Equivalent viscous damping for buckling-restrained braced RC frame structures
While the direct displacement-based design (DDBD) method is commonly developed in seismic design of the single frame and is extensively discussed in the technical literature devoted to this subject, the proper evaluation of this method for dual frames system has received relatively little attention....
Saved in:
Published in | Structures (Oxford) Vol. 34; pp. 1229 - 1252 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2352-0124 2352-0124 |
DOI | 10.1016/j.istruc.2021.08.031 |
Cover
Loading…
Abstract | While the direct displacement-based design (DDBD) method is commonly developed in seismic design of the single frame and is extensively discussed in the technical literature devoted to this subject, the proper evaluation of this method for dual frames system has received relatively little attention. Considering excellent hysteretic behavior, buckling-restrained braces (BRBs) have been increasingly configured in reinforced concrete (RC) frame to develop the reinforced concrete buckling‐restrained braced (RC-BRB) dual system. The RC-BRB dual frame system is a new lateral-load resisting dual system aimed to minimize the time and costs of repairs after an earthquake. The one of main parameters of the DDBD method is equivalent viscous damping (EVD) proposed to represent the energy dissipation of the system due to its inelastic behavior assumption. Since in the literature no damping equation has been given for the RC-BRB dual frame, the present study aims to provide a reliable EVD equation for the RC-BRB dual system, as well as in the values of the equation verified against real earthquakes, by conducting the nonlinear time-history analysis (NTHA). To this end, first, the numerical model was proposed and validated using the results of the available cyclic test in the literature. Then, the EVD equation of the RC-BRB frames was acquired based on a new method which calibrates the obtained EVDs through nonlinear time-history dynamic analysis of the structures under real earthquake records. The comparison between the calculated results and the corresponding ones acquired from previous equations illustrates that the proposed EVD equation is appropriate for estimating the energy dissipation of the RC-BRB dual frames. Furthermore, the results show that the EVD equations presented so far can conservatively estimate the damping level for the RC-BRB dual frame structures. |
---|---|
AbstractList | While the direct displacement-based design (DDBD) method is commonly developed in seismic design of the single frame and is extensively discussed in the technical literature devoted to this subject, the proper evaluation of this method for dual frames system has received relatively little attention. Considering excellent hysteretic behavior, buckling-restrained braces (BRBs) have been increasingly configured in reinforced concrete (RC) frame to develop the reinforced concrete buckling‐restrained braced (RC-BRB) dual system. The RC-BRB dual frame system is a new lateral-load resisting dual system aimed to minimize the time and costs of repairs after an earthquake. The one of main parameters of the DDBD method is equivalent viscous damping (EVD) proposed to represent the energy dissipation of the system due to its inelastic behavior assumption. Since in the literature no damping equation has been given for the RC-BRB dual frame, the present study aims to provide a reliable EVD equation for the RC-BRB dual system, as well as in the values of the equation verified against real earthquakes, by conducting the nonlinear time-history analysis (NTHA). To this end, first, the numerical model was proposed and validated using the results of the available cyclic test in the literature. Then, the EVD equation of the RC-BRB frames was acquired based on a new method which calibrates the obtained EVDs through nonlinear time-history dynamic analysis of the structures under real earthquake records. The comparison between the calculated results and the corresponding ones acquired from previous equations illustrates that the proposed EVD equation is appropriate for estimating the energy dissipation of the RC-BRB dual frames. Furthermore, the results show that the EVD equations presented so far can conservatively estimate the damping level for the RC-BRB dual frame structures. |
Author | Akhaveissy, Amir H. Farahani, Sina Damkilde, Lars |
Author_xml | – sequence: 1 givenname: Sina surname: Farahani fullname: Farahani, Sina organization: Department of Civil Engineering, The Faculty of Engineering, Razi University, Kermanshah, Iran – sequence: 2 givenname: Amir H. surname: Akhaveissy fullname: Akhaveissy, Amir H. email: ahakhaveissy@razi.ac.ir organization: Department of Civil Engineering, The Faculty of Engineering, Razi University, Kermanshah, Iran – sequence: 3 givenname: Lars surname: Damkilde fullname: Damkilde, Lars organization: Department of the Built Environment, The Faculty of Engineering and Science, Division for Structures, Materials and Geotechnics, Advanced Structural Engineering Research Group, Aalborg University, Aalborg, Denmark |
BookMark | eNqFkM9KAzEQxoNUsNa-gYe8wK6TZNtkPQhS6h-oCKLnkGQTSd3u1iRb8O1NrQfxoKdvBuabb-Z3ikZd31mEzgmUBMj8Yl36mMJgSgqUlCBKYOQIjSmb0QIIrUY_6hM0jXENkCcroBUfo4fl--B3qrVdwjsfTT9E3KjN1nev2PUB68G8tbkpgs0pyne2wTook-VpgV1QG4u_4tOQJ87QsVNttNNvnaCXm-Xz4q5YPd7eL65XhWEwTwXnrOaMV5ooWzNnBAjDtKiocFwxA4ZzwSxvuODAmbCKM6ZnWvNG17WbUzZBl4e9JvQxBuuk8Ukl33f7G1tJQO7ZyLU8sJF7NhKEzGyyufpl3ga_UeHjP9vVwWbzYztvg4zG2y6T8MGaJJve_73gE203g0M |
CitedBy_id | crossref_primary_10_14359_51744399 crossref_primary_10_1016_j_prostr_2023_01_186 crossref_primary_10_1016_j_engstruct_2023_115974 crossref_primary_10_1016_j_istruc_2023_06_062 crossref_primary_10_3390_buildings14030738 crossref_primary_10_1016_j_istruc_2024_107373 crossref_primary_10_1016_j_istruc_2023_105074 crossref_primary_10_3390_geosciences12050182 crossref_primary_10_1016_j_istruc_2024_107140 crossref_primary_10_1007_s10518_021_01290_y crossref_primary_10_1186_s43065_022_00061_6 crossref_primary_10_1016_j_engstruct_2024_119392 |
Cites_doi | 10.1016/j.istruc.2021.01.075 10.1007/s10518-020-00785-4 10.1016/j.engstruct.2011.11.010 10.1007/s10518-019-00633-0 10.1007/s10518-020-00857-5 10.1080/13632461003651687 10.1007/s10518-018-0460-3 10.1061/JSDEAG.0004250 10.1002/tal.1581 10.1061/JMCEA3.0000929 10.1007/s10518-011-9272-4 10.1016/j.engstruct.2015.10.048 10.1002/tal.1661 10.1016/j.engstruct.2014.09.033 10.1080/13632460601033884 10.1007/s40996-018-0109-0 10.1061/(ASCE)ST.1943-541X.0000296 10.1007/s10518-019-00740-y 10.1061/(ASCE)0733-9445(2007)133:9(1205) 10.1016/j.istruc.2021.01.076 10.1016/j.istruc.2020.07.015 10.1061/(ASCE)ST.1943-541X.0001407 10.1016/j.jcsr.2018.12.029 10.1016/j.engstruct.2019.109663 10.1142/S1363246905002390 10.1016/j.istruc.2020.08.048 10.5000/EESK.2018.22.5.299 |
ContentType | Journal Article |
Copyright | 2021 Institution of Structural Engineers |
Copyright_xml | – notice: 2021 Institution of Structural Engineers |
DBID | AAYXX CITATION |
DOI | 10.1016/j.istruc.2021.08.031 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2352-0124 |
EndPage | 1252 |
ExternalDocumentID | 10_1016_j_istruc_2021_08_031 S2352012421007438 |
GroupedDBID | --M 0R~ 4.4 457 AAEDT AAEDW AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ACDAQ ACGFS ACRLP ACVFH ADCNI ADEZE AEBSH AEIPS AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGUBO AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFKBS EJD FDB FIRID FYGXN KOM M41 O9- OAUVE ROL SPC SPCBC SST SSZ T5K ~G- AAYXX AFXIZ AGRNS BNPGV CITATION RIG |
ID | FETCH-LOGICAL-c306t-77397374b1ae93fc808c3b8428f7a3c0c7783e7d7870738ea733b5bb7db99f623 |
IEDL.DBID | AIKHN |
ISSN | 2352-0124 |
IngestDate | Thu Aug 07 07:00:39 EDT 2025 Thu Apr 24 22:52:25 EDT 2025 Sat Aug 30 17:16:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dual frame RC frame Ductility Equivalent viscous damping Nonlinear time-history analysis Direct displacement-based design method Buckling‐restrained brace |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-77397374b1ae93fc808c3b8428f7a3c0c7783e7d7870738ea733b5bb7db99f623 |
PageCount | 24 |
ParticipantIDs | crossref_citationtrail_10_1016_j_istruc_2021_08_031 crossref_primary_10_1016_j_istruc_2021_08_031 elsevier_sciencedirect_doi_10_1016_j_istruc_2021_08_031 |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Structures (Oxford) |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Tazarv, Mohebkhah (b0185) 2021; 31 Seismosoft, SeismoMatch, A Computer Program for the adjusting earthquake accelerograms to match a specific target response spectrum. Available Online at Kharab, Guenther (b0235) 2018 Muho, Qian, Beskos (b0240) 2020; 18 Weng YT, Lin JL, Tsai, CY, Tsai KC. Analytical assessment of a 2-story BRBF for full-scale 3D sub-structural pseudo-dynamic testing. In The first international conference on advances in experimental structural engineering (AESE), Nagoya, Japan, 2005. Khampanit, Leelataviwat, Kochanin, Warnitchai (b0095) 2014; 81 Bai, Cheng, Jin, Ou (b0110) 2019; 17 Blandon CA, Priestley MJN. Equivalent viscous damping equations for direct displacement based design. J Earthq Eng 2005;9(sup2):257-278. 10.1142/S1363246905002390. Merritt S, Uang CM, Benzoni G. Subassemblage testing of Star Seismic buckling-restrained braces. Structural Systems Research Project, Rep. No. TR-2003/04, Univ. of California at San Diego, San Diego, USA, 2003. Fahnestock, Ricles, Sause (b0220) 2007; 133 AISC 341 (b0125) 2016 Roeder CW, Lehman DE, Christopulos A. Seismic performance of special concentrically braced frames with buckling restrained braces. In 8th National Conference on Earthquake Engineering (8th NCEE), Oakland, USA, 2006. Nazarimofrad, Farahani, Zahrai (b0175) 2019; 28 . CEN EN 1998-1. Eurocode 8: Design provisions for earthquake resistant structures. Brussels, Belgium: European Committee for Standardization; 2004. ETABS (b0245) 2015 Kumbhar OG, Kumar R, Farsangi EN. Investigating the efficiency of DDBD approaches for RC buildings. Structures 2020;27:1501-20. 10.1016/j.istruc.2020.07.015. ASCE/SEI 7-16: Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers, 2016. Jennings (b0045) 1968; 94 Beiraghi (b0210) 2018; 42 Beiraghi (b0080) 2019; 72 Al-Mashaykhi, Rajeev, Wijesundara, Hashemi (b0135) 2019; 155 McKenna, Fenves, Scott (b0160) 2016 Grant DN, Blandon CA, Priestley MJN. Modelling Inelastic Response in Direct Displacement-Based Design. Report 2005/3. Pavia, Italy: IUSS Press; 2005. Upadhyay, Pantelides, Ibarra (b0170) 2019; 199 PEER Pacific Earthquake Engineering Research Center, Strong Ground Motion Database 2013. MATLAB. R2016. “The Language of Technical Computing.” USA: The MathWorks Inc 2016. FEMA 461: Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components, 2007. Bai, Ou (b0105) 2016; 107 Farahani, Mohebkhah (b0225) 2016 Gao, Li, Li, Xu (b0090) 2020; 28 Sutcu, Bal, Fujishita, Matsui, Celik, Takeuchi (b0120) 2020; 18 Qu, Kishiki, Maida, Sakata (b0100) 2016; 142 Wijesundara, Nascimbene, Sullivan (b0055) 2011; 9 ASCE41-17: Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers, 2017. 2020. Tazarv, Mohebkhah (b0165) 2021; 31 Dwairi, Kowalsky, Nau (b0040) 2007; 11 Priestley, Calvi, Kowalski (b0015) 2007 Jacobsen (b0030) 1960 Erochko, Christopoulos, Tremblay, Choi (b0085) 2011; 137 Maley, Sullivan, Corte (b0075) 2010; 14 Shibata, Sozen (b0025) 1976; 102 Sullivan, Priestley, Calvi (b0020) 2012 Pan, An, Bai, Yan, Jin (b0115) 2019; 28 Uang, Nakashima, Tsai (b0070) 2004; 4 Aragaw, Calvi (b0145) 2020; 18 ACI (b0150) 2014 Pourali, Khosravi, Dehestani (b0060) 2019; 17 Abebe, Lee (b0180) 2018; 22 Sullivan, Lago (b0130) 2012; 35 10.1016/j.istruc.2021.08.031_b0065 10.1016/j.istruc.2021.08.031_b0140 Pourali (10.1016/j.istruc.2021.08.031_b0060) 2019; 17 Beiraghi (10.1016/j.istruc.2021.08.031_b0210) 2018; 42 Aragaw (10.1016/j.istruc.2021.08.031_b0145) 2020; 18 Dwairi (10.1016/j.istruc.2021.08.031_b0040) 2007; 11 McKenna (10.1016/j.istruc.2021.08.031_b0160) 2016 Tazarv (10.1016/j.istruc.2021.08.031_b0185) 2021; 31 Gao (10.1016/j.istruc.2021.08.031_b0090) 2020; 28 10.1016/j.istruc.2021.08.031_b0190 Bai (10.1016/j.istruc.2021.08.031_b0110) 2019; 17 10.1016/j.istruc.2021.08.031_b0035 10.1016/j.istruc.2021.08.031_b0155 10.1016/j.istruc.2021.08.031_b0230 10.1016/j.istruc.2021.08.031_b0195 ETABS (10.1016/j.istruc.2021.08.031_b0245) 2015 Jacobsen (10.1016/j.istruc.2021.08.031_b0030) 1960 Abebe (10.1016/j.istruc.2021.08.031_b0180) 2018; 22 Tazarv (10.1016/j.istruc.2021.08.031_b0165) 2021; 31 Sutcu (10.1016/j.istruc.2021.08.031_b0120) 2020; 18 Uang (10.1016/j.istruc.2021.08.031_b0070) 2004; 4 Farahani (10.1016/j.istruc.2021.08.031_b0225) 2016 Wijesundara (10.1016/j.istruc.2021.08.031_b0055) 2011; 9 Sullivan (10.1016/j.istruc.2021.08.031_b0130) 2012; 35 ACI (10.1016/j.istruc.2021.08.031_b0150) 2014 10.1016/j.istruc.2021.08.031_b0200 Khampanit (10.1016/j.istruc.2021.08.031_b0095) 2014; 81 Shibata (10.1016/j.istruc.2021.08.031_b0025) 1976; 102 Jennings (10.1016/j.istruc.2021.08.031_b0045) 1968; 94 10.1016/j.istruc.2021.08.031_b0205 10.1016/j.istruc.2021.08.031_b0005 Bai (10.1016/j.istruc.2021.08.031_b0105) 2016; 107 Muho (10.1016/j.istruc.2021.08.031_b0240) 2020; 18 Erochko (10.1016/j.istruc.2021.08.031_b0085) 2011; 137 10.1016/j.istruc.2021.08.031_b0050 Kharab (10.1016/j.istruc.2021.08.031_b0235) 2018 Priestley (10.1016/j.istruc.2021.08.031_b0015) 2007 Qu (10.1016/j.istruc.2021.08.031_b0100) 2016; 142 10.1016/j.istruc.2021.08.031_b0010 Upadhyay (10.1016/j.istruc.2021.08.031_b0170) 2019; 199 AISC 341 (10.1016/j.istruc.2021.08.031_b0125) 2016 10.1016/j.istruc.2021.08.031_b0215 Beiraghi (10.1016/j.istruc.2021.08.031_b0080) 2019; 72 Sullivan (10.1016/j.istruc.2021.08.031_b0020) 2012 Maley (10.1016/j.istruc.2021.08.031_b0075) 2010; 14 Pan (10.1016/j.istruc.2021.08.031_b0115) 2019; 28 Fahnestock (10.1016/j.istruc.2021.08.031_b0220) 2007; 133 Nazarimofrad (10.1016/j.istruc.2021.08.031_b0175) 2019; 28 Al-Mashaykhi (10.1016/j.istruc.2021.08.031_b0135) 2019; 155 |
References_xml | – reference: 2020. – year: 2016 ident: b0160 article-title: Open system for earthquake engineering simulation – volume: 14 start-page: 106 year: 2010 end-page: 140 ident: b0075 article-title: Development of a displacement-based design method for steel dual systems with buckling-restrained braces and momentresisting frames publication-title: J Earthquake Eng – volume: 17 start-page: 313 year: 2019 end-page: 336 ident: b0060 article-title: An investigation of P-delta effect in conventional seismic design and direct displacement-based design using elasto-plastic SDOF systems publication-title: Bull Earthq Eng – volume: 102 start-page: 1 year: 1976 end-page: 18 ident: b0025 article-title: Substitute-structure method for seismic design in R/C publication-title: J Struct Div ASCE – reference: Seismosoft, SeismoMatch, A Computer Program for the adjusting earthquake accelerograms to match a specific target response spectrum. Available Online at – reference: CEN EN 1998-1. Eurocode 8: Design provisions for earthquake resistant structures. Brussels, Belgium: European Committee for Standardization; 2004. – reference: Weng YT, Lin JL, Tsai, CY, Tsai KC. Analytical assessment of a 2-story BRBF for full-scale 3D sub-structural pseudo-dynamic testing. In The first international conference on advances in experimental structural engineering (AESE), Nagoya, Japan, 2005. – volume: 137 start-page: 589 year: 2011 end-page: 599 ident: b0085 article-title: Residual drift response of SMRFs and BRB frames in steel buildings designed according to ASCE 7–05 publication-title: J Struct Eng – volume: 18 start-page: 4157 year: 2020 end-page: 4188 ident: b0240 article-title: A direct displacement-based seismic design method using a MDOF equivalent system: application to R/C framed structures publication-title: Bull Earthq Eng – year: 2016 ident: b0125 article-title: Seismic provisions for structural steel buildings, ANSI/AISC 341–16 – year: 2018 ident: b0235 article-title: An introduction to numerical methods: a MATLAB® approach – start-page: 1029 year: 1960 end-page: 1044 ident: b0030 article-title: Damping in composite structures publication-title: In: Proceedings of the 2nd World Conference on Earthquake Engineering. Japan: Tokoy and Kyoto – year: 2012 ident: b0020 article-title: A model code for the displacement-based seismic design of structures, DBD12 – volume: 81 start-page: 110 year: 2014 end-page: 122 ident: b0095 article-title: Energy-based seismic strengthening design of non-ductile reinforced concrete frames using buckling-restrained braces publication-title: Eng Struct – volume: 28 year: 2019 ident: b0115 article-title: Seismic design and performance analysis of buckling-restrained braced RC frame structures publication-title: Struct Design Tall Spec Build – reference: PEER Pacific Earthquake Engineering Research Center, Strong Ground Motion Database 2013. – volume: 142 start-page: 04015128 year: 2016 ident: b0100 article-title: Subassemblage cyclic loading tests of buckling-restrained braced RC Frames with unconstrained gusset connections publication-title: J Struct Eng – volume: 17 start-page: 3847 year: 2019 end-page: 3871 ident: b0110 article-title: Assessing and quantifying the earthquake response of reinforced concrete buckling-restrained brace frame structures publication-title: Bull Earthq Eng – volume: 107 start-page: 66 year: 2016 end-page: 79 ident: b0105 article-title: Earthquake-resistant design of buckling-restrained braced RC moment frames using performance-based plastic design method publication-title: Eng Struct – reference: MATLAB. R2016. “The Language of Technical Computing.” USA: The MathWorks Inc 2016. – reference: Kumbhar OG, Kumar R, Farsangi EN. Investigating the efficiency of DDBD approaches for RC buildings. Structures 2020;27:1501-20. 10.1016/j.istruc.2020.07.015. – reference: Merritt S, Uang CM, Benzoni G. Subassemblage testing of Star Seismic buckling-restrained braces. Structural Systems Research Project, Rep. No. TR-2003/04, Univ. of California at San Diego, San Diego, USA, 2003. – volume: 72 start-page: 443 year: 2019 end-page: 454 ident: b0080 article-title: Seismic response of dual structures comprised by Buckling-Restrained Braces (BRB) and RC walls publication-title: Struct Eng Mech – volume: 42 start-page: 345 year: 2018 end-page: 359 ident: b0210 article-title: Energy dissipation of reinforced concrete wall combined with buckling-restrained braces subjected to near-and far-fault earthquakes publication-title: Iran J Sci Technol Trans Civ Eng – start-page: 48 year: 2016 end-page: 61 ident: b0225 article-title: Overstrength of displacement-based designed eccentrically braced steel frames publication-title: J Struct Constr Eng – volume: 199 year: 2019 ident: b0170 article-title: Residual drift mitigation for bridges retrofitted with buckling restrained braces or self centering energy dissipation devices publication-title: Eng Struct – reference: Roeder CW, Lehman DE, Christopulos A. Seismic performance of special concentrically braced frames with buckling restrained braces. In 8th National Conference on Earthquake Engineering (8th NCEE), Oakland, USA, 2006. – volume: 94 start-page: 103 year: 1968 end-page: 116 ident: b0045 article-title: Equivalent viscous damping for yielding structures publication-title: J Eng Mech Div – reference: Grant DN, Blandon CA, Priestley MJN. Modelling Inelastic Response in Direct Displacement-Based Design. Report 2005/3. Pavia, Italy: IUSS Press; 2005. – volume: 133 start-page: 1205 year: 2007 end-page: 1214 ident: b0220 article-title: Experimental evaluation of a large-scale buckling-restrained braced frame publication-title: ASCE J Struct Eng – volume: 155 start-page: 233 year: 2019 end-page: 248 ident: b0135 article-title: Displacement profile for displacement based seismic design of concentric braced frames publication-title: J Constr Steel Res – reference: ASCE41-17: Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers, 2017. – volume: 18 start-page: 1345 year: 2020 end-page: 1369 ident: b0145 article-title: Comparing the performance of traditional shear-wall and rocking shear-wall structures designed using the direct-displacement based design approach publication-title: Bull Earthq Eng – year: 2007 ident: b0015 article-title: Displacement based seismic design of structures – reference: Blandon CA, Priestley MJN. Equivalent viscous damping equations for direct displacement based design. J Earthq Eng 2005;9(sup2):257-278. 10.1142/S1363246905002390. – volume: 22 start-page: 299 year: 2018 end-page: 309 ident: b0180 article-title: Extension of direct displacement-based design to include higher-mode effects in planar reinforced concrete frame buildings publication-title: J Earthq Eng Soc Korea – year: 2014 ident: b0150 article-title: 318–11. Building code requirements for structural concrete and commentary (ACI 318R–11) – year: 2015 ident: b0245 article-title: Integrated building design software – volume: 28 start-page: 1687 year: 2020 end-page: 1700 ident: b0090 article-title: Effect of steel braces buckling on inelastic torsion and design prevention of steel braced concrete frame structure publication-title: Structures – volume: 31 start-page: 29 year: 2021 end-page: 48 ident: b0185 article-title: Direct displacement-based design of the linked column steel frame system, Part 2: Development and verification publication-title: Structures – volume: 4 start-page: 301 year: 2004 end-page: 313 ident: b0070 article-title: Research and application of buckling-restrained braced frames publication-title: Int J Steel Struct – volume: 18 start-page: 2389 year: 2020 end-page: 2410 ident: b0120 article-title: Experimental and analytical studies of sub-standard RC frames retrofitted with buckling-restrained braces and steel frames publication-title: Bull Earthq Eng – volume: 35 start-page: 140 year: 2012 end-page: 148 ident: b0130 article-title: Towards a simplified direct DBD procedure for the seismic design of moment resisting frames with viscous dampers publication-title: Eng Struct – volume: 31 start-page: 341 year: 2021 end-page: 356 ident: b0165 article-title: Direct displacement-based design of the linked column steel frame System, Part 1: modeling and yield drift evaluation publication-title: Structures – reference: FEMA 461: Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components, 2007. – volume: 11 start-page: 512 year: 2007 end-page: 530 ident: b0040 article-title: Equivalent damping in support of direct displacement-based design publication-title: J Earthq Eng – reference: . – reference: ASCE/SEI 7-16: Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers, 2016. – volume: 9 start-page: 1535 year: 2011 end-page: 1558 ident: b0055 article-title: Equivalent viscous damping for steel concentrically braced frame structures publication-title: Bull Earthq Eng – volume: 28 year: 2019 ident: b0175 article-title: Multiobjective optimal placement of active tendons to control irregular multistory buildings with soil–structure interaction publication-title: Struct Design Tall Spec Build – volume: 31 start-page: 29 year: 2021 ident: 10.1016/j.istruc.2021.08.031_b0185 article-title: Direct displacement-based design of the linked column steel frame system, Part 2: Development and verification publication-title: Structures doi: 10.1016/j.istruc.2021.01.075 – ident: 10.1016/j.istruc.2021.08.031_b0215 – ident: 10.1016/j.istruc.2021.08.031_b0230 – year: 2016 ident: 10.1016/j.istruc.2021.08.031_b0160 – volume: 18 start-page: 2389 issue: 5 year: 2020 ident: 10.1016/j.istruc.2021.08.031_b0120 article-title: Experimental and analytical studies of sub-standard RC frames retrofitted with buckling-restrained braces and steel frames publication-title: Bull Earthq Eng doi: 10.1007/s10518-020-00785-4 – volume: 72 start-page: 443 issue: 4 year: 2019 ident: 10.1016/j.istruc.2021.08.031_b0080 article-title: Seismic response of dual structures comprised by Buckling-Restrained Braces (BRB) and RC walls publication-title: Struct Eng Mech – volume: 35 start-page: 140 year: 2012 ident: 10.1016/j.istruc.2021.08.031_b0130 article-title: Towards a simplified direct DBD procedure for the seismic design of moment resisting frames with viscous dampers publication-title: Eng Struct doi: 10.1016/j.engstruct.2011.11.010 – volume: 17 start-page: 3847 issue: 7 year: 2019 ident: 10.1016/j.istruc.2021.08.031_b0110 article-title: Assessing and quantifying the earthquake response of reinforced concrete buckling-restrained brace frame structures publication-title: Bull Earthq Eng doi: 10.1007/s10518-019-00633-0 – year: 2016 ident: 10.1016/j.istruc.2021.08.031_b0125 – volume: 18 start-page: 4157 issue: 9 year: 2020 ident: 10.1016/j.istruc.2021.08.031_b0240 article-title: A direct displacement-based seismic design method using a MDOF equivalent system: application to R/C framed structures publication-title: Bull Earthq Eng doi: 10.1007/s10518-020-00857-5 – volume: 14 start-page: 106 issue: S1 year: 2010 ident: 10.1016/j.istruc.2021.08.031_b0075 article-title: Development of a displacement-based design method for steel dual systems with buckling-restrained braces and momentresisting frames publication-title: J Earthquake Eng doi: 10.1080/13632461003651687 – volume: 17 start-page: 313 issue: 1 year: 2019 ident: 10.1016/j.istruc.2021.08.031_b0060 article-title: An investigation of P-delta effect in conventional seismic design and direct displacement-based design using elasto-plastic SDOF systems publication-title: Bull Earthq Eng doi: 10.1007/s10518-018-0460-3 – volume: 102 start-page: 1 issue: 1 year: 1976 ident: 10.1016/j.istruc.2021.08.031_b0025 article-title: Substitute-structure method for seismic design in R/C publication-title: J Struct Div ASCE doi: 10.1061/JSDEAG.0004250 – ident: 10.1016/j.istruc.2021.08.031_b0195 – volume: 28 issue: 4 year: 2019 ident: 10.1016/j.istruc.2021.08.031_b0175 article-title: Multiobjective optimal placement of active tendons to control irregular multistory buildings with soil–structure interaction publication-title: Struct Design Tall Spec Build doi: 10.1002/tal.1581 – volume: 94 start-page: 103 issue: 1 year: 1968 ident: 10.1016/j.istruc.2021.08.031_b0045 article-title: Equivalent viscous damping for yielding structures publication-title: J Eng Mech Div doi: 10.1061/JMCEA3.0000929 – volume: 9 start-page: 1535 issue: 5 year: 2011 ident: 10.1016/j.istruc.2021.08.031_b0055 article-title: Equivalent viscous damping for steel concentrically braced frame structures publication-title: Bull Earthq Eng doi: 10.1007/s10518-011-9272-4 – volume: 107 start-page: 66 year: 2016 ident: 10.1016/j.istruc.2021.08.031_b0105 article-title: Earthquake-resistant design of buckling-restrained braced RC moment frames using performance-based plastic design method publication-title: Eng Struct doi: 10.1016/j.engstruct.2015.10.048 – volume: 28 issue: 15 year: 2019 ident: 10.1016/j.istruc.2021.08.031_b0115 article-title: Seismic design and performance analysis of buckling-restrained braced RC frame structures publication-title: Struct Design Tall Spec Build doi: 10.1002/tal.1661 – year: 2012 ident: 10.1016/j.istruc.2021.08.031_b0020 – ident: 10.1016/j.istruc.2021.08.031_b0050 – volume: 81 start-page: 110 year: 2014 ident: 10.1016/j.istruc.2021.08.031_b0095 article-title: Energy-based seismic strengthening design of non-ductile reinforced concrete frames using buckling-restrained braces publication-title: Eng Struct doi: 10.1016/j.engstruct.2014.09.033 – volume: 11 start-page: 512 issue: 4 year: 2007 ident: 10.1016/j.istruc.2021.08.031_b0040 article-title: Equivalent damping in support of direct displacement-based design publication-title: J Earthq Eng doi: 10.1080/13632460601033884 – year: 2018 ident: 10.1016/j.istruc.2021.08.031_b0235 – volume: 42 start-page: 345 issue: 4 year: 2018 ident: 10.1016/j.istruc.2021.08.031_b0210 article-title: Energy dissipation of reinforced concrete wall combined with buckling-restrained braces subjected to near-and far-fault earthquakes publication-title: Iran J Sci Technol Trans Civ Eng doi: 10.1007/s40996-018-0109-0 – volume: 137 start-page: 589 issue: 5 year: 2011 ident: 10.1016/j.istruc.2021.08.031_b0085 article-title: Residual drift response of SMRFs and BRB frames in steel buildings designed according to ASCE 7–05 publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0000296 – volume: 18 start-page: 1345 issue: 4 year: 2020 ident: 10.1016/j.istruc.2021.08.031_b0145 article-title: Comparing the performance of traditional shear-wall and rocking shear-wall structures designed using the direct-displacement based design approach publication-title: Bull Earthq Eng doi: 10.1007/s10518-019-00740-y – ident: 10.1016/j.istruc.2021.08.031_b0190 – volume: 133 start-page: 1205 issue: 9 year: 2007 ident: 10.1016/j.istruc.2021.08.031_b0220 article-title: Experimental evaluation of a large-scale buckling-restrained braced frame publication-title: ASCE J Struct Eng doi: 10.1061/(ASCE)0733-9445(2007)133:9(1205) – ident: 10.1016/j.istruc.2021.08.031_b0005 – volume: 31 start-page: 341 year: 2021 ident: 10.1016/j.istruc.2021.08.031_b0165 article-title: Direct displacement-based design of the linked column steel frame System, Part 1: modeling and yield drift evaluation publication-title: Structures doi: 10.1016/j.istruc.2021.01.076 – ident: 10.1016/j.istruc.2021.08.031_b0200 – ident: 10.1016/j.istruc.2021.08.031_b0065 doi: 10.1016/j.istruc.2020.07.015 – start-page: 48 year: 2016 ident: 10.1016/j.istruc.2021.08.031_b0225 article-title: Overstrength of displacement-based designed eccentrically braced steel frames publication-title: J Struct Constr Eng – volume: 142 start-page: 04015128 issue: 2 year: 2016 ident: 10.1016/j.istruc.2021.08.031_b0100 article-title: Subassemblage cyclic loading tests of buckling-restrained braced RC Frames with unconstrained gusset connections publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0001407 – ident: 10.1016/j.istruc.2021.08.031_b0155 – volume: 155 start-page: 233 year: 2019 ident: 10.1016/j.istruc.2021.08.031_b0135 article-title: Displacement profile for displacement based seismic design of concentric braced frames publication-title: J Constr Steel Res doi: 10.1016/j.jcsr.2018.12.029 – year: 2014 ident: 10.1016/j.istruc.2021.08.031_b0150 – volume: 199 year: 2019 ident: 10.1016/j.istruc.2021.08.031_b0170 article-title: Residual drift mitigation for bridges retrofitted with buckling restrained braces or self centering energy dissipation devices publication-title: Eng Struct doi: 10.1016/j.engstruct.2019.109663 – ident: 10.1016/j.istruc.2021.08.031_b0140 – ident: 10.1016/j.istruc.2021.08.031_b0010 – start-page: 1029 year: 1960 ident: 10.1016/j.istruc.2021.08.031_b0030 article-title: Damping in composite structures – ident: 10.1016/j.istruc.2021.08.031_b0035 doi: 10.1142/S1363246905002390 – year: 2007 ident: 10.1016/j.istruc.2021.08.031_b0015 – ident: 10.1016/j.istruc.2021.08.031_b0205 – volume: 28 start-page: 1687 year: 2020 ident: 10.1016/j.istruc.2021.08.031_b0090 article-title: Effect of steel braces buckling on inelastic torsion and design prevention of steel braced concrete frame structure publication-title: Structures doi: 10.1016/j.istruc.2020.08.048 – year: 2015 ident: 10.1016/j.istruc.2021.08.031_b0245 – volume: 22 start-page: 299 issue: 5 year: 2018 ident: 10.1016/j.istruc.2021.08.031_b0180 article-title: Extension of direct displacement-based design to include higher-mode effects in planar reinforced concrete frame buildings publication-title: J Earthq Eng Soc Korea doi: 10.5000/EESK.2018.22.5.299 – volume: 4 start-page: 301 issue: 4 year: 2004 ident: 10.1016/j.istruc.2021.08.031_b0070 article-title: Research and application of buckling-restrained braced frames publication-title: Int J Steel Struct |
SSID | ssj0002140247 |
Score | 2.2649844 |
Snippet | While the direct displacement-based design (DDBD) method is commonly developed in seismic design of the single frame and is extensively discussed in the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1229 |
SubjectTerms | Buckling‐restrained brace Direct displacement-based design method Dual frame Ductility Equivalent viscous damping Nonlinear time-history analysis RC frame |
Title | Equivalent viscous damping for buckling-restrained braced RC frame structures |
URI | https://dx.doi.org/10.1016/j.istruc.2021.08.031 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61vehBfGJ9kYPX0G5mm-weS2mpSntQC70tecKK1oqtv9_JPkoFUfCY3cySHWZnvslOviHkBoRFzysss9IDw3hsmTZaMeGd88o78DbsQ06mYjyL7-a9eYMM6rMwoayy8v2lTy-8dXWlU2mzs8zzziNH7IDuNeZREQeTHdLikAo07Vb_9n483Wy1cEwieNFqLIiwIFMfoisqvfKCqhVzRV7SeUL0c5DaCjyjA7JfIUbaLxd1SBpucUT2tngEj8lk-L7O0WQwgNDP_MNgNk-teg1HoSiCUqrDD1wcsNCII_SEcJZilowvTx8G1If6LFoSya5xxgmZjYZPgzGr-iQwg4B_hQAZQQXIWEfKpeBN0k0M6AQTCy8VmK6RMgEnbfg2JSROSQDd01panaYe8c8paS7eFu6MUOFiizmUErHQgQpQdR3Hx_PQ686mAG0CtWIyU5GIh3W_ZHW12HNWqjML6sxCi0uI2oRtpJYlicYf82Wt8-ybMWTo53-VPP-35AXZDaOyUuWSNPG-u0K8sdLXlT19AVvy1Pk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOiKcYzxy4RlubrmmP07SpY48DbNJuVdMkUhGMITZ-P3YfaEgIJI5t7Sq1Uvtz4nwGuBO-Rs_ra66lFRzjseYqVQn3rTE2sUZYTeuQk6kfzb37RWdRg151FobKKkvfX_j03FuXd1qlNVurLGs9uogd0L16rpPHwWAHGsRO1alDozscRdOvpRYXkwg3bzVGKpx0qkN0eaVXllO1Yq7oFnSewvk5SG0FnsEhHJSIkXWLQR1BzSyPYX-LR_AEJv23TYZTBgMI-8jeU8zmmU5e6CgUQ1DKFG3g4gWnRhzUE8Johlkyfjx76DFL9VmsIJLdoMQpzAf9WS_iZZ8EniLgXyNARlAhpKecxITCpkE7SIUKMLGwMhFpO5UyEEZq-jelCEwihVAdpaRWYWgR_5xBffm6NOfAfONpzKES3_MVUQEmbePi613qdadDIZogKsPEaUkiTuN-jqtqsae4MGdM5oypxaVwmsC_tFYFicYf8rKyefxtMsTo53_VvPi35i3sRrPJOB4Pp6NL2KMnRdXKFdRR1lwj9lirm3JufQJu09ff |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Equivalent+viscous+damping+for+buckling-restrained+braced+RC+frame+structures&rft.jtitle=Structures+%28Oxford%29&rft.au=Farahani%2C+Sina&rft.au=Akhaveissy%2C+Amir+H.&rft.au=Damkilde%2C+Lars&rft.date=2021-12-01&rft.issn=2352-0124&rft.eissn=2352-0124&rft.volume=34&rft.spage=1229&rft.epage=1252&rft_id=info:doi/10.1016%2Fj.istruc.2021.08.031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_istruc_2021_08_031 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0124&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0124&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0124&client=summon |