Beluga whale optimization: A novel nature-inspired metaheuristic algorithm
In this paper, a novel swarm-based metaheuristic algorithm inspired from the behaviors of beluga whales, called beluga whale optimization (BWO), is presented to solve optimization problem. Three phases of exploration, exploitation and whale fall are established in BWO, corresponding to the behaviors...
Saved in:
Published in | Knowledge-based systems Vol. 251; p. 109215 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a novel swarm-based metaheuristic algorithm inspired from the behaviors of beluga whales, called beluga whale optimization (BWO), is presented to solve optimization problem. Three phases of exploration, exploitation and whale fall are established in BWO, corresponding to the behaviors of pair swim, prey, and whale fall, respectively. The balance factor and probability of whale fall in BWO are self-adaptive which play significant roles to control the ability of exploration and exploitation. Besides, the Levy flight is introduced to enhance the global convergence in the exploitation phase. The effectiveness of the proposed BWO is tested using 30 benchmark functions, with qualitative, quantitative and scalability analysis, and the statistical results are compared with 15 other metaheuristic algorithms. According to the results and discussion, BWO is a competitive algorithm in solving unimodal and multimodal optimization problems, and the overall rank of BWO is the first in the scalability analysis of benchmark functions among compared metaheuristic algorithms through the Friedman ranking test. Finally, four engineering problems demonstrate the merits and potential of BWO in solving complex real-world optimization problems. The source code of BWO is currently available to public: https://ww2.mathworks.cn/matlabcentral/fileexchange/112830-beluga-whale-optimization-bwo/.
•A novel metaheuristic algorithm named as Beluga Whale Optimization (BWO) is proposed.•The behaviors of swim, prey and whale fall are designed on BWO algorithm.•The BWO is tested on 30 well-known benchmark functions and 4 engineering problems.•The BWO is compared with 15 well-known metaheuristic algorithms.•The BWO outperforms comparing algorithms in benchmark functions, especially for scalability of dimension. |
---|---|
AbstractList | In this paper, a novel swarm-based metaheuristic algorithm inspired from the behaviors of beluga whales, called beluga whale optimization (BWO), is presented to solve optimization problem. Three phases of exploration, exploitation and whale fall are established in BWO, corresponding to the behaviors of pair swim, prey, and whale fall, respectively. The balance factor and probability of whale fall in BWO are self-adaptive which play significant roles to control the ability of exploration and exploitation. Besides, the Levy flight is introduced to enhance the global convergence in the exploitation phase. The effectiveness of the proposed BWO is tested using 30 benchmark functions, with qualitative, quantitative and scalability analysis, and the statistical results are compared with 15 other metaheuristic algorithms. According to the results and discussion, BWO is a competitive algorithm in solving unimodal and multimodal optimization problems, and the overall rank of BWO is the first in the scalability analysis of benchmark functions among compared metaheuristic algorithms through the Friedman ranking test. Finally, four engineering problems demonstrate the merits and potential of BWO in solving complex real-world optimization problems. The source code of BWO is currently available to public: https://ww2.mathworks.cn/matlabcentral/fileexchange/112830-beluga-whale-optimization-bwo/.
•A novel metaheuristic algorithm named as Beluga Whale Optimization (BWO) is proposed.•The behaviors of swim, prey and whale fall are designed on BWO algorithm.•The BWO is tested on 30 well-known benchmark functions and 4 engineering problems.•The BWO is compared with 15 well-known metaheuristic algorithms.•The BWO outperforms comparing algorithms in benchmark functions, especially for scalability of dimension. |
ArticleNumber | 109215 |
Author | Li, Gang Meng, Zeng Zhong, Changting |
Author_xml | – sequence: 1 givenname: Changting orcidid: 0000-0001-7788-8288 surname: Zhong fullname: Zhong, Changting email: zhongct@dlut.edu.cn organization: Department of Engineering Mechanics, State Key Laboratory of Structural Analyses for Industrial Equipment, Dalian University of Technology, Dalian 116024, China – sequence: 2 givenname: Gang surname: Li fullname: Li, Gang email: ligang@dlut.edu.cn organization: Department of Engineering Mechanics, State Key Laboratory of Structural Analyses for Industrial Equipment, Dalian University of Technology, Dalian 116024, China – sequence: 3 givenname: Zeng surname: Meng fullname: Meng, Zeng email: mengz@hfut.edu.cn organization: School of Civil Engineering, Hefei University of Technology, Hefei 230009, China |
BookMark | eNqFkMtOwzAQRS1UJNrCH7DID6TYTuw4XSCVivJQJTawtlxn0rokdmW7ReXrSQkrFrAaaTTn6s4ZoYF1FhC6JnhCMOE328m7deEYJhRT2q1KStgZGhJR0LTIcTlAQ1wynBaYkQs0CmGLcXdJxBA930GzX6vkY6MaSNwumtZ8qmicnSazxLoDNIlVce8hNTbsjIcqaSGqDey9CdHoRDVr503ctJfovFZNgKufOUZvi_vX-WO6fHl4ms-Wqc4wj2lRAMWqUjloXldVV5KvVkBzwQThPCMcMgaMEKyYKIQAzmrgdU6EKrWuKWRjNO1ztXcheKilNvG7cvTKNJJgebIit7K3Ik9WZG-lg_Nf8M6bVvnjf9htj0H32MGAl0EbsBqqzoiOsnLm74AvT4mB_w |
CitedBy_id | crossref_primary_10_1049_gtd2_13076 crossref_primary_10_1007_s12652_024_04857_0 crossref_primary_10_1007_s42235_024_00580_w crossref_primary_10_1016_j_jhydrol_2024_130963 crossref_primary_10_1016_j_jobe_2024_111109 crossref_primary_10_1038_s41598_024_66450_x crossref_primary_10_1007_s12206_024_0904_4 crossref_primary_10_1016_j_jksuci_2023_101780 crossref_primary_10_3390_en15207603 crossref_primary_10_1016_j_enconman_2024_119114 crossref_primary_10_1029_2024SW003954 crossref_primary_10_32604_cmes_2025_058473 crossref_primary_10_1016_j_ijhydene_2024_04_124 crossref_primary_10_3390_jmse12071207 crossref_primary_10_1007_s41060_025_00726_x crossref_primary_10_1109_ACCESS_2023_3311271 crossref_primary_10_1007_s10586_024_04328_3 crossref_primary_10_1007_s13748_023_00306_9 crossref_primary_10_1016_j_applthermaleng_2023_122037 crossref_primary_10_3390_biomimetics8060454 crossref_primary_10_1007_s12559_024_10401_1 crossref_primary_10_1016_j_energy_2023_130121 crossref_primary_10_1007_s12046_024_02637_2 crossref_primary_10_1109_ACCESS_2023_3332902 crossref_primary_10_3233_JIFS_233334 crossref_primary_10_1007_s10586_024_04545_w crossref_primary_10_1016_j_swevo_2025_101908 crossref_primary_10_3390_pr13010256 crossref_primary_10_1016_j_apm_2024_04_057 crossref_primary_10_3390_biomimetics8020191 crossref_primary_10_1007_s12204_024_2574_x crossref_primary_10_1007_s00202_025_03017_7 crossref_primary_10_1109_ACCESS_2024_3474184 crossref_primary_10_1038_s41598_025_93410_w crossref_primary_10_1109_ACCESS_2024_3377688 crossref_primary_10_1016_j_cej_2024_151743 crossref_primary_10_12677_mos_2024_135495 crossref_primary_10_3390_biomimetics9040205 crossref_primary_10_3390_drones7070452 crossref_primary_10_47134_ppm_v2i2_1480 crossref_primary_10_1049_esi2_12134 crossref_primary_10_1007_s11831_025_10228_5 crossref_primary_10_3233_JIFS_236793 crossref_primary_10_3390_app142311320 crossref_primary_10_1007_s11042_023_17060_8 crossref_primary_10_32604_cmc_2024_049717 crossref_primary_10_3389_fenrg_2024_1336205 crossref_primary_10_1016_j_eswa_2024_125029 crossref_primary_10_1109_TPS_2024_3418216 crossref_primary_10_1007_s41870_024_02030_6 crossref_primary_10_1080_03772063_2023_2286614 crossref_primary_10_1007_s13369_024_09807_8 crossref_primary_10_1016_j_cma_2025_117791 crossref_primary_10_32604_sdhm_2023_029331 crossref_primary_10_3390_biomimetics9090561 crossref_primary_10_1016_j_eswa_2023_121406 crossref_primary_10_1109_JSEN_2025_3530521 crossref_primary_10_1016_j_advengsoft_2024_103857 crossref_primary_10_1016_j_eswa_2023_122970 crossref_primary_10_32604_cmc_2024_049847 crossref_primary_10_1007_s12065_024_01002_w crossref_primary_10_48084_etasr_7004 crossref_primary_10_1007_s00500_023_08573_3 crossref_primary_10_3390_electronics13234598 crossref_primary_10_1016_j_epsr_2024_111275 crossref_primary_10_1007_s42243_023_01173_3 crossref_primary_10_4015_S1016237224500200 crossref_primary_10_1016_j_psep_2025_106800 crossref_primary_10_1177_01436244241274924 crossref_primary_10_1088_1361_6501_ad5b11 crossref_primary_10_1016_j_tust_2024_106138 crossref_primary_10_1007_s00784_024_05977_9 crossref_primary_10_1109_JSEN_2023_3292370 crossref_primary_10_1002_dac_5821 crossref_primary_10_3390_electronics13132635 crossref_primary_10_1038_s41598_024_70353_2 crossref_primary_10_1109_ACCESS_2023_3347587 crossref_primary_10_1515_ehs_2023_0091 crossref_primary_10_3390_en17184742 crossref_primary_10_3390_math11081854 crossref_primary_10_32604_cmes_2023_025908 crossref_primary_10_1016_j_eswa_2023_121744 crossref_primary_10_1016_j_eswa_2024_124190 crossref_primary_10_1016_j_oceaneng_2024_119227 crossref_primary_10_3390_biomimetics8060492 crossref_primary_10_1007_s00521_024_10346_4 crossref_primary_10_3390_biomimetics10030128 crossref_primary_10_1038_s41598_024_80811_6 crossref_primary_10_1093_ijlct_ctae113 crossref_primary_10_3390_drones8120777 crossref_primary_10_1007_s00500_023_08925_z crossref_primary_10_32604_cmc_2024_054317 crossref_primary_10_1016_j_knosys_2024_111907 crossref_primary_10_1088_1361_6501_ad6176 crossref_primary_10_1007_s10772_024_10115_7 crossref_primary_10_1002_dac_70047 crossref_primary_10_1016_j_gloei_2024_10_014 crossref_primary_10_1002_nag_3879 crossref_primary_10_1016_j_engappai_2023_106777 crossref_primary_10_1007_s11227_024_06709_2 crossref_primary_10_1109_ACCESS_2024_3397402 crossref_primary_10_1038_s41598_024_83788_4 crossref_primary_10_1007_s00202_023_02184_9 crossref_primary_10_1016_j_heliyon_2024_e30018 crossref_primary_10_1007_s10772_024_10127_3 crossref_primary_10_1088_1742_6596_2872_1_012037 crossref_primary_10_1016_j_eswa_2023_122413 crossref_primary_10_1007_s10586_024_04856_y crossref_primary_10_1016_j_advengsoft_2024_103862 crossref_primary_10_1109_LAWP_2024_3416174 crossref_primary_10_3233_IDT_230524 crossref_primary_10_1080_0954898X_2024_2424248 crossref_primary_10_1016_j_jocs_2022_101867 crossref_primary_10_1038_s41598_024_54910_3 crossref_primary_10_1007_s10489_025_06324_5 crossref_primary_10_3390_sym17010050 crossref_primary_10_1007_s10462_023_10470_y crossref_primary_10_1109_TII_2024_3352089 crossref_primary_10_3390_s23094520 crossref_primary_10_1007_s41939_025_00796_1 crossref_primary_10_1007_s10462_023_10549_6 crossref_primary_10_1007_s11227_023_05617_1 crossref_primary_10_1007_s10462_024_10981_2 crossref_primary_10_1016_j_isatra_2024_04_010 crossref_primary_10_3390_biomimetics9030130 crossref_primary_10_1007_s42235_024_00596_2 crossref_primary_10_3390_app14051996 crossref_primary_10_1016_j_jhydrol_2024_131640 crossref_primary_10_1111_exsy_70023 crossref_primary_10_1515_cppm_2024_0013 crossref_primary_10_1016_j_est_2024_111894 crossref_primary_10_1134_S000511792403007X crossref_primary_10_1016_j_compbiomed_2022_106520 crossref_primary_10_1016_j_asoc_2025_113071 crossref_primary_10_1016_j_bspc_2024_107180 crossref_primary_10_3390_biomimetics8040354 crossref_primary_10_1007_s11227_023_05618_0 crossref_primary_10_1016_j_advengsoft_2024_103694 crossref_primary_10_3390_biomimetics8050396 crossref_primary_10_3390_biomimetics8050395 crossref_primary_10_3390_asi7030040 crossref_primary_10_3390_w17060878 crossref_primary_10_1007_s00521_024_09928_z crossref_primary_10_1016_j_dajour_2025_100551 crossref_primary_10_3390_app15020603 crossref_primary_10_1007_s40996_023_01252_1 crossref_primary_10_1016_j_precisioneng_2024_07_007 crossref_primary_10_3390_aerospace12020101 crossref_primary_10_1016_j_swevo_2025_101848 crossref_primary_10_21122_2309_4923_2024_3_12_16 crossref_primary_10_3390_drones8110644 crossref_primary_10_1007_s11760_024_03667_3 crossref_primary_10_3390_w16121728 crossref_primary_10_1038_s41598_024_55040_6 crossref_primary_10_1016_j_est_2025_115371 crossref_primary_10_3389_fpls_2024_1411485 crossref_primary_10_1016_j_egyr_2024_09_025 crossref_primary_10_1016_j_compositesb_2025_112226 crossref_primary_10_3390_math12193098 crossref_primary_10_1016_j_enbuild_2024_115157 crossref_primary_10_3390_w16202966 crossref_primary_10_1007_s11518_024_5608_x crossref_primary_10_3390_jmse12122189 crossref_primary_10_1016_j_eswa_2023_121218 crossref_primary_10_1371_journal_pone_0315670 crossref_primary_10_1016_j_advengsoft_2025_103866 crossref_primary_10_3390_math11092217 crossref_primary_10_1007_s41939_024_00392_9 crossref_primary_10_1016_j_ipm_2024_103953 crossref_primary_10_1371_journal_pone_0290891 crossref_primary_10_1002_dac_5549 crossref_primary_10_1038_s41598_024_60821_0 crossref_primary_10_1007_s13369_024_08861_6 crossref_primary_10_1038_s41598_024_69596_w crossref_primary_10_1016_j_advengsoft_2024_103671 crossref_primary_10_1016_j_advengsoft_2024_103793 crossref_primary_10_3390_math12193080 crossref_primary_10_1002_qre_3640 crossref_primary_10_1016_j_est_2024_111856 crossref_primary_10_1016_j_epsr_2023_110051 crossref_primary_10_3390_sym16060661 crossref_primary_10_3233_IDT_240368 crossref_primary_10_1016_j_saa_2023_123208 crossref_primary_10_1108_RS_10_2023_0037 crossref_primary_10_1007_s00521_024_10694_1 crossref_primary_10_1007_s00521_024_10865_0 crossref_primary_10_1007_s11235_024_01157_y crossref_primary_10_3934_mbe_2023592 crossref_primary_10_31857_S0005231024030027 crossref_primary_10_1155_2024_7837832 crossref_primary_10_3390_en17235824 crossref_primary_10_1016_j_knosys_2023_111351 crossref_primary_10_1016_j_conengprac_2024_106078 crossref_primary_10_1109_TGRS_2024_3433019 crossref_primary_10_1016_j_energy_2025_134828 crossref_primary_10_1007_s41939_024_00638_6 crossref_primary_10_1007_s11227_024_06559_y crossref_primary_10_1007_s10668_024_05507_3 crossref_primary_10_3934_mbe_2024202 crossref_primary_10_1016_j_enbuild_2023_113740 crossref_primary_10_1007_s10462_024_10767_6 crossref_primary_10_1007_s00500_024_09878_7 crossref_primary_10_1515_mt_2023_0082 crossref_primary_10_1007_s11276_024_03890_3 crossref_primary_10_1016_j_eswa_2025_127026 crossref_primary_10_1016_j_jmsy_2025_02_014 crossref_primary_10_3390_math10193466 crossref_primary_10_1109_JSEN_2025_3525622 crossref_primary_10_1109_ACCESS_2024_3358425 crossref_primary_10_1016_j_apenergy_2024_124541 crossref_primary_10_1007_s13042_024_02197_1 crossref_primary_10_1007_s11269_024_03893_x crossref_primary_10_1016_j_aei_2023_102210 crossref_primary_10_1016_j_chemolab_2024_105295 crossref_primary_10_1016_j_cma_2024_117718 crossref_primary_10_4271_05_18_02_0010 crossref_primary_10_1016_j_knosys_2024_111850 crossref_primary_10_1088_2631_8695_ad2b27 crossref_primary_10_1016_j_probengmech_2024_103688 crossref_primary_10_3390_su16166939 crossref_primary_10_1038_s41598_024_58806_0 crossref_primary_10_4271_03_18_02_0012 crossref_primary_10_3233_IDA_230540 crossref_primary_10_1016_j_aej_2023_04_070 crossref_primary_10_1016_j_apm_2024_07_002 crossref_primary_10_32604_cmc_2024_051336 crossref_primary_10_3390_math11030707 crossref_primary_10_1007_s10489_023_04479_7 crossref_primary_10_1007_s10291_024_01809_1 crossref_primary_10_1007_s10586_024_04680_4 crossref_primary_10_31857_S0005117924030037 crossref_primary_10_1016_j_apenergy_2023_121801 crossref_primary_10_1016_j_engappai_2024_109370 crossref_primary_10_3233_WEB_230332 crossref_primary_10_1007_s12204_024_2765_5 crossref_primary_10_1016_j_jisa_2024_103961 crossref_primary_10_1007_s00500_025_10404_6 crossref_primary_10_1007_s11356_024_33233_w crossref_primary_10_1002_ese3_1727 crossref_primary_10_1016_j_engappai_2024_109202 crossref_primary_10_3390_app15042224 crossref_primary_10_1002_ese3_1605 crossref_primary_10_1016_j_asoc_2023_110479 crossref_primary_10_1007_s11831_023_09975_0 crossref_primary_10_1109_ACCESS_2024_3362638 crossref_primary_10_1080_17538947_2023_2249863 crossref_primary_10_1016_j_ijrefrig_2024_01_012 crossref_primary_10_1155_2024_5724653 crossref_primary_10_1007_s41939_023_00365_4 crossref_primary_10_1109_ACCESS_2024_3407978 crossref_primary_10_3390_biomimetics10030153 crossref_primary_10_1016_j_buildenv_2025_112686 crossref_primary_10_1016_j_cma_2023_116062 crossref_primary_10_1109_TGRS_2024_3462752 crossref_primary_10_3934_math_2024972 crossref_primary_10_1371_journal_pone_0290719 crossref_primary_10_3390_app14177879 crossref_primary_10_1007_s00158_023_03639_0 crossref_primary_10_1016_j_aej_2023_04_002 crossref_primary_10_1016_j_eswa_2024_124882 crossref_primary_10_1007_s44196_024_00563_z crossref_primary_10_1371_journal_pone_0309741 crossref_primary_10_3390_math12101506 crossref_primary_10_1007_s11227_023_05773_4 crossref_primary_10_1007_s11063_024_11467_6 crossref_primary_10_1016_j_asoc_2023_110016 crossref_primary_10_1016_j_jobe_2023_107139 crossref_primary_10_1016_j_egyr_2024_07_050 crossref_primary_10_1007_s10462_023_10680_4 crossref_primary_10_1007_s10586_024_04867_9 crossref_primary_10_1016_j_swevo_2022_101212 crossref_primary_10_1038_s41598_023_49176_0 crossref_primary_10_1007_s42235_022_00298_7 crossref_primary_10_1016_j_rineng_2024_103007 crossref_primary_10_1007_s12530_023_09552_7 crossref_primary_10_1049_rpg2_12874 crossref_primary_10_1109_ACCESS_2024_3373554 crossref_primary_10_1007_s12652_022_04420_9 crossref_primary_10_1016_j_enbuild_2024_113942 crossref_primary_10_1016_j_aei_2023_102004 crossref_primary_10_12677_airr_2024_134074 crossref_primary_10_1016_j_aei_2024_102783 crossref_primary_10_3390_biomimetics9070399 crossref_primary_10_1186_s40537_024_00917_6 crossref_primary_10_1007_s11276_024_03717_1 crossref_primary_10_1016_j_conbuildmat_2024_139740 crossref_primary_10_1007_s13042_024_02361_7 crossref_primary_10_3390_jmse12071173 crossref_primary_10_4236_jamp_2024_126134 crossref_primary_10_32604_cmes_2024_052001 crossref_primary_10_1007_s00202_024_02574_7 crossref_primary_10_1007_s10115_024_02325_x crossref_primary_10_1016_j_engappai_2024_109879 crossref_primary_10_1016_j_autcon_2024_105819 crossref_primary_10_1109_ACCESS_2024_3367446 crossref_primary_10_1007_s10462_025_11118_9 crossref_primary_10_1007_s13198_024_02655_7 crossref_primary_10_1016_j_ins_2024_120644 crossref_primary_10_1007_s11831_023_10036_9 crossref_primary_10_1108_IJSI_04_2024_0055 crossref_primary_10_3389_fpls_2024_1464723 crossref_primary_10_1007_s10723_024_09790_2 crossref_primary_10_1007_s11356_024_33418_3 crossref_primary_10_1016_j_cma_2023_116664 crossref_primary_10_1186_s40537_023_00864_8 crossref_primary_10_1016_j_engfailanal_2023_107634 crossref_primary_10_1016_j_eswa_2023_120904 crossref_primary_10_1007_s41870_023_01691_z crossref_primary_10_1016_j_compeleceng_2024_109866 crossref_primary_10_1016_j_compbiomed_2023_107212 crossref_primary_10_1038_s41598_023_45995_3 crossref_primary_10_1007_s10462_024_11104_7 crossref_primary_10_1016_j_ijhydene_2024_03_169 crossref_primary_10_1016_j_eswa_2024_125860 crossref_primary_10_1016_j_jobe_2024_110090 crossref_primary_10_1007_s00477_023_02548_4 crossref_primary_10_3390_math11051231 crossref_primary_10_3390_app13053273 crossref_primary_10_3233_JHS_230142 crossref_primary_10_1109_TVT_2024_3386736 crossref_primary_10_3390_math12182956 crossref_primary_10_3390_biomimetics9090572 crossref_primary_10_1007_s11831_024_10135_1 crossref_primary_10_1007_s00521_024_09737_4 crossref_primary_10_3390_biomimetics9090575 crossref_primary_10_1016_j_aej_2024_08_075 crossref_primary_10_32604_cmc_2023_044807 crossref_primary_10_1007_s10586_024_04488_2 crossref_primary_10_1016_j_energy_2024_133390 crossref_primary_10_1093_jcde_qwad096 crossref_primary_10_1093_jcde_qwad095 crossref_primary_10_1109_ACCESS_2024_3466529 crossref_primary_10_1016_j_engfailanal_2023_107658 crossref_primary_10_1109_TIM_2024_3493878 crossref_primary_10_1007_s00202_024_02935_2 crossref_primary_10_1016_j_asoc_2024_112271 crossref_primary_10_1109_ACCESS_2024_3368440 crossref_primary_10_1016_j_suscom_2024_101008 crossref_primary_10_1007_s11760_024_03681_5 crossref_primary_10_3390_app13042254 crossref_primary_10_1007_s00521_024_10742_w crossref_primary_10_1016_j_cherd_2024_11_023 crossref_primary_10_1016_j_est_2023_107653 crossref_primary_10_3390_biomimetics9120727 crossref_primary_10_3390_electronics13152959 crossref_primary_10_1007_s12083_024_01901_w crossref_primary_10_1016_j_egyr_2024_05_073 crossref_primary_10_1016_j_compbiomed_2024_108984 crossref_primary_10_1016_j_egyr_2024_10_010 crossref_primary_10_1007_s42044_025_00245_9 crossref_primary_10_1038_s41598_024_74097_x crossref_primary_10_1007_s11042_024_18172_5 crossref_primary_10_3390_app14177803 crossref_primary_10_1007_s00500_024_09823_8 crossref_primary_10_1016_j_asoc_2024_112019 crossref_primary_10_3390_su151411089 crossref_primary_10_1007_s10462_025_11192_z crossref_primary_10_1016_j_eswa_2024_124581 crossref_primary_10_1007_s10462_024_10716_3 crossref_primary_10_1016_j_asej_2024_102664 crossref_primary_10_1016_j_eswa_2024_125673 crossref_primary_10_1016_j_energy_2024_131071 crossref_primary_10_3390_systems10060201 crossref_primary_10_57120_yalvac_1257808 crossref_primary_10_1007_s10586_024_04901_w crossref_primary_10_3390_s23146463 crossref_primary_10_3390_math12030435 crossref_primary_10_1016_j_apr_2024_102273 crossref_primary_10_1007_s00202_024_02584_5 crossref_primary_10_1007_s11042_023_17599_6 crossref_primary_10_1016_j_eswa_2022_119421 crossref_primary_10_1016_j_eswa_2022_119303 crossref_primary_10_1016_j_est_2025_115926 crossref_primary_10_3390_en17102309 crossref_primary_10_3390_electronics14050912 crossref_primary_10_3390_electronics13234849 crossref_primary_10_1007_s12083_024_01672_4 crossref_primary_10_1109_ACCESS_2024_3487752 crossref_primary_10_3390_f15122114 crossref_primary_10_1016_j_jtice_2025_106045 crossref_primary_10_1016_j_asoc_2024_112483 crossref_primary_10_54021_seesv5n2_769 crossref_primary_10_1680_jtran_24_00050 crossref_primary_10_1007_s00170_024_13105_w crossref_primary_10_1016_j_jclepro_2023_138656 crossref_primary_10_1088_1402_4896_adbb26 crossref_primary_10_3390_sym14112282 crossref_primary_10_1016_j_procs_2023_10_502 crossref_primary_10_3390_f15040687 crossref_primary_10_1016_j_asej_2024_102762 crossref_primary_10_1016_j_future_2024_07_019 crossref_primary_10_1007_s11227_024_06727_0 crossref_primary_10_51764_smutgd_1542508 crossref_primary_10_1038_s41598_024_59960_1 crossref_primary_10_3390_math12101459 crossref_primary_10_1108_K_03_2024_0837 crossref_primary_10_1007_s11042_023_17247_z crossref_primary_10_1007_s42235_024_00549_9 crossref_primary_10_1016_j_jobe_2024_111085 crossref_primary_10_1007_s00500_023_08468_3 crossref_primary_10_1063_5_0243619 |
Cites_doi | 10.1016/j.advengsoft.2005.04.005 10.1016/j.advengsoft.2017.07.002 10.1016/j.istruc.2020.07.058 10.1016/j.compstruc.2020.106268 10.1016/j.advengsoft.2016.01.008 10.1002/tal.505 10.1109/4235.996017 10.1016/j.eswa.2021.116432 10.1007/s00158-020-02587-3 10.1177/003754970107600201 10.1109/TEVC.2011.2161873 10.1016/j.eswa.2020.113338 10.1016/j.swevo.2021.100863 10.1016/j.engappai.2020.103731 10.1016/j.swevo.2021.100841 10.1109/NABIC.2009.5393690 10.1016/j.future.2020.03.055 10.1016/j.future.2019.02.028 10.12966/abc.05.01.2015 10.1016/j.cie.2020.107050 10.1016/j.eswa.2020.114122 10.1007/s13369-021-05608-5 10.1016/j.knosys.2019.105190 10.1016/j.engappai.2019.103330 10.1016/j.asoc.2013.12.005 10.1007/s00158-017-1758-5 10.1016/j.asoc.2017.07.023 10.1016/j.knosys.2015.07.006 10.1108/IJWIS-11-2020-0071 10.1109/4235.585893 10.1016/j.cma.2020.113609 10.4018/ijsir.2011100103 10.1016/j.compstruc.2012.07.010 10.1007/s11831-020-09443-z 10.1016/j.knosys.2021.106966 10.1109/TEVC.2009.2033580 10.1016/j.compstruc.2014.03.007 10.1016/j.knosys.2014.07.025 10.1109/MCS.2002.1004010 10.1016/j.compstruc.2012.09.003 10.1007/s00707-009-0270-4 10.1007/s00521-019-04575-1 10.1016/j.engappai.2019.103249 10.1126/science.220.4598.671 10.1016/0305-0548(86)90048-1 10.1007/s00500-018-3102-4 10.1103/PhysRevE.49.4677 10.1016/j.swevo.2021.100868 10.1016/j.advengsoft.2015.01.010 10.1016/j.knosys.2018.11.024 10.1108/EC-05-2020-0235 10.1016/j.knosys.2020.105709 10.1108/02644401211235834 10.1109/SIS.2005.1501604 10.1016/j.swevo.2019.04.008 10.1016/j.swevo.2011.02.002 10.1109/CEC.1999.782657 10.1016/j.future.2019.07.015 10.1016/j.neucom.2018.06.076 10.1109/TEVC.2008.919004 10.1016/j.cad.2010.12.015 10.1016/j.ins.2020.08.061 10.1016/j.asoc.2020.106785 10.1016/j.eswa.2020.113702 10.1016/j.cnsns.2012.05.010 10.1109/TEVC.2019.2909744 10.1016/j.engappai.2020.103541 10.1016/j.compstruc.2016.01.008 10.1016/j.advengsoft.2017.01.004 10.1016/j.asoc.2018.01.007 10.1016/j.eswa.2020.113377 10.1016/j.knosys.2015.12.022 10.1002/qre.2626 10.1007/s00521-015-1923-y 10.1016/j.ins.2020.12.086 10.1146/annurev-marine-010213-135144 10.1016/j.eswa.2020.114107 10.1007/s00500-020-05334-4 10.1023/A:1008202821328 10.1016/j.advengsoft.2017.03.014 10.1016/j.advengsoft.2018.04.007 10.1016/j.strusafe.2014.01.002 10.1109/ICNN.1995.488968 10.1007/s10898-007-9149-x 10.1109/ACCESS.2020.3047912 10.1016/j.swevo.2018.02.013 10.1016/j.advengsoft.2013.12.007 10.1016/j.enconman.2020.113279 10.1016/j.ins.2009.03.004 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.knosys.2022.109215 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7409 |
ExternalDocumentID | 10_1016_j_knosys_2022_109215 S0950705122006049 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH UHS WUQ |
ID | FETCH-LOGICAL-c306t-77e20ada4ec6fdd1876bbe24858166316e35e5110a58788e65fe6f418a9ccf2e3 |
IEDL.DBID | .~1 |
ISSN | 0950-7051 |
IngestDate | Tue Jul 01 00:20:22 EDT 2025 Thu Apr 24 23:08:39 EDT 2025 Fri Feb 23 02:39:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Beluga whale optimization Swarm intelligence Metaheuristics Optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-77e20ada4ec6fdd1876bbe24858166316e35e5110a58788e65fe6f418a9ccf2e3 |
ORCID | 0000-0001-7788-8288 |
ParticipantIDs | crossref_citationtrail_10_1016_j_knosys_2022_109215 crossref_primary_10_1016_j_knosys_2022_109215 elsevier_sciencedirect_doi_10_1016_j_knosys_2022_109215 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-05 |
PublicationDateYYYYMMDD | 2022-09-05 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Askari, Saeed, Younas (b71) 2020; 161 Zhong, Wang, Dang, Ke (b88) 2020; 36 Jain, Singh, Rani (b61) 2019; 44 Khishe, Mosavi (b70) 2020; 149 Perrin, Würsig, Thewissen (b100) 2009 Kaveh, Talatahari (b39) 2010; 213 Rao, Savsani, Vakharia (b43) 2011; 43 Karaboga, Basturk (b34) 2007; 39 Khattab, Sharieh, Mahafzah (b4) 2019; 10 Tanabe, Ishibuchi (b3) 2020; 24 Kallioras, Lagaros, Avtzis (b60) 2018; 121 Kaveh, Bakhshpoori (b55) 2016; 167 Faramarzi, Heidarinejad, Mirjalili, Gandomi (b74) 2020; 152 Meng, Li, Wang, Said, Yildiz (b15) 2021; 28 Li, Lu, Liu (b90) 2010; 19 Hayyolalam, Kazem (b69) 2020; 87 J. Liang, P. Suganthan, K. Deb, Novel composition test functions for numerical global optimization, in: Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005, SIS 2005, Pasadena, 2005, pp. 68–75 Shi (b42) 2011; 2 . Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b58) 2017; 114 Javidrad, Nazari (b97) 2017; 60 M. Dorigo, G. Di Caro, Ant colony optimization: a new meta-heuristic, in: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, Washington DC, 1999, pp. 1470–1477 Mohammadi-Balani, Nayeri, Azar, Taghizadeh-Yazdi (b84) 2021; 152 Del Ser, Osaba, Molina, Yang, Salcedo-Sanz, Camacho, Das, Suganthan, Coello Coello, Herrera (b1) 2019; 48 Masadeh, Alsharman, Sharieh, Mahafzah, Abdulrahman (b6) 2021; 17 Bouchekara (b75) 2020; 20 Singh, Chaudhury, Panigrahi (b8) 2021; 63 Mahafzah, Jabri, Murad (b7) 2021; 25 Qu, Suganthan, Liang (b19) 2012; 16 Jafari, Moussavian, Chaleshtari (b91) 2018; 57 Mantegna (b103) 1994; 49 Simon (b36) 2008; 12 Abualigah, Diabat, Mirjalili, Elaziz, Gandomi (b81) 2021; 376 Houssein, Gad, Wazery, Suganthan (b5) 2021; 62 Smith, Golver, Treude, Higgs, Amon (b102) 2015; 7 Hill, Dietrich, Yeater, McKinnon, Miller, Aibel, Dove (b101) 2015; 2 Saremi, Mirjalili, Lewis (b57) 2017; 105 Zhao, Liu, Yu, Heidari, Wang, Oliva, Muhammad, Chen (b10) 2021; 167 Yang (b16) 2015 X.S. Yang, S. Deb, Cuckoo search via lévy flights, in: World Congress on Nature & Biologically Inspired Computing, NaBIC, Coimbatore, 2009, pp. 210–214 Yang (b44) 2012 Eskandar, Sadollah, Bahreininejad, Hamdi (b47) 2012; 110–111 Yang, Gandomi (b41) 2012; 29 Kaveh, Khanzadi, Rastegar Moghaddam (b68) 2020; 27 Storn, Price (b28) 1997; 11 Arora, Singh (b62) 2019; 23 Geem, Kim, Loganathan (b30) 2001; 76 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b63) 2019; 97 Kirkpatrick, Gelatt, Vecchi (b25) 1983; 220 Houssein, Gad, Hussain, Suganthan (b17) 2021; 63 Neggaz, Ewees, Elaziz, Mafarja (b98) 2020; 145 Li, Chen, Wang, Heidari, Mirjalili (b79) 2020; 111 J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks, Perth, 1995, pp. 1942–1948 Salih, Alsewari (b76) 2020; 32 Kaur, Awasthi, Sangal, Dhiman (b80) 2020; 90 Holl (b24) 1975 Cheng, Prayogo (b49) 2014; 139 Kaveh (b14) 2017 Emami (b87) 2021 Masadeh, Mahafzah, Sharieh (b66) 2019; 10 Kaveh, Dadras (b59) 2017; 110 Lam, Li (b40) 2010; 14 Passino (b31) 2002; 22 Atashpax-Gargari, Lucas (b35) 2007 Mirjalili (b52) 2015; 89 Deb, Pratap, Agarwal, Meyarivan (b18) 2002; 6 Gheisarnejad (b11) 2018; 65 Salimi (b54) 2015; 75 Mirjalili, Lewis (b22) 2016; 95 Wang, Deb, Cui (b53) 2019; 31 Li (b32) 2003 Meng, Pauline, Kiong (b83) 2021; 98 Paul, Jain, Saha, Mathew (b9) 2021; 222 Glover (b26) 1986; 13 Sulaiman, Mustaffa, Saari, Daniyal (b67) 2020; 87 Jahangiri, Hadianfard, Najafgholipour, Jahangiri, Gerami (b72) 2020; 235 Zou, Chen, Xu (b99) 2019; 335 Kaveh, Khayatazad (b46) 2012; 112–113 Derrac, García, Molina, Herrera (b106) 2011; 1 Houssein, Saad, Hashim, Shaban, Hassaballah (b73) 2020; 94 Zitouni, Harous, Maamri (b86) 2021; 9 Zhong, Wang, Dang, Ke, Guo (b89) 2020; 62 Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b64) 2019; 101 Askari, Younas, Saeed (b78) 2020; 195 Suman, Kumar (b96) 2006; 57 Bilal Pant, Zaheer, Garcia-Hernandez, Abraham (b92) 2020; 90 Rashedi, Nezamabadi-pour, Saryazdi (b38) 2009; 179 Zhong, Li (b21) 2022; 192 Połap, Woźniak (b85) 2021; 166 Bansal, Baliyan (b95) 2020; 97 Gandomi, Alavi (b45) 2012; 17 Lu, Zhou, Tao, Luo, Wang (b94) 2021; 547 Kaveh (b2) 2021 Wolpert, Macready (b20) 1997; 1 Yousri, Abd Elaziz, Oliva, Abualigah, Al-qaness, Ewees (b12) 2020; 223 Li, Hu (b13) 2014; 48 Mirjalili, Mirjalili, Lewis (b48) 2014; 69 Kaveh, Akbari, Hosseini (b77) 2020; 38 Erol, Eksin (b33) 2006; 37 Zitouni, Harous, Belkeram, Hammou (b82) 2021 Kashan (b50) 2014; 16 Mirjalili (b56) 2016; 96 Mirjalili (b51) 2015; 83 Suganthan, Hansen, Liang, Deb, Chen, Auger, Tiwari (b104) 2005 Faramarzi, Heidarinejad, Stephens, Mirjalili (b23) 2020; 191 Fernandes, Yen (b93) 2021; 558 Dhiman, Kumar (b65) 2019; 165 Dhiman (10.1016/j.knosys.2022.109215_b65) 2019; 165 Shi (10.1016/j.knosys.2022.109215_b42) 2011; 2 Salih (10.1016/j.knosys.2022.109215_b76) 2020; 32 Glover (10.1016/j.knosys.2022.109215_b26) 1986; 13 Masadeh (10.1016/j.knosys.2022.109215_b66) 2019; 10 Wang (10.1016/j.knosys.2022.109215_b53) 2019; 31 Gandomi (10.1016/j.knosys.2022.109215_b45) 2012; 17 Kaveh (10.1016/j.knosys.2022.109215_b2) 2021 Mirjalili (10.1016/j.knosys.2022.109215_b22) 2016; 95 Kallioras (10.1016/j.knosys.2022.109215_b60) 2018; 121 Suman (10.1016/j.knosys.2022.109215_b96) 2006; 57 Hayyolalam (10.1016/j.knosys.2022.109215_b69) 2020; 87 Kaur (10.1016/j.knosys.2022.109215_b80) 2020; 90 Del Ser (10.1016/j.knosys.2022.109215_b1) 2019; 48 Holl (10.1016/j.knosys.2022.109215_b24) 1975 Li (10.1016/j.knosys.2022.109215_b32) 2003 Neggaz (10.1016/j.knosys.2022.109215_b98) 2020; 145 Derrac (10.1016/j.knosys.2022.109215_b106) 2011; 1 Geem (10.1016/j.knosys.2022.109215_b30) 2001; 76 Gheisarnejad (10.1016/j.knosys.2022.109215_b11) 2018; 65 Paul (10.1016/j.knosys.2022.109215_b9) 2021; 222 Lu (10.1016/j.knosys.2022.109215_b94) 2021; 547 Bouchekara (10.1016/j.knosys.2022.109215_b75) 2020; 20 Mantegna (10.1016/j.knosys.2022.109215_b103) 1994; 49 Askari (10.1016/j.knosys.2022.109215_b71) 2020; 161 Singh (10.1016/j.knosys.2022.109215_b8) 2021; 63 Kirkpatrick (10.1016/j.knosys.2022.109215_b25) 1983; 220 Bansal (10.1016/j.knosys.2022.109215_b95) 2020; 97 Abualigah (10.1016/j.knosys.2022.109215_b81) 2021; 376 Storn (10.1016/j.knosys.2022.109215_b28) 1997; 11 Kaveh (10.1016/j.knosys.2022.109215_b39) 2010; 213 Houssein (10.1016/j.knosys.2022.109215_b73) 2020; 94 Perrin (10.1016/j.knosys.2022.109215_b100) 2009 Saremi (10.1016/j.knosys.2022.109215_b57) 2017; 105 Kashan (10.1016/j.knosys.2022.109215_b50) 2014; 16 Li (10.1016/j.knosys.2022.109215_b90) 2010; 19 Yang (10.1016/j.knosys.2022.109215_b44) 2012 Atashpax-Gargari (10.1016/j.knosys.2022.109215_b35) 2007 Passino (10.1016/j.knosys.2022.109215_b31) 2002; 22 Jafari (10.1016/j.knosys.2022.109215_b91) 2018; 57 Mirjalili (10.1016/j.knosys.2022.109215_b51) 2015; 83 Faramarzi (10.1016/j.knosys.2022.109215_b23) 2020; 191 Zitouni (10.1016/j.knosys.2022.109215_b82) 2021 Hill (10.1016/j.knosys.2022.109215_b101) 2015; 2 Masadeh (10.1016/j.knosys.2022.109215_b6) 2021; 17 Yang (10.1016/j.knosys.2022.109215_b16) 2015 Jahangiri (10.1016/j.knosys.2022.109215_b72) 2020; 235 Askari (10.1016/j.knosys.2022.109215_b78) 2020; 195 Wolpert (10.1016/j.knosys.2022.109215_b20) 1997; 1 Mohammadi-Balani (10.1016/j.knosys.2022.109215_b84) 2021; 152 Khishe (10.1016/j.knosys.2022.109215_b70) 2020; 149 Tanabe (10.1016/j.knosys.2022.109215_b3) 2020; 24 Li (10.1016/j.knosys.2022.109215_b79) 2020; 111 Mirjalili (10.1016/j.knosys.2022.109215_b58) 2017; 114 Mahafzah (10.1016/j.knosys.2022.109215_b7) 2021; 25 Rashedi (10.1016/j.knosys.2022.109215_b38) 2009; 179 Sulaiman (10.1016/j.knosys.2022.109215_b67) 2020; 87 Lam (10.1016/j.knosys.2022.109215_b40) 2010; 14 Zhao (10.1016/j.knosys.2022.109215_b10) 2021; 167 Mirjalili (10.1016/j.knosys.2022.109215_b52) 2015; 89 Mirjalili (10.1016/j.knosys.2022.109215_b56) 2016; 96 Jain (10.1016/j.knosys.2022.109215_b61) 2019; 44 Smith (10.1016/j.knosys.2022.109215_b102) 2015; 7 Meng (10.1016/j.knosys.2022.109215_b83) 2021; 98 Kaveh (10.1016/j.knosys.2022.109215_b14) 2017 10.1016/j.knosys.2022.109215_b105 Meng (10.1016/j.knosys.2022.109215_b15) 2021; 28 Bilal Pant (10.1016/j.knosys.2022.109215_b92) 2020; 90 Khattab (10.1016/j.knosys.2022.109215_b4) 2019; 10 Li (10.1016/j.knosys.2022.109215_b13) 2014; 48 Hashim (10.1016/j.knosys.2022.109215_b64) 2019; 101 Faramarzi (10.1016/j.knosys.2022.109215_b74) 2020; 152 Javidrad (10.1016/j.knosys.2022.109215_b97) 2017; 60 Simon (10.1016/j.knosys.2022.109215_b36) 2008; 12 Salimi (10.1016/j.knosys.2022.109215_b54) 2015; 75 Kaveh (10.1016/j.knosys.2022.109215_b68) 2020; 27 Rao (10.1016/j.knosys.2022.109215_b43) 2011; 43 Yang (10.1016/j.knosys.2022.109215_b41) 2012; 29 Kaveh (10.1016/j.knosys.2022.109215_b77) 2020; 38 Zitouni (10.1016/j.knosys.2022.109215_b86) 2021; 9 Zhong (10.1016/j.knosys.2022.109215_b89) 2020; 62 Kaveh (10.1016/j.knosys.2022.109215_b46) 2012; 112–113 Emami (10.1016/j.knosys.2022.109215_b87) 2021 Zhong (10.1016/j.knosys.2022.109215_b88) 2020; 36 Heidari (10.1016/j.knosys.2022.109215_b63) 2019; 97 Yousri (10.1016/j.knosys.2022.109215_b12) 2020; 223 Zhong (10.1016/j.knosys.2022.109215_b21) 2022; 192 Erol (10.1016/j.knosys.2022.109215_b33) 2006; 37 Połap (10.1016/j.knosys.2022.109215_b85) 2021; 166 Fernandes (10.1016/j.knosys.2022.109215_b93) 2021; 558 Deb (10.1016/j.knosys.2022.109215_b18) 2002; 6 Suganthan (10.1016/j.knosys.2022.109215_b104) 2005 Mirjalili (10.1016/j.knosys.2022.109215_b48) 2014; 69 Kaveh (10.1016/j.knosys.2022.109215_b59) 2017; 110 Houssein (10.1016/j.knosys.2022.109215_b5) 2021; 62 10.1016/j.knosys.2022.109215_b37 Eskandar (10.1016/j.knosys.2022.109215_b47) 2012; 110–111 Houssein (10.1016/j.knosys.2022.109215_b17) 2021; 63 Arora (10.1016/j.knosys.2022.109215_b62) 2019; 23 Zou (10.1016/j.knosys.2022.109215_b99) 2019; 335 Cheng (10.1016/j.knosys.2022.109215_b49) 2014; 139 10.1016/j.knosys.2022.109215_b29 Kaveh (10.1016/j.knosys.2022.109215_b55) 2016; 167 10.1016/j.knosys.2022.109215_b27 Qu (10.1016/j.knosys.2022.109215_b19) 2012; 16 Karaboga (10.1016/j.knosys.2022.109215_b34) 2007; 39 |
References_xml | – reference: M. Dorigo, G. Di Caro, Ant colony optimization: a new meta-heuristic, in: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, Washington DC, 1999, pp. 1470–1477, – reference: J. Liang, P. Suganthan, K. Deb, Novel composition test functions for numerical global optimization, in: Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005, SIS 2005, Pasadena, 2005, pp. 68–75, – volume: 167 year: 2021 ident: b10 article-title: Ant colony optimization with horizontal and vertical crossover search: fundamental visions for multi-threshold image segmentation publication-title: Expert Syst. Appl. – reference: J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks, Perth, 1995, pp. 1942–1948, – volume: 57 start-page: 1143 year: 2006 end-page: 1160 ident: b96 article-title: A survey of simulated annealing as a tool for single and mutliobjective optimization publication-title: J. Oper. Res. Hist. – year: 2015 ident: b16 article-title: Recent Advances in Swarm Intelligence and Evolutionary Computation – volume: 17 start-page: 4831 year: 2012 end-page: 4835 ident: b45 article-title: Krill herd: A new bio-inspired optimization algorithm publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 222 year: 2021 ident: b9 article-title: Multi-objective PSO based online feature selection for multi-label classification publication-title: Knowl.-Based Syst. – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: b58 article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. – year: 2021 ident: b87 article-title: Stock exchange trading optimization algorithm: a human-inspired method for global optimization publication-title: J. Supercomput. – volume: 62 year: 2021 ident: b5 article-title: Task scheduling in cloud computing based on meta-heuristics: review, taxonomy, open challenges, and future trends publication-title: Swarm Evol. Comput. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b18 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 139 start-page: 98 year: 2014 end-page: 112 ident: b49 article-title: Symbiotic organisms search: a new metaheuristic optimization algorithm publication-title: Comput. Struct. – volume: 32 start-page: 10359 year: 2020 end-page: 10386 ident: b76 article-title: A new algorithm for normal and large-scale optimization problems: Nomadic people optimizer publication-title: Neural Comput. Appl. – start-page: 108 year: 2009 end-page: 112 ident: b100 article-title: Encyclopedia of Marine Mammals – volume: 48 start-page: 1 year: 2014 end-page: 14 ident: b13 article-title: Risk design optimization using many-objective evolutionary algorithm with application to performance-based wind engineering of tall buildings publication-title: Struct. Saf. – volume: 105 start-page: 30 year: 2017 end-page: 47 ident: b57 article-title: Grasshopper optimization algorithm: theory and application publication-title: Adv. Eng. Softw. – volume: 25 start-page: 2741 year: 2021 end-page: 2766 ident: b7 article-title: Multithreaded scheduling for program segments based on chemical reaction optimizer publication-title: Soft Comput. – volume: 37 start-page: 106 year: 2006 end-page: 111 ident: b33 article-title: A new optimization method: big bang-big crunch publication-title: Adv. Eng. Softw. – volume: 12 start-page: 702 year: 2008 end-page: 713 ident: b36 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. – volume: 16 start-page: 601 year: 2012 end-page: 614 ident: b19 article-title: Differential evolution with neighborhood mutation for multimodal optimization publication-title: IEEE Trans. Evol. Comput. – volume: 75 start-page: 1 year: 2015 end-page: 18 ident: b54 article-title: Stochastic fractal search. A powerful metaheuristic algorithm publication-title: Knowl.-Based Syst. – volume: 87 year: 2020 ident: b69 article-title: Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. – volume: 90 year: 2020 ident: b80 article-title: Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization publication-title: Eng. Appl. Artif. Intell. – volume: 19 start-page: 656 year: 2010 end-page: 678 ident: b90 article-title: A hybrid genetic algorithm and optimality criteria method for optimum design of RC tall buildings under multi-load cases publication-title: Struct. Des. Tall Special Build. – volume: 76 start-page: 60 year: 2001 end-page: 68 ident: b30 article-title: A new heuristic optimization algorithm: harmony search publication-title: Simulation – volume: 376 year: 2021 ident: b81 article-title: The arithmetic optimization algorithm publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 29 start-page: 464 year: 2012 end-page: 483 ident: b41 article-title: Bat algorithm: a novel approach for global engineering optimization publication-title: Eng. Comput. – volume: 38 start-page: 1554 year: 2020 end-page: 1606 ident: b77 article-title: Plasma generation optimization: a new physically-based metaheuristic algorithm for solving constrained optimization problems publication-title: Eng. Comput. – volume: 111 start-page: 300 year: 2020 end-page: 323 ident: b79 article-title: Slime mould algorithm: a new method for stochastic optimization publication-title: Future Gener. Comput. Syst. – volume: 24 start-page: 193 year: 2020 end-page: 200 ident: b3 article-title: A review of evolutionary multimodal multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 110 start-page: 69 year: 2017 end-page: 84 ident: b59 article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization publication-title: Adv. Eng. Softw. – volume: 558 start-page: 91 year: 2021 end-page: 102 ident: b93 article-title: Pruning of generative adversarial neural networks for medical imaging diagnostics with evolution strategy publication-title: Inform. Sci. – volume: 110–111 start-page: 151 year: 2012 end-page: 166 ident: b47 article-title: Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Comput. Struct. – volume: 161 year: 2020 ident: b71 article-title: Heap-based optimizer inspired by corporate rank hierarchy for global optimization publication-title: Expert Syst. Appl. – year: 1975 ident: b24 article-title: Adaptation in Natural and Artificial Systems – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b20 article-title: No free lunch theorem for optimization publication-title: IEEE Trans. Evol. Comput. – year: 2017 ident: b14 article-title: Applications of Metaheuristic Optimization Algorithms in Civil Engineering – volume: 10 start-page: 388 year: 2019 end-page: 395 ident: b66 article-title: Sea lion optimization algorithm publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 7 start-page: 571 year: 2015 end-page: 596 ident: b102 article-title: Whale-fall ecosystems: recent insights into ecology, paleoecology, and evolution publication-title: Ann. Rev. Mar. Sci. – volume: 43 start-page: 303 year: 2011 end-page: 315 ident: b43 article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b63 article-title: Harris hawks optimization: algorithm and applications publication-title: Future Gener. Comput. Syst. – year: 2021 ident: b82 article-title: The Archerfish hunting optimizer: A novel metaheuristic algorithm for global optimization publication-title: Arab. J. Sci. Eng. – start-page: 4661 year: 2007 end-page: 4662 ident: b35 article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition publication-title: 2007 IEEE Congress on Evolutionary Computation – volume: 36 start-page: 1224 year: 2020 end-page: 1244 ident: b88 article-title: Structural reliability assessment by salp swarm algorithm-based FORM publication-title: Qual. Reliab. Eng. Int. – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: b34 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Global Optim. – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b38 article-title: GSA: a gravitational search algorithm publication-title: Inform. Sci. – volume: 101 start-page: 646 year: 2019 end-page: 667 ident: b64 article-title: Henry gas solubility optimization: a novel physics-based algorithm publication-title: Future Gener. Comput. Syst. – volume: 31 start-page: 1995 year: 2019 end-page: 2014 ident: b53 article-title: Monarch butterfly optimization publication-title: Neural Comput. Appl. – volume: 10 start-page: 159 year: 2019 end-page: 167 ident: b4 article-title: Most valuable player algorithm for solving minimum vertex cover problem publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 44 start-page: 148 year: 2019 end-page: 175 ident: b61 article-title: A novel nature-inspired algorithm for optimization: squirrel search algorithm publication-title: Swarm Evol. Comput. – volume: 167 start-page: 69 year: 2016 end-page: 85 ident: b55 article-title: Water evaporation optimization: a novel physically inspired optimization algorithm publication-title: Comput. Struct. – volume: 62 start-page: 1951 year: 2020 end-page: 1968 ident: b89 article-title: First-order reliability method based on Harris hawks optimization for high-dimensional reliability analysis publication-title: Struct. Multidiscip. Optim. – volume: 235 year: 2020 ident: b72 article-title: Interactive autodidactic school: a new metaheuristic optimization algorithm for solving mathematical and structural design optimization problems publication-title: Comput. Struct. – start-page: 240 year: 2012 end-page: 249 ident: b44 article-title: Flower pollination algorithm for global optimization publication-title: Unconventional Computation and Natural Computation – volume: 145 year: 2020 ident: b98 article-title: Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection publication-title: Experts Syst. Appl. – start-page: 1 year: 2005 end-page: 50 ident: b104 article-title: Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b22 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 2 start-page: 105 year: 2015 end-page: 123 ident: b101 article-title: Developing a catalog of socio-sexual behaviors of beluga whales (Delphinapterus leucas) in the care of humans publication-title: Animal Behav. Cogn. – volume: 17 start-page: 99 year: 2021 end-page: 116 ident: b6 article-title: Task scheduling on cloud computing based on sea lion optimization algorithm publication-title: Int. J. Web Inf. Syst. – reference: X.S. Yang, S. Deb, Cuckoo search via lévy flights, in: World Congress on Nature & Biologically Inspired Computing, NaBIC, Coimbatore, 2009, pp. 210–214, – volume: 152 year: 2020 ident: b74 article-title: Marine predators algorithm: a nature-inspired metaheuristic publication-title: Expert Syst. Appl. – volume: 9 start-page: 4542 year: 2021 end-page: 4565 ident: b86 article-title: The solar system algorithm: a novel metaheuristic method for global optimization publication-title: IEEE Access – volume: 14 start-page: 381 year: 2010 end-page: 399 ident: b40 article-title: Chemical-reaction-inspired metaheuristic for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: b56 article-title: SCA: A sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. – volume: 22 start-page: 52 year: 2002 end-page: 67 ident: b31 article-title: Biomimicry of bacterial foraging for distributed optimization and control publication-title: IEEE Control Syst. Mag. – volume: 149 year: 2020 ident: b70 article-title: Chimp optimization algorithm publication-title: Expert Syst. Appl. – volume: 335 start-page: 366 year: 2019 end-page: 383 ident: b99 article-title: A survey of teaching-learning-based optimization publication-title: Neurocomputing – volume: 223 year: 2020 ident: b12 article-title: Reliable applied objective for identifying simple and detailed photovoltaic models using modern metaheuristics: comparative study publication-title: Energy Convers. Manag. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b106 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – volume: 63 year: 2021 ident: b8 article-title: Hybrid MPSO-CNN: Multi-level particle swarm optimized hyperparameters of convolutional neural network publication-title: Swarm Evol. Comput. – volume: 121 start-page: 147 year: 2018 end-page: 166 ident: b60 article-title: Pity beetle algorithm – a new metaheuristic inspired by the behavior of bark beetles publication-title: Adv. Eng. Softw. – volume: 152 year: 2021 ident: b84 article-title: Golden eagle optimizer: a nature-inspired metaheuristic algorithm publication-title: Comput. Ind. Eng. – volume: 13 start-page: 533 year: 1986 end-page: 549 ident: b26 article-title: Future paths for integer programming and links to artificial intelligence publication-title: Comput. Oper. Res. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b28 article-title: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. – volume: 165 start-page: 169 year: 2019 end-page: 196 ident: b65 article-title: Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems publication-title: Knowl.-Based Syst. – volume: 90 year: 2020 ident: b92 article-title: Differential evolution: a review of more than two decades of research publication-title: Eng. Appl. Artif. Intell. – volume: 63 year: 2021 ident: b17 article-title: Major advances in particle swarm optimization: theory, analysis and application publication-title: Swarm Evol. Comput. – volume: 191 year: 2020 ident: b23 article-title: Equilibrium optimizer: a novel optimization algorithm publication-title: Knowl.-Based Syst. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b48 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – year: 2021 ident: b2 article-title: Advances in Metaheuristics Algorithms for Optimal Design of Structures – volume: 166 year: 2021 ident: b85 article-title: Red fox optimization algorithm publication-title: Expert Syst. Appl. – volume: 65 start-page: 121 year: 2018 end-page: 138 ident: b11 article-title: An effective hybrid harmony search and cuckoo optimization algorithm based fuzzy PID controller for load frequency control publication-title: Appl. Soft Comput. – volume: 87 year: 2020 ident: b67 article-title: Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: b25 article-title: Optimization by simulated annealing publication-title: Science – volume: 28 start-page: 1853 year: 2021 end-page: 1869 ident: b15 article-title: A comparative study of metaheuristic algorithms for reliability-based design optimization problems publication-title: Arch. Comput. Methods Eng. – volume: 57 start-page: 341 year: 2018 end-page: 357 ident: b91 article-title: Optimum design of perforated orthotropic and laminated composite plates under in-plane loading by genetic algorithm publication-title: Struct. Multidiscip. Optim. – volume: 27 start-page: 1722 year: 2020 end-page: 1739 ident: b68 article-title: Billiards-inspired optimization algorithm: a new meta-heuristic method publication-title: Structures – year: 2003 ident: b32 article-title: A New Intelligent Optimization-Artificial Fish Swarm Algorithm – volume: 192 year: 2022 ident: b21 article-title: Comprehensive learning Harris hawks-equilibrium optimization with terminal replacement mechanism for constrained optimization problems publication-title: Expert Syst. Appl. – volume: 20 start-page: 139 year: 2020 end-page: 195 ident: b75 article-title: Most valuable player algorithm: a novel optimization algorithm inspired from sport publication-title: Oper. Res. – volume: 98 year: 2021 ident: b83 article-title: A carnivorous plant algorithm for solving global optimization problems publication-title: Appl. Soft Comput. – volume: 16 start-page: 171 year: 2014 end-page: 200 ident: b50 article-title: League championship algorithm (LCA): an algorithm for global optimization inspired by sport championships publication-title: Appl. Soft Comput. – volume: 2 start-page: 35 year: 2011 end-page: 62 ident: b42 article-title: An optimization algorithm based on brainstorming process publication-title: Int. J. Swarm Intell. Res. – volume: 547 start-page: 553 year: 2021 end-page: 567 ident: b94 article-title: Enhancing gene expression programming based on space partition and jump for symbolic regression publication-title: Inform. Sci. – volume: 97 year: 2020 ident: b95 article-title: Bi-MARS: a bi-clustering based memetic algorithm for recommender systems publication-title: Appl. Soft Comput. – reference: . – volume: 112–113 start-page: 283 year: 2012 end-page: 294 ident: b46 article-title: A new metaheuristic method: ray optimization publication-title: Comput. Struct. – volume: 213 start-page: 267 year: 2010 end-page: 289 ident: b39 article-title: A novel heuristic optimization method: charged system search publication-title: Acta Mech. – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: b52 article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. – volume: 195 year: 2020 ident: b78 article-title: Political optimizer: a novel socio-inspired meta-heuristic for global optimization publication-title: Knowl.-Based Syst. – volume: 83 start-page: 80 year: 2015 end-page: 98 ident: b51 article-title: The ant lion optimizer publication-title: Adv. Eng. Softw. – volume: 48 start-page: 220 year: 2019 end-page: 250 ident: b1 article-title: Bio-inspired computation: Where we stand and what’s next? publication-title: Swarm Evol. Comput. – volume: 60 start-page: 634 year: 2017 end-page: 654 ident: b97 article-title: A new hybrid particle swarm and simulated annealing stochastic optimization method publication-title: Appl. Soft Comput. – volume: 49 start-page: 4677 year: 1994 end-page: 4683 ident: b103 article-title: Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes publication-title: Phys. Rev. E – volume: 23 start-page: 715 year: 2019 end-page: 734 ident: b62 article-title: Butterfly optimization algorithm: a novel approach for global optimization publication-title: Soft Comput. – volume: 94 year: 2020 ident: b73 article-title: Lévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. – volume: 37 start-page: 106 issue: 2 year: 2006 ident: 10.1016/j.knosys.2022.109215_b33 article-title: A new optimization method: big bang-big crunch publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2005.04.005 – volume: 145 year: 2020 ident: 10.1016/j.knosys.2022.109215_b98 article-title: Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection publication-title: Experts Syst. Appl. – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.knosys.2022.109215_b58 article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – volume: 27 start-page: 1722 year: 2020 ident: 10.1016/j.knosys.2022.109215_b68 article-title: Billiards-inspired optimization algorithm: a new meta-heuristic method publication-title: Structures doi: 10.1016/j.istruc.2020.07.058 – volume: 235 year: 2020 ident: 10.1016/j.knosys.2022.109215_b72 article-title: Interactive autodidactic school: a new metaheuristic optimization algorithm for solving mathematical and structural design optimization problems publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2020.106268 – start-page: 4661 year: 2007 ident: 10.1016/j.knosys.2022.109215_b35 article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.knosys.2022.109215_b22 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 19 start-page: 656 year: 2010 ident: 10.1016/j.knosys.2022.109215_b90 article-title: A hybrid genetic algorithm and optimality criteria method for optimum design of RC tall buildings under multi-load cases publication-title: Struct. Des. Tall Special Build. doi: 10.1002/tal.505 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.knosys.2022.109215_b18 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 192 year: 2022 ident: 10.1016/j.knosys.2022.109215_b21 article-title: Comprehensive learning Harris hawks-equilibrium optimization with terminal replacement mechanism for constrained optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116432 – volume: 62 start-page: 1951 year: 2020 ident: 10.1016/j.knosys.2022.109215_b89 article-title: First-order reliability method based on Harris hawks optimization for high-dimensional reliability analysis publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-020-02587-3 – volume: 76 start-page: 60 issue: 2 year: 2001 ident: 10.1016/j.knosys.2022.109215_b30 article-title: A new heuristic optimization algorithm: harmony search publication-title: Simulation doi: 10.1177/003754970107600201 – year: 2015 ident: 10.1016/j.knosys.2022.109215_b16 – volume: 16 start-page: 601 issue: 5 year: 2012 ident: 10.1016/j.knosys.2022.109215_b19 article-title: Differential evolution with neighborhood mutation for multimodal optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2011.2161873 – volume: 149 year: 2020 ident: 10.1016/j.knosys.2022.109215_b70 article-title: Chimp optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113338 – year: 2021 ident: 10.1016/j.knosys.2022.109215_b2 – volume: 63 year: 2021 ident: 10.1016/j.knosys.2022.109215_b8 article-title: Hybrid MPSO-CNN: Multi-level particle swarm optimized hyperparameters of convolutional neural network publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.100863 – volume: 94 year: 2020 ident: 10.1016/j.knosys.2022.109215_b73 article-title: Lévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103731 – volume: 62 year: 2021 ident: 10.1016/j.knosys.2022.109215_b5 article-title: Task scheduling in cloud computing based on meta-heuristics: review, taxonomy, open challenges, and future trends publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.100841 – ident: 10.1016/j.knosys.2022.109215_b37 doi: 10.1109/NABIC.2009.5393690 – volume: 111 start-page: 300 year: 2020 ident: 10.1016/j.knosys.2022.109215_b79 article-title: Slime mould algorithm: a new method for stochastic optimization publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.03.055 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.knosys.2022.109215_b63 article-title: Harris hawks optimization: algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 2 start-page: 105 issue: 2 year: 2015 ident: 10.1016/j.knosys.2022.109215_b101 article-title: Developing a catalog of socio-sexual behaviors of beluga whales (Delphinapterus leucas) in the care of humans publication-title: Animal Behav. Cogn. doi: 10.12966/abc.05.01.2015 – volume: 152 year: 2021 ident: 10.1016/j.knosys.2022.109215_b84 article-title: Golden eagle optimizer: a nature-inspired metaheuristic algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.107050 – volume: 167 year: 2021 ident: 10.1016/j.knosys.2022.109215_b10 article-title: Ant colony optimization with horizontal and vertical crossover search: fundamental visions for multi-threshold image segmentation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114122 – year: 2021 ident: 10.1016/j.knosys.2022.109215_b82 article-title: The Archerfish hunting optimizer: A novel metaheuristic algorithm for global optimization publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-021-05608-5 – volume: 191 year: 2020 ident: 10.1016/j.knosys.2022.109215_b23 article-title: Equilibrium optimizer: a novel optimization algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105190 – volume: 87 year: 2020 ident: 10.1016/j.knosys.2022.109215_b67 article-title: Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103330 – volume: 16 start-page: 171 year: 2014 ident: 10.1016/j.knosys.2022.109215_b50 article-title: League championship algorithm (LCA): an algorithm for global optimization inspired by sport championships publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.12.005 – volume: 57 start-page: 341 year: 2018 ident: 10.1016/j.knosys.2022.109215_b91 article-title: Optimum design of perforated orthotropic and laminated composite plates under in-plane loading by genetic algorithm publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-017-1758-5 – volume: 60 start-page: 634 year: 2017 ident: 10.1016/j.knosys.2022.109215_b97 article-title: A new hybrid particle swarm and simulated annealing stochastic optimization method publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.07.023 – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.knosys.2022.109215_b52 article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.006 – year: 2017 ident: 10.1016/j.knosys.2022.109215_b14 – volume: 20 start-page: 139 year: 2020 ident: 10.1016/j.knosys.2022.109215_b75 article-title: Most valuable player algorithm: a novel optimization algorithm inspired from sport publication-title: Oper. Res. – start-page: 1 year: 2005 ident: 10.1016/j.knosys.2022.109215_b104 – volume: 17 start-page: 99 issue: 2 year: 2021 ident: 10.1016/j.knosys.2022.109215_b6 article-title: Task scheduling on cloud computing based on sea lion optimization algorithm publication-title: Int. J. Web Inf. Syst. doi: 10.1108/IJWIS-11-2020-0071 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.knosys.2022.109215_b20 article-title: No free lunch theorem for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 376 year: 2021 ident: 10.1016/j.knosys.2022.109215_b81 article-title: The arithmetic optimization algorithm publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113609 – volume: 2 start-page: 35 issue: 4 year: 2011 ident: 10.1016/j.knosys.2022.109215_b42 article-title: An optimization algorithm based on brainstorming process publication-title: Int. J. Swarm Intell. Res. doi: 10.4018/ijsir.2011100103 – volume: 110–111 start-page: 151 year: 2012 ident: 10.1016/j.knosys.2022.109215_b47 article-title: Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.07.010 – volume: 28 start-page: 1853 year: 2021 ident: 10.1016/j.knosys.2022.109215_b15 article-title: A comparative study of metaheuristic algorithms for reliability-based design optimization problems publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-020-09443-z – volume: 10 start-page: 159 issue: 8 year: 2019 ident: 10.1016/j.knosys.2022.109215_b4 article-title: Most valuable player algorithm for solving minimum vertex cover problem publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 222 year: 2021 ident: 10.1016/j.knosys.2022.109215_b9 article-title: Multi-objective PSO based online feature selection for multi-label classification publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.106966 – volume: 14 start-page: 381 issue: 3 year: 2010 ident: 10.1016/j.knosys.2022.109215_b40 article-title: Chemical-reaction-inspired metaheuristic for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2033580 – volume: 139 start-page: 98 year: 2014 ident: 10.1016/j.knosys.2022.109215_b49 article-title: Symbiotic organisms search: a new metaheuristic optimization algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2014.03.007 – volume: 75 start-page: 1 year: 2015 ident: 10.1016/j.knosys.2022.109215_b54 article-title: Stochastic fractal search. A powerful metaheuristic algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.07.025 – volume: 22 start-page: 52 issue: 3 year: 2002 ident: 10.1016/j.knosys.2022.109215_b31 article-title: Biomimicry of bacterial foraging for distributed optimization and control publication-title: IEEE Control Syst. Mag. doi: 10.1109/MCS.2002.1004010 – volume: 112–113 start-page: 283 year: 2012 ident: 10.1016/j.knosys.2022.109215_b46 article-title: A new metaheuristic method: ray optimization publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.09.003 – volume: 213 start-page: 267 year: 2010 ident: 10.1016/j.knosys.2022.109215_b39 article-title: A novel heuristic optimization method: charged system search publication-title: Acta Mech. doi: 10.1007/s00707-009-0270-4 – volume: 32 start-page: 10359 year: 2020 ident: 10.1016/j.knosys.2022.109215_b76 article-title: A new algorithm for normal and large-scale optimization problems: Nomadic people optimizer publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04575-1 – volume: 87 year: 2020 ident: 10.1016/j.knosys.2022.109215_b69 article-title: Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103249 – start-page: 240 year: 2012 ident: 10.1016/j.knosys.2022.109215_b44 article-title: Flower pollination algorithm for global optimization – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 10.1016/j.knosys.2022.109215_b25 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 13 start-page: 533 issue: 5 year: 1986 ident: 10.1016/j.knosys.2022.109215_b26 article-title: Future paths for integer programming and links to artificial intelligence publication-title: Comput. Oper. Res. doi: 10.1016/0305-0548(86)90048-1 – volume: 23 start-page: 715 year: 2019 ident: 10.1016/j.knosys.2022.109215_b62 article-title: Butterfly optimization algorithm: a novel approach for global optimization publication-title: Soft Comput. doi: 10.1007/s00500-018-3102-4 – volume: 49 start-page: 4677 issue: 5 year: 1994 ident: 10.1016/j.knosys.2022.109215_b103 article-title: Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.49.4677 – volume: 57 start-page: 1143 year: 2006 ident: 10.1016/j.knosys.2022.109215_b96 article-title: A survey of simulated annealing as a tool for single and mutliobjective optimization publication-title: J. Oper. Res. Hist. – volume: 63 year: 2021 ident: 10.1016/j.knosys.2022.109215_b17 article-title: Major advances in particle swarm optimization: theory, analysis and application publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.100868 – start-page: 108 year: 2009 ident: 10.1016/j.knosys.2022.109215_b100 – volume: 83 start-page: 80 year: 2015 ident: 10.1016/j.knosys.2022.109215_b51 article-title: The ant lion optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.01.010 – volume: 165 start-page: 169 year: 2019 ident: 10.1016/j.knosys.2022.109215_b65 article-title: Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.11.024 – volume: 38 start-page: 1554 issue: 4 year: 2020 ident: 10.1016/j.knosys.2022.109215_b77 article-title: Plasma generation optimization: a new physically-based metaheuristic algorithm for solving constrained optimization problems publication-title: Eng. Comput. doi: 10.1108/EC-05-2020-0235 – volume: 195 year: 2020 ident: 10.1016/j.knosys.2022.109215_b78 article-title: Political optimizer: a novel socio-inspired meta-heuristic for global optimization publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105709 – volume: 29 start-page: 464 issue: 5 year: 2012 ident: 10.1016/j.knosys.2022.109215_b41 article-title: Bat algorithm: a novel approach for global engineering optimization publication-title: Eng. Comput. doi: 10.1108/02644401211235834 – ident: 10.1016/j.knosys.2022.109215_b105 doi: 10.1109/SIS.2005.1501604 – volume: 48 start-page: 220 year: 2019 ident: 10.1016/j.knosys.2022.109215_b1 article-title: Bio-inspired computation: Where we stand and what’s next? publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.04.008 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.knosys.2022.109215_b106 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – ident: 10.1016/j.knosys.2022.109215_b29 doi: 10.1109/CEC.1999.782657 – year: 2021 ident: 10.1016/j.knosys.2022.109215_b87 article-title: Stock exchange trading optimization algorithm: a human-inspired method for global optimization publication-title: J. Supercomput. – volume: 101 start-page: 646 year: 2019 ident: 10.1016/j.knosys.2022.109215_b64 article-title: Henry gas solubility optimization: a novel physics-based algorithm publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.07.015 – volume: 335 start-page: 366 year: 2019 ident: 10.1016/j.knosys.2022.109215_b99 article-title: A survey of teaching-learning-based optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.076 – volume: 12 start-page: 702 issue: 6 year: 2008 ident: 10.1016/j.knosys.2022.109215_b36 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.919004 – volume: 43 start-page: 303 year: 2011 ident: 10.1016/j.knosys.2022.109215_b43 article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – volume: 547 start-page: 553 year: 2021 ident: 10.1016/j.knosys.2022.109215_b94 article-title: Enhancing gene expression programming based on space partition and jump for symbolic regression publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.08.061 – volume: 97 year: 2020 ident: 10.1016/j.knosys.2022.109215_b95 article-title: Bi-MARS: a bi-clustering based memetic algorithm for recommender systems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106785 – volume: 161 year: 2020 ident: 10.1016/j.knosys.2022.109215_b71 article-title: Heap-based optimizer inspired by corporate rank hierarchy for global optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113702 – volume: 17 start-page: 4831 issue: 12 year: 2012 ident: 10.1016/j.knosys.2022.109215_b45 article-title: Krill herd: A new bio-inspired optimization algorithm publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2012.05.010 – volume: 24 start-page: 193 issue: 1 year: 2020 ident: 10.1016/j.knosys.2022.109215_b3 article-title: A review of evolutionary multimodal multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2909744 – volume: 90 year: 2020 ident: 10.1016/j.knosys.2022.109215_b80 article-title: Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103541 – volume: 167 start-page: 69 year: 2016 ident: 10.1016/j.knosys.2022.109215_b55 article-title: Water evaporation optimization: a novel physically inspired optimization algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2016.01.008 – volume: 105 start-page: 30 year: 2017 ident: 10.1016/j.knosys.2022.109215_b57 article-title: Grasshopper optimization algorithm: theory and application publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.01.004 – volume: 98 year: 2021 ident: 10.1016/j.knosys.2022.109215_b83 article-title: A carnivorous plant algorithm for solving global optimization problems publication-title: Appl. Soft Comput. – volume: 65 start-page: 121 year: 2018 ident: 10.1016/j.knosys.2022.109215_b11 article-title: An effective hybrid harmony search and cuckoo optimization algorithm based fuzzy PID controller for load frequency control publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.01.007 – volume: 152 year: 2020 ident: 10.1016/j.knosys.2022.109215_b74 article-title: Marine predators algorithm: a nature-inspired metaheuristic publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.knosys.2022.109215_b56 article-title: SCA: A sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 36 start-page: 1224 year: 2020 ident: 10.1016/j.knosys.2022.109215_b88 article-title: Structural reliability assessment by salp swarm algorithm-based FORM publication-title: Qual. Reliab. Eng. Int. doi: 10.1002/qre.2626 – volume: 90 year: 2020 ident: 10.1016/j.knosys.2022.109215_b92 article-title: Differential evolution: a review of more than two decades of research publication-title: Eng. Appl. Artif. Intell. – volume: 31 start-page: 1995 year: 2019 ident: 10.1016/j.knosys.2022.109215_b53 article-title: Monarch butterfly optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1923-y – volume: 558 start-page: 91 year: 2021 ident: 10.1016/j.knosys.2022.109215_b93 article-title: Pruning of generative adversarial neural networks for medical imaging diagnostics with evolution strategy publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.12.086 – volume: 7 start-page: 571 year: 2015 ident: 10.1016/j.knosys.2022.109215_b102 article-title: Whale-fall ecosystems: recent insights into ecology, paleoecology, and evolution publication-title: Ann. Rev. Mar. Sci. doi: 10.1146/annurev-marine-010213-135144 – volume: 166 year: 2021 ident: 10.1016/j.knosys.2022.109215_b85 article-title: Red fox optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114107 – year: 2003 ident: 10.1016/j.knosys.2022.109215_b32 – volume: 25 start-page: 2741 year: 2021 ident: 10.1016/j.knosys.2022.109215_b7 article-title: Multithreaded scheduling for program segments based on chemical reaction optimizer publication-title: Soft Comput. doi: 10.1007/s00500-020-05334-4 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.knosys.2022.109215_b28 article-title: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – volume: 110 start-page: 69 year: 2017 ident: 10.1016/j.knosys.2022.109215_b59 article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.03.014 – volume: 121 start-page: 147 year: 2018 ident: 10.1016/j.knosys.2022.109215_b60 article-title: Pity beetle algorithm – a new metaheuristic inspired by the behavior of bark beetles publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2018.04.007 – volume: 10 start-page: 388 issue: 5 year: 2019 ident: 10.1016/j.knosys.2022.109215_b66 article-title: Sea lion optimization algorithm publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 48 start-page: 1 year: 2014 ident: 10.1016/j.knosys.2022.109215_b13 article-title: Risk design optimization using many-objective evolutionary algorithm with application to performance-based wind engineering of tall buildings publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2014.01.002 – ident: 10.1016/j.knosys.2022.109215_b27 doi: 10.1109/ICNN.1995.488968 – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 10.1016/j.knosys.2022.109215_b34 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Global Optim. doi: 10.1007/s10898-007-9149-x – volume: 9 start-page: 4542 year: 2021 ident: 10.1016/j.knosys.2022.109215_b86 article-title: The solar system algorithm: a novel metaheuristic method for global optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3047912 – volume: 44 start-page: 148 year: 2019 ident: 10.1016/j.knosys.2022.109215_b61 article-title: A novel nature-inspired algorithm for optimization: squirrel search algorithm publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.02.013 – year: 1975 ident: 10.1016/j.knosys.2022.109215_b24 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.knosys.2022.109215_b48 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 223 year: 2020 ident: 10.1016/j.knosys.2022.109215_b12 article-title: Reliable applied objective for identifying simple and detailed photovoltaic models using modern metaheuristics: comparative study publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.113279 – volume: 179 start-page: 2232 year: 2009 ident: 10.1016/j.knosys.2022.109215_b38 article-title: GSA: a gravitational search algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2009.03.004 |
SSID | ssj0002218 |
Score | 2.7120943 |
Snippet | In this paper, a novel swarm-based metaheuristic algorithm inspired from the behaviors of beluga whales, called beluga whale optimization (BWO), is presented... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109215 |
SubjectTerms | Beluga whale optimization Metaheuristics Optimization Swarm intelligence |
Title | Beluga whale optimization: A novel nature-inspired metaheuristic algorithm |
URI | https://dx.doi.org/10.1016/j.knosys.2022.109215 |
Volume | 251 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fuuj7MFrbF6bpt5qsdSKvWiht5DdnbTRNik1Vbz4253JwweIgseEHRKG2W--ZWe-YezMsbUjLA0GaKkM16YiAOlFRoipwvM9EI5J_c63Q68_cgdjMa6xbtULQ2WVJfYXmJ6jdfmmWXqzuYjj5h2SA4xXTFh0KkaiSx3sboui_Pzts8wDv-4XenumQaur9rm8xusxSZ9eSbTbtklXyabhuD-lpy8pp7fNNkuuyDvF7-ywGiS7bKuaw8DLbbnHBpcwW01C_jJFtOcpgsC87K684B2epM8w44WApxEndLMOms8hC6ewKnSaeTibpMs4m8732ah3dd_tG-WMBEMh2c-QHINthjp0QXmR1haCm5RAOmV0IehYHjgCkFSZofDxtAueiMCLXMsP20pFNjgHbC1JEzhkHI9WQmmJlCVS1P4mRctxtbT8tquRdsk6cyrXBKoUEKc5FrOgqhR7CAqHBuTQoHBonRkfVotCQOOP9a3K68G3QAgQ43-1PPq35THboKe8dEycsLVsuYJT5BqZbOTB1GDrneub_vAdeWDUVg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPejFt1ife_Aa2jw2Tb3VYolWe7EFbyGbndhompSaKv57Z5uNKIiC1yQDyzD55ht25huAc9uSNjclGihFZDiWagIQbmyElCpcz0Vut9S8893Q9cfOzQN_qEGvmoVRbZUa-0tMX6K1ftLU3mzOkqR5T-SA4pUSlqqKieiuwKpSp-J1WO1eD_zhJyDTAbxScq9lKINqgm7Z5vWc5S_vSrfbspS0kqX24_6Uob5knf4WbGi6yLrlibahhtkObFarGJj-M3fh5hLTxWPI3iYE-CwnHJjqAcsL1mVZ_oopKzU8jSRTl-so2RSLcIKLUqqZheljPk-KyXQPxv2rUc839JoEIyK-XxA_RqsVytDByI2lNAnfhEAlVabuBG3TRZsj8apWyD0qeNHlMbqxY3phJ4piC-19qGd5hgfAqLrikRTEWuJITcAJ3rYdKUyv40hiXqIBduWaINIa4mqVRRpUzWJPQenQQDk0KB3aAOPTalZqaPzxfbvyevAtFgKC-V8tD_9teQZr_ujuNri9Hg6OYF29WXaS8WOoF_MFnhD1KMSpDq0PzKzXBw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beluga+whale+optimization%3A+A+novel+nature-inspired+metaheuristic+algorithm&rft.jtitle=Knowledge-based+systems&rft.au=Zhong%2C+Changting&rft.au=Li%2C+Gang&rft.au=Meng%2C+Zeng&rft.date=2022-09-05&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=251&rft_id=info:doi/10.1016%2Fj.knosys.2022.109215&rft.externalDocID=S0950705122006049 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |