Beluga whale optimization: A novel nature-inspired metaheuristic algorithm

In this paper, a novel swarm-based metaheuristic algorithm inspired from the behaviors of beluga whales, called beluga whale optimization (BWO), is presented to solve optimization problem. Three phases of exploration, exploitation and whale fall are established in BWO, corresponding to the behaviors...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 251; p. 109215
Main Authors Zhong, Changting, Li, Gang, Meng, Zeng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 05.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a novel swarm-based metaheuristic algorithm inspired from the behaviors of beluga whales, called beluga whale optimization (BWO), is presented to solve optimization problem. Three phases of exploration, exploitation and whale fall are established in BWO, corresponding to the behaviors of pair swim, prey, and whale fall, respectively. The balance factor and probability of whale fall in BWO are self-adaptive which play significant roles to control the ability of exploration and exploitation. Besides, the Levy flight is introduced to enhance the global convergence in the exploitation phase. The effectiveness of the proposed BWO is tested using 30 benchmark functions, with qualitative, quantitative and scalability analysis, and the statistical results are compared with 15 other metaheuristic algorithms. According to the results and discussion, BWO is a competitive algorithm in solving unimodal and multimodal optimization problems, and the overall rank of BWO is the first in the scalability analysis of benchmark functions among compared metaheuristic algorithms through the Friedman ranking test. Finally, four engineering problems demonstrate the merits and potential of BWO in solving complex real-world optimization problems. The source code of BWO is currently available to public: https://ww2.mathworks.cn/matlabcentral/fileexchange/112830-beluga-whale-optimization-bwo/. •A novel metaheuristic algorithm named as Beluga Whale Optimization (BWO) is proposed.•The behaviors of swim, prey and whale fall are designed on BWO algorithm.•The BWO is tested on 30 well-known benchmark functions and 4 engineering problems.•The BWO is compared with 15 well-known metaheuristic algorithms.•The BWO outperforms comparing algorithms in benchmark functions, especially for scalability of dimension.
AbstractList In this paper, a novel swarm-based metaheuristic algorithm inspired from the behaviors of beluga whales, called beluga whale optimization (BWO), is presented to solve optimization problem. Three phases of exploration, exploitation and whale fall are established in BWO, corresponding to the behaviors of pair swim, prey, and whale fall, respectively. The balance factor and probability of whale fall in BWO are self-adaptive which play significant roles to control the ability of exploration and exploitation. Besides, the Levy flight is introduced to enhance the global convergence in the exploitation phase. The effectiveness of the proposed BWO is tested using 30 benchmark functions, with qualitative, quantitative and scalability analysis, and the statistical results are compared with 15 other metaheuristic algorithms. According to the results and discussion, BWO is a competitive algorithm in solving unimodal and multimodal optimization problems, and the overall rank of BWO is the first in the scalability analysis of benchmark functions among compared metaheuristic algorithms through the Friedman ranking test. Finally, four engineering problems demonstrate the merits and potential of BWO in solving complex real-world optimization problems. The source code of BWO is currently available to public: https://ww2.mathworks.cn/matlabcentral/fileexchange/112830-beluga-whale-optimization-bwo/. •A novel metaheuristic algorithm named as Beluga Whale Optimization (BWO) is proposed.•The behaviors of swim, prey and whale fall are designed on BWO algorithm.•The BWO is tested on 30 well-known benchmark functions and 4 engineering problems.•The BWO is compared with 15 well-known metaheuristic algorithms.•The BWO outperforms comparing algorithms in benchmark functions, especially for scalability of dimension.
ArticleNumber 109215
Author Li, Gang
Meng, Zeng
Zhong, Changting
Author_xml – sequence: 1
  givenname: Changting
  orcidid: 0000-0001-7788-8288
  surname: Zhong
  fullname: Zhong, Changting
  email: zhongct@dlut.edu.cn
  organization: Department of Engineering Mechanics, State Key Laboratory of Structural Analyses for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
– sequence: 2
  givenname: Gang
  surname: Li
  fullname: Li, Gang
  email: ligang@dlut.edu.cn
  organization: Department of Engineering Mechanics, State Key Laboratory of Structural Analyses for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
– sequence: 3
  givenname: Zeng
  surname: Meng
  fullname: Meng, Zeng
  email: mengz@hfut.edu.cn
  organization: School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
BookMark eNqFkMtOwzAQRS1UJNrCH7DID6TYTuw4XSCVivJQJTawtlxn0rokdmW7ReXrSQkrFrAaaTTn6s4ZoYF1FhC6JnhCMOE328m7deEYJhRT2q1KStgZGhJR0LTIcTlAQ1wynBaYkQs0CmGLcXdJxBA930GzX6vkY6MaSNwumtZ8qmicnSazxLoDNIlVce8hNTbsjIcqaSGqDey9CdHoRDVr503ctJfovFZNgKufOUZvi_vX-WO6fHl4ms-Wqc4wj2lRAMWqUjloXldVV5KvVkBzwQThPCMcMgaMEKyYKIQAzmrgdU6EKrWuKWRjNO1ztXcheKilNvG7cvTKNJJgebIit7K3Ik9WZG-lg_Nf8M6bVvnjf9htj0H32MGAl0EbsBqqzoiOsnLm74AvT4mB_w
CitedBy_id crossref_primary_10_1049_gtd2_13076
crossref_primary_10_1007_s12652_024_04857_0
crossref_primary_10_1007_s42235_024_00580_w
crossref_primary_10_1016_j_jhydrol_2024_130963
crossref_primary_10_1016_j_jobe_2024_111109
crossref_primary_10_1038_s41598_024_66450_x
crossref_primary_10_1007_s12206_024_0904_4
crossref_primary_10_1016_j_jksuci_2023_101780
crossref_primary_10_3390_en15207603
crossref_primary_10_1016_j_enconman_2024_119114
crossref_primary_10_1029_2024SW003954
crossref_primary_10_32604_cmes_2025_058473
crossref_primary_10_1016_j_ijhydene_2024_04_124
crossref_primary_10_3390_jmse12071207
crossref_primary_10_1007_s41060_025_00726_x
crossref_primary_10_1109_ACCESS_2023_3311271
crossref_primary_10_1007_s10586_024_04328_3
crossref_primary_10_1007_s13748_023_00306_9
crossref_primary_10_1016_j_applthermaleng_2023_122037
crossref_primary_10_3390_biomimetics8060454
crossref_primary_10_1007_s12559_024_10401_1
crossref_primary_10_1016_j_energy_2023_130121
crossref_primary_10_1007_s12046_024_02637_2
crossref_primary_10_1109_ACCESS_2023_3332902
crossref_primary_10_3233_JIFS_233334
crossref_primary_10_1007_s10586_024_04545_w
crossref_primary_10_1016_j_swevo_2025_101908
crossref_primary_10_3390_pr13010256
crossref_primary_10_1016_j_apm_2024_04_057
crossref_primary_10_3390_biomimetics8020191
crossref_primary_10_1007_s12204_024_2574_x
crossref_primary_10_1007_s00202_025_03017_7
crossref_primary_10_1109_ACCESS_2024_3474184
crossref_primary_10_1038_s41598_025_93410_w
crossref_primary_10_1109_ACCESS_2024_3377688
crossref_primary_10_1016_j_cej_2024_151743
crossref_primary_10_12677_mos_2024_135495
crossref_primary_10_3390_biomimetics9040205
crossref_primary_10_3390_drones7070452
crossref_primary_10_47134_ppm_v2i2_1480
crossref_primary_10_1049_esi2_12134
crossref_primary_10_1007_s11831_025_10228_5
crossref_primary_10_3233_JIFS_236793
crossref_primary_10_3390_app142311320
crossref_primary_10_1007_s11042_023_17060_8
crossref_primary_10_32604_cmc_2024_049717
crossref_primary_10_3389_fenrg_2024_1336205
crossref_primary_10_1016_j_eswa_2024_125029
crossref_primary_10_1109_TPS_2024_3418216
crossref_primary_10_1007_s41870_024_02030_6
crossref_primary_10_1080_03772063_2023_2286614
crossref_primary_10_1007_s13369_024_09807_8
crossref_primary_10_1016_j_cma_2025_117791
crossref_primary_10_32604_sdhm_2023_029331
crossref_primary_10_3390_biomimetics9090561
crossref_primary_10_1016_j_eswa_2023_121406
crossref_primary_10_1109_JSEN_2025_3530521
crossref_primary_10_1016_j_advengsoft_2024_103857
crossref_primary_10_1016_j_eswa_2023_122970
crossref_primary_10_32604_cmc_2024_049847
crossref_primary_10_1007_s12065_024_01002_w
crossref_primary_10_48084_etasr_7004
crossref_primary_10_1007_s00500_023_08573_3
crossref_primary_10_3390_electronics13234598
crossref_primary_10_1016_j_epsr_2024_111275
crossref_primary_10_1007_s42243_023_01173_3
crossref_primary_10_4015_S1016237224500200
crossref_primary_10_1016_j_psep_2025_106800
crossref_primary_10_1177_01436244241274924
crossref_primary_10_1088_1361_6501_ad5b11
crossref_primary_10_1016_j_tust_2024_106138
crossref_primary_10_1007_s00784_024_05977_9
crossref_primary_10_1109_JSEN_2023_3292370
crossref_primary_10_1002_dac_5821
crossref_primary_10_3390_electronics13132635
crossref_primary_10_1038_s41598_024_70353_2
crossref_primary_10_1109_ACCESS_2023_3347587
crossref_primary_10_1515_ehs_2023_0091
crossref_primary_10_3390_en17184742
crossref_primary_10_3390_math11081854
crossref_primary_10_32604_cmes_2023_025908
crossref_primary_10_1016_j_eswa_2023_121744
crossref_primary_10_1016_j_eswa_2024_124190
crossref_primary_10_1016_j_oceaneng_2024_119227
crossref_primary_10_3390_biomimetics8060492
crossref_primary_10_1007_s00521_024_10346_4
crossref_primary_10_3390_biomimetics10030128
crossref_primary_10_1038_s41598_024_80811_6
crossref_primary_10_1093_ijlct_ctae113
crossref_primary_10_3390_drones8120777
crossref_primary_10_1007_s00500_023_08925_z
crossref_primary_10_32604_cmc_2024_054317
crossref_primary_10_1016_j_knosys_2024_111907
crossref_primary_10_1088_1361_6501_ad6176
crossref_primary_10_1007_s10772_024_10115_7
crossref_primary_10_1002_dac_70047
crossref_primary_10_1016_j_gloei_2024_10_014
crossref_primary_10_1002_nag_3879
crossref_primary_10_1016_j_engappai_2023_106777
crossref_primary_10_1007_s11227_024_06709_2
crossref_primary_10_1109_ACCESS_2024_3397402
crossref_primary_10_1038_s41598_024_83788_4
crossref_primary_10_1007_s00202_023_02184_9
crossref_primary_10_1016_j_heliyon_2024_e30018
crossref_primary_10_1007_s10772_024_10127_3
crossref_primary_10_1088_1742_6596_2872_1_012037
crossref_primary_10_1016_j_eswa_2023_122413
crossref_primary_10_1007_s10586_024_04856_y
crossref_primary_10_1016_j_advengsoft_2024_103862
crossref_primary_10_1109_LAWP_2024_3416174
crossref_primary_10_3233_IDT_230524
crossref_primary_10_1080_0954898X_2024_2424248
crossref_primary_10_1016_j_jocs_2022_101867
crossref_primary_10_1038_s41598_024_54910_3
crossref_primary_10_1007_s10489_025_06324_5
crossref_primary_10_3390_sym17010050
crossref_primary_10_1007_s10462_023_10470_y
crossref_primary_10_1109_TII_2024_3352089
crossref_primary_10_3390_s23094520
crossref_primary_10_1007_s41939_025_00796_1
crossref_primary_10_1007_s10462_023_10549_6
crossref_primary_10_1007_s11227_023_05617_1
crossref_primary_10_1007_s10462_024_10981_2
crossref_primary_10_1016_j_isatra_2024_04_010
crossref_primary_10_3390_biomimetics9030130
crossref_primary_10_1007_s42235_024_00596_2
crossref_primary_10_3390_app14051996
crossref_primary_10_1016_j_jhydrol_2024_131640
crossref_primary_10_1111_exsy_70023
crossref_primary_10_1515_cppm_2024_0013
crossref_primary_10_1016_j_est_2024_111894
crossref_primary_10_1134_S000511792403007X
crossref_primary_10_1016_j_compbiomed_2022_106520
crossref_primary_10_1016_j_asoc_2025_113071
crossref_primary_10_1016_j_bspc_2024_107180
crossref_primary_10_3390_biomimetics8040354
crossref_primary_10_1007_s11227_023_05618_0
crossref_primary_10_1016_j_advengsoft_2024_103694
crossref_primary_10_3390_biomimetics8050396
crossref_primary_10_3390_biomimetics8050395
crossref_primary_10_3390_asi7030040
crossref_primary_10_3390_w17060878
crossref_primary_10_1007_s00521_024_09928_z
crossref_primary_10_1016_j_dajour_2025_100551
crossref_primary_10_3390_app15020603
crossref_primary_10_1007_s40996_023_01252_1
crossref_primary_10_1016_j_precisioneng_2024_07_007
crossref_primary_10_3390_aerospace12020101
crossref_primary_10_1016_j_swevo_2025_101848
crossref_primary_10_21122_2309_4923_2024_3_12_16
crossref_primary_10_3390_drones8110644
crossref_primary_10_1007_s11760_024_03667_3
crossref_primary_10_3390_w16121728
crossref_primary_10_1038_s41598_024_55040_6
crossref_primary_10_1016_j_est_2025_115371
crossref_primary_10_3389_fpls_2024_1411485
crossref_primary_10_1016_j_egyr_2024_09_025
crossref_primary_10_1016_j_compositesb_2025_112226
crossref_primary_10_3390_math12193098
crossref_primary_10_1016_j_enbuild_2024_115157
crossref_primary_10_3390_w16202966
crossref_primary_10_1007_s11518_024_5608_x
crossref_primary_10_3390_jmse12122189
crossref_primary_10_1016_j_eswa_2023_121218
crossref_primary_10_1371_journal_pone_0315670
crossref_primary_10_1016_j_advengsoft_2025_103866
crossref_primary_10_3390_math11092217
crossref_primary_10_1007_s41939_024_00392_9
crossref_primary_10_1016_j_ipm_2024_103953
crossref_primary_10_1371_journal_pone_0290891
crossref_primary_10_1002_dac_5549
crossref_primary_10_1038_s41598_024_60821_0
crossref_primary_10_1007_s13369_024_08861_6
crossref_primary_10_1038_s41598_024_69596_w
crossref_primary_10_1016_j_advengsoft_2024_103671
crossref_primary_10_1016_j_advengsoft_2024_103793
crossref_primary_10_3390_math12193080
crossref_primary_10_1002_qre_3640
crossref_primary_10_1016_j_est_2024_111856
crossref_primary_10_1016_j_epsr_2023_110051
crossref_primary_10_3390_sym16060661
crossref_primary_10_3233_IDT_240368
crossref_primary_10_1016_j_saa_2023_123208
crossref_primary_10_1108_RS_10_2023_0037
crossref_primary_10_1007_s00521_024_10694_1
crossref_primary_10_1007_s00521_024_10865_0
crossref_primary_10_1007_s11235_024_01157_y
crossref_primary_10_3934_mbe_2023592
crossref_primary_10_31857_S0005231024030027
crossref_primary_10_1155_2024_7837832
crossref_primary_10_3390_en17235824
crossref_primary_10_1016_j_knosys_2023_111351
crossref_primary_10_1016_j_conengprac_2024_106078
crossref_primary_10_1109_TGRS_2024_3433019
crossref_primary_10_1016_j_energy_2025_134828
crossref_primary_10_1007_s41939_024_00638_6
crossref_primary_10_1007_s11227_024_06559_y
crossref_primary_10_1007_s10668_024_05507_3
crossref_primary_10_3934_mbe_2024202
crossref_primary_10_1016_j_enbuild_2023_113740
crossref_primary_10_1007_s10462_024_10767_6
crossref_primary_10_1007_s00500_024_09878_7
crossref_primary_10_1515_mt_2023_0082
crossref_primary_10_1007_s11276_024_03890_3
crossref_primary_10_1016_j_eswa_2025_127026
crossref_primary_10_1016_j_jmsy_2025_02_014
crossref_primary_10_3390_math10193466
crossref_primary_10_1109_JSEN_2025_3525622
crossref_primary_10_1109_ACCESS_2024_3358425
crossref_primary_10_1016_j_apenergy_2024_124541
crossref_primary_10_1007_s13042_024_02197_1
crossref_primary_10_1007_s11269_024_03893_x
crossref_primary_10_1016_j_aei_2023_102210
crossref_primary_10_1016_j_chemolab_2024_105295
crossref_primary_10_1016_j_cma_2024_117718
crossref_primary_10_4271_05_18_02_0010
crossref_primary_10_1016_j_knosys_2024_111850
crossref_primary_10_1088_2631_8695_ad2b27
crossref_primary_10_1016_j_probengmech_2024_103688
crossref_primary_10_3390_su16166939
crossref_primary_10_1038_s41598_024_58806_0
crossref_primary_10_4271_03_18_02_0012
crossref_primary_10_3233_IDA_230540
crossref_primary_10_1016_j_aej_2023_04_070
crossref_primary_10_1016_j_apm_2024_07_002
crossref_primary_10_32604_cmc_2024_051336
crossref_primary_10_3390_math11030707
crossref_primary_10_1007_s10489_023_04479_7
crossref_primary_10_1007_s10291_024_01809_1
crossref_primary_10_1007_s10586_024_04680_4
crossref_primary_10_31857_S0005117924030037
crossref_primary_10_1016_j_apenergy_2023_121801
crossref_primary_10_1016_j_engappai_2024_109370
crossref_primary_10_3233_WEB_230332
crossref_primary_10_1007_s12204_024_2765_5
crossref_primary_10_1016_j_jisa_2024_103961
crossref_primary_10_1007_s00500_025_10404_6
crossref_primary_10_1007_s11356_024_33233_w
crossref_primary_10_1002_ese3_1727
crossref_primary_10_1016_j_engappai_2024_109202
crossref_primary_10_3390_app15042224
crossref_primary_10_1002_ese3_1605
crossref_primary_10_1016_j_asoc_2023_110479
crossref_primary_10_1007_s11831_023_09975_0
crossref_primary_10_1109_ACCESS_2024_3362638
crossref_primary_10_1080_17538947_2023_2249863
crossref_primary_10_1016_j_ijrefrig_2024_01_012
crossref_primary_10_1155_2024_5724653
crossref_primary_10_1007_s41939_023_00365_4
crossref_primary_10_1109_ACCESS_2024_3407978
crossref_primary_10_3390_biomimetics10030153
crossref_primary_10_1016_j_buildenv_2025_112686
crossref_primary_10_1016_j_cma_2023_116062
crossref_primary_10_1109_TGRS_2024_3462752
crossref_primary_10_3934_math_2024972
crossref_primary_10_1371_journal_pone_0290719
crossref_primary_10_3390_app14177879
crossref_primary_10_1007_s00158_023_03639_0
crossref_primary_10_1016_j_aej_2023_04_002
crossref_primary_10_1016_j_eswa_2024_124882
crossref_primary_10_1007_s44196_024_00563_z
crossref_primary_10_1371_journal_pone_0309741
crossref_primary_10_3390_math12101506
crossref_primary_10_1007_s11227_023_05773_4
crossref_primary_10_1007_s11063_024_11467_6
crossref_primary_10_1016_j_asoc_2023_110016
crossref_primary_10_1016_j_jobe_2023_107139
crossref_primary_10_1016_j_egyr_2024_07_050
crossref_primary_10_1007_s10462_023_10680_4
crossref_primary_10_1007_s10586_024_04867_9
crossref_primary_10_1016_j_swevo_2022_101212
crossref_primary_10_1038_s41598_023_49176_0
crossref_primary_10_1007_s42235_022_00298_7
crossref_primary_10_1016_j_rineng_2024_103007
crossref_primary_10_1007_s12530_023_09552_7
crossref_primary_10_1049_rpg2_12874
crossref_primary_10_1109_ACCESS_2024_3373554
crossref_primary_10_1007_s12652_022_04420_9
crossref_primary_10_1016_j_enbuild_2024_113942
crossref_primary_10_1016_j_aei_2023_102004
crossref_primary_10_12677_airr_2024_134074
crossref_primary_10_1016_j_aei_2024_102783
crossref_primary_10_3390_biomimetics9070399
crossref_primary_10_1186_s40537_024_00917_6
crossref_primary_10_1007_s11276_024_03717_1
crossref_primary_10_1016_j_conbuildmat_2024_139740
crossref_primary_10_1007_s13042_024_02361_7
crossref_primary_10_3390_jmse12071173
crossref_primary_10_4236_jamp_2024_126134
crossref_primary_10_32604_cmes_2024_052001
crossref_primary_10_1007_s00202_024_02574_7
crossref_primary_10_1007_s10115_024_02325_x
crossref_primary_10_1016_j_engappai_2024_109879
crossref_primary_10_1016_j_autcon_2024_105819
crossref_primary_10_1109_ACCESS_2024_3367446
crossref_primary_10_1007_s10462_025_11118_9
crossref_primary_10_1007_s13198_024_02655_7
crossref_primary_10_1016_j_ins_2024_120644
crossref_primary_10_1007_s11831_023_10036_9
crossref_primary_10_1108_IJSI_04_2024_0055
crossref_primary_10_3389_fpls_2024_1464723
crossref_primary_10_1007_s10723_024_09790_2
crossref_primary_10_1007_s11356_024_33418_3
crossref_primary_10_1016_j_cma_2023_116664
crossref_primary_10_1186_s40537_023_00864_8
crossref_primary_10_1016_j_engfailanal_2023_107634
crossref_primary_10_1016_j_eswa_2023_120904
crossref_primary_10_1007_s41870_023_01691_z
crossref_primary_10_1016_j_compeleceng_2024_109866
crossref_primary_10_1016_j_compbiomed_2023_107212
crossref_primary_10_1038_s41598_023_45995_3
crossref_primary_10_1007_s10462_024_11104_7
crossref_primary_10_1016_j_ijhydene_2024_03_169
crossref_primary_10_1016_j_eswa_2024_125860
crossref_primary_10_1016_j_jobe_2024_110090
crossref_primary_10_1007_s00477_023_02548_4
crossref_primary_10_3390_math11051231
crossref_primary_10_3390_app13053273
crossref_primary_10_3233_JHS_230142
crossref_primary_10_1109_TVT_2024_3386736
crossref_primary_10_3390_math12182956
crossref_primary_10_3390_biomimetics9090572
crossref_primary_10_1007_s11831_024_10135_1
crossref_primary_10_1007_s00521_024_09737_4
crossref_primary_10_3390_biomimetics9090575
crossref_primary_10_1016_j_aej_2024_08_075
crossref_primary_10_32604_cmc_2023_044807
crossref_primary_10_1007_s10586_024_04488_2
crossref_primary_10_1016_j_energy_2024_133390
crossref_primary_10_1093_jcde_qwad096
crossref_primary_10_1093_jcde_qwad095
crossref_primary_10_1109_ACCESS_2024_3466529
crossref_primary_10_1016_j_engfailanal_2023_107658
crossref_primary_10_1109_TIM_2024_3493878
crossref_primary_10_1007_s00202_024_02935_2
crossref_primary_10_1016_j_asoc_2024_112271
crossref_primary_10_1109_ACCESS_2024_3368440
crossref_primary_10_1016_j_suscom_2024_101008
crossref_primary_10_1007_s11760_024_03681_5
crossref_primary_10_3390_app13042254
crossref_primary_10_1007_s00521_024_10742_w
crossref_primary_10_1016_j_cherd_2024_11_023
crossref_primary_10_1016_j_est_2023_107653
crossref_primary_10_3390_biomimetics9120727
crossref_primary_10_3390_electronics13152959
crossref_primary_10_1007_s12083_024_01901_w
crossref_primary_10_1016_j_egyr_2024_05_073
crossref_primary_10_1016_j_compbiomed_2024_108984
crossref_primary_10_1016_j_egyr_2024_10_010
crossref_primary_10_1007_s42044_025_00245_9
crossref_primary_10_1038_s41598_024_74097_x
crossref_primary_10_1007_s11042_024_18172_5
crossref_primary_10_3390_app14177803
crossref_primary_10_1007_s00500_024_09823_8
crossref_primary_10_1016_j_asoc_2024_112019
crossref_primary_10_3390_su151411089
crossref_primary_10_1007_s10462_025_11192_z
crossref_primary_10_1016_j_eswa_2024_124581
crossref_primary_10_1007_s10462_024_10716_3
crossref_primary_10_1016_j_asej_2024_102664
crossref_primary_10_1016_j_eswa_2024_125673
crossref_primary_10_1016_j_energy_2024_131071
crossref_primary_10_3390_systems10060201
crossref_primary_10_57120_yalvac_1257808
crossref_primary_10_1007_s10586_024_04901_w
crossref_primary_10_3390_s23146463
crossref_primary_10_3390_math12030435
crossref_primary_10_1016_j_apr_2024_102273
crossref_primary_10_1007_s00202_024_02584_5
crossref_primary_10_1007_s11042_023_17599_6
crossref_primary_10_1016_j_eswa_2022_119421
crossref_primary_10_1016_j_eswa_2022_119303
crossref_primary_10_1016_j_est_2025_115926
crossref_primary_10_3390_en17102309
crossref_primary_10_3390_electronics14050912
crossref_primary_10_3390_electronics13234849
crossref_primary_10_1007_s12083_024_01672_4
crossref_primary_10_1109_ACCESS_2024_3487752
crossref_primary_10_3390_f15122114
crossref_primary_10_1016_j_jtice_2025_106045
crossref_primary_10_1016_j_asoc_2024_112483
crossref_primary_10_54021_seesv5n2_769
crossref_primary_10_1680_jtran_24_00050
crossref_primary_10_1007_s00170_024_13105_w
crossref_primary_10_1016_j_jclepro_2023_138656
crossref_primary_10_1088_1402_4896_adbb26
crossref_primary_10_3390_sym14112282
crossref_primary_10_1016_j_procs_2023_10_502
crossref_primary_10_3390_f15040687
crossref_primary_10_1016_j_asej_2024_102762
crossref_primary_10_1016_j_future_2024_07_019
crossref_primary_10_1007_s11227_024_06727_0
crossref_primary_10_51764_smutgd_1542508
crossref_primary_10_1038_s41598_024_59960_1
crossref_primary_10_3390_math12101459
crossref_primary_10_1108_K_03_2024_0837
crossref_primary_10_1007_s11042_023_17247_z
crossref_primary_10_1007_s42235_024_00549_9
crossref_primary_10_1016_j_jobe_2024_111085
crossref_primary_10_1007_s00500_023_08468_3
crossref_primary_10_1063_5_0243619
Cites_doi 10.1016/j.advengsoft.2005.04.005
10.1016/j.advengsoft.2017.07.002
10.1016/j.istruc.2020.07.058
10.1016/j.compstruc.2020.106268
10.1016/j.advengsoft.2016.01.008
10.1002/tal.505
10.1109/4235.996017
10.1016/j.eswa.2021.116432
10.1007/s00158-020-02587-3
10.1177/003754970107600201
10.1109/TEVC.2011.2161873
10.1016/j.eswa.2020.113338
10.1016/j.swevo.2021.100863
10.1016/j.engappai.2020.103731
10.1016/j.swevo.2021.100841
10.1109/NABIC.2009.5393690
10.1016/j.future.2020.03.055
10.1016/j.future.2019.02.028
10.12966/abc.05.01.2015
10.1016/j.cie.2020.107050
10.1016/j.eswa.2020.114122
10.1007/s13369-021-05608-5
10.1016/j.knosys.2019.105190
10.1016/j.engappai.2019.103330
10.1016/j.asoc.2013.12.005
10.1007/s00158-017-1758-5
10.1016/j.asoc.2017.07.023
10.1016/j.knosys.2015.07.006
10.1108/IJWIS-11-2020-0071
10.1109/4235.585893
10.1016/j.cma.2020.113609
10.4018/ijsir.2011100103
10.1016/j.compstruc.2012.07.010
10.1007/s11831-020-09443-z
10.1016/j.knosys.2021.106966
10.1109/TEVC.2009.2033580
10.1016/j.compstruc.2014.03.007
10.1016/j.knosys.2014.07.025
10.1109/MCS.2002.1004010
10.1016/j.compstruc.2012.09.003
10.1007/s00707-009-0270-4
10.1007/s00521-019-04575-1
10.1016/j.engappai.2019.103249
10.1126/science.220.4598.671
10.1016/0305-0548(86)90048-1
10.1007/s00500-018-3102-4
10.1103/PhysRevE.49.4677
10.1016/j.swevo.2021.100868
10.1016/j.advengsoft.2015.01.010
10.1016/j.knosys.2018.11.024
10.1108/EC-05-2020-0235
10.1016/j.knosys.2020.105709
10.1108/02644401211235834
10.1109/SIS.2005.1501604
10.1016/j.swevo.2019.04.008
10.1016/j.swevo.2011.02.002
10.1109/CEC.1999.782657
10.1016/j.future.2019.07.015
10.1016/j.neucom.2018.06.076
10.1109/TEVC.2008.919004
10.1016/j.cad.2010.12.015
10.1016/j.ins.2020.08.061
10.1016/j.asoc.2020.106785
10.1016/j.eswa.2020.113702
10.1016/j.cnsns.2012.05.010
10.1109/TEVC.2019.2909744
10.1016/j.engappai.2020.103541
10.1016/j.compstruc.2016.01.008
10.1016/j.advengsoft.2017.01.004
10.1016/j.asoc.2018.01.007
10.1016/j.eswa.2020.113377
10.1016/j.knosys.2015.12.022
10.1002/qre.2626
10.1007/s00521-015-1923-y
10.1016/j.ins.2020.12.086
10.1146/annurev-marine-010213-135144
10.1016/j.eswa.2020.114107
10.1007/s00500-020-05334-4
10.1023/A:1008202821328
10.1016/j.advengsoft.2017.03.014
10.1016/j.advengsoft.2018.04.007
10.1016/j.strusafe.2014.01.002
10.1109/ICNN.1995.488968
10.1007/s10898-007-9149-x
10.1109/ACCESS.2020.3047912
10.1016/j.swevo.2018.02.013
10.1016/j.advengsoft.2013.12.007
10.1016/j.enconman.2020.113279
10.1016/j.ins.2009.03.004
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2022.109215
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2022_109215
S0950705122006049
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
UHS
WUQ
ID FETCH-LOGICAL-c306t-77e20ada4ec6fdd1876bbe24858166316e35e5110a58788e65fe6f418a9ccf2e3
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Tue Jul 01 00:20:22 EDT 2025
Thu Apr 24 23:08:39 EDT 2025
Fri Feb 23 02:39:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Beluga whale optimization
Swarm intelligence
Metaheuristics
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-77e20ada4ec6fdd1876bbe24858166316e35e5110a58788e65fe6f418a9ccf2e3
ORCID 0000-0001-7788-8288
ParticipantIDs crossref_citationtrail_10_1016_j_knosys_2022_109215
crossref_primary_10_1016_j_knosys_2022_109215
elsevier_sciencedirect_doi_10_1016_j_knosys_2022_109215
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-05
PublicationDateYYYYMMDD 2022-09-05
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-05
  day: 05
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Askari, Saeed, Younas (b71) 2020; 161
Zhong, Wang, Dang, Ke (b88) 2020; 36
Jain, Singh, Rani (b61) 2019; 44
Khishe, Mosavi (b70) 2020; 149
Perrin, Würsig, Thewissen (b100) 2009
Kaveh, Talatahari (b39) 2010; 213
Rao, Savsani, Vakharia (b43) 2011; 43
Karaboga, Basturk (b34) 2007; 39
Khattab, Sharieh, Mahafzah (b4) 2019; 10
Tanabe, Ishibuchi (b3) 2020; 24
Kallioras, Lagaros, Avtzis (b60) 2018; 121
Kaveh, Bakhshpoori (b55) 2016; 167
Faramarzi, Heidarinejad, Mirjalili, Gandomi (b74) 2020; 152
Meng, Li, Wang, Said, Yildiz (b15) 2021; 28
Li, Lu, Liu (b90) 2010; 19
Hayyolalam, Kazem (b69) 2020; 87
J. Liang, P. Suganthan, K. Deb, Novel composition test functions for numerical global optimization, in: Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005, SIS 2005, Pasadena, 2005, pp. 68–75
Shi (b42) 2011; 2
.
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b58) 2017; 114
Javidrad, Nazari (b97) 2017; 60
M. Dorigo, G. Di Caro, Ant colony optimization: a new meta-heuristic, in: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, Washington DC, 1999, pp. 1470–1477
Mohammadi-Balani, Nayeri, Azar, Taghizadeh-Yazdi (b84) 2021; 152
Del Ser, Osaba, Molina, Yang, Salcedo-Sanz, Camacho, Das, Suganthan, Coello Coello, Herrera (b1) 2019; 48
Masadeh, Alsharman, Sharieh, Mahafzah, Abdulrahman (b6) 2021; 17
Bouchekara (b75) 2020; 20
Singh, Chaudhury, Panigrahi (b8) 2021; 63
Mahafzah, Jabri, Murad (b7) 2021; 25
Qu, Suganthan, Liang (b19) 2012; 16
Jafari, Moussavian, Chaleshtari (b91) 2018; 57
Mantegna (b103) 1994; 49
Simon (b36) 2008; 12
Abualigah, Diabat, Mirjalili, Elaziz, Gandomi (b81) 2021; 376
Houssein, Gad, Wazery, Suganthan (b5) 2021; 62
Smith, Golver, Treude, Higgs, Amon (b102) 2015; 7
Hill, Dietrich, Yeater, McKinnon, Miller, Aibel, Dove (b101) 2015; 2
Saremi, Mirjalili, Lewis (b57) 2017; 105
Zhao, Liu, Yu, Heidari, Wang, Oliva, Muhammad, Chen (b10) 2021; 167
Yang (b16) 2015
X.S. Yang, S. Deb, Cuckoo search via lévy flights, in: World Congress on Nature & Biologically Inspired Computing, NaBIC, Coimbatore, 2009, pp. 210–214
Yang (b44) 2012
Eskandar, Sadollah, Bahreininejad, Hamdi (b47) 2012; 110–111
Yang, Gandomi (b41) 2012; 29
Kaveh, Khanzadi, Rastegar Moghaddam (b68) 2020; 27
Storn, Price (b28) 1997; 11
Arora, Singh (b62) 2019; 23
Geem, Kim, Loganathan (b30) 2001; 76
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b63) 2019; 97
Kirkpatrick, Gelatt, Vecchi (b25) 1983; 220
Houssein, Gad, Hussain, Suganthan (b17) 2021; 63
Neggaz, Ewees, Elaziz, Mafarja (b98) 2020; 145
Li, Chen, Wang, Heidari, Mirjalili (b79) 2020; 111
J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks, Perth, 1995, pp. 1942–1948
Salih, Alsewari (b76) 2020; 32
Kaur, Awasthi, Sangal, Dhiman (b80) 2020; 90
Holl (b24) 1975
Cheng, Prayogo (b49) 2014; 139
Kaveh (b14) 2017
Emami (b87) 2021
Masadeh, Mahafzah, Sharieh (b66) 2019; 10
Kaveh, Dadras (b59) 2017; 110
Lam, Li (b40) 2010; 14
Passino (b31) 2002; 22
Atashpax-Gargari, Lucas (b35) 2007
Mirjalili (b52) 2015; 89
Deb, Pratap, Agarwal, Meyarivan (b18) 2002; 6
Gheisarnejad (b11) 2018; 65
Salimi (b54) 2015; 75
Mirjalili, Lewis (b22) 2016; 95
Wang, Deb, Cui (b53) 2019; 31
Li (b32) 2003
Meng, Pauline, Kiong (b83) 2021; 98
Paul, Jain, Saha, Mathew (b9) 2021; 222
Glover (b26) 1986; 13
Sulaiman, Mustaffa, Saari, Daniyal (b67) 2020; 87
Jahangiri, Hadianfard, Najafgholipour, Jahangiri, Gerami (b72) 2020; 235
Zou, Chen, Xu (b99) 2019; 335
Kaveh, Khayatazad (b46) 2012; 112–113
Derrac, García, Molina, Herrera (b106) 2011; 1
Houssein, Saad, Hashim, Shaban, Hassaballah (b73) 2020; 94
Zitouni, Harous, Maamri (b86) 2021; 9
Zhong, Wang, Dang, Ke, Guo (b89) 2020; 62
Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b64) 2019; 101
Askari, Younas, Saeed (b78) 2020; 195
Suman, Kumar (b96) 2006; 57
Bilal Pant, Zaheer, Garcia-Hernandez, Abraham (b92) 2020; 90
Rashedi, Nezamabadi-pour, Saryazdi (b38) 2009; 179
Zhong, Li (b21) 2022; 192
Połap, Woźniak (b85) 2021; 166
Bansal, Baliyan (b95) 2020; 97
Gandomi, Alavi (b45) 2012; 17
Lu, Zhou, Tao, Luo, Wang (b94) 2021; 547
Kaveh (b2) 2021
Wolpert, Macready (b20) 1997; 1
Yousri, Abd Elaziz, Oliva, Abualigah, Al-qaness, Ewees (b12) 2020; 223
Li, Hu (b13) 2014; 48
Mirjalili, Mirjalili, Lewis (b48) 2014; 69
Kaveh, Akbari, Hosseini (b77) 2020; 38
Erol, Eksin (b33) 2006; 37
Zitouni, Harous, Belkeram, Hammou (b82) 2021
Kashan (b50) 2014; 16
Mirjalili (b56) 2016; 96
Mirjalili (b51) 2015; 83
Suganthan, Hansen, Liang, Deb, Chen, Auger, Tiwari (b104) 2005
Faramarzi, Heidarinejad, Stephens, Mirjalili (b23) 2020; 191
Fernandes, Yen (b93) 2021; 558
Dhiman, Kumar (b65) 2019; 165
Dhiman (10.1016/j.knosys.2022.109215_b65) 2019; 165
Shi (10.1016/j.knosys.2022.109215_b42) 2011; 2
Salih (10.1016/j.knosys.2022.109215_b76) 2020; 32
Glover (10.1016/j.knosys.2022.109215_b26) 1986; 13
Masadeh (10.1016/j.knosys.2022.109215_b66) 2019; 10
Wang (10.1016/j.knosys.2022.109215_b53) 2019; 31
Gandomi (10.1016/j.knosys.2022.109215_b45) 2012; 17
Kaveh (10.1016/j.knosys.2022.109215_b2) 2021
Mirjalili (10.1016/j.knosys.2022.109215_b22) 2016; 95
Kallioras (10.1016/j.knosys.2022.109215_b60) 2018; 121
Suman (10.1016/j.knosys.2022.109215_b96) 2006; 57
Hayyolalam (10.1016/j.knosys.2022.109215_b69) 2020; 87
Kaur (10.1016/j.knosys.2022.109215_b80) 2020; 90
Del Ser (10.1016/j.knosys.2022.109215_b1) 2019; 48
Holl (10.1016/j.knosys.2022.109215_b24) 1975
Li (10.1016/j.knosys.2022.109215_b32) 2003
Neggaz (10.1016/j.knosys.2022.109215_b98) 2020; 145
Derrac (10.1016/j.knosys.2022.109215_b106) 2011; 1
Geem (10.1016/j.knosys.2022.109215_b30) 2001; 76
Gheisarnejad (10.1016/j.knosys.2022.109215_b11) 2018; 65
Paul (10.1016/j.knosys.2022.109215_b9) 2021; 222
Lu (10.1016/j.knosys.2022.109215_b94) 2021; 547
Bouchekara (10.1016/j.knosys.2022.109215_b75) 2020; 20
Mantegna (10.1016/j.knosys.2022.109215_b103) 1994; 49
Askari (10.1016/j.knosys.2022.109215_b71) 2020; 161
Singh (10.1016/j.knosys.2022.109215_b8) 2021; 63
Kirkpatrick (10.1016/j.knosys.2022.109215_b25) 1983; 220
Bansal (10.1016/j.knosys.2022.109215_b95) 2020; 97
Abualigah (10.1016/j.knosys.2022.109215_b81) 2021; 376
Storn (10.1016/j.knosys.2022.109215_b28) 1997; 11
Kaveh (10.1016/j.knosys.2022.109215_b39) 2010; 213
Houssein (10.1016/j.knosys.2022.109215_b73) 2020; 94
Perrin (10.1016/j.knosys.2022.109215_b100) 2009
Saremi (10.1016/j.knosys.2022.109215_b57) 2017; 105
Kashan (10.1016/j.knosys.2022.109215_b50) 2014; 16
Li (10.1016/j.knosys.2022.109215_b90) 2010; 19
Yang (10.1016/j.knosys.2022.109215_b44) 2012
Atashpax-Gargari (10.1016/j.knosys.2022.109215_b35) 2007
Passino (10.1016/j.knosys.2022.109215_b31) 2002; 22
Jafari (10.1016/j.knosys.2022.109215_b91) 2018; 57
Mirjalili (10.1016/j.knosys.2022.109215_b51) 2015; 83
Faramarzi (10.1016/j.knosys.2022.109215_b23) 2020; 191
Zitouni (10.1016/j.knosys.2022.109215_b82) 2021
Hill (10.1016/j.knosys.2022.109215_b101) 2015; 2
Masadeh (10.1016/j.knosys.2022.109215_b6) 2021; 17
Yang (10.1016/j.knosys.2022.109215_b16) 2015
Jahangiri (10.1016/j.knosys.2022.109215_b72) 2020; 235
Askari (10.1016/j.knosys.2022.109215_b78) 2020; 195
Wolpert (10.1016/j.knosys.2022.109215_b20) 1997; 1
Mohammadi-Balani (10.1016/j.knosys.2022.109215_b84) 2021; 152
Khishe (10.1016/j.knosys.2022.109215_b70) 2020; 149
Tanabe (10.1016/j.knosys.2022.109215_b3) 2020; 24
Li (10.1016/j.knosys.2022.109215_b79) 2020; 111
Mirjalili (10.1016/j.knosys.2022.109215_b58) 2017; 114
Mahafzah (10.1016/j.knosys.2022.109215_b7) 2021; 25
Rashedi (10.1016/j.knosys.2022.109215_b38) 2009; 179
Sulaiman (10.1016/j.knosys.2022.109215_b67) 2020; 87
Lam (10.1016/j.knosys.2022.109215_b40) 2010; 14
Zhao (10.1016/j.knosys.2022.109215_b10) 2021; 167
Mirjalili (10.1016/j.knosys.2022.109215_b52) 2015; 89
Mirjalili (10.1016/j.knosys.2022.109215_b56) 2016; 96
Jain (10.1016/j.knosys.2022.109215_b61) 2019; 44
Smith (10.1016/j.knosys.2022.109215_b102) 2015; 7
Meng (10.1016/j.knosys.2022.109215_b83) 2021; 98
Kaveh (10.1016/j.knosys.2022.109215_b14) 2017
10.1016/j.knosys.2022.109215_b105
Meng (10.1016/j.knosys.2022.109215_b15) 2021; 28
Bilal Pant (10.1016/j.knosys.2022.109215_b92) 2020; 90
Khattab (10.1016/j.knosys.2022.109215_b4) 2019; 10
Li (10.1016/j.knosys.2022.109215_b13) 2014; 48
Hashim (10.1016/j.knosys.2022.109215_b64) 2019; 101
Faramarzi (10.1016/j.knosys.2022.109215_b74) 2020; 152
Javidrad (10.1016/j.knosys.2022.109215_b97) 2017; 60
Simon (10.1016/j.knosys.2022.109215_b36) 2008; 12
Salimi (10.1016/j.knosys.2022.109215_b54) 2015; 75
Kaveh (10.1016/j.knosys.2022.109215_b68) 2020; 27
Rao (10.1016/j.knosys.2022.109215_b43) 2011; 43
Yang (10.1016/j.knosys.2022.109215_b41) 2012; 29
Kaveh (10.1016/j.knosys.2022.109215_b77) 2020; 38
Zitouni (10.1016/j.knosys.2022.109215_b86) 2021; 9
Zhong (10.1016/j.knosys.2022.109215_b89) 2020; 62
Kaveh (10.1016/j.knosys.2022.109215_b46) 2012; 112–113
Emami (10.1016/j.knosys.2022.109215_b87) 2021
Zhong (10.1016/j.knosys.2022.109215_b88) 2020; 36
Heidari (10.1016/j.knosys.2022.109215_b63) 2019; 97
Yousri (10.1016/j.knosys.2022.109215_b12) 2020; 223
Zhong (10.1016/j.knosys.2022.109215_b21) 2022; 192
Erol (10.1016/j.knosys.2022.109215_b33) 2006; 37
Połap (10.1016/j.knosys.2022.109215_b85) 2021; 166
Fernandes (10.1016/j.knosys.2022.109215_b93) 2021; 558
Deb (10.1016/j.knosys.2022.109215_b18) 2002; 6
Suganthan (10.1016/j.knosys.2022.109215_b104) 2005
Mirjalili (10.1016/j.knosys.2022.109215_b48) 2014; 69
Kaveh (10.1016/j.knosys.2022.109215_b59) 2017; 110
Houssein (10.1016/j.knosys.2022.109215_b5) 2021; 62
10.1016/j.knosys.2022.109215_b37
Eskandar (10.1016/j.knosys.2022.109215_b47) 2012; 110–111
Houssein (10.1016/j.knosys.2022.109215_b17) 2021; 63
Arora (10.1016/j.knosys.2022.109215_b62) 2019; 23
Zou (10.1016/j.knosys.2022.109215_b99) 2019; 335
Cheng (10.1016/j.knosys.2022.109215_b49) 2014; 139
10.1016/j.knosys.2022.109215_b29
Kaveh (10.1016/j.knosys.2022.109215_b55) 2016; 167
10.1016/j.knosys.2022.109215_b27
Qu (10.1016/j.knosys.2022.109215_b19) 2012; 16
Karaboga (10.1016/j.knosys.2022.109215_b34) 2007; 39
References_xml – reference: M. Dorigo, G. Di Caro, Ant colony optimization: a new meta-heuristic, in: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, Washington DC, 1999, pp. 1470–1477,
– reference: J. Liang, P. Suganthan, K. Deb, Novel composition test functions for numerical global optimization, in: Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005, SIS 2005, Pasadena, 2005, pp. 68–75,
– volume: 167
  year: 2021
  ident: b10
  article-title: Ant colony optimization with horizontal and vertical crossover search: fundamental visions for multi-threshold image segmentation
  publication-title: Expert Syst. Appl.
– reference: J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks, Perth, 1995, pp. 1942–1948,
– volume: 57
  start-page: 1143
  year: 2006
  end-page: 1160
  ident: b96
  article-title: A survey of simulated annealing as a tool for single and mutliobjective optimization
  publication-title: J. Oper. Res. Hist.
– year: 2015
  ident: b16
  article-title: Recent Advances in Swarm Intelligence and Evolutionary Computation
– volume: 17
  start-page: 4831
  year: 2012
  end-page: 4835
  ident: b45
  article-title: Krill herd: A new bio-inspired optimization algorithm
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 222
  year: 2021
  ident: b9
  article-title: Multi-objective PSO based online feature selection for multi-label classification
  publication-title: Knowl.-Based Syst.
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: b58
  article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
– year: 2021
  ident: b87
  article-title: Stock exchange trading optimization algorithm: a human-inspired method for global optimization
  publication-title: J. Supercomput.
– volume: 62
  year: 2021
  ident: b5
  article-title: Task scheduling in cloud computing based on meta-heuristics: review, taxonomy, open challenges, and future trends
  publication-title: Swarm Evol. Comput.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b18
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 139
  start-page: 98
  year: 2014
  end-page: 112
  ident: b49
  article-title: Symbiotic organisms search: a new metaheuristic optimization algorithm
  publication-title: Comput. Struct.
– volume: 32
  start-page: 10359
  year: 2020
  end-page: 10386
  ident: b76
  article-title: A new algorithm for normal and large-scale optimization problems: Nomadic people optimizer
  publication-title: Neural Comput. Appl.
– start-page: 108
  year: 2009
  end-page: 112
  ident: b100
  article-title: Encyclopedia of Marine Mammals
– volume: 48
  start-page: 1
  year: 2014
  end-page: 14
  ident: b13
  article-title: Risk design optimization using many-objective evolutionary algorithm with application to performance-based wind engineering of tall buildings
  publication-title: Struct. Saf.
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  ident: b57
  article-title: Grasshopper optimization algorithm: theory and application
  publication-title: Adv. Eng. Softw.
– volume: 25
  start-page: 2741
  year: 2021
  end-page: 2766
  ident: b7
  article-title: Multithreaded scheduling for program segments based on chemical reaction optimizer
  publication-title: Soft Comput.
– volume: 37
  start-page: 106
  year: 2006
  end-page: 111
  ident: b33
  article-title: A new optimization method: big bang-big crunch
  publication-title: Adv. Eng. Softw.
– volume: 12
  start-page: 702
  year: 2008
  end-page: 713
  ident: b36
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 16
  start-page: 601
  year: 2012
  end-page: 614
  ident: b19
  article-title: Differential evolution with neighborhood mutation for multimodal optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 75
  start-page: 1
  year: 2015
  end-page: 18
  ident: b54
  article-title: Stochastic fractal search. A powerful metaheuristic algorithm
  publication-title: Knowl.-Based Syst.
– volume: 87
  year: 2020
  ident: b69
  article-title: Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 90
  year: 2020
  ident: b80
  article-title: Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
– volume: 19
  start-page: 656
  year: 2010
  end-page: 678
  ident: b90
  article-title: A hybrid genetic algorithm and optimality criteria method for optimum design of RC tall buildings under multi-load cases
  publication-title: Struct. Des. Tall Special Build.
– volume: 76
  start-page: 60
  year: 2001
  end-page: 68
  ident: b30
  article-title: A new heuristic optimization algorithm: harmony search
  publication-title: Simulation
– volume: 376
  year: 2021
  ident: b81
  article-title: The arithmetic optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 29
  start-page: 464
  year: 2012
  end-page: 483
  ident: b41
  article-title: Bat algorithm: a novel approach for global engineering optimization
  publication-title: Eng. Comput.
– volume: 38
  start-page: 1554
  year: 2020
  end-page: 1606
  ident: b77
  article-title: Plasma generation optimization: a new physically-based metaheuristic algorithm for solving constrained optimization problems
  publication-title: Eng. Comput.
– volume: 111
  start-page: 300
  year: 2020
  end-page: 323
  ident: b79
  article-title: Slime mould algorithm: a new method for stochastic optimization
  publication-title: Future Gener. Comput. Syst.
– volume: 24
  start-page: 193
  year: 2020
  end-page: 200
  ident: b3
  article-title: A review of evolutionary multimodal multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 110
  start-page: 69
  year: 2017
  end-page: 84
  ident: b59
  article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization
  publication-title: Adv. Eng. Softw.
– volume: 558
  start-page: 91
  year: 2021
  end-page: 102
  ident: b93
  article-title: Pruning of generative adversarial neural networks for medical imaging diagnostics with evolution strategy
  publication-title: Inform. Sci.
– volume: 110–111
  start-page: 151
  year: 2012
  end-page: 166
  ident: b47
  article-title: Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput. Struct.
– volume: 161
  year: 2020
  ident: b71
  article-title: Heap-based optimizer inspired by corporate rank hierarchy for global optimization
  publication-title: Expert Syst. Appl.
– year: 1975
  ident: b24
  article-title: Adaptation in Natural and Artificial Systems
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b20
  article-title: No free lunch theorem for optimization
  publication-title: IEEE Trans. Evol. Comput.
– year: 2017
  ident: b14
  article-title: Applications of Metaheuristic Optimization Algorithms in Civil Engineering
– volume: 10
  start-page: 388
  year: 2019
  end-page: 395
  ident: b66
  article-title: Sea lion optimization algorithm
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 7
  start-page: 571
  year: 2015
  end-page: 596
  ident: b102
  article-title: Whale-fall ecosystems: recent insights into ecology, paleoecology, and evolution
  publication-title: Ann. Rev. Mar. Sci.
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: b43
  article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aided Des.
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b63
  article-title: Harris hawks optimization: algorithm and applications
  publication-title: Future Gener. Comput. Syst.
– year: 2021
  ident: b82
  article-title: The Archerfish hunting optimizer: A novel metaheuristic algorithm for global optimization
  publication-title: Arab. J. Sci. Eng.
– start-page: 4661
  year: 2007
  end-page: 4662
  ident: b35
  article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition
  publication-title: 2007 IEEE Congress on Evolutionary Computation
– volume: 36
  start-page: 1224
  year: 2020
  end-page: 1244
  ident: b88
  article-title: Structural reliability assessment by salp swarm algorithm-based FORM
  publication-title: Qual. Reliab. Eng. Int.
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: b34
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Global Optim.
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b38
  article-title: GSA: a gravitational search algorithm
  publication-title: Inform. Sci.
– volume: 101
  start-page: 646
  year: 2019
  end-page: 667
  ident: b64
  article-title: Henry gas solubility optimization: a novel physics-based algorithm
  publication-title: Future Gener. Comput. Syst.
– volume: 31
  start-page: 1995
  year: 2019
  end-page: 2014
  ident: b53
  article-title: Monarch butterfly optimization
  publication-title: Neural Comput. Appl.
– volume: 10
  start-page: 159
  year: 2019
  end-page: 167
  ident: b4
  article-title: Most valuable player algorithm for solving minimum vertex cover problem
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 44
  start-page: 148
  year: 2019
  end-page: 175
  ident: b61
  article-title: A novel nature-inspired algorithm for optimization: squirrel search algorithm
  publication-title: Swarm Evol. Comput.
– volume: 167
  start-page: 69
  year: 2016
  end-page: 85
  ident: b55
  article-title: Water evaporation optimization: a novel physically inspired optimization algorithm
  publication-title: Comput. Struct.
– volume: 62
  start-page: 1951
  year: 2020
  end-page: 1968
  ident: b89
  article-title: First-order reliability method based on Harris hawks optimization for high-dimensional reliability analysis
  publication-title: Struct. Multidiscip. Optim.
– volume: 235
  year: 2020
  ident: b72
  article-title: Interactive autodidactic school: a new metaheuristic optimization algorithm for solving mathematical and structural design optimization problems
  publication-title: Comput. Struct.
– start-page: 240
  year: 2012
  end-page: 249
  ident: b44
  article-title: Flower pollination algorithm for global optimization
  publication-title: Unconventional Computation and Natural Computation
– volume: 145
  year: 2020
  ident: b98
  article-title: Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection
  publication-title: Experts Syst. Appl.
– start-page: 1
  year: 2005
  end-page: 50
  ident: b104
  article-title: Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b22
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 2
  start-page: 105
  year: 2015
  end-page: 123
  ident: b101
  article-title: Developing a catalog of socio-sexual behaviors of beluga whales (Delphinapterus leucas) in the care of humans
  publication-title: Animal Behav. Cogn.
– volume: 17
  start-page: 99
  year: 2021
  end-page: 116
  ident: b6
  article-title: Task scheduling on cloud computing based on sea lion optimization algorithm
  publication-title: Int. J. Web Inf. Syst.
– reference: X.S. Yang, S. Deb, Cuckoo search via lévy flights, in: World Congress on Nature & Biologically Inspired Computing, NaBIC, Coimbatore, 2009, pp. 210–214,
– volume: 152
  year: 2020
  ident: b74
  article-title: Marine predators algorithm: a nature-inspired metaheuristic
  publication-title: Expert Syst. Appl.
– volume: 9
  start-page: 4542
  year: 2021
  end-page: 4565
  ident: b86
  article-title: The solar system algorithm: a novel metaheuristic method for global optimization
  publication-title: IEEE Access
– volume: 14
  start-page: 381
  year: 2010
  end-page: 399
  ident: b40
  article-title: Chemical-reaction-inspired metaheuristic for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: b56
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
– volume: 22
  start-page: 52
  year: 2002
  end-page: 67
  ident: b31
  article-title: Biomimicry of bacterial foraging for distributed optimization and control
  publication-title: IEEE Control Syst. Mag.
– volume: 149
  year: 2020
  ident: b70
  article-title: Chimp optimization algorithm
  publication-title: Expert Syst. Appl.
– volume: 335
  start-page: 366
  year: 2019
  end-page: 383
  ident: b99
  article-title: A survey of teaching-learning-based optimization
  publication-title: Neurocomputing
– volume: 223
  year: 2020
  ident: b12
  article-title: Reliable applied objective for identifying simple and detailed photovoltaic models using modern metaheuristics: comparative study
  publication-title: Energy Convers. Manag.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b106
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– volume: 63
  year: 2021
  ident: b8
  article-title: Hybrid MPSO-CNN: Multi-level particle swarm optimized hyperparameters of convolutional neural network
  publication-title: Swarm Evol. Comput.
– volume: 121
  start-page: 147
  year: 2018
  end-page: 166
  ident: b60
  article-title: Pity beetle algorithm – a new metaheuristic inspired by the behavior of bark beetles
  publication-title: Adv. Eng. Softw.
– volume: 152
  year: 2021
  ident: b84
  article-title: Golden eagle optimizer: a nature-inspired metaheuristic algorithm
  publication-title: Comput. Ind. Eng.
– volume: 13
  start-page: 533
  year: 1986
  end-page: 549
  ident: b26
  article-title: Future paths for integer programming and links to artificial intelligence
  publication-title: Comput. Oper. Res.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b28
  article-title: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– volume: 165
  start-page: 169
  year: 2019
  end-page: 196
  ident: b65
  article-title: Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems
  publication-title: Knowl.-Based Syst.
– volume: 90
  year: 2020
  ident: b92
  article-title: Differential evolution: a review of more than two decades of research
  publication-title: Eng. Appl. Artif. Intell.
– volume: 63
  year: 2021
  ident: b17
  article-title: Major advances in particle swarm optimization: theory, analysis and application
  publication-title: Swarm Evol. Comput.
– volume: 191
  year: 2020
  ident: b23
  article-title: Equilibrium optimizer: a novel optimization algorithm
  publication-title: Knowl.-Based Syst.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b48
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– year: 2021
  ident: b2
  article-title: Advances in Metaheuristics Algorithms for Optimal Design of Structures
– volume: 166
  year: 2021
  ident: b85
  article-title: Red fox optimization algorithm
  publication-title: Expert Syst. Appl.
– volume: 65
  start-page: 121
  year: 2018
  end-page: 138
  ident: b11
  article-title: An effective hybrid harmony search and cuckoo optimization algorithm based fuzzy PID controller for load frequency control
  publication-title: Appl. Soft Comput.
– volume: 87
  year: 2020
  ident: b67
  article-title: Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: b25
  article-title: Optimization by simulated annealing
  publication-title: Science
– volume: 28
  start-page: 1853
  year: 2021
  end-page: 1869
  ident: b15
  article-title: A comparative study of metaheuristic algorithms for reliability-based design optimization problems
  publication-title: Arch. Comput. Methods Eng.
– volume: 57
  start-page: 341
  year: 2018
  end-page: 357
  ident: b91
  article-title: Optimum design of perforated orthotropic and laminated composite plates under in-plane loading by genetic algorithm
  publication-title: Struct. Multidiscip. Optim.
– volume: 27
  start-page: 1722
  year: 2020
  end-page: 1739
  ident: b68
  article-title: Billiards-inspired optimization algorithm: a new meta-heuristic method
  publication-title: Structures
– year: 2003
  ident: b32
  article-title: A New Intelligent Optimization-Artificial Fish Swarm Algorithm
– volume: 192
  year: 2022
  ident: b21
  article-title: Comprehensive learning Harris hawks-equilibrium optimization with terminal replacement mechanism for constrained optimization problems
  publication-title: Expert Syst. Appl.
– volume: 20
  start-page: 139
  year: 2020
  end-page: 195
  ident: b75
  article-title: Most valuable player algorithm: a novel optimization algorithm inspired from sport
  publication-title: Oper. Res.
– volume: 98
  year: 2021
  ident: b83
  article-title: A carnivorous plant algorithm for solving global optimization problems
  publication-title: Appl. Soft Comput.
– volume: 16
  start-page: 171
  year: 2014
  end-page: 200
  ident: b50
  article-title: League championship algorithm (LCA): an algorithm for global optimization inspired by sport championships
  publication-title: Appl. Soft Comput.
– volume: 2
  start-page: 35
  year: 2011
  end-page: 62
  ident: b42
  article-title: An optimization algorithm based on brainstorming process
  publication-title: Int. J. Swarm Intell. Res.
– volume: 547
  start-page: 553
  year: 2021
  end-page: 567
  ident: b94
  article-title: Enhancing gene expression programming based on space partition and jump for symbolic regression
  publication-title: Inform. Sci.
– volume: 97
  year: 2020
  ident: b95
  article-title: Bi-MARS: a bi-clustering based memetic algorithm for recommender systems
  publication-title: Appl. Soft Comput.
– reference: .
– volume: 112–113
  start-page: 283
  year: 2012
  end-page: 294
  ident: b46
  article-title: A new metaheuristic method: ray optimization
  publication-title: Comput. Struct.
– volume: 213
  start-page: 267
  year: 2010
  end-page: 289
  ident: b39
  article-title: A novel heuristic optimization method: charged system search
  publication-title: Acta Mech.
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: b52
  article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
– volume: 195
  year: 2020
  ident: b78
  article-title: Political optimizer: a novel socio-inspired meta-heuristic for global optimization
  publication-title: Knowl.-Based Syst.
– volume: 83
  start-page: 80
  year: 2015
  end-page: 98
  ident: b51
  article-title: The ant lion optimizer
  publication-title: Adv. Eng. Softw.
– volume: 48
  start-page: 220
  year: 2019
  end-page: 250
  ident: b1
  article-title: Bio-inspired computation: Where we stand and what’s next?
  publication-title: Swarm Evol. Comput.
– volume: 60
  start-page: 634
  year: 2017
  end-page: 654
  ident: b97
  article-title: A new hybrid particle swarm and simulated annealing stochastic optimization method
  publication-title: Appl. Soft Comput.
– volume: 49
  start-page: 4677
  year: 1994
  end-page: 4683
  ident: b103
  article-title: Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes
  publication-title: Phys. Rev. E
– volume: 23
  start-page: 715
  year: 2019
  end-page: 734
  ident: b62
  article-title: Butterfly optimization algorithm: a novel approach for global optimization
  publication-title: Soft Comput.
– volume: 94
  year: 2020
  ident: b73
  article-title: Lévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 37
  start-page: 106
  issue: 2
  year: 2006
  ident: 10.1016/j.knosys.2022.109215_b33
  article-title: A new optimization method: big bang-big crunch
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2005.04.005
– volume: 145
  year: 2020
  ident: 10.1016/j.knosys.2022.109215_b98
  article-title: Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection
  publication-title: Experts Syst. Appl.
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.knosys.2022.109215_b58
  article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 27
  start-page: 1722
  year: 2020
  ident: 10.1016/j.knosys.2022.109215_b68
  article-title: Billiards-inspired optimization algorithm: a new meta-heuristic method
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.07.058
– volume: 235
  year: 2020
  ident: 10.1016/j.knosys.2022.109215_b72
  article-title: Interactive autodidactic school: a new metaheuristic optimization algorithm for solving mathematical and structural design optimization problems
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2020.106268
– start-page: 4661
  year: 2007
  ident: 10.1016/j.knosys.2022.109215_b35
  article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.knosys.2022.109215_b22
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 19
  start-page: 656
  year: 2010
  ident: 10.1016/j.knosys.2022.109215_b90
  article-title: A hybrid genetic algorithm and optimality criteria method for optimum design of RC tall buildings under multi-load cases
  publication-title: Struct. Des. Tall Special Build.
  doi: 10.1002/tal.505
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.knosys.2022.109215_b18
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 192
  year: 2022
  ident: 10.1016/j.knosys.2022.109215_b21
  article-title: Comprehensive learning Harris hawks-equilibrium optimization with terminal replacement mechanism for constrained optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116432
– volume: 62
  start-page: 1951
  year: 2020
  ident: 10.1016/j.knosys.2022.109215_b89
  article-title: First-order reliability method based on Harris hawks optimization for high-dimensional reliability analysis
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-020-02587-3
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  ident: 10.1016/j.knosys.2022.109215_b30
  article-title: A new heuristic optimization algorithm: harmony search
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– year: 2015
  ident: 10.1016/j.knosys.2022.109215_b16
– volume: 16
  start-page: 601
  issue: 5
  year: 2012
  ident: 10.1016/j.knosys.2022.109215_b19
  article-title: Differential evolution with neighborhood mutation for multimodal optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2011.2161873
– volume: 149
  year: 2020
  ident: 10.1016/j.knosys.2022.109215_b70
  article-title: Chimp optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113338
– year: 2021
  ident: 10.1016/j.knosys.2022.109215_b2
– volume: 63
  year: 2021
  ident: 10.1016/j.knosys.2022.109215_b8
  article-title: Hybrid MPSO-CNN: Multi-level particle swarm optimized hyperparameters of convolutional neural network
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100863
– volume: 94
  year: 2020
  ident: 10.1016/j.knosys.2022.109215_b73
  article-title: Lévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103731
– volume: 62
  year: 2021
  ident: 10.1016/j.knosys.2022.109215_b5
  article-title: Task scheduling in cloud computing based on meta-heuristics: review, taxonomy, open challenges, and future trends
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100841
– ident: 10.1016/j.knosys.2022.109215_b37
  doi: 10.1109/NABIC.2009.5393690
– volume: 111
  start-page: 300
  year: 2020
  ident: 10.1016/j.knosys.2022.109215_b79
  article-title: Slime mould algorithm: a new method for stochastic optimization
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.03.055
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.knosys.2022.109215_b63
  article-title: Harris hawks optimization: algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 2
  start-page: 105
  issue: 2
  year: 2015
  ident: 10.1016/j.knosys.2022.109215_b101
  article-title: Developing a catalog of socio-sexual behaviors of beluga whales (Delphinapterus leucas) in the care of humans
  publication-title: Animal Behav. Cogn.
  doi: 10.12966/abc.05.01.2015
– volume: 152
  year: 2021
  ident: 10.1016/j.knosys.2022.109215_b84
  article-title: Golden eagle optimizer: a nature-inspired metaheuristic algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.107050
– volume: 167
  year: 2021
  ident: 10.1016/j.knosys.2022.109215_b10
  article-title: Ant colony optimization with horizontal and vertical crossover search: fundamental visions for multi-threshold image segmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114122
– year: 2021
  ident: 10.1016/j.knosys.2022.109215_b82
  article-title: The Archerfish hunting optimizer: A novel metaheuristic algorithm for global optimization
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-021-05608-5
– volume: 191
  year: 2020
  ident: 10.1016/j.knosys.2022.109215_b23
  article-title: Equilibrium optimizer: a novel optimization algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105190
– volume: 87
  year: 2020
  ident: 10.1016/j.knosys.2022.109215_b67
  article-title: Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103330
– volume: 16
  start-page: 171
  year: 2014
  ident: 10.1016/j.knosys.2022.109215_b50
  article-title: League championship algorithm (LCA): an algorithm for global optimization inspired by sport championships
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.12.005
– volume: 57
  start-page: 341
  year: 2018
  ident: 10.1016/j.knosys.2022.109215_b91
  article-title: Optimum design of perforated orthotropic and laminated composite plates under in-plane loading by genetic algorithm
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-017-1758-5
– volume: 60
  start-page: 634
  year: 2017
  ident: 10.1016/j.knosys.2022.109215_b97
  article-title: A new hybrid particle swarm and simulated annealing stochastic optimization method
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.07.023
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.knosys.2022.109215_b52
  article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– year: 2017
  ident: 10.1016/j.knosys.2022.109215_b14
– volume: 20
  start-page: 139
  year: 2020
  ident: 10.1016/j.knosys.2022.109215_b75
  article-title: Most valuable player algorithm: a novel optimization algorithm inspired from sport
  publication-title: Oper. Res.
– start-page: 1
  year: 2005
  ident: 10.1016/j.knosys.2022.109215_b104
– volume: 17
  start-page: 99
  issue: 2
  year: 2021
  ident: 10.1016/j.knosys.2022.109215_b6
  article-title: Task scheduling on cloud computing based on sea lion optimization algorithm
  publication-title: Int. J. Web Inf. Syst.
  doi: 10.1108/IJWIS-11-2020-0071
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.knosys.2022.109215_b20
  article-title: No free lunch theorem for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 376
  year: 2021
  ident: 10.1016/j.knosys.2022.109215_b81
  article-title: The arithmetic optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113609
– volume: 2
  start-page: 35
  issue: 4
  year: 2011
  ident: 10.1016/j.knosys.2022.109215_b42
  article-title: An optimization algorithm based on brainstorming process
  publication-title: Int. J. Swarm Intell. Res.
  doi: 10.4018/ijsir.2011100103
– volume: 110–111
  start-page: 151
  year: 2012
  ident: 10.1016/j.knosys.2022.109215_b47
  article-title: Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.07.010
– volume: 28
  start-page: 1853
  year: 2021
  ident: 10.1016/j.knosys.2022.109215_b15
  article-title: A comparative study of metaheuristic algorithms for reliability-based design optimization problems
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-020-09443-z
– volume: 10
  start-page: 159
  issue: 8
  year: 2019
  ident: 10.1016/j.knosys.2022.109215_b4
  article-title: Most valuable player algorithm for solving minimum vertex cover problem
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 222
  year: 2021
  ident: 10.1016/j.knosys.2022.109215_b9
  article-title: Multi-objective PSO based online feature selection for multi-label classification
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.106966
– volume: 14
  start-page: 381
  issue: 3
  year: 2010
  ident: 10.1016/j.knosys.2022.109215_b40
  article-title: Chemical-reaction-inspired metaheuristic for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2033580
– volume: 139
  start-page: 98
  year: 2014
  ident: 10.1016/j.knosys.2022.109215_b49
  article-title: Symbiotic organisms search: a new metaheuristic optimization algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2014.03.007
– volume: 75
  start-page: 1
  year: 2015
  ident: 10.1016/j.knosys.2022.109215_b54
  article-title: Stochastic fractal search. A powerful metaheuristic algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.07.025
– volume: 22
  start-page: 52
  issue: 3
  year: 2002
  ident: 10.1016/j.knosys.2022.109215_b31
  article-title: Biomimicry of bacterial foraging for distributed optimization and control
  publication-title: IEEE Control Syst. Mag.
  doi: 10.1109/MCS.2002.1004010
– volume: 112–113
  start-page: 283
  year: 2012
  ident: 10.1016/j.knosys.2022.109215_b46
  article-title: A new metaheuristic method: ray optimization
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.09.003
– volume: 213
  start-page: 267
  year: 2010
  ident: 10.1016/j.knosys.2022.109215_b39
  article-title: A novel heuristic optimization method: charged system search
  publication-title: Acta Mech.
  doi: 10.1007/s00707-009-0270-4
– volume: 32
  start-page: 10359
  year: 2020
  ident: 10.1016/j.knosys.2022.109215_b76
  article-title: A new algorithm for normal and large-scale optimization problems: Nomadic people optimizer
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04575-1
– volume: 87
  year: 2020
  ident: 10.1016/j.knosys.2022.109215_b69
  article-title: Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103249
– start-page: 240
  year: 2012
  ident: 10.1016/j.knosys.2022.109215_b44
  article-title: Flower pollination algorithm for global optimization
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 10.1016/j.knosys.2022.109215_b25
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 13
  start-page: 533
  issue: 5
  year: 1986
  ident: 10.1016/j.knosys.2022.109215_b26
  article-title: Future paths for integer programming and links to artificial intelligence
  publication-title: Comput. Oper. Res.
  doi: 10.1016/0305-0548(86)90048-1
– volume: 23
  start-page: 715
  year: 2019
  ident: 10.1016/j.knosys.2022.109215_b62
  article-title: Butterfly optimization algorithm: a novel approach for global optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3102-4
– volume: 49
  start-page: 4677
  issue: 5
  year: 1994
  ident: 10.1016/j.knosys.2022.109215_b103
  article-title: Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.49.4677
– volume: 57
  start-page: 1143
  year: 2006
  ident: 10.1016/j.knosys.2022.109215_b96
  article-title: A survey of simulated annealing as a tool for single and mutliobjective optimization
  publication-title: J. Oper. Res. Hist.
– volume: 63
  year: 2021
  ident: 10.1016/j.knosys.2022.109215_b17
  article-title: Major advances in particle swarm optimization: theory, analysis and application
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100868
– start-page: 108
  year: 2009
  ident: 10.1016/j.knosys.2022.109215_b100
– volume: 83
  start-page: 80
  year: 2015
  ident: 10.1016/j.knosys.2022.109215_b51
  article-title: The ant lion optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 165
  start-page: 169
  year: 2019
  ident: 10.1016/j.knosys.2022.109215_b65
  article-title: Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.11.024
– volume: 38
  start-page: 1554
  issue: 4
  year: 2020
  ident: 10.1016/j.knosys.2022.109215_b77
  article-title: Plasma generation optimization: a new physically-based metaheuristic algorithm for solving constrained optimization problems
  publication-title: Eng. Comput.
  doi: 10.1108/EC-05-2020-0235
– volume: 195
  year: 2020
  ident: 10.1016/j.knosys.2022.109215_b78
  article-title: Political optimizer: a novel socio-inspired meta-heuristic for global optimization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105709
– volume: 29
  start-page: 464
  issue: 5
  year: 2012
  ident: 10.1016/j.knosys.2022.109215_b41
  article-title: Bat algorithm: a novel approach for global engineering optimization
  publication-title: Eng. Comput.
  doi: 10.1108/02644401211235834
– ident: 10.1016/j.knosys.2022.109215_b105
  doi: 10.1109/SIS.2005.1501604
– volume: 48
  start-page: 220
  year: 2019
  ident: 10.1016/j.knosys.2022.109215_b1
  article-title: Bio-inspired computation: Where we stand and what’s next?
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.04.008
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.knosys.2022.109215_b106
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– ident: 10.1016/j.knosys.2022.109215_b29
  doi: 10.1109/CEC.1999.782657
– year: 2021
  ident: 10.1016/j.knosys.2022.109215_b87
  article-title: Stock exchange trading optimization algorithm: a human-inspired method for global optimization
  publication-title: J. Supercomput.
– volume: 101
  start-page: 646
  year: 2019
  ident: 10.1016/j.knosys.2022.109215_b64
  article-title: Henry gas solubility optimization: a novel physics-based algorithm
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.07.015
– volume: 335
  start-page: 366
  year: 2019
  ident: 10.1016/j.knosys.2022.109215_b99
  article-title: A survey of teaching-learning-based optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.076
– volume: 12
  start-page: 702
  issue: 6
  year: 2008
  ident: 10.1016/j.knosys.2022.109215_b36
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.919004
– volume: 43
  start-page: 303
  year: 2011
  ident: 10.1016/j.knosys.2022.109215_b43
  article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– volume: 547
  start-page: 553
  year: 2021
  ident: 10.1016/j.knosys.2022.109215_b94
  article-title: Enhancing gene expression programming based on space partition and jump for symbolic regression
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.08.061
– volume: 97
  year: 2020
  ident: 10.1016/j.knosys.2022.109215_b95
  article-title: Bi-MARS: a bi-clustering based memetic algorithm for recommender systems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106785
– volume: 161
  year: 2020
  ident: 10.1016/j.knosys.2022.109215_b71
  article-title: Heap-based optimizer inspired by corporate rank hierarchy for global optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113702
– volume: 17
  start-page: 4831
  issue: 12
  year: 2012
  ident: 10.1016/j.knosys.2022.109215_b45
  article-title: Krill herd: A new bio-inspired optimization algorithm
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2012.05.010
– volume: 24
  start-page: 193
  issue: 1
  year: 2020
  ident: 10.1016/j.knosys.2022.109215_b3
  article-title: A review of evolutionary multimodal multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2909744
– volume: 90
  year: 2020
  ident: 10.1016/j.knosys.2022.109215_b80
  article-title: Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103541
– volume: 167
  start-page: 69
  year: 2016
  ident: 10.1016/j.knosys.2022.109215_b55
  article-title: Water evaporation optimization: a novel physically inspired optimization algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2016.01.008
– volume: 105
  start-page: 30
  year: 2017
  ident: 10.1016/j.knosys.2022.109215_b57
  article-title: Grasshopper optimization algorithm: theory and application
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 98
  year: 2021
  ident: 10.1016/j.knosys.2022.109215_b83
  article-title: A carnivorous plant algorithm for solving global optimization problems
  publication-title: Appl. Soft Comput.
– volume: 65
  start-page: 121
  year: 2018
  ident: 10.1016/j.knosys.2022.109215_b11
  article-title: An effective hybrid harmony search and cuckoo optimization algorithm based fuzzy PID controller for load frequency control
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.01.007
– volume: 152
  year: 2020
  ident: 10.1016/j.knosys.2022.109215_b74
  article-title: Marine predators algorithm: a nature-inspired metaheuristic
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113377
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.knosys.2022.109215_b56
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– volume: 36
  start-page: 1224
  year: 2020
  ident: 10.1016/j.knosys.2022.109215_b88
  article-title: Structural reliability assessment by salp swarm algorithm-based FORM
  publication-title: Qual. Reliab. Eng. Int.
  doi: 10.1002/qre.2626
– volume: 90
  year: 2020
  ident: 10.1016/j.knosys.2022.109215_b92
  article-title: Differential evolution: a review of more than two decades of research
  publication-title: Eng. Appl. Artif. Intell.
– volume: 31
  start-page: 1995
  year: 2019
  ident: 10.1016/j.knosys.2022.109215_b53
  article-title: Monarch butterfly optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1923-y
– volume: 558
  start-page: 91
  year: 2021
  ident: 10.1016/j.knosys.2022.109215_b93
  article-title: Pruning of generative adversarial neural networks for medical imaging diagnostics with evolution strategy
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.12.086
– volume: 7
  start-page: 571
  year: 2015
  ident: 10.1016/j.knosys.2022.109215_b102
  article-title: Whale-fall ecosystems: recent insights into ecology, paleoecology, and evolution
  publication-title: Ann. Rev. Mar. Sci.
  doi: 10.1146/annurev-marine-010213-135144
– volume: 166
  year: 2021
  ident: 10.1016/j.knosys.2022.109215_b85
  article-title: Red fox optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114107
– year: 2003
  ident: 10.1016/j.knosys.2022.109215_b32
– volume: 25
  start-page: 2741
  year: 2021
  ident: 10.1016/j.knosys.2022.109215_b7
  article-title: Multithreaded scheduling for program segments based on chemical reaction optimizer
  publication-title: Soft Comput.
  doi: 10.1007/s00500-020-05334-4
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.knosys.2022.109215_b28
  article-title: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– volume: 110
  start-page: 69
  year: 2017
  ident: 10.1016/j.knosys.2022.109215_b59
  article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.03.014
– volume: 121
  start-page: 147
  year: 2018
  ident: 10.1016/j.knosys.2022.109215_b60
  article-title: Pity beetle algorithm – a new metaheuristic inspired by the behavior of bark beetles
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2018.04.007
– volume: 10
  start-page: 388
  issue: 5
  year: 2019
  ident: 10.1016/j.knosys.2022.109215_b66
  article-title: Sea lion optimization algorithm
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 48
  start-page: 1
  year: 2014
  ident: 10.1016/j.knosys.2022.109215_b13
  article-title: Risk design optimization using many-objective evolutionary algorithm with application to performance-based wind engineering of tall buildings
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2014.01.002
– ident: 10.1016/j.knosys.2022.109215_b27
  doi: 10.1109/ICNN.1995.488968
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 10.1016/j.knosys.2022.109215_b34
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-007-9149-x
– volume: 9
  start-page: 4542
  year: 2021
  ident: 10.1016/j.knosys.2022.109215_b86
  article-title: The solar system algorithm: a novel metaheuristic method for global optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3047912
– volume: 44
  start-page: 148
  year: 2019
  ident: 10.1016/j.knosys.2022.109215_b61
  article-title: A novel nature-inspired algorithm for optimization: squirrel search algorithm
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.02.013
– year: 1975
  ident: 10.1016/j.knosys.2022.109215_b24
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.knosys.2022.109215_b48
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 223
  year: 2020
  ident: 10.1016/j.knosys.2022.109215_b12
  article-title: Reliable applied objective for identifying simple and detailed photovoltaic models using modern metaheuristics: comparative study
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.113279
– volume: 179
  start-page: 2232
  year: 2009
  ident: 10.1016/j.knosys.2022.109215_b38
  article-title: GSA: a gravitational search algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2009.03.004
SSID ssj0002218
Score 2.7120943
Snippet In this paper, a novel swarm-based metaheuristic algorithm inspired from the behaviors of beluga whales, called beluga whale optimization (BWO), is presented...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109215
SubjectTerms Beluga whale optimization
Metaheuristics
Optimization
Swarm intelligence
Title Beluga whale optimization: A novel nature-inspired metaheuristic algorithm
URI https://dx.doi.org/10.1016/j.knosys.2022.109215
Volume 251
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fuuj7MFrbF6bpt5qsdSKvWiht5DdnbTRNik1Vbz4253JwweIgseEHRKG2W--ZWe-YezMsbUjLA0GaKkM16YiAOlFRoipwvM9EI5J_c63Q68_cgdjMa6xbtULQ2WVJfYXmJ6jdfmmWXqzuYjj5h2SA4xXTFh0KkaiSx3sboui_Pzts8wDv-4XenumQaur9rm8xusxSZ9eSbTbtklXyabhuD-lpy8pp7fNNkuuyDvF7-ywGiS7bKuaw8DLbbnHBpcwW01C_jJFtOcpgsC87K684B2epM8w44WApxEndLMOms8hC6ewKnSaeTibpMs4m8732ah3dd_tG-WMBEMh2c-QHINthjp0QXmR1haCm5RAOmV0IehYHjgCkFSZofDxtAueiMCLXMsP20pFNjgHbC1JEzhkHI9WQmmJlCVS1P4mRctxtbT8tquRdsk6cyrXBKoUEKc5FrOgqhR7CAqHBuTQoHBonRkfVotCQOOP9a3K68G3QAgQ43-1PPq35THboKe8dEycsLVsuYJT5BqZbOTB1GDrneub_vAdeWDUVg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPejFt1ife_Aa2jw2Tb3VYolWe7EFbyGbndhompSaKv57Z5uNKIiC1yQDyzD55ht25huAc9uSNjclGihFZDiWagIQbmyElCpcz0Vut9S8893Q9cfOzQN_qEGvmoVRbZUa-0tMX6K1ftLU3mzOkqR5T-SA4pUSlqqKieiuwKpSp-J1WO1eD_zhJyDTAbxScq9lKINqgm7Z5vWc5S_vSrfbspS0kqX24_6Uob5knf4WbGi6yLrlibahhtkObFarGJj-M3fh5hLTxWPI3iYE-CwnHJjqAcsL1mVZ_oopKzU8jSRTl-so2RSLcIKLUqqZheljPk-KyXQPxv2rUc839JoEIyK-XxA_RqsVytDByI2lNAnfhEAlVabuBG3TRZsj8apWyD0qeNHlMbqxY3phJ4piC-19qGd5hgfAqLrikRTEWuJITcAJ3rYdKUyv40hiXqIBduWaINIa4mqVRRpUzWJPQenQQDk0KB3aAOPTalZqaPzxfbvyevAtFgKC-V8tD_9teQZr_ujuNri9Hg6OYF29WXaS8WOoF_MFnhD1KMSpDq0PzKzXBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beluga+whale+optimization%3A+A+novel+nature-inspired+metaheuristic+algorithm&rft.jtitle=Knowledge-based+systems&rft.au=Zhong%2C+Changting&rft.au=Li%2C+Gang&rft.au=Meng%2C+Zeng&rft.date=2022-09-05&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=251&rft_id=info:doi/10.1016%2Fj.knosys.2022.109215&rft.externalDocID=S0950705122006049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon