Equivalent viscous damping for buckling-restrained braced RC frame structures

While the direct displacement-based design (DDBD) method is commonly developed in seismic design of the single frame and is extensively discussed in the technical literature devoted to this subject, the proper evaluation of this method for dual frames system has received relatively little attention....

Full description

Saved in:
Bibliographic Details
Published inStructures (Oxford) Vol. 34; pp. 1229 - 1252
Main Authors Farahani, Sina, Akhaveissy, Amir H., Damkilde, Lars
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2021
Subjects
Online AccessGet full text
ISSN2352-0124
2352-0124
DOI10.1016/j.istruc.2021.08.031

Cover

Loading…
Abstract While the direct displacement-based design (DDBD) method is commonly developed in seismic design of the single frame and is extensively discussed in the technical literature devoted to this subject, the proper evaluation of this method for dual frames system has received relatively little attention. Considering excellent hysteretic behavior, buckling-restrained braces (BRBs) have been increasingly configured in reinforced concrete (RC) frame to develop the reinforced concrete buckling‐restrained braced (RC-BRB) dual system. The RC-BRB dual frame system is a new lateral-load resisting dual system aimed to minimize the time and costs of repairs after an earthquake. The one of main parameters of the DDBD method is equivalent viscous damping (EVD) proposed to represent the energy dissipation of the system due to its inelastic behavior assumption. Since in the literature no damping equation has been given for the RC-BRB dual frame, the present study aims to provide a reliable EVD equation for the RC-BRB dual system, as well as in the values of the equation verified against real earthquakes, by conducting the nonlinear time-history analysis (NTHA). To this end, first, the numerical model was proposed and validated using the results of the available cyclic test in the literature. Then, the EVD equation of the RC-BRB frames was acquired based on a new method which calibrates the obtained EVDs through nonlinear time-history dynamic analysis of the structures under real earthquake records. The comparison between the calculated results and the corresponding ones acquired from previous equations illustrates that the proposed EVD equation is appropriate for estimating the energy dissipation of the RC-BRB dual frames. Furthermore, the results show that the EVD equations presented so far can conservatively estimate the damping level for the RC-BRB dual frame structures.
AbstractList While the direct displacement-based design (DDBD) method is commonly developed in seismic design of the single frame and is extensively discussed in the technical literature devoted to this subject, the proper evaluation of this method for dual frames system has received relatively little attention. Considering excellent hysteretic behavior, buckling-restrained braces (BRBs) have been increasingly configured in reinforced concrete (RC) frame to develop the reinforced concrete buckling‐restrained braced (RC-BRB) dual system. The RC-BRB dual frame system is a new lateral-load resisting dual system aimed to minimize the time and costs of repairs after an earthquake. The one of main parameters of the DDBD method is equivalent viscous damping (EVD) proposed to represent the energy dissipation of the system due to its inelastic behavior assumption. Since in the literature no damping equation has been given for the RC-BRB dual frame, the present study aims to provide a reliable EVD equation for the RC-BRB dual system, as well as in the values of the equation verified against real earthquakes, by conducting the nonlinear time-history analysis (NTHA). To this end, first, the numerical model was proposed and validated using the results of the available cyclic test in the literature. Then, the EVD equation of the RC-BRB frames was acquired based on a new method which calibrates the obtained EVDs through nonlinear time-history dynamic analysis of the structures under real earthquake records. The comparison between the calculated results and the corresponding ones acquired from previous equations illustrates that the proposed EVD equation is appropriate for estimating the energy dissipation of the RC-BRB dual frames. Furthermore, the results show that the EVD equations presented so far can conservatively estimate the damping level for the RC-BRB dual frame structures.
Author Akhaveissy, Amir H.
Farahani, Sina
Damkilde, Lars
Author_xml – sequence: 1
  givenname: Sina
  surname: Farahani
  fullname: Farahani, Sina
  organization: Department of Civil Engineering, The Faculty of Engineering, Razi University, Kermanshah, Iran
– sequence: 2
  givenname: Amir H.
  surname: Akhaveissy
  fullname: Akhaveissy, Amir H.
  email: ahakhaveissy@razi.ac.ir
  organization: Department of Civil Engineering, The Faculty of Engineering, Razi University, Kermanshah, Iran
– sequence: 3
  givenname: Lars
  surname: Damkilde
  fullname: Damkilde, Lars
  organization: Department of the Built Environment, The Faculty of Engineering and Science, Division for Structures, Materials and Geotechnics, Advanced Structural Engineering Research Group, Aalborg University, Aalborg, Denmark
BookMark eNqFkM9KAzEQxoNUsNa-gYe8wK6TZNtkPQhS6h-oCKLnkGQTSd3u1iRb8O1NrQfxoKdvBuabb-Z3ikZd31mEzgmUBMj8Yl36mMJgSgqUlCBKYOQIjSmb0QIIrUY_6hM0jXENkCcroBUfo4fl--B3qrVdwjsfTT9E3KjN1nev2PUB68G8tbkpgs0pyne2wTook-VpgV1QG4u_4tOQJ87QsVNttNNvnaCXm-Xz4q5YPd7eL65XhWEwTwXnrOaMV5ooWzNnBAjDtKiocFwxA4ZzwSxvuODAmbCKM6ZnWvNG17WbUzZBl4e9JvQxBuuk8Ukl33f7G1tJQO7ZyLU8sJF7NhKEzGyyufpl3ga_UeHjP9vVwWbzYztvg4zG2y6T8MGaJJve_73gE203g0M
CitedBy_id crossref_primary_10_14359_51744399
crossref_primary_10_1016_j_prostr_2023_01_186
crossref_primary_10_1016_j_engstruct_2023_115974
crossref_primary_10_1016_j_istruc_2023_06_062
crossref_primary_10_3390_buildings14030738
crossref_primary_10_1016_j_istruc_2024_107373
crossref_primary_10_1016_j_istruc_2023_105074
crossref_primary_10_3390_geosciences12050182
crossref_primary_10_1016_j_istruc_2024_107140
crossref_primary_10_1007_s10518_021_01290_y
crossref_primary_10_1186_s43065_022_00061_6
crossref_primary_10_1016_j_engstruct_2024_119392
Cites_doi 10.1016/j.istruc.2021.01.075
10.1007/s10518-020-00785-4
10.1016/j.engstruct.2011.11.010
10.1007/s10518-019-00633-0
10.1007/s10518-020-00857-5
10.1080/13632461003651687
10.1007/s10518-018-0460-3
10.1061/JSDEAG.0004250
10.1002/tal.1581
10.1061/JMCEA3.0000929
10.1007/s10518-011-9272-4
10.1016/j.engstruct.2015.10.048
10.1002/tal.1661
10.1016/j.engstruct.2014.09.033
10.1080/13632460601033884
10.1007/s40996-018-0109-0
10.1061/(ASCE)ST.1943-541X.0000296
10.1007/s10518-019-00740-y
10.1061/(ASCE)0733-9445(2007)133:9(1205)
10.1016/j.istruc.2021.01.076
10.1016/j.istruc.2020.07.015
10.1061/(ASCE)ST.1943-541X.0001407
10.1016/j.jcsr.2018.12.029
10.1016/j.engstruct.2019.109663
10.1142/S1363246905002390
10.1016/j.istruc.2020.08.048
10.5000/EESK.2018.22.5.299
ContentType Journal Article
Copyright 2021 Institution of Structural Engineers
Copyright_xml – notice: 2021 Institution of Structural Engineers
DBID AAYXX
CITATION
DOI 10.1016/j.istruc.2021.08.031
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2352-0124
EndPage 1252
ExternalDocumentID 10_1016_j_istruc_2021_08_031
S2352012421007438
GroupedDBID --M
0R~
4.4
457
AAEDT
AAEDW
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ADCNI
ADEZE
AEBSH
AEIPS
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGUBO
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFKBS
EJD
FDB
FIRID
FYGXN
KOM
M41
O9-
OAUVE
ROL
SPC
SPCBC
SST
SSZ
T5K
~G-
AAYXX
AFXIZ
AGRNS
BNPGV
CITATION
RIG
ID FETCH-LOGICAL-c306t-77397374b1ae93fc808c3b8428f7a3c0c7783e7d7870738ea733b5bb7db99f623
IEDL.DBID AIKHN
ISSN 2352-0124
IngestDate Thu Aug 07 07:00:39 EDT 2025
Thu Apr 24 22:52:25 EDT 2025
Sat Aug 30 17:16:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Dual frame
RC frame
Ductility
Equivalent viscous damping
Nonlinear time-history analysis
Direct displacement-based design method
Buckling‐restrained brace
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-77397374b1ae93fc808c3b8428f7a3c0c7783e7d7870738ea733b5bb7db99f623
PageCount 24
ParticipantIDs crossref_citationtrail_10_1016_j_istruc_2021_08_031
crossref_primary_10_1016_j_istruc_2021_08_031
elsevier_sciencedirect_doi_10_1016_j_istruc_2021_08_031
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Structures (Oxford)
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tazarv, Mohebkhah (b0185) 2021; 31
Seismosoft, SeismoMatch, A Computer Program for the adjusting earthquake accelerograms to match a specific target response spectrum. Available Online at
Kharab, Guenther (b0235) 2018
Muho, Qian, Beskos (b0240) 2020; 18
Weng YT, Lin JL, Tsai, CY, Tsai KC. Analytical assessment of a 2-story BRBF for full-scale 3D sub-structural pseudo-dynamic testing. In The first international conference on advances in experimental structural engineering (AESE), Nagoya, Japan, 2005.
Khampanit, Leelataviwat, Kochanin, Warnitchai (b0095) 2014; 81
Bai, Cheng, Jin, Ou (b0110) 2019; 17
Blandon CA, Priestley MJN. Equivalent viscous damping equations for direct displacement based design. J Earthq Eng 2005;9(sup2):257-278. 10.1142/S1363246905002390.
Merritt S, Uang CM, Benzoni G. Subassemblage testing of Star Seismic buckling-restrained braces. Structural Systems Research Project, Rep. No. TR-2003/04, Univ. of California at San Diego, San Diego, USA, 2003.
Fahnestock, Ricles, Sause (b0220) 2007; 133
AISC 341 (b0125) 2016
Roeder CW, Lehman DE, Christopulos A. Seismic performance of special concentrically braced frames with buckling restrained braces. In 8th National Conference on Earthquake Engineering (8th NCEE), Oakland, USA, 2006.
Nazarimofrad, Farahani, Zahrai (b0175) 2019; 28
.
CEN EN 1998-1. Eurocode 8: Design provisions for earthquake resistant structures. Brussels, Belgium: European Committee for Standardization; 2004.
ETABS (b0245) 2015
Kumbhar OG, Kumar R, Farsangi EN. Investigating the efficiency of DDBD approaches for RC buildings. Structures 2020;27:1501-20. 10.1016/j.istruc.2020.07.015.
ASCE/SEI 7-16: Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers, 2016.
Jennings (b0045) 1968; 94
Beiraghi (b0210) 2018; 42
Beiraghi (b0080) 2019; 72
Al-Mashaykhi, Rajeev, Wijesundara, Hashemi (b0135) 2019; 155
McKenna, Fenves, Scott (b0160) 2016
Grant DN, Blandon CA, Priestley MJN. Modelling Inelastic Response in Direct Displacement-Based Design. Report 2005/3. Pavia, Italy: IUSS Press; 2005.
Upadhyay, Pantelides, Ibarra (b0170) 2019; 199
PEER Pacific Earthquake Engineering Research Center, Strong Ground Motion Database 2013.
MATLAB. R2016. “The Language of Technical Computing.” USA: The MathWorks Inc 2016.
FEMA 461: Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components, 2007.
Bai, Ou (b0105) 2016; 107
Farahani, Mohebkhah (b0225) 2016
Gao, Li, Li, Xu (b0090) 2020; 28
Sutcu, Bal, Fujishita, Matsui, Celik, Takeuchi (b0120) 2020; 18
Qu, Kishiki, Maida, Sakata (b0100) 2016; 142
Wijesundara, Nascimbene, Sullivan (b0055) 2011; 9
ASCE41-17: Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers, 2017.
2020.
Tazarv, Mohebkhah (b0165) 2021; 31
Dwairi, Kowalsky, Nau (b0040) 2007; 11
Priestley, Calvi, Kowalski (b0015) 2007
Jacobsen (b0030) 1960
Erochko, Christopoulos, Tremblay, Choi (b0085) 2011; 137
Maley, Sullivan, Corte (b0075) 2010; 14
Shibata, Sozen (b0025) 1976; 102
Sullivan, Priestley, Calvi (b0020) 2012
Pan, An, Bai, Yan, Jin (b0115) 2019; 28
Uang, Nakashima, Tsai (b0070) 2004; 4
Aragaw, Calvi (b0145) 2020; 18
ACI (b0150) 2014
Pourali, Khosravi, Dehestani (b0060) 2019; 17
Abebe, Lee (b0180) 2018; 22
Sullivan, Lago (b0130) 2012; 35
10.1016/j.istruc.2021.08.031_b0065
10.1016/j.istruc.2021.08.031_b0140
Pourali (10.1016/j.istruc.2021.08.031_b0060) 2019; 17
Beiraghi (10.1016/j.istruc.2021.08.031_b0210) 2018; 42
Aragaw (10.1016/j.istruc.2021.08.031_b0145) 2020; 18
Dwairi (10.1016/j.istruc.2021.08.031_b0040) 2007; 11
McKenna (10.1016/j.istruc.2021.08.031_b0160) 2016
Tazarv (10.1016/j.istruc.2021.08.031_b0185) 2021; 31
Gao (10.1016/j.istruc.2021.08.031_b0090) 2020; 28
10.1016/j.istruc.2021.08.031_b0190
Bai (10.1016/j.istruc.2021.08.031_b0110) 2019; 17
10.1016/j.istruc.2021.08.031_b0035
10.1016/j.istruc.2021.08.031_b0155
10.1016/j.istruc.2021.08.031_b0230
10.1016/j.istruc.2021.08.031_b0195
ETABS (10.1016/j.istruc.2021.08.031_b0245) 2015
Jacobsen (10.1016/j.istruc.2021.08.031_b0030) 1960
Abebe (10.1016/j.istruc.2021.08.031_b0180) 2018; 22
Tazarv (10.1016/j.istruc.2021.08.031_b0165) 2021; 31
Sutcu (10.1016/j.istruc.2021.08.031_b0120) 2020; 18
Uang (10.1016/j.istruc.2021.08.031_b0070) 2004; 4
Farahani (10.1016/j.istruc.2021.08.031_b0225) 2016
Wijesundara (10.1016/j.istruc.2021.08.031_b0055) 2011; 9
Sullivan (10.1016/j.istruc.2021.08.031_b0130) 2012; 35
ACI (10.1016/j.istruc.2021.08.031_b0150) 2014
10.1016/j.istruc.2021.08.031_b0200
Khampanit (10.1016/j.istruc.2021.08.031_b0095) 2014; 81
Shibata (10.1016/j.istruc.2021.08.031_b0025) 1976; 102
Jennings (10.1016/j.istruc.2021.08.031_b0045) 1968; 94
10.1016/j.istruc.2021.08.031_b0205
10.1016/j.istruc.2021.08.031_b0005
Bai (10.1016/j.istruc.2021.08.031_b0105) 2016; 107
Muho (10.1016/j.istruc.2021.08.031_b0240) 2020; 18
Erochko (10.1016/j.istruc.2021.08.031_b0085) 2011; 137
10.1016/j.istruc.2021.08.031_b0050
Kharab (10.1016/j.istruc.2021.08.031_b0235) 2018
Priestley (10.1016/j.istruc.2021.08.031_b0015) 2007
Qu (10.1016/j.istruc.2021.08.031_b0100) 2016; 142
10.1016/j.istruc.2021.08.031_b0010
Upadhyay (10.1016/j.istruc.2021.08.031_b0170) 2019; 199
AISC 341 (10.1016/j.istruc.2021.08.031_b0125) 2016
10.1016/j.istruc.2021.08.031_b0215
Beiraghi (10.1016/j.istruc.2021.08.031_b0080) 2019; 72
Sullivan (10.1016/j.istruc.2021.08.031_b0020) 2012
Maley (10.1016/j.istruc.2021.08.031_b0075) 2010; 14
Pan (10.1016/j.istruc.2021.08.031_b0115) 2019; 28
Fahnestock (10.1016/j.istruc.2021.08.031_b0220) 2007; 133
Nazarimofrad (10.1016/j.istruc.2021.08.031_b0175) 2019; 28
Al-Mashaykhi (10.1016/j.istruc.2021.08.031_b0135) 2019; 155
References_xml – reference: 2020.
– year: 2016
  ident: b0160
  article-title: Open system for earthquake engineering simulation
– volume: 14
  start-page: 106
  year: 2010
  end-page: 140
  ident: b0075
  article-title: Development of a displacement-based design method for steel dual systems with buckling-restrained braces and momentresisting frames
  publication-title: J Earthquake Eng
– volume: 17
  start-page: 313
  year: 2019
  end-page: 336
  ident: b0060
  article-title: An investigation of P-delta effect in conventional seismic design and direct displacement-based design using elasto-plastic SDOF systems
  publication-title: Bull Earthq Eng
– volume: 102
  start-page: 1
  year: 1976
  end-page: 18
  ident: b0025
  article-title: Substitute-structure method for seismic design in R/C
  publication-title: J Struct Div ASCE
– reference: Seismosoft, SeismoMatch, A Computer Program for the adjusting earthquake accelerograms to match a specific target response spectrum. Available Online at
– reference: CEN EN 1998-1. Eurocode 8: Design provisions for earthquake resistant structures. Brussels, Belgium: European Committee for Standardization; 2004.
– reference: Weng YT, Lin JL, Tsai, CY, Tsai KC. Analytical assessment of a 2-story BRBF for full-scale 3D sub-structural pseudo-dynamic testing. In The first international conference on advances in experimental structural engineering (AESE), Nagoya, Japan, 2005.
– volume: 137
  start-page: 589
  year: 2011
  end-page: 599
  ident: b0085
  article-title: Residual drift response of SMRFs and BRB frames in steel buildings designed according to ASCE 7–05
  publication-title: J Struct Eng
– volume: 18
  start-page: 4157
  year: 2020
  end-page: 4188
  ident: b0240
  article-title: A direct displacement-based seismic design method using a MDOF equivalent system: application to R/C framed structures
  publication-title: Bull Earthq Eng
– year: 2016
  ident: b0125
  article-title: Seismic provisions for structural steel buildings, ANSI/AISC 341–16
– year: 2018
  ident: b0235
  article-title: An introduction to numerical methods: a MATLAB® approach
– start-page: 1029
  year: 1960
  end-page: 1044
  ident: b0030
  article-title: Damping in composite structures
  publication-title: In: Proceedings of the 2nd World Conference on Earthquake Engineering. Japan: Tokoy and Kyoto
– year: 2012
  ident: b0020
  article-title: A model code for the displacement-based seismic design of structures, DBD12
– volume: 81
  start-page: 110
  year: 2014
  end-page: 122
  ident: b0095
  article-title: Energy-based seismic strengthening design of non-ductile reinforced concrete frames using buckling-restrained braces
  publication-title: Eng Struct
– volume: 28
  year: 2019
  ident: b0115
  article-title: Seismic design and performance analysis of buckling-restrained braced RC frame structures
  publication-title: Struct Design Tall Spec Build
– reference: PEER Pacific Earthquake Engineering Research Center, Strong Ground Motion Database 2013.
– volume: 142
  start-page: 04015128
  year: 2016
  ident: b0100
  article-title: Subassemblage cyclic loading tests of buckling-restrained braced RC Frames with unconstrained gusset connections
  publication-title: J Struct Eng
– volume: 17
  start-page: 3847
  year: 2019
  end-page: 3871
  ident: b0110
  article-title: Assessing and quantifying the earthquake response of reinforced concrete buckling-restrained brace frame structures
  publication-title: Bull Earthq Eng
– volume: 107
  start-page: 66
  year: 2016
  end-page: 79
  ident: b0105
  article-title: Earthquake-resistant design of buckling-restrained braced RC moment frames using performance-based plastic design method
  publication-title: Eng Struct
– reference: MATLAB. R2016. “The Language of Technical Computing.” USA: The MathWorks Inc 2016.
– reference: Kumbhar OG, Kumar R, Farsangi EN. Investigating the efficiency of DDBD approaches for RC buildings. Structures 2020;27:1501-20. 10.1016/j.istruc.2020.07.015.
– reference: Merritt S, Uang CM, Benzoni G. Subassemblage testing of Star Seismic buckling-restrained braces. Structural Systems Research Project, Rep. No. TR-2003/04, Univ. of California at San Diego, San Diego, USA, 2003.
– volume: 72
  start-page: 443
  year: 2019
  end-page: 454
  ident: b0080
  article-title: Seismic response of dual structures comprised by Buckling-Restrained Braces (BRB) and RC walls
  publication-title: Struct Eng Mech
– volume: 42
  start-page: 345
  year: 2018
  end-page: 359
  ident: b0210
  article-title: Energy dissipation of reinforced concrete wall combined with buckling-restrained braces subjected to near-and far-fault earthquakes
  publication-title: Iran J Sci Technol Trans Civ Eng
– start-page: 48
  year: 2016
  end-page: 61
  ident: b0225
  article-title: Overstrength of displacement-based designed eccentrically braced steel frames
  publication-title: J Struct Constr Eng
– volume: 199
  year: 2019
  ident: b0170
  article-title: Residual drift mitigation for bridges retrofitted with buckling restrained braces or self centering energy dissipation devices
  publication-title: Eng Struct
– reference: Roeder CW, Lehman DE, Christopulos A. Seismic performance of special concentrically braced frames with buckling restrained braces. In 8th National Conference on Earthquake Engineering (8th NCEE), Oakland, USA, 2006.
– volume: 94
  start-page: 103
  year: 1968
  end-page: 116
  ident: b0045
  article-title: Equivalent viscous damping for yielding structures
  publication-title: J Eng Mech Div
– reference: Grant DN, Blandon CA, Priestley MJN. Modelling Inelastic Response in Direct Displacement-Based Design. Report 2005/3. Pavia, Italy: IUSS Press; 2005.
– volume: 133
  start-page: 1205
  year: 2007
  end-page: 1214
  ident: b0220
  article-title: Experimental evaluation of a large-scale buckling-restrained braced frame
  publication-title: ASCE J Struct Eng
– volume: 155
  start-page: 233
  year: 2019
  end-page: 248
  ident: b0135
  article-title: Displacement profile for displacement based seismic design of concentric braced frames
  publication-title: J Constr Steel Res
– reference: ASCE41-17: Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers, 2017.
– volume: 18
  start-page: 1345
  year: 2020
  end-page: 1369
  ident: b0145
  article-title: Comparing the performance of traditional shear-wall and rocking shear-wall structures designed using the direct-displacement based design approach
  publication-title: Bull Earthq Eng
– year: 2007
  ident: b0015
  article-title: Displacement based seismic design of structures
– reference: Blandon CA, Priestley MJN. Equivalent viscous damping equations for direct displacement based design. J Earthq Eng 2005;9(sup2):257-278. 10.1142/S1363246905002390.
– volume: 22
  start-page: 299
  year: 2018
  end-page: 309
  ident: b0180
  article-title: Extension of direct displacement-based design to include higher-mode effects in planar reinforced concrete frame buildings
  publication-title: J Earthq Eng Soc Korea
– year: 2014
  ident: b0150
  article-title: 318–11. Building code requirements for structural concrete and commentary (ACI 318R–11)
– year: 2015
  ident: b0245
  article-title: Integrated building design software
– volume: 28
  start-page: 1687
  year: 2020
  end-page: 1700
  ident: b0090
  article-title: Effect of steel braces buckling on inelastic torsion and design prevention of steel braced concrete frame structure
  publication-title: Structures
– volume: 31
  start-page: 29
  year: 2021
  end-page: 48
  ident: b0185
  article-title: Direct displacement-based design of the linked column steel frame system, Part 2: Development and verification
  publication-title: Structures
– volume: 4
  start-page: 301
  year: 2004
  end-page: 313
  ident: b0070
  article-title: Research and application of buckling-restrained braced frames
  publication-title: Int J Steel Struct
– volume: 18
  start-page: 2389
  year: 2020
  end-page: 2410
  ident: b0120
  article-title: Experimental and analytical studies of sub-standard RC frames retrofitted with buckling-restrained braces and steel frames
  publication-title: Bull Earthq Eng
– volume: 35
  start-page: 140
  year: 2012
  end-page: 148
  ident: b0130
  article-title: Towards a simplified direct DBD procedure for the seismic design of moment resisting frames with viscous dampers
  publication-title: Eng Struct
– volume: 31
  start-page: 341
  year: 2021
  end-page: 356
  ident: b0165
  article-title: Direct displacement-based design of the linked column steel frame System, Part 1: modeling and yield drift evaluation
  publication-title: Structures
– reference: FEMA 461: Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components, 2007.
– volume: 11
  start-page: 512
  year: 2007
  end-page: 530
  ident: b0040
  article-title: Equivalent damping in support of direct displacement-based design
  publication-title: J Earthq Eng
– reference: .
– reference: ASCE/SEI 7-16: Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers, 2016.
– volume: 9
  start-page: 1535
  year: 2011
  end-page: 1558
  ident: b0055
  article-title: Equivalent viscous damping for steel concentrically braced frame structures
  publication-title: Bull Earthq Eng
– volume: 28
  year: 2019
  ident: b0175
  article-title: Multiobjective optimal placement of active tendons to control irregular multistory buildings with soil–structure interaction
  publication-title: Struct Design Tall Spec Build
– volume: 31
  start-page: 29
  year: 2021
  ident: 10.1016/j.istruc.2021.08.031_b0185
  article-title: Direct displacement-based design of the linked column steel frame system, Part 2: Development and verification
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.01.075
– ident: 10.1016/j.istruc.2021.08.031_b0215
– ident: 10.1016/j.istruc.2021.08.031_b0230
– year: 2016
  ident: 10.1016/j.istruc.2021.08.031_b0160
– volume: 18
  start-page: 2389
  issue: 5
  year: 2020
  ident: 10.1016/j.istruc.2021.08.031_b0120
  article-title: Experimental and analytical studies of sub-standard RC frames retrofitted with buckling-restrained braces and steel frames
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-020-00785-4
– volume: 72
  start-page: 443
  issue: 4
  year: 2019
  ident: 10.1016/j.istruc.2021.08.031_b0080
  article-title: Seismic response of dual structures comprised by Buckling-Restrained Braces (BRB) and RC walls
  publication-title: Struct Eng Mech
– volume: 35
  start-page: 140
  year: 2012
  ident: 10.1016/j.istruc.2021.08.031_b0130
  article-title: Towards a simplified direct DBD procedure for the seismic design of moment resisting frames with viscous dampers
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2011.11.010
– volume: 17
  start-page: 3847
  issue: 7
  year: 2019
  ident: 10.1016/j.istruc.2021.08.031_b0110
  article-title: Assessing and quantifying the earthquake response of reinforced concrete buckling-restrained brace frame structures
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-019-00633-0
– year: 2016
  ident: 10.1016/j.istruc.2021.08.031_b0125
– volume: 18
  start-page: 4157
  issue: 9
  year: 2020
  ident: 10.1016/j.istruc.2021.08.031_b0240
  article-title: A direct displacement-based seismic design method using a MDOF equivalent system: application to R/C framed structures
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-020-00857-5
– volume: 14
  start-page: 106
  issue: S1
  year: 2010
  ident: 10.1016/j.istruc.2021.08.031_b0075
  article-title: Development of a displacement-based design method for steel dual systems with buckling-restrained braces and momentresisting frames
  publication-title: J Earthquake Eng
  doi: 10.1080/13632461003651687
– volume: 17
  start-page: 313
  issue: 1
  year: 2019
  ident: 10.1016/j.istruc.2021.08.031_b0060
  article-title: An investigation of P-delta effect in conventional seismic design and direct displacement-based design using elasto-plastic SDOF systems
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-018-0460-3
– volume: 102
  start-page: 1
  issue: 1
  year: 1976
  ident: 10.1016/j.istruc.2021.08.031_b0025
  article-title: Substitute-structure method for seismic design in R/C
  publication-title: J Struct Div ASCE
  doi: 10.1061/JSDEAG.0004250
– ident: 10.1016/j.istruc.2021.08.031_b0195
– volume: 28
  issue: 4
  year: 2019
  ident: 10.1016/j.istruc.2021.08.031_b0175
  article-title: Multiobjective optimal placement of active tendons to control irregular multistory buildings with soil–structure interaction
  publication-title: Struct Design Tall Spec Build
  doi: 10.1002/tal.1581
– volume: 94
  start-page: 103
  issue: 1
  year: 1968
  ident: 10.1016/j.istruc.2021.08.031_b0045
  article-title: Equivalent viscous damping for yielding structures
  publication-title: J Eng Mech Div
  doi: 10.1061/JMCEA3.0000929
– volume: 9
  start-page: 1535
  issue: 5
  year: 2011
  ident: 10.1016/j.istruc.2021.08.031_b0055
  article-title: Equivalent viscous damping for steel concentrically braced frame structures
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-011-9272-4
– volume: 107
  start-page: 66
  year: 2016
  ident: 10.1016/j.istruc.2021.08.031_b0105
  article-title: Earthquake-resistant design of buckling-restrained braced RC moment frames using performance-based plastic design method
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2015.10.048
– volume: 28
  issue: 15
  year: 2019
  ident: 10.1016/j.istruc.2021.08.031_b0115
  article-title: Seismic design and performance analysis of buckling-restrained braced RC frame structures
  publication-title: Struct Design Tall Spec Build
  doi: 10.1002/tal.1661
– year: 2012
  ident: 10.1016/j.istruc.2021.08.031_b0020
– ident: 10.1016/j.istruc.2021.08.031_b0050
– volume: 81
  start-page: 110
  year: 2014
  ident: 10.1016/j.istruc.2021.08.031_b0095
  article-title: Energy-based seismic strengthening design of non-ductile reinforced concrete frames using buckling-restrained braces
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2014.09.033
– volume: 11
  start-page: 512
  issue: 4
  year: 2007
  ident: 10.1016/j.istruc.2021.08.031_b0040
  article-title: Equivalent damping in support of direct displacement-based design
  publication-title: J Earthq Eng
  doi: 10.1080/13632460601033884
– year: 2018
  ident: 10.1016/j.istruc.2021.08.031_b0235
– volume: 42
  start-page: 345
  issue: 4
  year: 2018
  ident: 10.1016/j.istruc.2021.08.031_b0210
  article-title: Energy dissipation of reinforced concrete wall combined with buckling-restrained braces subjected to near-and far-fault earthquakes
  publication-title: Iran J Sci Technol Trans Civ Eng
  doi: 10.1007/s40996-018-0109-0
– volume: 137
  start-page: 589
  issue: 5
  year: 2011
  ident: 10.1016/j.istruc.2021.08.031_b0085
  article-title: Residual drift response of SMRFs and BRB frames in steel buildings designed according to ASCE 7–05
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0000296
– volume: 18
  start-page: 1345
  issue: 4
  year: 2020
  ident: 10.1016/j.istruc.2021.08.031_b0145
  article-title: Comparing the performance of traditional shear-wall and rocking shear-wall structures designed using the direct-displacement based design approach
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-019-00740-y
– ident: 10.1016/j.istruc.2021.08.031_b0190
– volume: 133
  start-page: 1205
  issue: 9
  year: 2007
  ident: 10.1016/j.istruc.2021.08.031_b0220
  article-title: Experimental evaluation of a large-scale buckling-restrained braced frame
  publication-title: ASCE J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2007)133:9(1205)
– ident: 10.1016/j.istruc.2021.08.031_b0005
– volume: 31
  start-page: 341
  year: 2021
  ident: 10.1016/j.istruc.2021.08.031_b0165
  article-title: Direct displacement-based design of the linked column steel frame System, Part 1: modeling and yield drift evaluation
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.01.076
– ident: 10.1016/j.istruc.2021.08.031_b0200
– ident: 10.1016/j.istruc.2021.08.031_b0065
  doi: 10.1016/j.istruc.2020.07.015
– start-page: 48
  year: 2016
  ident: 10.1016/j.istruc.2021.08.031_b0225
  article-title: Overstrength of displacement-based designed eccentrically braced steel frames
  publication-title: J Struct Constr Eng
– volume: 142
  start-page: 04015128
  issue: 2
  year: 2016
  ident: 10.1016/j.istruc.2021.08.031_b0100
  article-title: Subassemblage cyclic loading tests of buckling-restrained braced RC Frames with unconstrained gusset connections
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0001407
– ident: 10.1016/j.istruc.2021.08.031_b0155
– volume: 155
  start-page: 233
  year: 2019
  ident: 10.1016/j.istruc.2021.08.031_b0135
  article-title: Displacement profile for displacement based seismic design of concentric braced frames
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2018.12.029
– year: 2014
  ident: 10.1016/j.istruc.2021.08.031_b0150
– volume: 199
  year: 2019
  ident: 10.1016/j.istruc.2021.08.031_b0170
  article-title: Residual drift mitigation for bridges retrofitted with buckling restrained braces or self centering energy dissipation devices
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.109663
– ident: 10.1016/j.istruc.2021.08.031_b0140
– ident: 10.1016/j.istruc.2021.08.031_b0010
– start-page: 1029
  year: 1960
  ident: 10.1016/j.istruc.2021.08.031_b0030
  article-title: Damping in composite structures
– ident: 10.1016/j.istruc.2021.08.031_b0035
  doi: 10.1142/S1363246905002390
– year: 2007
  ident: 10.1016/j.istruc.2021.08.031_b0015
– ident: 10.1016/j.istruc.2021.08.031_b0205
– volume: 28
  start-page: 1687
  year: 2020
  ident: 10.1016/j.istruc.2021.08.031_b0090
  article-title: Effect of steel braces buckling on inelastic torsion and design prevention of steel braced concrete frame structure
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.08.048
– year: 2015
  ident: 10.1016/j.istruc.2021.08.031_b0245
– volume: 22
  start-page: 299
  issue: 5
  year: 2018
  ident: 10.1016/j.istruc.2021.08.031_b0180
  article-title: Extension of direct displacement-based design to include higher-mode effects in planar reinforced concrete frame buildings
  publication-title: J Earthq Eng Soc Korea
  doi: 10.5000/EESK.2018.22.5.299
– volume: 4
  start-page: 301
  issue: 4
  year: 2004
  ident: 10.1016/j.istruc.2021.08.031_b0070
  article-title: Research and application of buckling-restrained braced frames
  publication-title: Int J Steel Struct
SSID ssj0002140247
Score 2.2649844
Snippet While the direct displacement-based design (DDBD) method is commonly developed in seismic design of the single frame and is extensively discussed in the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1229
SubjectTerms Buckling‐restrained brace
Direct displacement-based design method
Dual frame
Ductility
Equivalent viscous damping
Nonlinear time-history analysis
RC frame
Title Equivalent viscous damping for buckling-restrained braced RC frame structures
URI https://dx.doi.org/10.1016/j.istruc.2021.08.031
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61vehBfGJ9kYPX0G5mm-weS2mpSntQC70tecKK1oqtv9_JPkoFUfCY3cySHWZnvslOviHkBoRFzysss9IDw3hsmTZaMeGd88o78DbsQ06mYjyL7-a9eYMM6rMwoayy8v2lTy-8dXWlU2mzs8zzziNH7IDuNeZREQeTHdLikAo07Vb_9n483Wy1cEwieNFqLIiwIFMfoisqvfKCqhVzRV7SeUL0c5DaCjyjA7JfIUbaLxd1SBpucUT2tngEj8lk-L7O0WQwgNDP_MNgNk-teg1HoSiCUqrDD1wcsNCII_SEcJZilowvTx8G1If6LFoSya5xxgmZjYZPgzGr-iQwg4B_hQAZQQXIWEfKpeBN0k0M6AQTCy8VmK6RMgEnbfg2JSROSQDd01panaYe8c8paS7eFu6MUOFiizmUErHQgQpQdR3Hx_PQ686mAG0CtWIyU5GIh3W_ZHW12HNWqjML6sxCi0uI2oRtpJYlicYf82Wt8-ybMWTo53-VPP-35AXZDaOyUuWSNPG-u0K8sdLXlT19AVvy1Pk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOiKcYzxy4RlubrmmP07SpY48DbNJuVdMkUhGMITZ-P3YfaEgIJI5t7Sq1Uvtz4nwGuBO-Rs_ra66lFRzjseYqVQn3rTE2sUZYTeuQk6kfzb37RWdRg151FobKKkvfX_j03FuXd1qlNVurLGs9uogd0L16rpPHwWAHGsRO1alDozscRdOvpRYXkwg3bzVGKpx0qkN0eaVXllO1Yq7oFnSewvk5SG0FnsEhHJSIkXWLQR1BzSyPYX-LR_AEJv23TYZTBgMI-8jeU8zmmU5e6CgUQ1DKFG3g4gWnRhzUE8Johlkyfjx76DFL9VmsIJLdoMQpzAf9WS_iZZ8EniLgXyNARlAhpKecxITCpkE7SIUKMLGwMhFpO5UyEEZq-jelCEwihVAdpaRWYWgR_5xBffm6NOfAfONpzKES3_MVUQEmbePi613qdadDIZogKsPEaUkiTuN-jqtqsae4MGdM5oypxaVwmsC_tFYFicYf8rKyefxtMsTo53_VvPi35i3sRrPJOB4Pp6NL2KMnRdXKFdRR1lwj9lirm3JufQJu09ff
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Equivalent+viscous+damping+for+buckling-restrained+braced+RC+frame+structures&rft.jtitle=Structures+%28Oxford%29&rft.au=Farahani%2C+Sina&rft.au=Akhaveissy%2C+Amir+H.&rft.au=Damkilde%2C+Lars&rft.date=2021-12-01&rft.issn=2352-0124&rft.eissn=2352-0124&rft.volume=34&rft.spage=1229&rft.epage=1252&rft_id=info:doi/10.1016%2Fj.istruc.2021.08.031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_istruc_2021_08_031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0124&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0124&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0124&client=summon