Tuning the ZnO/GaN heterojunction for atmospheric NO abatement

[Display omitted] •Microstructure and defect concentration were optimized by annealing in air.•In-situ growth of ZnO and GaN(O) to form a heterojunction.•Discrete ZnO directed migration of hot charge carriers.•ZnO/(Ga, Zn)(N, O) exhibited efficient NO oxidation under visible light irradiation.•NO pr...

Full description

Saved in:
Bibliographic Details
Published inApplied surface science Vol. 635; p. 157712
Main Authors Yuan, Xuemei, Wu, Menglin, Ni, Jiupai, Cheng, Yongyi, Ni, Chengsheng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 30.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Microstructure and defect concentration were optimized by annealing in air.•In-situ growth of ZnO and GaN(O) to form a heterojunction.•Discrete ZnO directed migration of hot charge carriers.•ZnO/(Ga, Zn)(N, O) exhibited efficient NO oxidation under visible light irradiation.•NO preferentially adsorbed at the ZnO/(Ga, Zn)(N, O) interface. Photocatalysis was a green and sustainable strategy for environmental remediation as it could accelerate the degradation/oxidation of pollutants using the widely available solar energy as the driving force. The efficacy of photocatalysis could be improved by the formation of a heterojunction and microstructure optimization of the semiconducting catalysts to manipulate the transfer of hot charge carriers. The re-oxidation of a visible light photocatalyst, (Ga, Zn)(N, O) (ZGN), was used for the in-situ production of ZnO/GaN(O) heterojunction with different surface properties for efficient NO oxidation. Re-oxidation at different temperatures imparted the new state of the surface oxide of the substrate (ZGN) anion redistribution by the mode strain between the oxide and the nitride, leading to the transformation of material properties. The ZGN-550 (ZnO/GaN(O)) showed a significantly higher oxidation efficiency (90.2%) than the pristine ZGN (62.3%) under visible light insolation, because the nanoscale discrete ZnO over the oxynitride matrix promoted the separation of charge carriers and the formation of reactive radicals (•OH and •O2–). The ZGN-550 heterojunction obtained a high apparent quantum efficiency of about 6.64% at photons around 400 nm. ZnO/GaN(O) heterojunction has great potential for sustainable and efficient degradation of air pollutants.
AbstractList [Display omitted] •Microstructure and defect concentration were optimized by annealing in air.•In-situ growth of ZnO and GaN(O) to form a heterojunction.•Discrete ZnO directed migration of hot charge carriers.•ZnO/(Ga, Zn)(N, O) exhibited efficient NO oxidation under visible light irradiation.•NO preferentially adsorbed at the ZnO/(Ga, Zn)(N, O) interface. Photocatalysis was a green and sustainable strategy for environmental remediation as it could accelerate the degradation/oxidation of pollutants using the widely available solar energy as the driving force. The efficacy of photocatalysis could be improved by the formation of a heterojunction and microstructure optimization of the semiconducting catalysts to manipulate the transfer of hot charge carriers. The re-oxidation of a visible light photocatalyst, (Ga, Zn)(N, O) (ZGN), was used for the in-situ production of ZnO/GaN(O) heterojunction with different surface properties for efficient NO oxidation. Re-oxidation at different temperatures imparted the new state of the surface oxide of the substrate (ZGN) anion redistribution by the mode strain between the oxide and the nitride, leading to the transformation of material properties. The ZGN-550 (ZnO/GaN(O)) showed a significantly higher oxidation efficiency (90.2%) than the pristine ZGN (62.3%) under visible light insolation, because the nanoscale discrete ZnO over the oxynitride matrix promoted the separation of charge carriers and the formation of reactive radicals (•OH and •O2–). The ZGN-550 heterojunction obtained a high apparent quantum efficiency of about 6.64% at photons around 400 nm. ZnO/GaN(O) heterojunction has great potential for sustainable and efficient degradation of air pollutants.
ArticleNumber 157712
Author Ni, Jiupai
Cheng, Yongyi
Ni, Chengsheng
Wu, Menglin
Yuan, Xuemei
Author_xml – sequence: 1
  givenname: Xuemei
  surname: Yuan
  fullname: Yuan, Xuemei
  organization: College of Resources and Environment, Southwest University, Chongqing 400715, China
– sequence: 2
  givenname: Menglin
  surname: Wu
  fullname: Wu, Menglin
  organization: College of Resources and Environment, Southwest University, Chongqing 400715, China
– sequence: 3
  givenname: Jiupai
  surname: Ni
  fullname: Ni, Jiupai
  organization: College of Resources and Environment, Southwest University, Chongqing 400715, China
– sequence: 4
  givenname: Yongyi
  surname: Cheng
  fullname: Cheng, Yongyi
  organization: College of Resources and Environment, Southwest University, Chongqing 400715, China
– sequence: 5
  givenname: Chengsheng
  surname: Ni
  fullname: Ni, Chengsheng
  email: nichengsheg@swu.edu.cn
  organization: College of Resources and Environment, Southwest University, Chongqing 400715, China
BookMark eNqFj81OAjEYRbvAREDfwEVfYIb-zEyLCxJDFE0IbFi5aTqdr9IJtKQtJr69kHHlQld3cXNu7pmgkQ8eEHqgpKSENrO-1Kd0TqZkhPGS1kJQNkLjSzUvKs7ZLZqk1BNCmRR8jBa7s3f-A-c94He_na30Bu8hQwz92Zvsgsc2RKzzMaTTHqIzeLPFutUZjuDzHbqx-pDg_ienaPfyvFu-Fuvt6m35tC4MJ00uhKxaMbcdqbs5NBykYbruiCS6aihphDbMCgAroRWylXUDVErbaQ2mJkTyKXocZk0MKUWwyrisr-9y1O6gKFFXedWrQV5d5dUgf4GrX_ApuqOOX_9hiwGDi9eng6iSceANdC6CyaoL7u-Bb8ZTeps
CitedBy_id crossref_primary_10_1016_j_vacuum_2023_112589
crossref_primary_10_1016_j_apsusc_2024_161260
crossref_primary_10_3390_molecules30051134
Cites_doi 10.1016/j.spmi.2015.06.013
10.1038/440295a
10.1016/j.cclet.2018.12.018
10.1039/C5NR08663A
10.1002/anie.201900150
10.1038/s41467-020-19217-7
10.1038/s41929-022-00907-y
10.1016/j.materresbull.2009.10.008
10.1021/acsami.9b21793
10.1016/j.apsusc.2022.155085
10.1016/j.apsusc.2023.156718
10.1021/acs.jpcc.8b01933
10.1016/j.nanoen.2018.03.014
10.1021/ja0518777
10.1016/j.apcatb.2021.120934
10.1016/j.matt.2020.12.024
10.1016/j.cej.2021.132968
10.1016/j.seppur.2016.09.034
10.1016/j.electacta.2009.11.012
10.1016/j.apcatb.2020.119761
10.1016/j.apsusc.2016.11.053
10.1016/j.cej.2020.126199
10.1016/j.cej.2022.136709
10.1016/j.apcatb.2008.10.014
10.1016/j.seppur.2022.123054
10.1016/j.nbt.2011.04.009
10.1016/j.materresbull.2016.07.029
10.1016/j.jcat.2005.11.023
10.1016/j.nanoen.2020.105415
10.1016/j.fuel.2021.121510
10.1021/acscatal.2c04361
10.1016/j.cej.2019.03.266
10.1016/j.apcata.2015.08.027
10.1016/j.apcatb.2020.119008
10.1016/j.jhazmat.2020.124897
10.1016/j.jhazmat.2022.130040
10.1021/acs.inorgchem.8b01415
10.1021/cm901917a
10.1006/jcat.2001.3413
10.1021/jp103722j
10.1016/S1872-2067(19)63279-1
10.1021/acs.jpcc.7b06455
10.1039/C6CP08698E
10.1016/j.apsusc.2022.153304
10.1021/acscatal.6b01657
10.1016/j.molcata.2010.03.029
10.1016/j.apsusc.2023.157004
10.1016/j.jcrysgro.2016.05.037
10.1021/acsami.7b15946
10.1016/j.apsusc.2023.156556
10.1016/S1872-2067(22)64139-1
10.1021/acscatal.2c02326
10.1016/j.apcatb.2022.121372
10.1016/j.jhazmat.2020.123174
10.1021/acs.inorgchem.5b01605
10.1016/j.jhazmat.2022.128468
10.1016/j.apsusc.2022.154968
10.1016/j.apcatb.2022.121719
10.1126/science.aam6620
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apsusc.2023.157712
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_apsusc_2023_157712
S0169433223013910
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXRA
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SPG
SSK
SSM
SSQ
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
NDZJH
R2-
RIG
SEW
SSH
WUQ
ID FETCH-LOGICAL-c306t-784b79fd05d9e63e8c2a5d080a461067ac2f7eef8eb78b856e188fdaaec50083
IEDL.DBID .~1
ISSN 0169-4332
IngestDate Thu Apr 24 22:55:22 EDT 2025
Tue Jul 01 02:18:49 EDT 2025
Tue Dec 03 03:44:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords NO oxidation
ZnO nano-particles
Photocatalysis
(Ga, Zn)(N, O)
Heterojunction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-784b79fd05d9e63e8c2a5d080a461067ac2f7eef8eb78b856e188fdaaec50083
ParticipantIDs crossref_citationtrail_10_1016_j_apsusc_2023_157712
crossref_primary_10_1016_j_apsusc_2023_157712
elsevier_sciencedirect_doi_10_1016_j_apsusc_2023_157712
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-30
PublicationDateYYYYMMDD 2023-10-30
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-30
  day: 30
PublicationDecade 2020
PublicationTitle Applied surface science
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen, Long, Chen, Rao, Li, Huang (b0275) 2020; 272
Zhu, Li, Liu, Xia, Xie, Xiong (b0115) 2018; 122
Xiong, Wang, Ma, He, Huang, Feng, Ban, Gan, Zhou (b0220) 2023; 616
Yuan, Chen, Wang, Wu, Sheng, Dong, Sun (b0105) 2020; 400
Hu, Ou, Huang, Ji, Xiang, Zhu, Chen, Gong, Sun, Lian, Sun, Fu, Ma (b0200) 2018; 57
Yamamoto, Chikamatsu, Kitagawa, Izumo, Yamashita, Takatsu, Ochi, Maruyama, Namba, Sun, Nakashima, Takeiri, Fujii, Yashima, Sugisawa, Sano, Hirose, Sekiba, Brown, Honda, Ikeda, Otomo, Kuroki, Ishida, Mori, Kimoto, Hasegawa, Kageyama (b0230) 2020; 11
Azpiroz, Carretero, Cueva, Gonzalez, Iglesias, Perez-Torrente (b0015) 2022; 606
Maeda, Takata, Hara, Saito, Inoue, Kobayashi, Domen (b0130) 2005; 127
Yue, Yi, Wang, Zhang, Qiu (b0245) 2018; 47
Casapu, KrÖCher, Elsener (b0025) 2009; 88
Zhou, Zeng, Li, Yang, Qin, Ho, Wang (b0055) 2022; 317
Li, Li, Jing, Xiao, Xie, Hong, Ta, Zhang, Zhu, Li (b0085) 2023; 6
Li, Wang, Zhang, Lv, Yuan, Bahnemann (b0020) 2022; 43
Wang, Zhang, Zhuang, Chen, Wang, Zheng, Yang (b0075) 2017; 396
Li, Yang, Wu, Zhang, Xu, Liu (b0090) 2020; 12
Li, Zhou, Li, Li, Carabineiro, Zhang, Fan, Lv (b0285) 2023; 442
Feygenson, Neuefeind, Tyson, Schieber, Han (b0095) 2015; 54
Maeda, Domen (b0310) 2010; 22
Miyaake, Masubuchi, Takeda, Kikkawa (b0150) 2010; 45
Maeda, Teramura, Lu, Takata, Saito, Inoue, Domen (b0065) 2006; 440
Yu, Chiu, Wu, Liao, Nguyen, Wu (b0120) 2016; 518
Zheng, Luo, Ruan, Wang, Yu, Guo, Zhang, Xie, Zhang, Huang (b0160) 2022; 311
Wu, Cheng (b0175) 2006; 237
He, Tan, Song, Tu, Fu, Long, Wu, Xu, Liu (b0170) 2022; 430
Boateng, Tia, Adei, Dzade, Catlow, De Leeuw (b0140) 2017; 19
Liu, Li, Qi, Wang, Wen, Wang (b0110) 2023; 607
Song, Jiang, Cai, Yue, Chen, Dai, Fu (b0280) 2022; 444
Zhang, Chen, Abbas, Jan, Zhou, Chu, Xie, Ullah, Akram, Zhang, Xuan, Gong (b0145) 2021; 4
Abdel-Mageed, Klyushin, Rezvani, Knop-Gericke, Schlogl, Behm (b0225) 2019; 58
Van Den Hende, Vervaeren, Desmet, Boon (b0035) 2011; 29
Li, Liu, Yang, Cho, Zhang, Dierre, Sekiguchi, Wu, Jiang (b0080) 2016; 8
Wang, Tan, Feng, Dang, Wang, Zhang, Ren, Lv, Xia, Liu, Liu (b0060) 2021; 408
Jin, Chen, Wang, Hu (b0005) 2019; 30
Kou, Li, Guo, Gao, Yang, Zou (b0125) 2010; 325
Kantcheva (b0195) 2001; 204
Zhao, Feng, Chen, Fan, Bai (b0030) 2021; 305
Shin, Yeom, Yang, Hur, Kim, Im, Seo, Noh, Seok (b0190) 2017; 356
Shtepliuk, Khranovskyy, Yakimova (b0295) 2015; 85
El-Sheikh, Khedr, Hakki, Ismail, Badawy, Bahnemann (b0180) 2017; 173
Jeong, Oh, Ryou, Ahn, Song, Kim (b0255) 2018; 10
Liu, Chen, Yuan, Zhang, Huang, Wang, Dong (b0290) 2019; 40
Huang, Sklute, Lehuta, Kittilstved, Glotch, Liu, Khalifah (b0100) 2017; 121
Dong, Yang, Wang, Zang, Wang (b0265) 2016; 6
Chen, Wang, Li, Ni, Tang, Irvine, Ni (b0135) 2022; 455
Harrington, Wang, Devine (b0240) 2010; 55
Shang, Wang, Ren, Yu, Zheng, Tao, Feng, Xiao, Wang (b0045) 2023; 619
Ma, Yang, Han, Wang, Zhang, Li (b0305) 2010; 114
Liu, Zhang, Zhang, Lin, Wang, Xu, Xiang, Hisatomi, Domen, Ma (b0070) 2022; 12
Gharagozlou, Naghibi (b0185) 2016; 84
Li, Li, Ding, Yan, Wang, Carabineiro, Liu, Lv (b0205) 2023; 309
Yang, Fu, Wang, Yu, Xu (b0250) 2022; 304
Xie, Chen, Li, Xu, Li, He, Lu (b0260) 2022; 430
Abdellatif, Zhang, Wang, Xie, Irvine, Ni, Ni (b0010) 2019; 370
Song, Li, Cai, Chen, Dai, Fu (b0210) 2023; 623
Sadovyi, Nikolenko, Weyher, Grzegory, Dziecielewski, Sarzynski, Strelchuk, Tsykaniuk, Belyaev, Petrusha, Turkevich, Kapustianyk, Albrecht, Porowski (b0300) 2016; 449
Gu, Li, Zhang, Zhang, Shen, Liu, Dong (b0050) 2021; 80
Abdellatif, Zhang, Tang, Ruan, Li, Xie, Ni, Ni (b0165) 2020; 402
Wang, Zhang, Zhuang, Chen, Wang, Zheng, Yang (b0215) 2017; 396
Song, Qin, Cheng, Jiang, Chen, Dai, Fu (b0270) 2021; 284
Huang, Sklute, Lehuta, Kittilstved, Glotch, Liu, Khalifah (b0155) 2017; 121
Jin, Wang (b0235) 2022; 30
Hailili, Ji, Wang, Dong, Chen, Sheng, Bahnemann, Zhao (b0315) 2022; 12
Tian, Wu, Liu, Zhang (b0040) 2022; 592
Huang (10.1016/j.apsusc.2023.157712_b0155) 2017; 121
Abdel-Mageed (10.1016/j.apsusc.2023.157712_b0225) 2019; 58
Xie (10.1016/j.apsusc.2023.157712_b0260) 2022; 430
Harrington (10.1016/j.apsusc.2023.157712_b0240) 2010; 55
Li (10.1016/j.apsusc.2023.157712_b0090) 2020; 12
Shin (10.1016/j.apsusc.2023.157712_b0190) 2017; 356
Shtepliuk (10.1016/j.apsusc.2023.157712_b0295) 2015; 85
Casapu (10.1016/j.apsusc.2023.157712_b0025) 2009; 88
Tian (10.1016/j.apsusc.2023.157712_b0040) 2022; 592
Miyaake (10.1016/j.apsusc.2023.157712_b0150) 2010; 45
Song (10.1016/j.apsusc.2023.157712_b0280) 2022; 444
Xiong (10.1016/j.apsusc.2023.157712_b0220) 2023; 616
Jin (10.1016/j.apsusc.2023.157712_b0235) 2022; 30
He (10.1016/j.apsusc.2023.157712_b0170) 2022; 430
Maeda (10.1016/j.apsusc.2023.157712_b0130) 2005; 127
Wang (10.1016/j.apsusc.2023.157712_b0215) 2017; 396
Liu (10.1016/j.apsusc.2023.157712_b0110) 2023; 607
Hailili (10.1016/j.apsusc.2023.157712_b0315) 2022; 12
Jeong (10.1016/j.apsusc.2023.157712_b0255) 2018; 10
Shang (10.1016/j.apsusc.2023.157712_b0045) 2023; 619
Liu (10.1016/j.apsusc.2023.157712_b0070) 2022; 12
Yu (10.1016/j.apsusc.2023.157712_b0120) 2016; 518
Feygenson (10.1016/j.apsusc.2023.157712_b0095) 2015; 54
Gu (10.1016/j.apsusc.2023.157712_b0050) 2021; 80
Yamamoto (10.1016/j.apsusc.2023.157712_b0230) 2020; 11
Li (10.1016/j.apsusc.2023.157712_b0020) 2022; 43
Jin (10.1016/j.apsusc.2023.157712_b0005) 2019; 30
Yuan (10.1016/j.apsusc.2023.157712_b0105) 2020; 400
Huang (10.1016/j.apsusc.2023.157712_b0100) 2017; 121
Song (10.1016/j.apsusc.2023.157712_b0270) 2021; 284
Azpiroz (10.1016/j.apsusc.2023.157712_b0015) 2022; 606
Zhou (10.1016/j.apsusc.2023.157712_b0055) 2022; 317
Dong (10.1016/j.apsusc.2023.157712_b0265) 2016; 6
Li (10.1016/j.apsusc.2023.157712_b0085) 2023; 6
Ma (10.1016/j.apsusc.2023.157712_b0305) 2010; 114
Maeda (10.1016/j.apsusc.2023.157712_b0310) 2010; 22
Gharagozlou (10.1016/j.apsusc.2023.157712_b0185) 2016; 84
Li (10.1016/j.apsusc.2023.157712_b0205) 2023; 309
El-Sheikh (10.1016/j.apsusc.2023.157712_b0180) 2017; 173
Zhao (10.1016/j.apsusc.2023.157712_b0030) 2021; 305
Zheng (10.1016/j.apsusc.2023.157712_b0160) 2022; 311
Yue (10.1016/j.apsusc.2023.157712_b0245) 2018; 47
Li (10.1016/j.apsusc.2023.157712_b0080) 2016; 8
Yang (10.1016/j.apsusc.2023.157712_b0250) 2022; 304
Chen (10.1016/j.apsusc.2023.157712_b0275) 2020; 272
Zhu (10.1016/j.apsusc.2023.157712_b0115) 2018; 122
Kantcheva (10.1016/j.apsusc.2023.157712_b0195) 2001; 204
Hu (10.1016/j.apsusc.2023.157712_b0200) 2018; 57
Zhang (10.1016/j.apsusc.2023.157712_b0145) 2021; 4
Sadovyi (10.1016/j.apsusc.2023.157712_b0300) 2016; 449
Wu (10.1016/j.apsusc.2023.157712_b0175) 2006; 237
Song (10.1016/j.apsusc.2023.157712_b0210) 2023; 623
Liu (10.1016/j.apsusc.2023.157712_b0290) 2019; 40
Van Den Hende (10.1016/j.apsusc.2023.157712_b0035) 2011; 29
Maeda (10.1016/j.apsusc.2023.157712_b0065) 2006; 440
Abdellatif (10.1016/j.apsusc.2023.157712_b0165) 2020; 402
Kou (10.1016/j.apsusc.2023.157712_b0125) 2010; 325
Boateng (10.1016/j.apsusc.2023.157712_b0140) 2017; 19
Abdellatif (10.1016/j.apsusc.2023.157712_b0010) 2019; 370
Wang (10.1016/j.apsusc.2023.157712_b0060) 2021; 408
Li (10.1016/j.apsusc.2023.157712_b0285) 2023; 442
Wang (10.1016/j.apsusc.2023.157712_b0075) 2017; 396
Chen (10.1016/j.apsusc.2023.157712_b0135) 2022; 455
References_xml – volume: 30
  year: 2022
  ident: b0235
  article-title: In situ XPS proved efficient charge transfer and ion adsorption of ZnCo
  publication-title: Mater. Today Energy
– volume: 12
  start-page: 8583
  year: 2020
  end-page: 8591
  ident: b0090
  article-title: Band-gap tunable 2D hexagonal (GaN)
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 10004
  year: 2022
  end-page: 10017
  ident: b0315
  article-title: ZnO with controllable oxygen vacancies for photocatalytic nitrogen oxide removal
  publication-title: ACS Catal.
– volume: 304
  year: 2022
  ident: b0250
  article-title: Liberating photocarriers in mesoporous single-crystalline SrTaO
  publication-title: Appl. Catal. B: Environ.
– volume: 114
  start-page: 12818
  year: 2010
  end-page: 12822
  ident: b0305
  article-title: Enhancement of photocatalytic water oxidation activity on IrO
  publication-title: J. Phys. Chem. C
– volume: 22
  start-page: 612
  year: 2010
  end-page: 623
  ident: b0310
  article-title: Solid solution of GaN and ZnO as a stable photocatalyst for overall water splitting under visible light
  publication-title: Chem. Mater.
– volume: 55
  start-page: 4092
  year: 2010
  end-page: 4102
  ident: b0240
  article-title: The structure and electronic properties of passive and prepassive films of iron in borate buffer
  publication-title: Electrochim. Acta
– volume: 43
  start-page: 2363
  year: 2022
  end-page: 2387
  ident: b0020
  article-title: Progress and prospects of photocatalytic conversion of low-concentration NO
  publication-title: Chinese J. Catal.
– volume: 30
  start-page: 618
  year: 2019
  end-page: 623
  ident: b0005
  article-title: Insight into room-temperature catalytic oxidation of NO by CrO
  publication-title: Chin. Chem. Lett.
– volume: 6
  start-page: 80
  year: 2023
  end-page: 88
  ident: b0085
  article-title: Blocking the reverse reactions of overall water splitting on a Rh/GaN-ZnO photocatalyst modified with Al
  publication-title: Nat. Catal.
– volume: 19
  start-page: 7399
  year: 2017
  end-page: 7409
  ident: b0140
  article-title: A DFT plus U investigation of hydrogen adsorption on the LaFeO
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 3694
  year: 2016
  end-page: 3703
  ident: b0080
  article-title: Solubility and crystallographic facet tailoring of (GaN)
  publication-title: Nanoscale
– volume: 40
  start-page: 620
  year: 2019
  end-page: 630
  ident: b0290
  article-title: Pivotal roles of artificial oxygen vacancies in enhancing photocatalytic activity and selectivity on Bi
  publication-title: Chinese J Catal
– volume: 440
  start-page: 295
  year: 2006
  ident: b0065
  article-title: Photocatalyst releasing hydrogen from water
  publication-title: Nature
– volume: 430
  year: 2022
  ident: b0260
  article-title: Fabrication of an FAPbBr 3/g-
  publication-title: Chem. Eng. J.
– volume: 121
  start-page: 23249
  year: 2017
  end-page: 23258
  ident: b0155
  article-title: Influence of thermal annealing on free carrier concentration in (GaN)
  publication-title: J. Phys. Chem. C
– volume: 518
  start-page: 158
  year: 2016
  end-page: 166
  ident: b0120
  article-title: Photocatalytic water splitting and hydrogenation of CO
  publication-title: Appl. Catal. A-gen.
– volume: 606
  year: 2022
  ident: b0015
  article-title: In-flow photocatalytic oxidation of NO on glasses coated with nanocolumnar porous TiO
  publication-title: Appl. Surf. Sci.
– volume: 619
  year: 2023
  ident: b0045
  article-title: Hollow macroporous CeO
  publication-title: Appl. Surf. Sci.
– volume: 396
  start-page: 888
  year: 2017
  end-page: 896
  ident: b0215
  article-title: The photocatalytic properties of hollow (GaN)
  publication-title: Appl. Surf. Sci.
– volume: 4
  start-page: 1054
  year: 2021
  end-page: 1071
  ident: b0145
  article-title: Atomic arrangement matters: band-gap variation in composition-tunable (Ga
  publication-title: Matter-Us
– volume: 430
  year: 2022
  ident: b0170
  article-title: Switching on photocatalytic NO oxidation and proton reduction of NH
  publication-title: J. Hazard. Mater.
– volume: 29
  start-page: 23
  year: 2011
  end-page: 31
  ident: b0035
  article-title: Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment
  publication-title: New Biotechnol.
– volume: 607
  year: 2023
  ident: b0110
  article-title: Novel inverse opal Bi
  publication-title: Appl. Surf. Sci.
– volume: 356
  start-page: 167
  year: 2017
  end-page: 171
  ident: b0190
  article-title: Colloidally prepared La-doped BaSnO
  publication-title: Science
– volume: 284
  year: 2021
  ident: b0270
  article-title: Oxygen defect-induced NO
  publication-title: Appl. Catal. B: Environ.
– volume: 88
  start-page: 413
  year: 2009
  end-page: 419
  ident: b0025
  article-title: Screening of doped MnO
  publication-title: Appl. Catal. B: Environ.
– volume: 311
  year: 2022
  ident: b0160
  article-title: Plasma-induced hierarchical amorphous carbon nitride nanostructure with two N
  publication-title: Appl. Catal. B: Environ.
– volume: 444
  year: 2022
  ident: b0280
  article-title: Visible light-driven deep oxidation of NO and its durability over Fe doped BaSnO
  publication-title: Chem. Eng. J.
– volume: 85
  start-page: 438
  year: 2015
  end-page: 444
  ident: b0295
  article-title: Effect of Zn-Cd interdiffusion on the band structure and spontaneous emission of ZnO/Zn
  publication-title: Superlatt. Microst.
– volume: 442
  year: 2023
  ident: b0285
  article-title: Synergistic effect of cyano defects and CaCO
  publication-title: J. Hazard. Mater.
– volume: 204
  start-page: 479
  year: 2001
  end-page: 494
  ident: b0195
  article-title: Identification, stability, and reactivity of NO
  publication-title: J. Catal.
– volume: 57
  start-page: 9412
  year: 2018
  end-page: 9424
  ident: b0200
  article-title: ZnGaNO photocatalyst particles prepared from methane-based nitridation using Zn/Ga/CO
  publication-title: Inorg. Chem.
– volume: 305
  year: 2021
  ident: b0030
  article-title: Thermal process and NO emission reduction characteristics of a new-type coke oven regenerator coupled with SNCR process
  publication-title: Fuel
– volume: 80
  year: 2021
  ident: b0050
  article-title: Bismuth nanoparticles and oxygen vacancies synergistically attired Zn
  publication-title: Nano Energy
– volume: 173
  start-page: 258
  year: 2017
  end-page: 268
  ident: b0180
  article-title: Visible light activated carbon and nitrogen co-doped mesoporous TiO
  publication-title: Sep. Purif. Technol.
– volume: 45
  start-page: 505
  year: 2010
  end-page: 508
  ident: b0150
  article-title: Indium and gallium oxynitrides prepared in the presence of Zn
  publication-title: Mater. Res. Bull.
– volume: 396
  start-page: 888
  year: 2017
  end-page: 896
  ident: b0075
  article-title: The photocatalytic properties of hollow (GaN)
  publication-title: Appl. Surf. Sci.
– volume: 84
  start-page: 71
  year: 2016
  end-page: 78
  ident: b0185
  article-title: Sensitization of ZnO nanoparticle by vitamin B
  publication-title: Mater. Res. Bull.
– volume: 616
  year: 2023
  ident: b0220
  article-title: Oxygen vacancy engineering of zinc oxide for boosting piezo-electrocatalytic hydrogen evolution
  publication-title: Appl. Surf. Sci.
– volume: 272
  year: 2020
  ident: b0275
  article-title: In situ construction of biocompatible Z-scheme alpha-Bi
  publication-title: Appl. Catal. B: Environ.
– volume: 400
  year: 2020
  ident: b0105
  article-title: La-doping induced localized excess electrons on (BiO)
  publication-title: J. Hazard. Mater.
– volume: 408
  year: 2021
  ident: b0060
  article-title: Defects and internal electric fields synergistically optimized g-C
  publication-title: J. Hazard. Mater.
– volume: 121
  start-page: 23249
  year: 2017
  end-page: 23258
  ident: b0100
  article-title: Influence of thermal annealing on free carrier concentration in (GaN)
  publication-title: J. Phys. Chem. C
– volume: 623
  year: 2023
  ident: b0210
  article-title: Synthesis of CdS QDs/BaSnO
  publication-title: Appl. Surf. Sci.
– volume: 54
  start-page: 11226
  year: 2015
  end-page: 11235
  ident: b0095
  article-title: Average and local crystal structures of (Ga
  publication-title: Inorg. Chem.
– volume: 58
  start-page: 10325
  year: 2019
  end-page: 10329
  ident: b0225
  article-title: Negative charging of Au nanoparticles during methanol synthesis from CO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 12
  start-page: 14637
  year: 2022
  end-page: 14646
  ident: b0070
  article-title: Synthesis of narrow-band-gap GaN:ZnO solid solution for photocatalytic overall water splitting
  publication-title: ACS Catal.
– volume: 325
  start-page: 48
  year: 2010
  end-page: 54
  ident: b0125
  article-title: Photocatalytic degradation of polycyclic aromatic hydrocarbons in GaN:ZnO solid solution-assisted process: direct hole oxidation mechanism
  publication-title: J. Mol. Catal. A-Chem.
– volume: 10
  start-page: 3761
  year: 2018
  end-page: 3768
  ident: b0255
  article-title: Monolithic inorganic ZnO/GaN semiconductors heterojunction white light-emitting diodes
  publication-title: ASC Appl. Mater. Inter
– volume: 6
  start-page: 6511
  year: 2016
  end-page: 6519
  ident: b0265
  article-title: Removal of nitric oxide through visible light photocatalysis by g-C
  publication-title: ACS Catal.
– volume: 402
  year: 2020
  ident: b0165
  article-title: A highly efficient dual-phase GaN(O)/Nb
  publication-title: Chem. Eng. J.
– volume: 309
  year: 2023
  ident: b0205
  article-title: Effect of oxygen vacancies on the photocatalytic activity of flower-like BiOBr microspheres towards NO oxidation and CO
  publication-title: Sep. Purif. Technol.
– volume: 47
  start-page: 463
  year: 2018
  end-page: 473
  ident: b0245
  article-title: Well-controlled SrTiO
  publication-title: Nano Energy
– volume: 370
  start-page: 875
  year: 2019
  end-page: 884
  ident: b0010
  article-title: Boosting photocatalytic oxidation on graphitic carbon nitride for efficient photocatalysis by heterojunction with graphitic carbon units
  publication-title: Chem. Eng. J.
– volume: 455
  year: 2022
  ident: b0135
  article-title: Gas sensitization and photochromism of CaTiO
  publication-title: Chem. Eng. J.
– volume: 122
  start-page: 9531
  year: 2018
  end-page: 9539
  ident: b0115
  article-title: Synthesis of the 0D/3D CuO/ZnO heterojunction with enhanced photocatalytic activity
  publication-title: J. Phys. Chem. C
– volume: 592
  year: 2022
  ident: b0040
  article-title: Photothermal enhancement of highly efficient photocatalysis with bioinspired thermal radiation balance characteristics
  publication-title: Appl. Surf. Sci.
– volume: 317
  year: 2022
  ident: b0055
  article-title: Poly(heptazine imide) with enlarged interlayers spacing for efficient photocatalytic NO decomposition
  publication-title: Appl. Catal. B: Environ.
– volume: 127
  start-page: 8286
  year: 2005
  end-page: 8287
  ident: b0130
  article-title: GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 5923
  year: 2020
  ident: b0230
  article-title: Strain-induced creation and switching of anion vacancy layers in perovskite oxynitrides
  publication-title: Nat. Commun.
– volume: 449
  start-page: 35
  year: 2016
  end-page: 42
  ident: b0300
  article-title: Diffusion of oxygen in bulk GaN crystals at high temperature and at high pressure
  publication-title: J. Cryst. Growth
– volume: 237
  start-page: 393
  year: 2006
  end-page: 404
  ident: b0175
  article-title: In situ FTIR study of photocatalytic NO reaction on photocatalysts under UV irradiation
  publication-title: J. Catal.
– volume: 85
  start-page: 438
  year: 2015
  ident: 10.1016/j.apsusc.2023.157712_b0295
  article-title: Effect of Zn-Cd interdiffusion on the band structure and spontaneous emission of ZnO/Zn1-xCdxO/ZnO quantum wells
  publication-title: Superlatt. Microst.
  doi: 10.1016/j.spmi.2015.06.013
– volume: 440
  start-page: 295
  year: 2006
  ident: 10.1016/j.apsusc.2023.157712_b0065
  article-title: Photocatalyst releasing hydrogen from water
  publication-title: Nature
  doi: 10.1038/440295a
– volume: 30
  start-page: 618
  year: 2019
  ident: 10.1016/j.apsusc.2023.157712_b0005
  article-title: Insight into room-temperature catalytic oxidation of NO by CrO2(110): A DFT study
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2018.12.018
– volume: 8
  start-page: 3694
  year: 2016
  ident: 10.1016/j.apsusc.2023.157712_b0080
  article-title: Solubility and crystallographic facet tailoring of (GaN)(1–x)(ZnO)(x) pseudobinary solid-solution nanostructures as promising photocatalysts
  publication-title: Nanoscale
  doi: 10.1039/C5NR08663A
– volume: 58
  start-page: 10325
  year: 2019
  ident: 10.1016/j.apsusc.2023.157712_b0225
  article-title: Negative charging of Au nanoparticles during methanol synthesis from CO2/H2 on a Au/ZnO catalyst: insights from operando IR and near-ambient-pressure XPS and XAS measurements
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201900150
– volume: 11
  start-page: 5923
  year: 2020
  ident: 10.1016/j.apsusc.2023.157712_b0230
  article-title: Strain-induced creation and switching of anion vacancy layers in perovskite oxynitrides
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19217-7
– volume: 6
  start-page: 80
  year: 2023
  ident: 10.1016/j.apsusc.2023.157712_b0085
  article-title: Blocking the reverse reactions of overall water splitting on a Rh/GaN-ZnO photocatalyst modified with Al2O3
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00907-y
– volume: 45
  start-page: 505
  year: 2010
  ident: 10.1016/j.apsusc.2023.157712_b0150
  article-title: Indium and gallium oxynitrides prepared in the presence of Zn2+ by ammonolysis of the oxide precursors obtained via the citrate route
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2009.10.008
– volume: 12
  start-page: 8583
  year: 2020
  ident: 10.1016/j.apsusc.2023.157712_b0090
  article-title: Band-gap tunable 2D hexagonal (GaN)(1–x)(ZnO)(x) solid-solution nanosheets for photocatalytic water splitting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b21793
– volume: 607
  year: 2023
  ident: 10.1016/j.apsusc.2023.157712_b0110
  article-title: Novel inverse opal Bi2WO6/Bi2O3 S-scheme heterojunction with efficient charge separation and fast migration for high activity photocatalysis
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.155085
– volume: 619
  year: 2023
  ident: 10.1016/j.apsusc.2023.157712_b0045
  article-title: Hollow macroporous CeO2/β-Bi2O3 heterostructure sphere via one-step spray solution combustion synthesis for efficient photocatalysis
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2023.156718
– volume: 122
  start-page: 9531
  year: 2018
  ident: 10.1016/j.apsusc.2023.157712_b0115
  article-title: Synthesis of the 0D/3D CuO/ZnO heterojunction with enhanced photocatalytic activity
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b01933
– volume: 47
  start-page: 463
  year: 2018
  ident: 10.1016/j.apsusc.2023.157712_b0245
  article-title: Well-controlled SrTiO3@Mo2C core-shell nanofiber photocatalyst: Boosted photo-generated charge carriers transportation and enhanced catalytic performance for water reduction
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.014
– volume: 127
  start-page: 8286
  year: 2005
  ident: 10.1016/j.apsusc.2023.157712_b0130
  article-title: GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0518777
– volume: 304
  year: 2022
  ident: 10.1016/j.apsusc.2023.157712_b0250
  article-title: Liberating photocarriers in mesoporous single-crystalline SrTaO2N for efficient solar water splitting
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2021.120934
– volume: 455
  year: 2022
  ident: 10.1016/j.apsusc.2023.157712_b0135
  article-title: Gas sensitization and photochromism of CaTiO3-δ for visible-light photocatalysis
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 1054
  year: 2021
  ident: 10.1016/j.apsusc.2023.157712_b0145
  article-title: Atomic arrangement matters: band-gap variation in composition-tunable (Ga1-xZnx)(N1-xOx) nanowires
  publication-title: Matter-Us
  doi: 10.1016/j.matt.2020.12.024
– volume: 430
  year: 2022
  ident: 10.1016/j.apsusc.2023.157712_b0260
  article-title: Fabrication of an FAPbBr 3/g-C3N4 heterojunction to enhance NO removal efficiency under visible-light irradiation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132968
– volume: 173
  start-page: 258
  year: 2017
  ident: 10.1016/j.apsusc.2023.157712_b0180
  article-title: Visible light activated carbon and nitrogen co-doped mesoporous TiO2 as efficient photocatalyst for degradation of ibuprofen
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.09.034
– volume: 30
  year: 2022
  ident: 10.1016/j.apsusc.2023.157712_b0235
  article-title: In situ XPS proved efficient charge transfer and ion adsorption of ZnCo2O4/CoS S-Scheme heterojunctions for photocatalytic hydrogen evolution
  publication-title: Mater. Today Energy
– volume: 55
  start-page: 4092
  year: 2010
  ident: 10.1016/j.apsusc.2023.157712_b0240
  article-title: The structure and electronic properties of passive and prepassive films of iron in borate buffer
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.11.012
– volume: 284
  year: 2021
  ident: 10.1016/j.apsusc.2023.157712_b0270
  article-title: Oxygen defect-induced NO- intermediates promoting NO deep oxidation over Ce doped SnO2 under visible light
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2020.119761
– volume: 396
  start-page: 888
  year: 2017
  ident: 10.1016/j.apsusc.2023.157712_b0075
  article-title: The photocatalytic properties of hollow (GaN)1–x(ZnO)x composite nanofibers synthesized by electrospinning
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.11.053
– volume: 402
  year: 2020
  ident: 10.1016/j.apsusc.2023.157712_b0165
  article-title: A highly efficient dual-phase GaN(O)/Nb2O5(N) photocatalyst prepared through nitridation and reoxidation process for NO removal
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126199
– volume: 444
  year: 2022
  ident: 10.1016/j.apsusc.2023.157712_b0280
  article-title: Visible light-driven deep oxidation of NO and its durability over Fe doped BaSnO3: The NO+ intermediates mechanism and the storage capacity of Ba ions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136709
– volume: 88
  start-page: 413
  year: 2009
  ident: 10.1016/j.apsusc.2023.157712_b0025
  article-title: Screening of doped MnOx-CeO2 catalysts for low-temperature NO-SCR
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2008.10.014
– volume: 309
  year: 2023
  ident: 10.1016/j.apsusc.2023.157712_b0205
  article-title: Effect of oxygen vacancies on the photocatalytic activity of flower-like BiOBr microspheres towards NO oxidation and CO2 reduction
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.123054
– volume: 29
  start-page: 23
  year: 2011
  ident: 10.1016/j.apsusc.2023.157712_b0035
  article-title: Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment
  publication-title: New Biotechnol.
  doi: 10.1016/j.nbt.2011.04.009
– volume: 84
  start-page: 71
  year: 2016
  ident: 10.1016/j.apsusc.2023.157712_b0185
  article-title: Sensitization of ZnO nanoparticle by vitamin B12: investigation of microstructure, FTIR and optical properties
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2016.07.029
– volume: 237
  start-page: 393
  year: 2006
  ident: 10.1016/j.apsusc.2023.157712_b0175
  article-title: In situ FTIR study of photocatalytic NO reaction on photocatalysts under UV irradiation
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2005.11.023
– volume: 80
  year: 2021
  ident: 10.1016/j.apsusc.2023.157712_b0050
  article-title: Bismuth nanoparticles and oxygen vacancies synergistically attired Zn2SnO4 with optimized visible-light-active performance
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105415
– volume: 305
  year: 2021
  ident: 10.1016/j.apsusc.2023.157712_b0030
  article-title: Thermal process and NO emission reduction characteristics of a new-type coke oven regenerator coupled with SNCR process
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.121510
– volume: 12
  start-page: 14637
  year: 2022
  ident: 10.1016/j.apsusc.2023.157712_b0070
  article-title: Synthesis of narrow-band-gap GaN:ZnO solid solution for photocatalytic overall water splitting
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c04361
– volume: 370
  start-page: 875
  year: 2019
  ident: 10.1016/j.apsusc.2023.157712_b0010
  article-title: Boosting photocatalytic oxidation on graphitic carbon nitride for efficient photocatalysis by heterojunction with graphitic carbon units
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.03.266
– volume: 518
  start-page: 158
  year: 2016
  ident: 10.1016/j.apsusc.2023.157712_b0120
  article-title: Photocatalytic water splitting and hydrogenation of CO2 in a novel twin photoreactor with IO3−/I− shuttle redox mediator
  publication-title: Appl. Catal. A-gen.
  doi: 10.1016/j.apcata.2015.08.027
– volume: 272
  year: 2020
  ident: 10.1016/j.apsusc.2023.157712_b0275
  article-title: In situ construction of biocompatible Z-scheme alpha-Bi2O3/CuBi2O4 heterojunction for NO removal under visible light
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2020.119008
– volume: 396
  start-page: 888
  year: 2017
  ident: 10.1016/j.apsusc.2023.157712_b0215
  article-title: The photocatalytic properties of hollow (GaN)(1–x)(ZnO)(x) composite nanofibers synthesized by electrospinning
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.11.053
– volume: 408
  year: 2021
  ident: 10.1016/j.apsusc.2023.157712_b0060
  article-title: Defects and internal electric fields synergistically optimized g-C3N4-x/BiOCl/WO2.92 heterojunction for photocatalytic NO deep oxidation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.124897
– volume: 442
  year: 2023
  ident: 10.1016/j.apsusc.2023.157712_b0285
  article-title: Synergistic effect of cyano defects and CaCO3 in graphitic carbon nitride nanosheets for efficient visible-light-driven photocatalytic NO removal
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2022.130040
– volume: 57
  start-page: 9412
  year: 2018
  ident: 10.1016/j.apsusc.2023.157712_b0200
  article-title: ZnGaNO photocatalyst particles prepared from methane-based nitridation using Zn/Ga/CO3 LDH as precursor
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b01415
– volume: 22
  start-page: 612
  year: 2010
  ident: 10.1016/j.apsusc.2023.157712_b0310
  article-title: Solid solution of GaN and ZnO as a stable photocatalyst for overall water splitting under visible light
  publication-title: Chem. Mater.
  doi: 10.1021/cm901917a
– volume: 204
  start-page: 479
  year: 2001
  ident: 10.1016/j.apsusc.2023.157712_b0195
  article-title: Identification, stability, and reactivity of NOx species adsorbed on titania-supported manganese catalysts
  publication-title: J. Catal.
  doi: 10.1006/jcat.2001.3413
– volume: 114
  start-page: 12818
  year: 2010
  ident: 10.1016/j.apsusc.2023.157712_b0305
  article-title: Enhancement of photocatalytic water oxidation activity on IrOx-ZnO/Zn2-xGeO4-x-3yN2y catalyst with the solid solution phase junction
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp103722j
– volume: 40
  start-page: 620
  year: 2019
  ident: 10.1016/j.apsusc.2023.157712_b0290
  article-title: Pivotal roles of artificial oxygen vacancies in enhancing photocatalytic activity and selectivity on Bi2O2CO3 nanosheets
  publication-title: Chinese J Catal
  doi: 10.1016/S1872-2067(19)63279-1
– volume: 121
  start-page: 23249
  year: 2017
  ident: 10.1016/j.apsusc.2023.157712_b0100
  article-title: Influence of thermal annealing on free carrier concentration in (GaN)(1–x)(ZnO)(x) semiconductors
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b06455
– volume: 19
  start-page: 7399
  year: 2017
  ident: 10.1016/j.apsusc.2023.157712_b0140
  article-title: A DFT plus U investigation of hydrogen adsorption on the LaFeO3(010) surface
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP08698E
– volume: 121
  start-page: 23249
  year: 2017
  ident: 10.1016/j.apsusc.2023.157712_b0155
  article-title: Influence of thermal annealing on free carrier concentration in (GaN)1–x(ZnO)x semiconductors
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b06455
– volume: 592
  year: 2022
  ident: 10.1016/j.apsusc.2023.157712_b0040
  article-title: Photothermal enhancement of highly efficient photocatalysis with bioinspired thermal radiation balance characteristics
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.153304
– volume: 6
  start-page: 6511
  year: 2016
  ident: 10.1016/j.apsusc.2023.157712_b0265
  article-title: Removal of nitric oxide through visible light photocatalysis by g-C3N4 modified with perylene imides
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01657
– volume: 325
  start-page: 48
  year: 2010
  ident: 10.1016/j.apsusc.2023.157712_b0125
  article-title: Photocatalytic degradation of polycyclic aromatic hydrocarbons in GaN:ZnO solid solution-assisted process: direct hole oxidation mechanism
  publication-title: J. Mol. Catal. A-Chem.
  doi: 10.1016/j.molcata.2010.03.029
– volume: 623
  year: 2023
  ident: 10.1016/j.apsusc.2023.157712_b0210
  article-title: Synthesis of CdS QDs/BaSnO3 nanocomposites via electrostatic self-assembly for visible light photocatalytic deep oxidation of NO
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2023.157004
– volume: 449
  start-page: 35
  year: 2016
  ident: 10.1016/j.apsusc.2023.157712_b0300
  article-title: Diffusion of oxygen in bulk GaN crystals at high temperature and at high pressure
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2016.05.037
– volume: 10
  start-page: 3761
  year: 2018
  ident: 10.1016/j.apsusc.2023.157712_b0255
  article-title: Monolithic inorganic ZnO/GaN semiconductors heterojunction white light-emitting diodes
  publication-title: ASC Appl. Mater. Inter
  doi: 10.1021/acsami.7b15946
– volume: 616
  year: 2023
  ident: 10.1016/j.apsusc.2023.157712_b0220
  article-title: Oxygen vacancy engineering of zinc oxide for boosting piezo-electrocatalytic hydrogen evolution
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2023.156556
– volume: 43
  start-page: 2363
  year: 2022
  ident: 10.1016/j.apsusc.2023.157712_b0020
  article-title: Progress and prospects of photocatalytic conversion of low-concentration NOX
  publication-title: Chinese J. Catal.
  doi: 10.1016/S1872-2067(22)64139-1
– volume: 12
  start-page: 10004
  year: 2022
  ident: 10.1016/j.apsusc.2023.157712_b0315
  article-title: ZnO with controllable oxygen vacancies for photocatalytic nitrogen oxide removal
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c02326
– volume: 311
  year: 2022
  ident: 10.1016/j.apsusc.2023.157712_b0160
  article-title: Plasma-induced hierarchical amorphous carbon nitride nanostructure with two N2 C-site vacancies for photocatalytic H2O2 production
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2022.121372
– volume: 400
  year: 2020
  ident: 10.1016/j.apsusc.2023.157712_b0105
  article-title: La-doping induced localized excess electrons on (BiO)2CO3 for efficient photocatalytic NO removal and toxic intermediates suppression
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123174
– volume: 54
  start-page: 11226
  year: 2015
  ident: 10.1016/j.apsusc.2023.157712_b0095
  article-title: Average and local crystal structures of (Ga(1–x)Znx)(N(1–x)Ox) solid solution nanoparticles
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b01605
– volume: 430
  year: 2022
  ident: 10.1016/j.apsusc.2023.157712_b0170
  article-title: Switching on photocatalytic NO oxidation and proton reduction of NH2-MIL-125(Ti) by convenient linker defect engineering
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2022.128468
– volume: 606
  year: 2022
  ident: 10.1016/j.apsusc.2023.157712_b0015
  article-title: In-flow photocatalytic oxidation of NO on glasses coated with nanocolumnar porous TiO2 thin films prepared by reactive sputtering
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.154968
– volume: 317
  year: 2022
  ident: 10.1016/j.apsusc.2023.157712_b0055
  article-title: Poly(heptazine imide) with enlarged interlayers spacing for efficient photocatalytic NO decomposition
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2022.121719
– volume: 356
  start-page: 167
  year: 2017
  ident: 10.1016/j.apsusc.2023.157712_b0190
  article-title: Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells
  publication-title: Science
  doi: 10.1126/science.aam6620
SSID ssj0012873
Score 2.4409869
Snippet [Display omitted] •Microstructure and defect concentration were optimized by annealing in air.•In-situ growth of ZnO and GaN(O) to form a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 157712
SubjectTerms (Ga, Zn)(N, O)
Heterojunction
NO oxidation
Photocatalysis
ZnO nano-particles
Title Tuning the ZnO/GaN heterojunction for atmospheric NO abatement
URI https://dx.doi.org/10.1016/j.apsusc.2023.157712
Volume 635
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPrE-yh68pnltspuLUIq1KqYHKxQvYXezwRZNi02v_nZn8igVRMFjwg6Eb5eZbzfzfUvIlZZSeYH2rVQwY6EDlyW14panPNdI5ejAQaHwYxwOn9n9JJi0SL_RwmBbZZ37q5xeZuv6jV2jaS-mU_sJfUTQfQtINNCYUmbFGMdV3v1ct3lA-q3-MsNgVAd5jXyu7PGSsBNdopGh53fdgHPX-7k8bZScwT7Zq7ki7VWfc0BaJj8kuxsOgkfkerzCgw0KNI6-5CP7Vsb0FTtc5jMoWAg6BVZKZfE-X6KBwFTTeESlAoaJx4LHZDy4GfeHVn0lgqWB2xcWF0zxKEudII1M6BuhPRmkwPok-qaHXGov48ZkwigulAhC4wqRpVIaAB3Y1gnZyue5OSXUZJnPQi0imBIGexalmZFRpNNApowp2SZ-A0Sia7twvLXiLWn6wmZJBV-C8CUVfG1iraMWlV3GH-N5g3HybdoTyOi_Rp79O_Kc7OBTWYCcC7JVfKzMJTCLQnXKpdMh2727h2H8BbNSzsA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK0wNrmtRxYmdBQhWlQB8DRapYIttxRCtIK9qu_HbumqQqEgKJNfZJ1ufk7rNz9x0hV0YpzQLjO4nk1kEFLkcZLRymWcMq7ZnAw0Lhbi9sP_OHYTCskGZZC4NplYXvz3360lsXT9wCTXc6GrlPqCOC6ltAooHGYJnVBofPF9sY1D9XeR7gf_PfzDAby4NYWT-3TPJScBSdoZIh8-uNQIgG-zk-rcWc1i7ZKcgivcnXs0cqNtsn22sSggfkerDAmw0KPI6-ZH33TvXoK6a4TMYQsRB1CrSUqvn7ZIYKAiNDe32qNFBMvBc8JIPW7aDZdoqeCI4Bcj93hORaRGniBUlkQ99Kw1SQAO1TKJweCmVYKqxNpdVCahmEtiFlmihlAXWgW0ekmk0ye0yoTVOfh0ZGsCccDi3acKuiyCSBSjjXqkb8EojYFHrh2LbiLS4Tw8ZxDl-M8MU5fDXirKymuV7GH_NFiXH8bd9jcOm_Wp782_KSbLYH3U7cue89npItHFlGI--MVOcfC3sONGOuL5av0Reb89BO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+ZnO%2FGaN+heterojunction+for+atmospheric+NO+abatement&rft.jtitle=Applied+surface+science&rft.au=Yuan%2C+Xuemei&rft.au=Wu%2C+Menglin&rft.au=Ni%2C+Jiupai&rft.au=Cheng%2C+Yongyi&rft.date=2023-10-30&rft.pub=Elsevier+B.V&rft.issn=0169-4332&rft.volume=635&rft_id=info:doi/10.1016%2Fj.apsusc.2023.157712&rft.externalDocID=S0169433223013910
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon