. Electrochem. Soc. – volume: 224 start-page: 260 year: 2013 end-page: 268 ident: bib37 publication-title: J. Power Sources – volume: 5 start-page: 2208 year: 2013 end-page: 2213 ident: bib38 publication-title: ACS Appl. Mater. Interfaces – volume: 302 start-page: 70 year: 2016 end-page: 78 ident: bib40 publication-title: J. Power Sources – volume: 5 start-page: 1402290 year: 2015 ident: 10.1016/j.nanoen.2016.12.060_bib36 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201402290 – volume: 4 start-page: 65 year: 2014 ident: 10.1016/j.nanoen.2016.12.060_bib34 publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.12.013 – volume: 124 start-page: 3651 year: 2012 ident: 10.1016/j.nanoen.2016.12.060_bib22 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201107817 – volume: 25 start-page: 287 year: 2015 ident: 10.1016/j.nanoen.2016.12.060_bib23 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201402768 – volume: 135 start-page: 16736 year: 2013 ident: 10.1016/j.nanoen.2016.12.060_bib5 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409508q – volume: 24 start-page: 1243 year: 2014 ident: 10.1016/j.nanoen.2016.12.060_bib42 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201302631 – volume: 48 start-page: 1861 year: 2003 ident: 10.1016/j.nanoen.2016.12.060_bib10 publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(03)00258-5 – volume: 21 start-page: 4724 year: 2009 ident: 10.1016/j.nanoen.2016.12.060_bib16 publication-title: Chem. Mater. doi: 10.1021/cm902050j – volume: 11 start-page: 2644 year: 2011 ident: 10.1016/j.nanoen.2016.12.060_bib7 publication-title: Nano Lett. doi: 10.1021/nl200658a – volume: 50 start-page: 5904 year: 2011 ident: 10.1016/j.nanoen.2016.12.060_bib19 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201100637 – volume: 6 start-page: 1502539 year: 2016 ident: 10.1016/j.nanoen.2016.12.060_bib25 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502539 – volume: 39 start-page: 395 year: 2014 ident: 10.1016/j.nanoen.2016.12.060_bib3 publication-title: MRS Bull. doi: 10.1557/mrs.2014.62 – volume: 231 start-page: 153 year: 2013 ident: 10.1016/j.nanoen.2016.12.060_bib6 publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2012.12.102 – volume: 302 start-page: 70 year: 2016 ident: 10.1016/j.nanoen.2016.12.060_bib40 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.10.013 – volume: 7 start-page: 10601 year: 2016 ident: 10.1016/j.nanoen.2016.12.060_bib41 publication-title: Nat. Commun. doi: 10.1038/ncomms10601 – volume: 20 start-page: 9821 year: 2010 ident: 10.1016/j.nanoen.2016.12.060_bib2 publication-title: J. Mater. Chem. doi: 10.1039/b925751a – volume: 4 start-page: 1331 year: 2013 ident: 10.1016/j.nanoen.2016.12.060_bib8 publication-title: Nat. Commun. doi: 10.1038/ncomms2327 – volume: 50 start-page: 3753 year: 2012 ident: 10.1016/j.nanoen.2016.12.060_bib43 publication-title: Carbon doi: 10.1016/j.carbon.2012.03.050 – volume: 156 start-page: A694 year: 2009 ident: 10.1016/j.nanoen.2016.12.060_bib45 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3148721 – volume: 26 start-page: 577 year: 2016 ident: 10.1016/j.nanoen.2016.12.060_bib24 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503726 – volume: 11 start-page: 356 year: 2015 ident: 10.1016/j.nanoen.2016.12.060_bib33 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.025 – volume: 54 start-page: 4325 year: 2015 ident: 10.1016/j.nanoen.2016.12.060_bib35 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201411109 – volume: 124 start-page: 9730 year: 2012 ident: 10.1016/j.nanoen.2016.12.060_bib26 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201205292 – volume: 2 start-page: 5018 year: 2014 ident: 10.1016/j.nanoen.2016.12.060_bib39 publication-title: J. Mater. Chem. A doi: 10.1039/C3TA14921H – volume: 6 start-page: 5682 year: 2015 ident: 10.1016/j.nanoen.2016.12.060_bib12 publication-title: Nat. Commun. doi: 10.1038/ncomms6682 – volume: 5 start-page: 10782 year: 2013 ident: 10.1016/j.nanoen.2016.12.060_bib27 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am402970x – volume: 134 start-page: 18510 year: 2012 ident: 10.1016/j.nanoen.2016.12.060_bib17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308170k – volume: 70 start-page: 344 year: 2012 ident: 10.1016/j.nanoen.2016.12.060_bib44 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.03.081 – volume: 5 start-page: 6966 year: 2012 ident: 10.1016/j.nanoen.2016.12.060_bib14 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee03495f – volume: 14 start-page: 8703 year: 2012 ident: 10.1016/j.nanoen.2016.12.060_bib28 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp40808b – volume: 56 start-page: 9549 year: 2011 ident: 10.1016/j.nanoen.2016.12.060_bib20 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.03.005 – volume: 13 start-page: 5534 year: 2013 ident: 10.1016/j.nanoen.2016.12.060_bib13 publication-title: Nano Lett. doi: 10.1021/nl403130h – volume: 224 start-page: 260 year: 2013 ident: 10.1016/j.nanoen.2016.12.060_bib37 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.10.004 – volume: 114 start-page: 11751 year: 2014 ident: 10.1016/j.nanoen.2016.12.060_bib4 publication-title: Chem. Rev. doi: 10.1021/cr500062v – volume: 3 start-page: 1531 year: 2010 ident: 10.1016/j.nanoen.2016.12.060_bib18 publication-title: Energy Environ. Sci. doi: 10.1039/c002639e – volume: 5 start-page: 2208 year: 2013 ident: 10.1016/j.nanoen.2016.12.060_bib38 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4000535 – volume: 4 start-page: 499 year: 2002 ident: 10.1016/j.nanoen.2016.12.060_bib9 publication-title: Electrochem. Commun. doi: 10.1016/S1388-2481(02)00358-2 – volume: 11 start-page: 19 year: 2012 ident: 10.1016/j.nanoen.2016.12.060_bib1 publication-title: Nat. Mater. doi: 10.1038/nmat3191 – volume: 6 start-page: 1502059 year: 2015 ident: 10.1016/j.nanoen.2016.12.060_bib32 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502059 – volume: 24 start-page: 2500 year: 2014 ident: 10.1016/j.nanoen.2016.12.060_bib30 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303080 – volume: 160 start-page: A2288 year: 2013 ident: 10.1016/j.nanoen.2016.12.060_bib31 publication-title: J. Electrochem. Soc. doi: 10.1149/2.106311jes – volume: 8 start-page: 500 year: 2009 ident: 10.1016/j.nanoen.2016.12.060_bib11 publication-title: Nat. Mater. doi: 10.1038/nmat2460 – volume: 14 start-page: 2345 year: 2014 ident: 10.1016/j.nanoen.2016.12.060_bib15 publication-title: Nano Lett. doi: 10.1021/nl404721h – volume: 4 start-page: 4842 year: 2014 ident: 10.1016/j.nanoen.2016.12.060_bib21 publication-title: Sci. Rep. doi: 10.1038/srep04842 – volume: 13 start-page: 2485 year: 2013 ident: 10.1016/j.nanoen.2016.12.060_bib29 publication-title: Nano Lett. doi: 10.1021/nl400543y |
SSID | ssj0000651712 |
Score | 2.5035613 |
Snippet | Lithium-sulfur (Li-S) batteries are next generation of chemical power sources for energy storage and electrical vehicles, because of its high theoretical... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 503 |
SubjectTerms | CaCO3 template Graphitized carbon High sulfur loading Lithium-sulfur batteries |
Title | Graphitized porous carbon materials with high sulfur loading for lithium-sulfur batteries |
URI | https://dx.doi.org/10.1016/j.nanoen.2016.12.060 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywmtaJaydjVVEKiC5QqUyRk9giqKRVaRYGfjt3TlIVCYHEmvik6Hy5--7hz4RcKikCLULJVOJjghIKFkCgY_DzmRTsx3KDHd2HsRxNxN20N22QQX0WBscqK99f-nTnrasnnUqbnUWWdR49yF28ABs9AHs9gYyfQii08qtPvq6zQIjlyjU9cT1DgfoEnRvzynU-N0iEyqWrCzquyh8i1EbUGe6R3Qou0n75RfukYfIDsrNBInhInm-QczpbZR8mpYCmIZWniV7G85wCGi0NjGK5lSI1MX0vZrZY0tncDc9TwKwUkPhLVryx6lXsKDchgz4ik-H102DEqgsTWAIqWDGltZIWMIEB39ENteGx1ZbLOADYlvSsULFvtFQSNgLSCsAWIQR8bqzUqfF44h-TZj7PzQmhkDemXAXCIsaIYZuFsmE3tjzFvm231yJ-raQoqdjE8VKLWVSPjb1GpWojVG3EvQhU2yJsLbUo2TT-WK9q_UffrCICh_-r5Om_Jc_Itoeh201mn5PmalmYCwAeq7jtLKtNtvq396PxFwVT15k |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSD8RnxuQevG9i27LZHQkSQx0VI8LTZtruxBgtBuPjrne3DYGI08dp2kubrdOabndlvAe4E93zlBZyKyLUFSuBRHxMdxZ9Px-g_hmnb0R2NeW_qPc5aswp0yr0wdqyyiP15TM-idXGlUaDZWCZJ48nB2sXxbaMHaa_juTtQs-pUrSrU2v1Bb_y11IJZloms72lNqLUpN9Flk16pShfaaqEyni0NZnKVPySprcTTPYSDgjGSdv5SR1DR6THsb-kInsDzg5WdTtbJh44JEmqs5kmkVuEiJUhIcx8jdsWVWHVi8r6Zm82KzBfZ_DxB2kqQjL8kmzda3Aoz1U0sok9h2r2fdHq0ODOBRojCmgqlBDdICzSGj2agNAuNMoyHPjK3qGU8EbpaccHxW2BlgfQiwJzPtOEq1g6L3DOopotUnwPB0jFmwveMpRkhfmlPmKAZGhbb1m2zVQe3BElGhaC4PddiLsvJsVeZQysttJI5EqGtA_2yWuaCGn88L0r85TfHkBjzf7W8-LflLez2JqOhHPbHg0vYc2wmzwa1r6C6Xm30NfKQdXhT-Nknc3HaSg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphitized+porous+carbon+materials+with+high+sulfur+loading+for+lithium-sulfur+batteries&rft.jtitle=Nano+energy&rft.au=Peng%2C+Xin-Xing&rft.au=Lu%2C+Yan-Qiu&rft.au=Zhou%2C+Li-Li&rft.au=Sheng%2C+Tian&rft.date=2017-02-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=32&rft.spage=503&rft.epage=510&rft_id=info:doi/10.1016%2Fj.nanoen.2016.12.060&rft.externalDocID=S2211285516306243 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |